# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(Cell): def __init__(self, weight, weight2, strategy1=None, strategy2=None, is_parameter=True): super().__init__() self.mul = P.Mul().shard(strategy1) self.tile = P.Tile().shard(strategy2) if is_parameter: self.weight = Parameter(weight, "w1") else: self.weight = weight self.mul2 = P.Mul() self.weight2 = Parameter(weight2, "w2") def construct(self, x, b): out = self.tile(self.weight, (8, 4, 2)) out = self.mul(x, out) out = self.mul2(out, self.weight2) return out class Net2(Cell): def __init__(self, weight2, strategy1=None, strategy2=None): super().__init__() self.mul = P.Mul().shard(strategy1) self.tile = P.Tile().shard(strategy2) self.weight2 = Parameter(weight2, "w2") def construct(self, x, b): out = self.mul(x, self.weight2) out = self.tile(out, (8, 8, 4, 2)) return out class Net3(Cell): def __init__(self, weight, strategy1=None, strategy2=None, is_parameter=True): super().__init__() self.mul = P.Mul().shard(strategy1) self.tile = P.Tile().shard(strategy2) if is_parameter: self.weight = Parameter(weight, "w1") else: self.weight = weight self.mul2 = P.Mul() def construct(self, x, b): out = self.tile(self.weight, (8, 1, 1)) out = self.mul(x, out) return out _x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) _x1 = Tensor(np.ones([128, 16, 16]), dtype=ms.float32) _w1 = Tensor(np.ones([16, 16, 16]), dtype=ms.float32) _w2 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) _w3 = Tensor(np.ones([128, 16, 16]), dtype=ms.float32) _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) def compile_net(net, x=_b, b=_b): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, x, b) context.reset_auto_parallel_context() def test_tile_parameter(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = ((2, 2, 2),) net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True) compile_net(net) def test_tile_parameter_no_full_split(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = ((2, 2, 1),) net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True) compile_net(net) def test_tile_tensor(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = ((2, 2, 2),) net = Net(_w1, _w2, strategy1, strategy2, is_parameter=False) compile_net(net) def test_tile_tensor_no_full_split(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = ((2, 2, 1),) net = Net(_w1, _w2, strategy1, strategy2, is_parameter=False) compile_net(net) def test_tile_tensor_no_full_split2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1), (2, 2, 1)) strategy2 = ((2, 2, 1),) net = Net3(_w1, strategy1, strategy2) compile_net(net, _x1, _b) def test_tile_output(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = ((1, 2, 2, 2),) net = Net2(_w2, strategy1, strategy2) compile_net(net) def test_tile_output_no_full_split(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = ((1, 2, 1, 2),) net = Net2(_w2, strategy1, strategy2) compile_net(net) def test_tile_no_strategy(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = None net = Net2(_w2, strategy1, strategy2) compile_net(net) def test_tile_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net2(_w2) compile_net(net) def test_tile_auto_parallel_2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) net = Net3(_w1) compile_net(net, _x1, _b)