# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import mindspore.dataset as ds # tests the construction of multiple ops from a single dataset. # map dataset with columns order arguments should produce a ProjectOp over MapOp # This test does not utilize the compiling passes at this time. def test_map_reorder0(): def generator_mc(maxid=1): for _ in range(maxid): yield (np.array([0]), np.array([1])) # Generator -> Map data0 = ds.GeneratorDataset(generator_mc, ["col0", "col1"]) data0 = data0.map(operations=(lambda x: x), input_columns="col0", output_columns="out", column_order=["col1", "out"]) for item in data0.create_tuple_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary assert item == [np.array(1), np.array(0)] # tests the construction of multiple ops from a single dataset. # map dataset with columns order arguments should produce a ProjectOp over MapOp # This test does not utilize the compiling passes at this time. def test_map_reorder1(): def generator_mc(maxid=1): for _ in range(maxid): yield (np.array([0]), np.array([1]), np.array([2])) # Three map and zip data0 = ds.GeneratorDataset(generator_mc, ["a0", "a1", "a2"]) data0 = data0.map(operations=(lambda x: x), input_columns="a0", column_order=["a2", "a1", "a0"]) data1 = ds.GeneratorDataset(generator_mc, ["b0", "b1", "b2"]) data1 = data1.map(operations=(lambda x: x), input_columns="b0", column_order=["b1", "b2", "b0"]) data2 = ds.zip((data0, data1)) data2 = data2.map(operations=(lambda x: x), input_columns="a0", column_order=["b2", "a2", "b1", "a1", "b0", "a0"]) for item in data2.create_tuple_iterator(num_epochs=1, output_numpy=True): assert item == [np.array(2), np.array(2), np.array(1), np.array(1), np.array(0), np.array(0)] # tests the construction of multiple ops from a single dataset. # TFRecordDataset with global shuffle should produce a ShuffleOp over TfReaderOp. # This test does not utilize the compiling passes at this time. def test_shuffle(): FILES = ["../data/dataset/testTFTestAllTypes/test.data"] SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json" ds.config.set_seed(1) data1 = ds.TFRecordDataset(FILES, schema=SCHEMA_FILE, shuffle=ds.Shuffle.GLOBAL) data2 = ds.TFRecordDataset(FILES, schema=SCHEMA_FILE, shuffle=ds.Shuffle.FILES) data2 = data2.shuffle(10000) for d1, d2 in zip(data1.create_tuple_iterator(output_numpy=True), data2.create_tuple_iterator(output_numpy=True)): for t1, t2 in zip(d1, d2): np.testing.assert_array_equal(t1, t2) ds.config.set_seed(1) DATA_ALL_FILE = "../data/dataset/testTextFileDataset/*" data1 = ds.TextFileDataset(DATA_ALL_FILE, shuffle=ds.Shuffle.GLOBAL) data2 = ds.TextFileDataset(DATA_ALL_FILE, shuffle=ds.Shuffle.FILES) data2 = data2.shuffle(10000) for d1, d2 in zip(data1.create_tuple_iterator(output_numpy=True), data2.create_tuple_iterator(output_numpy=True)): for t1, t2 in zip(d1, d2): np.testing.assert_array_equal(t1, t2) ds.config.set_seed(1) TRAIN_FILE = '../data/dataset/testCLUE/afqmc/train.json' data1 = ds.CLUEDataset(TRAIN_FILE, task='AFQMC', usage='train', shuffle=ds.Shuffle.GLOBAL) data2 = ds.CLUEDataset(TRAIN_FILE, task='AFQMC', usage='train', shuffle=ds.Shuffle.FILES) data2 = data2.shuffle(10000) for d1, d2 in zip(data1.create_tuple_iterator(output_numpy=True), data2.create_tuple_iterator(output_numpy=True)): for t1, t2 in zip(d1, d2): np.testing.assert_array_equal(t1, t2) if __name__ == "__main__": test_map_reorder0() test_map_reorder1() test_global_shuffle()