/** * Copyright 2021 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common/common.h" #include "common/cvop_common.h" #include "minddata/dataset/kernels/image/random_crop_op.h" #include "utils/log_adapter.h" using namespace mindspore::dataset; using mindspore::LogStream; using mindspore::ExceptionType::NoExceptionType; using mindspore::MsLogLevel::INFO; class MindDataTestRandomCropOp : public UT::CVOP::CVOpCommon { protected: MindDataTestRandomCropOp() : CVOpCommon() {} TensorRow output_tensor_row; }; TEST_F(MindDataTestRandomCropOp, TestOp1) { MS_LOG(INFO) << "Doing testRandomCrop."; // Crop params unsigned int crop_height = 128; unsigned int crop_width = 128; std::unique_ptr op(new RandomCropOp(crop_height, crop_width, 0, 0, 0, 0, false, BorderType::kConstant)); TensorRow input_tensor_row; input_tensor_row.push_back(input_tensor_); input_tensor_row.push_back(input_tensor_); Status s = op->Compute(input_tensor_row, &output_tensor_row); for (size_t i = 0; i < input_tensor_row.size(); i++) { size_t actual = 0; if (s == Status::OK()) { actual = output_tensor_row[i]->shape()[0] * output_tensor_row[i]->shape()[1] * output_tensor_row[i]->shape()[2]; } EXPECT_EQ(actual, crop_height * crop_width * 3); EXPECT_EQ(s, Status::OK()); } } TEST_F(MindDataTestRandomCropOp, TestOp2) { MS_LOG(INFO) << "Doing testRandomCrop."; // Crop params unsigned int crop_height = 1280; unsigned int crop_width = 1280; TensorRow input_tensor_row; input_tensor_row.push_back(input_tensor_); input_tensor_row.push_back(input_tensor_); std::unique_ptr op( new RandomCropOp(crop_height, crop_width, 513, 513, 513, 513, false, BorderType::kConstant)); Status s = op->Compute(input_tensor_row, &output_tensor_row); EXPECT_EQ(true, s.IsOk()); MS_LOG(INFO) << "testRandomCrop end."; }