// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ****************************************************************************** * Copyright (C) 1997-2015, International Business Machines * Corporation and others. All Rights Reserved. ****************************************************************************** * file name: nfsubs.cpp * encoding: UTF-8 * tab size: 8 (not used) * indentation:4 * * Modification history * Date Name Comments * 10/11/2001 Doug Ported from ICU4J */ #include #include "utypeinfo.h" // for 'typeid' to work #include "nfsubs.h" #include "fmtableimp.h" #include "putilimp.h" #include "number_decimalquantity.h" #if U_HAVE_RBNF static const UChar gLessThan = 0x003c; static const UChar gEquals = 0x003d; static const UChar gGreaterThan = 0x003e; static const UChar gPercent = 0x0025; static const UChar gPound = 0x0023; static const UChar gZero = 0x0030; static const UChar gSpace = 0x0020; static const UChar gEqualsEquals[] = { 0x3D, 0x3D, 0 }; /* "==" */ static const UChar gGreaterGreaterGreaterThan[] = { 0x3E, 0x3E, 0x3E, 0 }; /* ">>>" */ static const UChar gGreaterGreaterThan[] = { 0x3E, 0x3E, 0 }; /* ">>" */ U_NAMESPACE_BEGIN using number::impl::DecimalQuantity; class SameValueSubstitution : public NFSubstitution { public: SameValueSubstitution(int32_t pos, const NFRuleSet* ruleset, const UnicodeString& description, UErrorCode& status); virtual ~SameValueSubstitution(); virtual int64_t transformNumber(int64_t number) const override { return number; } virtual double transformNumber(double number) const override { return number; } virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const override { return newRuleValue; } virtual double calcUpperBound(double oldUpperBound) const override { return oldUpperBound; } virtual UChar tokenChar() const override { return (UChar)0x003d; } // '=' public: static UClassID getStaticClassID(void); virtual UClassID getDynamicClassID(void) const override; }; SameValueSubstitution::~SameValueSubstitution() {} class MultiplierSubstitution : public NFSubstitution { int64_t divisor; public: MultiplierSubstitution(int32_t _pos, const NFRule *rule, const NFRuleSet* _ruleSet, const UnicodeString& description, UErrorCode& status) : NFSubstitution(_pos, _ruleSet, description, status), divisor(rule->getDivisor()) { if (divisor == 0) { status = U_PARSE_ERROR; } } virtual ~MultiplierSubstitution(); virtual void setDivisor(int32_t radix, int16_t exponent, UErrorCode& status) override { divisor = util64_pow(radix, exponent); if(divisor == 0) { status = U_PARSE_ERROR; } } virtual bool operator==(const NFSubstitution& rhs) const override; virtual int64_t transformNumber(int64_t number) const override { return number / divisor; } virtual double transformNumber(double number) const override { if (getRuleSet()) { return uprv_floor(number / divisor); } else { return number / divisor; } } virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const override { return newRuleValue * divisor; } virtual double calcUpperBound(double /*oldUpperBound*/) const override { return static_cast(divisor); } virtual UChar tokenChar() const override { return (UChar)0x003c; } // '<' public: static UClassID getStaticClassID(void); virtual UClassID getDynamicClassID(void) const override; }; MultiplierSubstitution::~MultiplierSubstitution() {} class ModulusSubstitution : public NFSubstitution { int64_t divisor; const NFRule* ruleToUse; public: ModulusSubstitution(int32_t pos, const NFRule* rule, const NFRule* rulePredecessor, const NFRuleSet* ruleSet, const UnicodeString& description, UErrorCode& status); virtual ~ModulusSubstitution(); virtual void setDivisor(int32_t radix, int16_t exponent, UErrorCode& status) override { divisor = util64_pow(radix, exponent); if (divisor == 0) { status = U_PARSE_ERROR; } } virtual bool operator==(const NFSubstitution& rhs) const override; virtual void doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const override; virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const override; virtual int64_t transformNumber(int64_t number) const override { return number % divisor; } virtual double transformNumber(double number) const override { return uprv_fmod(number, static_cast(divisor)); } virtual UBool doParse(const UnicodeString& text, ParsePosition& parsePosition, double baseValue, double upperBound, UBool lenientParse, uint32_t nonNumericalExecutedRuleMask, Formattable& result) const override; virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const override { return oldRuleValue - uprv_fmod(oldRuleValue, static_cast(divisor)) + newRuleValue; } virtual double calcUpperBound(double /*oldUpperBound*/) const override { return static_cast(divisor); } virtual UBool isModulusSubstitution() const override { return TRUE; } virtual UChar tokenChar() const override { return (UChar)0x003e; } // '>' virtual void toString(UnicodeString& result) const override; public: static UClassID getStaticClassID(void); virtual UClassID getDynamicClassID(void) const override; }; ModulusSubstitution::~ModulusSubstitution() {} class IntegralPartSubstitution : public NFSubstitution { public: IntegralPartSubstitution(int32_t _pos, const NFRuleSet* _ruleSet, const UnicodeString& description, UErrorCode& status) : NFSubstitution(_pos, _ruleSet, description, status) {} virtual ~IntegralPartSubstitution(); virtual int64_t transformNumber(int64_t number) const override { return number; } virtual double transformNumber(double number) const override { return uprv_floor(number); } virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const override { return newRuleValue + oldRuleValue; } virtual double calcUpperBound(double /*oldUpperBound*/) const override { return DBL_MAX; } virtual UChar tokenChar() const override { return (UChar)0x003c; } // '<' public: static UClassID getStaticClassID(void); virtual UClassID getDynamicClassID(void) const override; }; IntegralPartSubstitution::~IntegralPartSubstitution() {} class FractionalPartSubstitution : public NFSubstitution { UBool byDigits; UBool useSpaces; enum { kMaxDecimalDigits = 8 }; public: FractionalPartSubstitution(int32_t pos, const NFRuleSet* ruleSet, const UnicodeString& description, UErrorCode& status); virtual ~FractionalPartSubstitution(); virtual bool operator==(const NFSubstitution& rhs) const override; virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const override; virtual void doSubstitution(int64_t /*number*/, UnicodeString& /*toInsertInto*/, int32_t /*_pos*/, int32_t /*recursionCount*/, UErrorCode& /*status*/) const override {} virtual int64_t transformNumber(int64_t /*number*/) const override { return 0; } virtual double transformNumber(double number) const override { return number - uprv_floor(number); } virtual UBool doParse(const UnicodeString& text, ParsePosition& parsePosition, double baseValue, double upperBound, UBool lenientParse, uint32_t nonNumericalExecutedRuleMask, Formattable& result) const override; virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const override { return newRuleValue + oldRuleValue; } virtual double calcUpperBound(double /*oldUpperBound*/) const override { return 0.0; } virtual UChar tokenChar() const override { return (UChar)0x003e; } // '>' public: static UClassID getStaticClassID(void); virtual UClassID getDynamicClassID(void) const override; }; FractionalPartSubstitution::~FractionalPartSubstitution() {} class AbsoluteValueSubstitution : public NFSubstitution { public: AbsoluteValueSubstitution(int32_t _pos, const NFRuleSet* _ruleSet, const UnicodeString& description, UErrorCode& status) : NFSubstitution(_pos, _ruleSet, description, status) {} virtual ~AbsoluteValueSubstitution(); virtual int64_t transformNumber(int64_t number) const override { return number >= 0 ? number : -number; } virtual double transformNumber(double number) const override { return uprv_fabs(number); } virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const override { return -newRuleValue; } virtual double calcUpperBound(double /*oldUpperBound*/) const override { return DBL_MAX; } virtual UChar tokenChar() const override { return (UChar)0x003e; } // '>' public: static UClassID getStaticClassID(void); virtual UClassID getDynamicClassID(void) const override; }; AbsoluteValueSubstitution::~AbsoluteValueSubstitution() {} class NumeratorSubstitution : public NFSubstitution { double denominator; int64_t ldenominator; UBool withZeros; public: static inline UnicodeString fixdesc(const UnicodeString& desc) { if (desc.endsWith(LTLT, 2)) { UnicodeString result(desc, 0, desc.length()-1); return result; } return desc; } NumeratorSubstitution(int32_t _pos, double _denominator, NFRuleSet* _ruleSet, const UnicodeString& description, UErrorCode& status) : NFSubstitution(_pos, _ruleSet, fixdesc(description), status), denominator(_denominator) { ldenominator = util64_fromDouble(denominator); withZeros = description.endsWith(LTLT, 2); } virtual ~NumeratorSubstitution(); virtual bool operator==(const NFSubstitution& rhs) const override; virtual int64_t transformNumber(int64_t number) const override { return number * ldenominator; } virtual double transformNumber(double number) const override { return uprv_round(number * denominator); } virtual void doSubstitution(int64_t /*number*/, UnicodeString& /*toInsertInto*/, int32_t /*_pos*/, int32_t /*recursionCount*/, UErrorCode& /*status*/) const override {} virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const override; virtual UBool doParse(const UnicodeString& text, ParsePosition& parsePosition, double baseValue, double upperBound, UBool /*lenientParse*/, uint32_t nonNumericalExecutedRuleMask, Formattable& result) const override; virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const override { return newRuleValue / oldRuleValue; } virtual double calcUpperBound(double /*oldUpperBound*/) const override { return denominator; } virtual UChar tokenChar() const override { return (UChar)0x003c; } // '<' private: static const UChar LTLT[2]; public: static UClassID getStaticClassID(void); virtual UClassID getDynamicClassID(void) const override; }; NumeratorSubstitution::~NumeratorSubstitution() {} NFSubstitution* NFSubstitution::makeSubstitution(int32_t pos, const NFRule* rule, const NFRule* predecessor, const NFRuleSet* ruleSet, const RuleBasedNumberFormat* formatter, const UnicodeString& description, UErrorCode& status) { // if the description is empty, return a NullSubstitution if (description.length() == 0) { return NULL; } switch (description.charAt(0)) { // if the description begins with '<'... case gLessThan: // throw an exception if the rule is a negative number // rule if (rule->getBaseValue() == NFRule::kNegativeNumberRule) { // throw new IllegalArgumentException("<< not allowed in negative-number rule"); status = U_PARSE_ERROR; return NULL; } // if the rule is a fraction rule, return an // IntegralPartSubstitution else if (rule->getBaseValue() == NFRule::kImproperFractionRule || rule->getBaseValue() == NFRule::kProperFractionRule || rule->getBaseValue() == NFRule::kDefaultRule) { return new IntegralPartSubstitution(pos, ruleSet, description, status); } // if the rule set containing the rule is a fraction // rule set, return a NumeratorSubstitution else if (ruleSet->isFractionRuleSet()) { return new NumeratorSubstitution(pos, (double)rule->getBaseValue(), formatter->getDefaultRuleSet(), description, status); } // otherwise, return a MultiplierSubstitution else { return new MultiplierSubstitution(pos, rule, ruleSet, description, status); } // if the description begins with '>'... case gGreaterThan: // if the rule is a negative-number rule, return // an AbsoluteValueSubstitution if (rule->getBaseValue() == NFRule::kNegativeNumberRule) { return new AbsoluteValueSubstitution(pos, ruleSet, description, status); } // if the rule is a fraction rule, return a // FractionalPartSubstitution else if (rule->getBaseValue() == NFRule::kImproperFractionRule || rule->getBaseValue() == NFRule::kProperFractionRule || rule->getBaseValue() == NFRule::kDefaultRule) { return new FractionalPartSubstitution(pos, ruleSet, description, status); } // if the rule set owning the rule is a fraction rule set, // throw an exception else if (ruleSet->isFractionRuleSet()) { // throw new IllegalArgumentException(">> not allowed in fraction rule set"); status = U_PARSE_ERROR; return NULL; } // otherwise, return a ModulusSubstitution else { return new ModulusSubstitution(pos, rule, predecessor, ruleSet, description, status); } // if the description begins with '=', always return a // SameValueSubstitution case gEquals: return new SameValueSubstitution(pos, ruleSet, description, status); // and if it's anything else, throw an exception default: // throw new IllegalArgumentException("Illegal substitution character"); status = U_PARSE_ERROR; } return NULL; } NFSubstitution::NFSubstitution(int32_t _pos, const NFRuleSet* _ruleSet, const UnicodeString& description, UErrorCode& status) : pos(_pos), ruleSet(NULL), numberFormat(NULL) { // the description should begin and end with the same character. // If it doesn't that's a syntax error. Otherwise, // makeSubstitution() was the only thing that needed to know // about these characters, so strip them off UnicodeString workingDescription(description); if (description.length() >= 2 && description.charAt(0) == description.charAt(description.length() - 1)) { workingDescription.remove(description.length() - 1, 1); workingDescription.remove(0, 1); } else if (description.length() != 0) { // throw new IllegalArgumentException("Illegal substitution syntax"); status = U_PARSE_ERROR; return; } if (workingDescription.length() == 0) { // if the description was just two paired token characters // (i.e., "<<" or ">>"), it uses the rule set it belongs to to // format its result this->ruleSet = _ruleSet; } else if (workingDescription.charAt(0) == gPercent) { // if the description contains a rule set name, that's the rule // set we use to format the result: get a reference to the // names rule set this->ruleSet = _ruleSet->getOwner()->findRuleSet(workingDescription, status); } else if (workingDescription.charAt(0) == gPound || workingDescription.charAt(0) ==gZero) { // if the description begins with 0 or #, treat it as a // DecimalFormat pattern, and initialize a DecimalFormat with // that pattern (then set it to use the DecimalFormatSymbols // belonging to our formatter) const DecimalFormatSymbols* sym = _ruleSet->getOwner()->getDecimalFormatSymbols(); if (!sym) { status = U_MISSING_RESOURCE_ERROR; return; } DecimalFormat *tempNumberFormat = new DecimalFormat(workingDescription, *sym, status); /* test for NULL */ if (!tempNumberFormat) { status = U_MEMORY_ALLOCATION_ERROR; return; } if (U_FAILURE(status)) { delete tempNumberFormat; return; } this->numberFormat = tempNumberFormat; } else if (workingDescription.charAt(0) == gGreaterThan) { // if the description is ">>>", this substitution bypasses the // usual rule-search process and always uses the rule that precedes // it in its own rule set's rule list (this is used for place-value // notations: formats where you want to see a particular part of // a number even when it's 0) // this causes problems when >>> is used in a frationalPartSubstitution // this->ruleSet = NULL; this->ruleSet = _ruleSet; this->numberFormat = NULL; } else { // and of the description is none of these things, it's a syntax error // throw new IllegalArgumentException("Illegal substitution syntax"); status = U_PARSE_ERROR; } } NFSubstitution::~NFSubstitution() { delete numberFormat; numberFormat = NULL; } /** * Set's the substitution's divisor. Used by NFRule.setBaseValue(). * A no-op for all substitutions except multiplier and modulus * substitutions. * @param radix The radix of the divisor * @param exponent The exponent of the divisor */ void NFSubstitution::setDivisor(int32_t /*radix*/, int16_t /*exponent*/, UErrorCode& /*status*/) { // a no-op for all substitutions except multiplier and modulus substitutions } void NFSubstitution::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& /*status*/) { if (numberFormat != NULL) { numberFormat->setDecimalFormatSymbols(newSymbols); } } //----------------------------------------------------------------------- // boilerplate //----------------------------------------------------------------------- UOBJECT_DEFINE_RTTI_IMPLEMENTATION(NFSubstitution) /** * Compares two substitutions for equality * @param The substitution to compare this one to * @return true if the two substitutions are functionally equivalent */ bool NFSubstitution::operator==(const NFSubstitution& rhs) const { // compare class and all of the fields all substitutions have // in common // this should be called by subclasses before their own equality tests return typeid(*this) == typeid(rhs) && pos == rhs.pos && (ruleSet == NULL) == (rhs.ruleSet == NULL) // && ruleSet == rhs.ruleSet causes circularity, other checks to make instead? && (numberFormat == NULL ? (rhs.numberFormat == NULL) : (*numberFormat == *rhs.numberFormat)); } /** * Returns a textual description of the substitution * @return A textual description of the substitution. This might * not be identical to the description it was created from, but * it'll produce the same result. */ void NFSubstitution::toString(UnicodeString& text) const { // use tokenChar() to get the character at the beginning and // end of the substitutin token. In between them will go // either the name of the rule set it uses, or the pattern of // the DecimalFormat it uses text.remove(); text.append(tokenChar()); UnicodeString temp; if (ruleSet != NULL) { ruleSet->getName(temp); } else if (numberFormat != NULL) { numberFormat->toPattern(temp); } text.append(temp); text.append(tokenChar()); } //----------------------------------------------------------------------- // formatting //----------------------------------------------------------------------- /** * Performs a mathematical operation on the number, formats it using * either ruleSet or decimalFormat, and inserts the result into * toInsertInto. * @param number The number being formatted. * @param toInsertInto The string we insert the result into * @param pos The position in toInsertInto where the owning rule's * rule text begins (this value is added to this substitution's * position to determine exactly where to insert the new text) */ void NFSubstitution::doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const { if (ruleSet != NULL) { // Perform a transformation on the number that is dependent // on the type of substitution this is, then just call its // rule set's format() method to format the result ruleSet->format(transformNumber(number), toInsertInto, _pos + this->pos, recursionCount, status); } else if (numberFormat != NULL) { if (number <= MAX_INT64_IN_DOUBLE) { // or perform the transformation on the number (preserving // the result's fractional part if the formatter it set // to show it), then use that formatter's format() method // to format the result double numberToFormat = transformNumber((double)number); if (numberFormat->getMaximumFractionDigits() == 0) { numberToFormat = uprv_floor(numberToFormat); } UnicodeString temp; numberFormat->format(numberToFormat, temp, status); toInsertInto.insert(_pos + this->pos, temp); } else { // We have gone beyond double precision. Something has to give. // We're favoring accuracy of the large number over potential rules // that round like a CompactDecimalFormat, which is not a common use case. // // Perform a transformation on the number that is dependent // on the type of substitution this is, then just call its // rule set's format() method to format the result int64_t numberToFormat = transformNumber(number); UnicodeString temp; numberFormat->format(numberToFormat, temp, status); toInsertInto.insert(_pos + this->pos, temp); } } } /** * Performs a mathematical operation on the number, formats it using * either ruleSet or decimalFormat, and inserts the result into * toInsertInto. * @param number The number being formatted. * @param toInsertInto The string we insert the result into * @param pos The position in toInsertInto where the owning rule's * rule text begins (this value is added to this substitution's * position to determine exactly where to insert the new text) */ void NFSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const { // perform a transformation on the number being formatted that // is dependent on the type of substitution this is double numberToFormat = transformNumber(number); if (uprv_isInfinite(numberToFormat)) { // This is probably a minus rule. Combine it with an infinite rule. const NFRule *infiniteRule = ruleSet->findDoubleRule(uprv_getInfinity()); infiniteRule->doFormat(numberToFormat, toInsertInto, _pos + this->pos, recursionCount, status); return; } // if the result is an integer, from here on out we work in integer // space (saving time and memory and preserving accuracy) if (numberToFormat == uprv_floor(numberToFormat) && ruleSet != NULL) { ruleSet->format(util64_fromDouble(numberToFormat), toInsertInto, _pos + this->pos, recursionCount, status); // if the result isn't an integer, then call either our rule set's // format() method or our DecimalFormat's format() method to // format the result } else { if (ruleSet != NULL) { ruleSet->format(numberToFormat, toInsertInto, _pos + this->pos, recursionCount, status); } else if (numberFormat != NULL) { UnicodeString temp; numberFormat->format(numberToFormat, temp); toInsertInto.insert(_pos + this->pos, temp); } } } //----------------------------------------------------------------------- // parsing //----------------------------------------------------------------------- #ifdef RBNF_DEBUG #include #endif /** * Parses a string using the rule set or DecimalFormat belonging * to this substitution. If there's a match, a mathematical * operation (the inverse of the one used in formatting) is * performed on the result of the parse and the value passed in * and returned as the result. The parse position is updated to * point to the first unmatched character in the string. * @param text The string to parse * @param parsePosition On entry, ignored, but assumed to be 0. * On exit, this is updated to point to the first unmatched * character (or 0 if the substitution didn't match) * @param baseValue A partial parse result that should be * combined with the result of this parse * @param upperBound When searching the rule set for a rule * matching the string passed in, only rules with base values * lower than this are considered * @param lenientParse If true and matching against rules fails, * the substitution will also try matching the text against * numerals using a default-costructed NumberFormat. If false, * no extra work is done. (This value is false whenever the * formatter isn't in lenient-parse mode, but is also false * under some conditions even when the formatter _is_ in * lenient-parse mode.) * @return If there's a match, this is the result of composing * baseValue with whatever was returned from matching the * characters. This will be either a Long or a Double. If there's * no match this is new Long(0) (not null), and parsePosition * is left unchanged. */ UBool NFSubstitution::doParse(const UnicodeString& text, ParsePosition& parsePosition, double baseValue, double upperBound, UBool lenientParse, uint32_t nonNumericalExecutedRuleMask, Formattable& result) const { #ifdef RBNF_DEBUG fprintf(stderr, " %x bv: %g ub: %g\n", this, baseValue, upperBound); #endif // figure out the highest base value a rule can have and match // the text being parsed (this varies according to the type of // substitutions: multiplier, modulus, and numerator substitutions // restrict the search to rules with base values lower than their // own; same-value substitutions leave the upper bound wherever // it was, and the others allow any rule to match upperBound = calcUpperBound(upperBound); // use our rule set to parse the text. If that fails and // lenient parsing is enabled (this is always false if the // formatter's lenient-parsing mode is off, but it may also // be false even when the formatter's lenient-parse mode is // on), then also try parsing the text using a default- // constructed NumberFormat if (ruleSet != NULL) { ruleSet->parse(text, parsePosition, upperBound, nonNumericalExecutedRuleMask, result); if (lenientParse && !ruleSet->isFractionRuleSet() && parsePosition.getIndex() == 0) { UErrorCode status = U_ZERO_ERROR; NumberFormat* fmt = NumberFormat::createInstance(status); if (U_SUCCESS(status)) { fmt->parse(text, result, parsePosition); } delete fmt; } // ...or use our DecimalFormat to parse the text } else if (numberFormat != NULL) { numberFormat->parse(text, result, parsePosition); } // if the parse was successful, we've already advanced the caller's // parse position (this is the one function that doesn't have one // of its own). Derive a parse result and return it as a Long, // if possible, or a Double if (parsePosition.getIndex() != 0) { UErrorCode status = U_ZERO_ERROR; double tempResult = result.getDouble(status); // composeRuleValue() produces a full parse result from // the partial parse result passed to this function from // the caller (this is either the owning rule's base value // or the partial result obtained from composing the // owning rule's base value with its other substitution's // parse result) and the partial parse result obtained by // matching the substitution (which will be the same value // the caller would get by parsing just this part of the // text with RuleBasedNumberFormat.parse() ). How the two // values are used to derive the full parse result depends // on the types of substitutions: For a regular rule, the // ultimate result is its multiplier substitution's result // times the rule's divisor (or the rule's base value) plus // the modulus substitution's result (which will actually // supersede part of the rule's base value). For a negative- // number rule, the result is the negative of its substitution's // result. For a fraction rule, it's the sum of its two // substitution results. For a rule in a fraction rule set, // it's the numerator substitution's result divided by // the rule's base value. Results from same-value substitutions // propagate back upard, and null substitutions don't affect // the result. tempResult = composeRuleValue(tempResult, baseValue); result.setDouble(tempResult); return TRUE; // if the parse was UNsuccessful, return 0 } else { result.setLong(0); return FALSE; } } /** * Returns true if this is a modulus substitution. (We didn't do this * with instanceof partially because it causes source files to * proliferate and partially because we have to port this to C++.) * @return true if this object is an instance of ModulusSubstitution */ UBool NFSubstitution::isModulusSubstitution() const { return FALSE; } //=================================================================== // SameValueSubstitution //=================================================================== /** * A substitution that passes the value passed to it through unchanged. * Represented by == in rule descriptions. */ SameValueSubstitution::SameValueSubstitution(int32_t _pos, const NFRuleSet* _ruleSet, const UnicodeString& description, UErrorCode& status) : NFSubstitution(_pos, _ruleSet, description, status) { if (0 == description.compare(gEqualsEquals, 2)) { // throw new IllegalArgumentException("== is not a legal token"); status = U_PARSE_ERROR; } } UOBJECT_DEFINE_RTTI_IMPLEMENTATION(SameValueSubstitution) //=================================================================== // MultiplierSubstitution //=================================================================== UOBJECT_DEFINE_RTTI_IMPLEMENTATION(MultiplierSubstitution) bool MultiplierSubstitution::operator==(const NFSubstitution& rhs) const { return NFSubstitution::operator==(rhs) && divisor == ((const MultiplierSubstitution*)&rhs)->divisor; } //=================================================================== // ModulusSubstitution //=================================================================== /** * A substitution that divides the number being formatted by the its rule's * divisor and formats the remainder. Represented by ">>" in a * regular rule. */ ModulusSubstitution::ModulusSubstitution(int32_t _pos, const NFRule* rule, const NFRule* predecessor, const NFRuleSet* _ruleSet, const UnicodeString& description, UErrorCode& status) : NFSubstitution(_pos, _ruleSet, description, status) , divisor(rule->getDivisor()) , ruleToUse(NULL) { // the owning rule's divisor controls the behavior of this // substitution: rather than keeping a backpointer to the rule, // we keep a copy of the divisor if (divisor == 0) { status = U_PARSE_ERROR; } if (0 == description.compare(gGreaterGreaterGreaterThan, 3)) { // the >>> token doesn't alter how this substitution calculates the // values it uses for formatting and parsing, but it changes // what's done with that value after it's obtained: >>> short- // circuits the rule-search process and goes straight to the // specified rule to format the substitution value ruleToUse = predecessor; } } UOBJECT_DEFINE_RTTI_IMPLEMENTATION(ModulusSubstitution) bool ModulusSubstitution::operator==(const NFSubstitution& rhs) const { return NFSubstitution::operator==(rhs) && divisor == ((const ModulusSubstitution*)&rhs)->divisor && ruleToUse == ((const ModulusSubstitution*)&rhs)->ruleToUse; } //----------------------------------------------------------------------- // formatting //----------------------------------------------------------------------- /** * If this is a >>> substitution, use ruleToUse to fill in * the substitution. Otherwise, just use the superclass function. * @param number The number being formatted * @toInsertInto The string to insert the result of this substitution * into * @param pos The position of the rule text in toInsertInto */ void ModulusSubstitution::doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const { // if this isn't a >>> substitution, just use the inherited version // of this function (which uses either a rule set or a DecimalFormat // to format its substitution value) if (ruleToUse == NULL) { NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status); // a >>> substitution goes straight to a particular rule to // format the substitution value } else { int64_t numberToFormat = transformNumber(number); ruleToUse->doFormat(numberToFormat, toInsertInto, _pos + getPos(), recursionCount, status); } } /** * If this is a >>> substitution, use ruleToUse to fill in * the substitution. Otherwise, just use the superclass function. * @param number The number being formatted * @toInsertInto The string to insert the result of this substitution * into * @param pos The position of the rule text in toInsertInto */ void ModulusSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const { // if this isn't a >>> substitution, just use the inherited version // of this function (which uses either a rule set or a DecimalFormat // to format its substitution value) if (ruleToUse == NULL) { NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status); // a >>> substitution goes straight to a particular rule to // format the substitution value } else { double numberToFormat = transformNumber(number); ruleToUse->doFormat(numberToFormat, toInsertInto, _pos + getPos(), recursionCount, status); } } //----------------------------------------------------------------------- // parsing //----------------------------------------------------------------------- /** * If this is a >>> substitution, match only against ruleToUse. * Otherwise, use the superclass function. * @param text The string to parse * @param parsePosition Ignored on entry, updated on exit to point to * the first unmatched character. * @param baseValue The partial parse result prior to calling this * routine. */ UBool ModulusSubstitution::doParse(const UnicodeString& text, ParsePosition& parsePosition, double baseValue, double upperBound, UBool lenientParse, uint32_t nonNumericalExecutedRuleMask, Formattable& result) const { // if this isn't a >>> substitution, we can just use the // inherited parse() routine to do the parsing if (ruleToUse == NULL) { return NFSubstitution::doParse(text, parsePosition, baseValue, upperBound, lenientParse, nonNumericalExecutedRuleMask, result); // but if it IS a >>> substitution, we have to do it here: we // use the specific rule's doParse() method, and then we have to // do some of the other work of NFRuleSet.parse() } else { ruleToUse->doParse(text, parsePosition, FALSE, upperBound, nonNumericalExecutedRuleMask, result); if (parsePosition.getIndex() != 0) { UErrorCode status = U_ZERO_ERROR; double tempResult = result.getDouble(status); tempResult = composeRuleValue(tempResult, baseValue); result.setDouble(tempResult); } return TRUE; } } /** * Returns a textual description of the substitution * @return A textual description of the substitution. This might * not be identical to the description it was created from, but * it'll produce the same result. */ void ModulusSubstitution::toString(UnicodeString& text) const { // use tokenChar() to get the character at the beginning and // end of the substitutin token. In between them will go // either the name of the rule set it uses, or the pattern of // the DecimalFormat it uses if ( ruleToUse != NULL ) { // Must have been a >>> substitution. text.remove(); text.append(tokenChar()); text.append(tokenChar()); text.append(tokenChar()); } else { // Otherwise just use the super-class function. NFSubstitution::toString(text); } } //=================================================================== // IntegralPartSubstitution //=================================================================== UOBJECT_DEFINE_RTTI_IMPLEMENTATION(IntegralPartSubstitution) //=================================================================== // FractionalPartSubstitution //=================================================================== /** * Constructs a FractionalPartSubstitution. This object keeps a flag * telling whether it should format by digits or not. In addition, * it marks the rule set it calls (if any) as a fraction rule set. */ FractionalPartSubstitution::FractionalPartSubstitution(int32_t _pos, const NFRuleSet* _ruleSet, const UnicodeString& description, UErrorCode& status) : NFSubstitution(_pos, _ruleSet, description, status) , byDigits(FALSE) , useSpaces(TRUE) { // akk, ruleSet can change in superclass constructor if (0 == description.compare(gGreaterGreaterThan, 2) || 0 == description.compare(gGreaterGreaterGreaterThan, 3) || _ruleSet == getRuleSet()) { byDigits = TRUE; if (0 == description.compare(gGreaterGreaterGreaterThan, 3)) { useSpaces = FALSE; } } else { // cast away const ((NFRuleSet*)getRuleSet())->makeIntoFractionRuleSet(); } } //----------------------------------------------------------------------- // formatting //----------------------------------------------------------------------- /** * If in "by digits" mode, fills in the substitution one decimal digit * at a time using the rule set containing this substitution. * Otherwise, uses the superclass function. * @param number The number being formatted * @param toInsertInto The string to insert the result of formatting * the substitution into * @param pos The position of the owning rule's rule text in * toInsertInto */ void FractionalPartSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const { // if we're not in "byDigits" mode, just use the inherited // doSubstitution() routine if (!byDigits) { NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status); // if we're in "byDigits" mode, transform the value into an integer // by moving the decimal point eight places to the right and // pulling digits off the right one at a time, formatting each digit // as an integer using this substitution's owning rule set // (this is slower, but more accurate, than doing it from the // other end) } else { // int32_t numberToFormat = (int32_t)uprv_round(transformNumber(number) * uprv_pow(10, kMaxDecimalDigits)); // // this flag keeps us from formatting trailing zeros. It starts // // out false because we're pulling from the right, and switches // // to true the first time we encounter a non-zero digit // UBool doZeros = FALSE; // for (int32_t i = 0; i < kMaxDecimalDigits; i++) { // int64_t digit = numberToFormat % 10; // if (digit != 0 || doZeros) { // if (doZeros && useSpaces) { // toInsertInto.insert(_pos + getPos(), gSpace); // } // doZeros = TRUE; // getRuleSet()->format(digit, toInsertInto, _pos + getPos()); // } // numberToFormat /= 10; // } DecimalQuantity dl; dl.setToDouble(number); dl.roundToMagnitude(-20, UNUM_ROUND_HALFEVEN, status); // round to 20 fraction digits. UBool pad = FALSE; for (int32_t didx = dl.getLowerDisplayMagnitude(); didx<0; didx++) { // Loop iterates over fraction digits, starting with the LSD. // include both real digits from the number, and zeros // to the left of the MSD but to the right of the decimal point. if (pad && useSpaces) { toInsertInto.insert(_pos + getPos(), gSpace); } else { pad = TRUE; } int64_t digit = dl.getDigit(didx); getRuleSet()->format(digit, toInsertInto, _pos + getPos(), recursionCount, status); } if (!pad) { // hack around lack of precision in digitlist. if we would end up with // "foo point" make sure we add a " zero" to the end. getRuleSet()->format((int64_t)0, toInsertInto, _pos + getPos(), recursionCount, status); } } } //----------------------------------------------------------------------- // parsing //----------------------------------------------------------------------- /** * If in "by digits" mode, parses the string as if it were a string * of individual digits; otherwise, uses the superclass function. * @param text The string to parse * @param parsePosition Ignored on entry, but updated on exit to point * to the first unmatched character * @param baseValue The partial parse result prior to entering this * function * @param upperBound Only consider rules with base values lower than * this when filling in the substitution * @param lenientParse If true, try matching the text as numerals if * matching as words doesn't work * @return If the match was successful, the current partial parse * result; otherwise new Long(0). The result is either a Long or * a Double. */ UBool FractionalPartSubstitution::doParse(const UnicodeString& text, ParsePosition& parsePosition, double baseValue, double /*upperBound*/, UBool lenientParse, uint32_t nonNumericalExecutedRuleMask, Formattable& resVal) const { // if we're not in byDigits mode, we can just use the inherited // doParse() if (!byDigits) { return NFSubstitution::doParse(text, parsePosition, baseValue, 0, lenientParse, nonNumericalExecutedRuleMask, resVal); // if we ARE in byDigits mode, parse the text one digit at a time // using this substitution's owning rule set (we do this by setting // upperBound to 10 when calling doParse() ) until we reach // nonmatching text } else { UnicodeString workText(text); ParsePosition workPos(1); double result = 0; int32_t digit; // double p10 = 0.1; DecimalQuantity dl; int32_t totalDigits = 0; NumberFormat* fmt = NULL; while (workText.length() > 0 && workPos.getIndex() != 0) { workPos.setIndex(0); Formattable temp; getRuleSet()->parse(workText, workPos, 10, nonNumericalExecutedRuleMask, temp); UErrorCode status = U_ZERO_ERROR; digit = temp.getLong(status); // digit = temp.getType() == Formattable::kLong ? // temp.getLong() : // (int32_t)temp.getDouble(); if (lenientParse && workPos.getIndex() == 0) { if (!fmt) { status = U_ZERO_ERROR; fmt = NumberFormat::createInstance(status); if (U_FAILURE(status)) { delete fmt; fmt = NULL; } } if (fmt) { fmt->parse(workText, temp, workPos); digit = temp.getLong(status); } } if (workPos.getIndex() != 0) { dl.appendDigit(static_cast(digit), 0, true); totalDigits++; // result += digit * p10; // p10 /= 10; parsePosition.setIndex(parsePosition.getIndex() + workPos.getIndex()); workText.removeBetween(0, workPos.getIndex()); while (workText.length() > 0 && workText.charAt(0) == gSpace) { workText.removeBetween(0, 1); parsePosition.setIndex(parsePosition.getIndex() + 1); } } } delete fmt; dl.adjustMagnitude(-totalDigits); result = dl.toDouble(); result = composeRuleValue(result, baseValue); resVal.setDouble(result); return TRUE; } } bool FractionalPartSubstitution::operator==(const NFSubstitution& rhs) const { return NFSubstitution::operator==(rhs) && ((const FractionalPartSubstitution*)&rhs)->byDigits == byDigits; } UOBJECT_DEFINE_RTTI_IMPLEMENTATION(FractionalPartSubstitution) //=================================================================== // AbsoluteValueSubstitution //=================================================================== UOBJECT_DEFINE_RTTI_IMPLEMENTATION(AbsoluteValueSubstitution) //=================================================================== // NumeratorSubstitution //=================================================================== void NumeratorSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t apos, int32_t recursionCount, UErrorCode& status) const { // perform a transformation on the number being formatted that // is dependent on the type of substitution this is double numberToFormat = transformNumber(number); int64_t longNF = util64_fromDouble(numberToFormat); const NFRuleSet* aruleSet = getRuleSet(); if (withZeros && aruleSet != NULL) { // if there are leading zeros in the decimal expansion then emit them int64_t nf =longNF; int32_t len = toInsertInto.length(); while ((nf *= 10) < denominator) { toInsertInto.insert(apos + getPos(), gSpace); aruleSet->format((int64_t)0, toInsertInto, apos + getPos(), recursionCount, status); } apos += toInsertInto.length() - len; } // if the result is an integer, from here on out we work in integer // space (saving time and memory and preserving accuracy) if (numberToFormat == longNF && aruleSet != NULL) { aruleSet->format(longNF, toInsertInto, apos + getPos(), recursionCount, status); // if the result isn't an integer, then call either our rule set's // format() method or our DecimalFormat's format() method to // format the result } else { if (aruleSet != NULL) { aruleSet->format(numberToFormat, toInsertInto, apos + getPos(), recursionCount, status); } else { UnicodeString temp; getNumberFormat()->format(numberToFormat, temp, status); toInsertInto.insert(apos + getPos(), temp); } } } UBool NumeratorSubstitution::doParse(const UnicodeString& text, ParsePosition& parsePosition, double baseValue, double upperBound, UBool /*lenientParse*/, uint32_t nonNumericalExecutedRuleMask, Formattable& result) const { // we don't have to do anything special to do the parsing here, // but we have to turn lenient parsing off-- if we leave it on, // it SERIOUSLY messes up the algorithm // if withZeros is true, we need to count the zeros // and use that to adjust the parse result UErrorCode status = U_ZERO_ERROR; int32_t zeroCount = 0; UnicodeString workText(text); if (withZeros) { ParsePosition workPos(1); Formattable temp; while (workText.length() > 0 && workPos.getIndex() != 0) { workPos.setIndex(0); getRuleSet()->parse(workText, workPos, 1, nonNumericalExecutedRuleMask, temp); // parse zero or nothing at all if (workPos.getIndex() == 0) { // we failed, either there were no more zeros, or the number was formatted with digits // either way, we're done break; } ++zeroCount; parsePosition.setIndex(parsePosition.getIndex() + workPos.getIndex()); workText.remove(0, workPos.getIndex()); while (workText.length() > 0 && workText.charAt(0) == gSpace) { workText.remove(0, 1); parsePosition.setIndex(parsePosition.getIndex() + 1); } } workText = text; workText.remove(0, (int32_t)parsePosition.getIndex()); parsePosition.setIndex(0); } // we've parsed off the zeros, now let's parse the rest from our current position NFSubstitution::doParse(workText, parsePosition, withZeros ? 1 : baseValue, upperBound, FALSE, nonNumericalExecutedRuleMask, result); if (withZeros) { // any base value will do in this case. is there a way to // force this to not bother trying all the base values? // compute the 'effective' base and prescale the value down int64_t n = result.getLong(status); // force conversion! int64_t d = 1; int32_t pow = 0; while (d <= n) { d *= 10; ++pow; } // now add the zeros while (zeroCount > 0) { d *= 10; --zeroCount; } // d is now our true denominator result.setDouble((double)n/(double)d); } return TRUE; } bool NumeratorSubstitution::operator==(const NFSubstitution& rhs) const { return NFSubstitution::operator==(rhs) && denominator == ((const NumeratorSubstitution*)&rhs)->denominator; } UOBJECT_DEFINE_RTTI_IMPLEMENTATION(NumeratorSubstitution) const UChar NumeratorSubstitution::LTLT[] = { 0x003c, 0x003c }; U_NAMESPACE_END /* U_HAVE_RBNF */ #endif