# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing RandomPerspective op in DE """ import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.py_transforms import mindspore.dataset.vision.py_transforms as py_vision from mindspore.dataset.vision.utils import Inter from mindspore import log as logger from util import visualize_list, save_and_check_md5, \ config_get_set_seed, config_get_set_num_parallel_workers GENERATE_GOLDEN = False DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def test_random_perspective_op(plot=False): """ Test RandomPerspective in python transformations """ logger.info("test_random_perspective_op") # define map operations transforms1 = [ py_vision.Decode(), py_vision.RandomPerspective(), py_vision.ToTensor() ] transform1 = mindspore.dataset.transforms.py_transforms.Compose(transforms1) transforms2 = [ py_vision.Decode(), py_vision.ToTensor() ] transform2 = mindspore.dataset.transforms.py_transforms.Compose(transforms2) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data1 = data1.map(operations=transform1, input_columns=["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(operations=transform2, input_columns=["image"]) image_perspective = [] image_original = [] for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image_perspective.append(image1) image_original.append(image2) if plot: visualize_list(image_original, image_perspective) def skip_test_random_perspective_md5(): """ Test RandomPerspective with md5 comparison """ logger.info("test_random_perspective_md5") original_seed = config_get_set_seed(5) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # define map operations transforms = [ py_vision.Decode(), py_vision.RandomPerspective(distortion_scale=0.3, prob=0.7, interpolation=Inter.BILINEAR), py_vision.Resize(1450), # resize to a smaller size to prevent round-off error py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data = data.map(operations=transform, input_columns=["image"]) # check results with md5 comparison filename = "random_perspective_01_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore configuration ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers((original_num_parallel_workers)) def test_random_perspective_exception_distortion_scale_range(): """ Test RandomPerspective: distortion_scale is not in [0, 1], expected to raise ValueError """ logger.info("test_random_perspective_exception_distortion_scale_range") try: _ = py_vision.RandomPerspective(distortion_scale=1.5) except ValueError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert str(e) == "Input distortion_scale is not within the required interval of [0.0, 1.0]." def test_random_perspective_exception_prob_range(): """ Test RandomPerspective: prob is not in [0, 1], expected to raise ValueError """ logger.info("test_random_perspective_exception_prob_range") try: _ = py_vision.RandomPerspective(prob=1.2) except ValueError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert str(e) == "Input prob is not within the required interval of [0.0, 1.0]." if __name__ == "__main__": test_random_perspective_op(plot=True) skip_test_random_perspective_md5() test_random_perspective_exception_distortion_scale_range() test_random_perspective_exception_prob_range()