/* * QR Code generator library (Rust) * * Copyright (c) Project Nayuki. (MIT License) * https://www.nayuki.io/page/qr-code-generator-library * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ //! Generates QR Codes from text strings and byte arrays. //! //! This project aims to be the best, clearest QR Code generator library. //! The primary goals are flexible options and absolute correctness. //! Secondary goals are compact implementation size and good documentation comments. //! //! Home page with live JavaScript demo, extensive descriptions, and competitor comparisons: //! [https://www.nayuki.io/page/qr-code-generator-library](https://www.nayuki.io/page/qr-code-generator-library) //! //! # Features //! //! Core features: //! //! - Available in 6 programming languages, all with nearly equal functionality: Java, TypeScript/JavaScript, Python, Rust, C++, C //! - Significantly shorter code but more documentation comments compared to competing libraries //! - Supports encoding all 40 versions (sizes) and all 4 error correction levels, as per the QR Code Model 2 standard //! - Output format: Raw modules/pixels of the QR symbol //! - Detects finder-like penalty patterns more accurately than other implementations //! - Encodes numeric and special-alphanumeric text in less space than general text //! - Open source code under the permissive MIT License //! //! Manual parameters: //! //! - User can specify minimum and maximum version numbers allowed, then library will automatically choose smallest version in the range that fits the data //! - User can specify mask pattern manually, otherwise library will automatically evaluate all 8 masks and select the optimal one //! - User can specify absolute error correction level, or allow the library to boost it if it doesn't increase the version number //! - User can create a list of data segments manually and add ECI segments //! //! # Examples //! //! ``` //! extern crate qrcodegen; //! use qrcodegen::Mask; //! use qrcodegen::QrCode; //! use qrcodegen::QrCodeEcc; //! use qrcodegen::QrSegment; //! use qrcodegen::Version; //! ``` //! //! Simple operation: //! //! ``` //! let qr = QrCode::encode_text("Hello, world!", //! QrCodeEcc::Medium).unwrap(); //! let svg = to_svg_string(&qr, 4); // See qrcodegen-demo //! ``` //! //! Manual operation: //! //! ``` //! let chrs: Vec = "3141592653589793238462643383".chars().collect(); //! let segs = QrSegment::make_segments(&chrs); //! let qr = QrCode::encode_segments_advanced(&segs, QrCodeEcc::High, //! Version::new(5), Version::new(5), Some(Mask::new(2)), false).unwrap(); //! for y in 0 .. qr.size() { //! for x in 0 .. qr.size() { //! (... paint qr.get_module(x, y) ...) //! } //! } //! ``` /*---- QrCode functionality ----*/ /// A QR Code symbol, which is a type of two-dimension barcode. /// /// Invented by Denso Wave and described in the ISO/IEC 18004 standard. /// /// Instances of this struct represent an immutable square grid of dark and light cells. /// The impl provides static factory functions to create a QR Code from text or binary data. /// The struct and impl cover the QR Code Model 2 specification, supporting all versions /// (sizes) from 1 to 40, all 4 error correction levels, and 4 character encoding modes. /// /// Ways to create a QR Code object: /// /// - High level: Take the payload data and call `QrCode::encode_text()` or `QrCode::encode_binary()`. /// - Mid level: Custom-make the list of segments and call /// `QrCode::encode_segments()` or `QrCode::encode_segments_advanced()`. /// - Low level: Custom-make the array of data codeword bytes (including segment /// headers and final padding, excluding error correction codewords), supply the /// appropriate version number, and call the `QrCode::encode_codewords()` constructor. /// /// (Note that all ways require supplying the desired error correction level.) #[derive(Clone, PartialEq, Eq)] pub struct QrCode { // Scalar parameters: // The version number of this QR Code, which is between 1 and 40 (inclusive). // This determines the size of this barcode. version: Version, // The width and height of this QR Code, measured in modules, between // 21 and 177 (inclusive). This is equal to version * 4 + 17. size: i32, // The error correction level used in this QR Code. errorcorrectionlevel: QrCodeEcc, // The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive). // Even if a QR Code is created with automatic masking requested (mask = None), // the resulting object still has a mask value between 0 and 7. mask: Mask, // Grids of modules/pixels, with dimensions of size*size: // The modules of this QR Code (false = light, true = dark). // Immutable after constructor finishes. Accessed through get_module(). modules: Vec, // Indicates function modules that are not subjected to masking. Discarded when constructor finishes. isfunction: Vec, } impl QrCode { /*---- Static factory functions (high level) ----*/ /// Returns a QR Code representing the given Unicode text string at the given error correction level. /// /// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode /// code points (not UTF-8 code units) if the low error correction level is used. The smallest possible /// QR Code version is automatically chosen for the output. The ECC level of the result may be higher than /// the ecl argument if it can be done without increasing the version. /// /// Returns a wrapped `QrCode` if successful, or `Err` if the /// data is too long to fit in any version at the given ECC level. pub fn encode_text(text: &str, ecl: QrCodeEcc) -> Result { let chrs: Vec = text.chars().collect(); let segs: Vec = QrSegment::make_segments(&chrs); QrCode::encode_segments(&segs, ecl) } /// Returns a QR Code representing the given binary data at the given error correction level. /// /// This function always encodes using the binary segment mode, not any text mode. The maximum number of /// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. /// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. /// /// Returns a wrapped `QrCode` if successful, or `Err` if the /// data is too long to fit in any version at the given ECC level. pub fn encode_binary(data: &[u8], ecl: QrCodeEcc) -> Result { let segs: [QrSegment; 1] = [QrSegment::make_bytes(data)]; QrCode::encode_segments(&segs, ecl) } /*---- Static factory functions (mid level) ----*/ /// Returns a QR Code representing the given segments at the given error correction level. /// /// The smallest possible QR Code version is automatically chosen for the output. The ECC level /// of the result may be higher than the ecl argument if it can be done without increasing the version. /// /// This function allows the user to create a custom sequence of segments that switches /// between modes (such as alphanumeric and byte) to encode text in less space. /// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`. /// /// Returns a wrapped `QrCode` if successful, or `Err` if the /// data is too long to fit in any version at the given ECC level. pub fn encode_segments(segs: &[QrSegment], ecl: QrCodeEcc) -> Result { QrCode::encode_segments_advanced(segs, ecl, Version::MIN, Version::MAX, None, true) } /// Returns a QR Code representing the given segments with the given encoding parameters. /// /// The smallest possible QR Code version within the given range is automatically /// chosen for the output. Iff boostecl is `true`, then the ECC level of the result /// may be higher than the ecl argument if it can be done without increasing the /// version. The mask number is either between 0 to 7 (inclusive) to force that /// mask, or `None` to automatically choose an appropriate mask (which may be slow). /// /// This function allows the user to create a custom sequence of segments that switches /// between modes (such as alphanumeric and byte) to encode text in less space. /// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`. /// /// Returns a wrapped `QrCode` if successful, or `Err` if the data is too /// long to fit in any version in the given range at the given ECC level. pub fn encode_segments_advanced(segs: &[QrSegment], mut ecl: QrCodeEcc, minversion: Version, maxversion: Version, mask: Option, boostecl: bool) -> Result { assert!(minversion.value() <= maxversion.value(), "Invalid value"); // Find the minimal version number to use let mut version: Version = minversion; let datausedbits: usize = loop { // Number of data bits available let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8; let dataused: Option = QrSegment::get_total_bits(segs, version); if dataused.map_or(false, |n| n <= datacapacitybits) { break dataused.unwrap(); // This version number is found to be suitable } else if version.value() >= maxversion.value() { // All versions in the range could not fit the given data let msg: String = match dataused { None => String::from("Segment too long"), Some(n) => format!("Data length = {} bits, Max capacity = {} bits", n, datacapacitybits), }; return Err(DataTooLong(msg)); } else { version = Version::new(version.value() + 1); } }; // Increase the error correction level while the data still fits in the current version number for &newecl in &[QrCodeEcc::Medium, QrCodeEcc::Quartile, QrCodeEcc::High] { // From low to high if boostecl && datausedbits <= QrCode::get_num_data_codewords(version, newecl) * 8 { ecl = newecl; } } // Concatenate all segments to create the data bit string let mut bb = BitBuffer(Vec::new()); for seg in segs { bb.append_bits(seg.mode.mode_bits(), 4); bb.append_bits(seg.numchars as u32, seg.mode.num_char_count_bits(version)); bb.0.extend_from_slice(&seg.data); } assert_eq!(bb.0.len(), datausedbits); // Add terminator and pad up to a byte if applicable let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8; assert!(bb.0.len() <= datacapacitybits); let numzerobits: usize = std::cmp::min(4, datacapacitybits - bb.0.len()); bb.append_bits(0, numzerobits as u8); let numzerobits: usize = bb.0.len().wrapping_neg() & 7; bb.append_bits(0, numzerobits as u8); assert_eq!(bb.0.len() % 8, 0, "Assertion error"); // Pad with alternating bytes until data capacity is reached for &padbyte in [0xEC, 0x11].iter().cycle() { if bb.0.len() >= datacapacitybits { break; } bb.append_bits(padbyte, 8); } // Pack bits into bytes in big endian let mut datacodewords = vec![0u8; bb.0.len() / 8]; for (i, &bit) in bb.0.iter().enumerate() { datacodewords[i >> 3] |= u8::from(bit) << (7 - (i & 7)); } // Create the QR Code object Ok(QrCode::encode_codewords(version, ecl, &datacodewords, mask)) } /*---- Constructor (low level) ----*/ /// Creates a new QR Code with the given version number, /// error correction level, data codeword bytes, and mask number. /// /// This is a low-level API that most users should not use directly. /// A mid-level API is the `encode_segments()` function. pub fn encode_codewords(ver: Version, ecl: QrCodeEcc, datacodewords: &[u8], mut mask: Option) -> Self { // Initialize fields let size = usize::from(ver.value()) * 4 + 17; let mut result = Self { version: ver, size: size as i32, mask: Mask::new(0), // Dummy value errorcorrectionlevel: ecl, modules : vec![false; size * size], // Initially all light isfunction: vec![false; size * size], }; // Compute ECC, draw modules result.draw_function_patterns(); let allcodewords: Vec = result.add_ecc_and_interleave(datacodewords); result.draw_codewords(&allcodewords); // Do masking if mask.is_none() { // Automatically choose best mask let mut minpenalty = std::i32::MAX; for i in 0u8 .. 8 { let newmask = Mask::new(i); result.apply_mask(newmask); result.draw_format_bits(newmask); let penalty: i32 = result.get_penalty_score(); if penalty < minpenalty { mask = Some(newmask); minpenalty = penalty; } result.apply_mask(newmask); // Undoes the mask due to XOR } } let mask: Mask = mask.unwrap(); result.mask = mask; result.apply_mask(mask); // Apply the final choice of mask result.draw_format_bits(mask); // Overwrite old format bits result.isfunction.clear(); result.isfunction.shrink_to_fit(); result } /*---- Public methods ----*/ /// Returns this QR Code's version, in the range [1, 40]. pub fn version(&self) -> Version { self.version } /// Returns this QR Code's size, in the range [21, 177]. pub fn size(&self) -> i32 { self.size } /// Returns this QR Code's error correction level. pub fn error_correction_level(&self) -> QrCodeEcc { self.errorcorrectionlevel } /// Returns this QR Code's mask, in the range [0, 7]. pub fn mask(&self) -> Mask { self.mask } /// Returns the color of the module (pixel) at the given coordinates, /// which is `false` for light or `true` for dark. /// /// The top left corner has the coordinates (x=0, y=0). If the given /// coordinates are out of bounds, then `false` (light) is returned. pub fn get_module(&self, x: i32, y: i32) -> bool { 0 <= x && x < self.size && 0 <= y && y < self.size && self.module(x, y) } // Returns the color of the module at the given coordinates, which must be in bounds. fn module(&self, x: i32, y: i32) -> bool { self.modules[(y * self.size + x) as usize] } // Returns a mutable reference to the module's color at the given coordinates, which must be in bounds. fn module_mut(&mut self, x: i32, y: i32) -> &mut bool { &mut self.modules[(y * self.size + x) as usize] } /*---- Private helper methods for constructor: Drawing function modules ----*/ // Reads this object's version field, and draws and marks all function modules. fn draw_function_patterns(&mut self) { // Draw horizontal and vertical timing patterns let size: i32 = self.size; for i in 0 .. size { self.set_function_module(6, i, i % 2 == 0); self.set_function_module(i, 6, i % 2 == 0); } // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) self.draw_finder_pattern(3, 3); self.draw_finder_pattern(size - 4, 3); self.draw_finder_pattern(3, size - 4); // Draw numerous alignment patterns let alignpatpos: Vec = self.get_alignment_pattern_positions(); let numalign: usize = alignpatpos.len(); for i in 0 .. numalign { for j in 0 .. numalign { // Don't draw on the three finder corners if !(i == 0 && j == 0 || i == 0 && j == numalign - 1 || i == numalign - 1 && j == 0) { self.draw_alignment_pattern(alignpatpos[i], alignpatpos[j]); } } } // Draw configuration data self.draw_format_bits(Mask::new(0)); // Dummy mask value; overwritten later in the constructor self.draw_version(); } // Draws two copies of the format bits (with its own error correction code) // based on the given mask and this object's error correction level field. fn draw_format_bits(&mut self, mask: Mask) { // Calculate error correction code and pack bits let bits: u32 = { // errcorrlvl is uint2, mask is uint3 let data: u32 = u32::from(self.errorcorrectionlevel.format_bits() << 3 | mask.value()); let mut rem: u32 = data; for _ in 0 .. 10 { rem = (rem << 1) ^ ((rem >> 9) * 0x537); } (data << 10 | rem) ^ 0x5412 // uint15 }; assert_eq!(bits >> 15, 0, "Assertion error"); // Draw first copy for i in 0 .. 6 { self.set_function_module(8, i, get_bit(bits, i)); } self.set_function_module(8, 7, get_bit(bits, 6)); self.set_function_module(8, 8, get_bit(bits, 7)); self.set_function_module(7, 8, get_bit(bits, 8)); for i in 9 .. 15 { self.set_function_module(14 - i, 8, get_bit(bits, i)); } // Draw second copy let size: i32 = self.size; for i in 0 .. 8 { self.set_function_module(size - 1 - i, 8, get_bit(bits, i)); } for i in 8 .. 15 { self.set_function_module(8, size - 15 + i, get_bit(bits, i)); } self.set_function_module(8, size - 8, true); // Always dark } // Draws two copies of the version bits (with its own error correction code), // based on this object's version field, iff 7 <= version <= 40. fn draw_version(&mut self) { if self.version.value() < 7 { return; } // Calculate error correction code and pack bits let bits: u32 = { let data = u32::from(self.version.value()); // uint6, in the range [7, 40] let mut rem: u32 = data; for _ in 0 .. 12 { rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); } data << 12 | rem // uint18 }; assert!(bits >> 18 == 0, "Assertion error"); // Draw two copies for i in 0 .. 18 { let bit: bool = get_bit(bits, i); let a: i32 = self.size - 11 + i % 3; let b: i32 = i / 3; self.set_function_module(a, b, bit); self.set_function_module(b, a, bit); } } // Draws a 9*9 finder pattern including the border separator, // with the center module at (x, y). Modules can be out of bounds. fn draw_finder_pattern(&mut self, x: i32, y: i32) { for dy in -4 ..= 4 { for dx in -4 ..= 4 { let xx: i32 = x + dx; let yy: i32 = y + dy; if 0 <= xx && xx < self.size && 0 <= yy && yy < self.size { let dist: i32 = std::cmp::max(dx.abs(), dy.abs()); // Chebyshev/infinity norm self.set_function_module(xx, yy, dist != 2 && dist != 4); } } } } // Draws a 5*5 alignment pattern, with the center module // at (x, y). All modules must be in bounds. fn draw_alignment_pattern(&mut self, x: i32, y: i32) { for dy in -2 ..= 2 { for dx in -2 ..= 2 { self.set_function_module(x + dx, y + dy, std::cmp::max(dx.abs(), dy.abs()) != 1); } } } // Sets the color of a module and marks it as a function module. // Only used by the constructor. Coordinates must be in bounds. fn set_function_module(&mut self, x: i32, y: i32, isdark: bool) { *self.module_mut(x, y) = isdark; self.isfunction[(y * self.size + x) as usize] = true; } /*---- Private helper methods for constructor: Codewords and masking ----*/ // Returns a new byte string representing the given data with the appropriate error correction // codewords appended to it, based on this object's version and error correction level. fn add_ecc_and_interleave(&self, data: &[u8]) -> Vec { let ver: Version = self.version; let ecl: QrCodeEcc = self.errorcorrectionlevel; assert_eq!(data.len(), QrCode::get_num_data_codewords(ver, ecl), "Illegal argument"); // Calculate parameter numbers let numblocks: usize = QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl); let blockecclen: usize = QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK , ver, ecl); let rawcodewords: usize = QrCode::get_num_raw_data_modules(ver) / 8; let numshortblocks: usize = numblocks - rawcodewords % numblocks; let shortblocklen: usize = rawcodewords / numblocks; // Split data into blocks and append ECC to each block let mut blocks = Vec::>::with_capacity(numblocks); let rsdiv: Vec = QrCode::reed_solomon_compute_divisor(blockecclen); let mut k: usize = 0; for i in 0 .. numblocks { let datlen: usize = shortblocklen - blockecclen + usize::from(i >= numshortblocks); let mut dat = data[k .. k + datlen].to_vec(); k += datlen; let ecc: Vec = QrCode::reed_solomon_compute_remainder(&dat, &rsdiv); if i < numshortblocks { dat.push(0); } dat.extend_from_slice(&ecc); blocks.push(dat); } // Interleave (not concatenate) the bytes from every block into a single sequence let mut result = Vec::::with_capacity(rawcodewords); for i in 0 ..= shortblocklen { for (j, block) in blocks.iter().enumerate() { // Skip the padding byte in short blocks if i != shortblocklen - blockecclen || j >= numshortblocks { result.push(block[i]); } } } result } // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire // data area of this QR Code. Function modules need to be marked off before this is called. fn draw_codewords(&mut self, data: &[u8]) { assert_eq!(data.len(), QrCode::get_num_raw_data_modules(self.version) / 8, "Illegal argument"); let mut i: usize = 0; // Bit index into the data // Do the funny zigzag scan let mut right: i32 = self.size - 1; while right >= 1 { // Index of right column in each column pair if right == 6 { right = 5; } for vert in 0 .. self.size { // Vertical counter for j in 0 .. 2 { let x: i32 = right - j; // Actual x coordinate let upward: bool = (right + 1) & 2 == 0; let y: i32 = if upward { self.size - 1 - vert } else { vert }; // Actual y coordinate if !self.isfunction[(y * self.size + x) as usize] && i < data.len() * 8 { *self.module_mut(x, y) = get_bit(u32::from(data[i >> 3]), 7 - ((i & 7) as i32)); i += 1; } // If this QR Code has any remainder bits (0 to 7), they were assigned as // 0/false/light by the constructor and are left unchanged by this method } } right -= 2; } assert_eq!(i, data.len() * 8, "Assertion error"); } // XORs the codeword modules in this QR Code with the given mask pattern. // The function modules must be marked and the codeword bits must be drawn // before masking. Due to the arithmetic of XOR, calling apply_mask() with // the same mask value a second time will undo the mask. A final well-formed // QR Code needs exactly one (not zero, two, etc.) mask applied. fn apply_mask(&mut self, mask: Mask) { for y in 0 .. self.size { for x in 0 .. self.size { let invert: bool = match mask.value() { 0 => (x + y) % 2 == 0, 1 => y % 2 == 0, 2 => x % 3 == 0, 3 => (x + y) % 3 == 0, 4 => (x / 3 + y / 2) % 2 == 0, 5 => x * y % 2 + x * y % 3 == 0, 6 => (x * y % 2 + x * y % 3) % 2 == 0, 7 => ((x + y) % 2 + x * y % 3) % 2 == 0, _ => unreachable!(), }; *self.module_mut(x, y) ^= invert & !self.isfunction[(y * self.size + x) as usize]; } } } // Calculates and returns the penalty score based on state of this QR Code's current modules. // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. fn get_penalty_score(&self) -> i32 { let mut result: i32 = 0; let size: i32 = self.size; // Adjacent modules in row having same color, and finder-like patterns for y in 0 .. size { let mut runcolor = false; let mut runx: i32 = 0; let mut runhistory = FinderPenalty::new(size); for x in 0 .. size { if self.module(x, y) == runcolor { runx += 1; if runx == 5 { result += PENALTY_N1; } else if runx > 5 { result += 1; } } else { runhistory.add_history(runx); if !runcolor { result += runhistory.count_patterns() * PENALTY_N3; } runcolor = self.module(x, y); runx = 1; } } result += runhistory.terminate_and_count(runcolor, runx) * PENALTY_N3; } // Adjacent modules in column having same color, and finder-like patterns for x in 0 .. size { let mut runcolor = false; let mut runy: i32 = 0; let mut runhistory = FinderPenalty::new(size); for y in 0 .. size { if self.module(x, y) == runcolor { runy += 1; if runy == 5 { result += PENALTY_N1; } else if runy > 5 { result += 1; } } else { runhistory.add_history(runy); if !runcolor { result += runhistory.count_patterns() * PENALTY_N3; } runcolor = self.module(x, y); runy = 1; } } result += runhistory.terminate_and_count(runcolor, runy) * PENALTY_N3; } // 2*2 blocks of modules having same color for y in 0 .. size - 1 { for x in 0 .. size - 1 { let color: bool = self.module(x, y); if color == self.module(x + 1, y) && color == self.module(x, y + 1) && color == self.module(x + 1, y + 1) { result += PENALTY_N2; } } } // Balance of dark and light modules let dark: i32 = self.modules.iter().copied().map(i32::from).sum(); let total: i32 = size * size; // Note that size is odd, so dark/total != 1/2 // Compute the smallest integer k >= 0 such that (45-5k)% <= dark/total <= (55+5k)% let k: i32 = ((dark * 20 - total * 10).abs() + total - 1) / total - 1; result += k * PENALTY_N4; result } /*---- Private helper functions ----*/ // Returns an ascending list of positions of alignment patterns for this version number. // Each position is in the range [0,177), and are used on both the x and y axes. // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes. fn get_alignment_pattern_positions(&self) -> Vec { let ver: u8 = self.version.value(); if ver == 1 { vec![] } else { let numalign = i32::from(ver) / 7 + 2; let step: i32 = if ver == 32 { 26 } else {(i32::from(ver) * 4 + numalign * 2 + 1) / (numalign * 2 - 2) * 2}; let mut result: Vec = (0 .. numalign - 1).map( |i| self.size - 7 - i * step).collect(); result.push(6); result.reverse(); result } } // Returns the number of data bits that can be stored in a QR Code of the given version number, after // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. fn get_num_raw_data_modules(ver: Version) -> usize { let ver = usize::from(ver.value()); let mut result: usize = (16 * ver + 128) * ver + 64; if ver >= 2 { let numalign: usize = ver / 7 + 2; result -= (25 * numalign - 10) * numalign - 55; if ver >= 7 { result -= 36; } } assert!(208 <= result && result <= 29648); result } // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any // QR Code of the given version number and error correction level, with remainder bits discarded. // This stateless pure function could be implemented as a (40*4)-cell lookup table. fn get_num_data_codewords(ver: Version, ecl: QrCodeEcc) -> usize { QrCode::get_num_raw_data_modules(ver) / 8 - QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK , ver, ecl) * QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl) } // Returns an entry from the given table based on the given values. fn table_get(table: &'static [[i8; 41]; 4], ver: Version, ecl: QrCodeEcc) -> usize { table[ecl.ordinal()][usize::from(ver.value())] as usize } // Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be // implemented as a lookup table over all possible parameter values, instead of as an algorithm. fn reed_solomon_compute_divisor(degree: usize) -> Vec { assert!(1 <= degree && degree <= 255, "Degree out of range"); // Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1. // For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93]. let mut result = vec![0u8; degree - 1]; result.push(1); // Start off with the monomial x^0 // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // and drop the highest monomial term which is always 1x^degree. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). let mut root: u8 = 1; for _ in 0 .. degree { // Unused variable i // Multiply the current product by (x - r^i) for j in 0 .. degree { result[j] = QrCode::reed_solomon_multiply(result[j], root); if j + 1 < result.len() { result[j] ^= result[j + 1]; } } root = QrCode::reed_solomon_multiply(root, 0x02); } result } // Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials. fn reed_solomon_compute_remainder(data: &[u8], divisor: &[u8]) -> Vec { let mut result = vec![0u8; divisor.len()]; for b in data { // Polynomial division let factor: u8 = b ^ result.remove(0); result.push(0); for (x, &y) in result.iter_mut().zip(divisor.iter()) { *x ^= QrCode::reed_solomon_multiply(y, factor); } } result } // Returns the product of the two given field elements modulo GF(2^8/0x11D). // All inputs are valid. This could be implemented as a 256*256 lookup table. fn reed_solomon_multiply(x: u8, y: u8) -> u8 { // Russian peasant multiplication let mut z: u8 = 0; for i in (0 .. 8).rev() { z = (z << 1) ^ ((z >> 7) * 0x1D); z ^= ((y >> i) & 1) * x; } z } } /*---- Helper struct for get_penalty_score() ----*/ struct FinderPenalty { qr_size: i32, run_history: [i32; 7], } impl FinderPenalty { pub fn new(size: i32) -> Self { Self { qr_size: size, run_history: [0i32; 7], } } // Pushes the given value to the front and drops the last value. pub fn add_history(&mut self, mut currentrunlength: i32) { if self.run_history[0] == 0 { currentrunlength += self.qr_size; // Add light border to initial run } let rh = &mut self.run_history; for i in (0 .. rh.len()-1).rev() { rh[i + 1] = rh[i]; } rh[0] = currentrunlength; } // Can only be called immediately after a light run is added, and returns either 0, 1, or 2. pub fn count_patterns(&self) -> i32 { let rh = &self.run_history; let n = rh[1]; assert!(n <= self.qr_size * 3); let core = n > 0 && rh[2] == n && rh[3] == n * 3 && rh[4] == n && rh[5] == n; ( i32::from(core && rh[0] >= n * 4 && rh[6] >= n) + i32::from(core && rh[6] >= n * 4 && rh[0] >= n)) } // Must be called at the end of a line (row or column) of modules. pub fn terminate_and_count(mut self, currentruncolor: bool, mut currentrunlength: i32) -> i32 { if currentruncolor { // Terminate dark run self.add_history(currentrunlength); currentrunlength = 0; } currentrunlength += self.qr_size; // Add light border to final run self.add_history(currentrunlength); self.count_patterns() } } /*---- Constants and tables ----*/ // For use in get_penalty_score(), when evaluating which mask is best. const PENALTY_N1: i32 = 3; const PENALTY_N2: i32 = 3; const PENALTY_N3: i32 = 40; const PENALTY_N4: i32 = 10; static ECC_CODEWORDS_PER_BLOCK: [[i8; 41]; 4] = [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low [-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium [-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile [-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High ]; static NUM_ERROR_CORRECTION_BLOCKS: [[i8; 41]; 4] = [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low [-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium [-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile [-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High ]; /*---- QrCodeEcc functionality ----*/ /// The error correction level in a QR Code symbol. #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)] pub enum QrCodeEcc { /// The QR Code can tolerate about 7% erroneous codewords. Low , /// The QR Code can tolerate about 15% erroneous codewords. Medium , /// The QR Code can tolerate about 25% erroneous codewords. Quartile, /// The QR Code can tolerate about 30% erroneous codewords. High , } impl QrCodeEcc { // Returns an unsigned 2-bit integer (in the range 0 to 3). fn ordinal(self) -> usize { use QrCodeEcc::*; match self { Low => 0, Medium => 1, Quartile => 2, High => 3, } } // Returns an unsigned 2-bit integer (in the range 0 to 3). fn format_bits(self) -> u8 { use QrCodeEcc::*; match self { Low => 1, Medium => 0, Quartile => 3, High => 2, } } } /*---- QrSegment functionality ----*/ /// A segment of character/binary/control data in a QR Code symbol. /// /// Instances of this struct are immutable. /// /// The mid-level way to create a segment is to take the payload data /// and call a static factory function such as `QrSegment::make_numeric()`. /// The low-level way to create a segment is to custom-make the bit buffer /// and call the `QrSegment::new()` constructor with appropriate values. /// /// This segment struct imposes no length restrictions, but QR Codes have restrictions. /// Even in the most favorable conditions, a QR Code can only hold 7089 characters of data. /// Any segment longer than this is meaningless for the purpose of generating QR Codes. #[derive(Clone, PartialEq, Eq)] pub struct QrSegment { // The mode indicator of this segment. Accessed through mode(). mode: QrSegmentMode, // The length of this segment's unencoded data. Measured in characters for // numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode. // Not the same as the data's bit length. Accessed through num_chars(). numchars: usize, // The data bits of this segment. Accessed through data(). data: Vec, } impl QrSegment { /*---- Static factory functions (mid level) ----*/ /// Returns a segment representing the given binary data encoded in byte mode. /// /// All input byte slices are acceptable. /// /// Any text string can be converted to UTF-8 bytes and encoded as a byte mode segment. pub fn make_bytes(data: &[u8]) -> Self { let mut bb = BitBuffer(Vec::with_capacity(data.len() * 8)); for &b in data { bb.append_bits(u32::from(b), 8); } QrSegment::new(QrSegmentMode::Byte, data.len(), bb.0) } /// Returns a segment representing the given string of decimal digits encoded in numeric mode. /// /// Panics if the string contains non-digit characters. pub fn make_numeric(text: &[char]) -> Self { let mut bb = BitBuffer(Vec::with_capacity(text.len() * 3 + (text.len() + 2) / 3)); let mut accumdata: u32 = 0; let mut accumcount: u8 = 0; for &c in text { assert!('0' <= c && c <= '9', "String contains non-numeric characters"); accumdata = accumdata * 10 + (u32::from(c) - u32::from('0')); accumcount += 1; if accumcount == 3 { bb.append_bits(accumdata, 10); accumdata = 0; accumcount = 0; } } if accumcount > 0 { // 1 or 2 digits remaining bb.append_bits(accumdata, accumcount * 3 + 1); } QrSegment::new(QrSegmentMode::Numeric, text.len(), bb.0) } /// Returns a segment representing the given text string encoded in alphanumeric mode. /// /// The characters allowed are: 0 to 9, A to Z (uppercase only), space, /// dollar, percent, asterisk, plus, hyphen, period, slash, colon. /// /// Panics if the string contains non-encodable characters. pub fn make_alphanumeric(text: &[char]) -> Self { let mut bb = BitBuffer(Vec::with_capacity(text.len() * 5 + (text.len() + 1) / 2)); let mut accumdata: u32 = 0; let mut accumcount: u32 = 0; for &c in text { let i: usize = ALPHANUMERIC_CHARSET.iter().position(|&x| x == c) .expect("String contains unencodable characters in alphanumeric mode"); accumdata = accumdata * 45 + (i as u32); accumcount += 1; if accumcount == 2 { bb.append_bits(accumdata, 11); accumdata = 0; accumcount = 0; } } if accumcount > 0 { // 1 character remaining bb.append_bits(accumdata, 6); } QrSegment::new(QrSegmentMode::Alphanumeric, text.len(), bb.0) } /// Returns a list of zero or more segments to represent the given Unicode text string. /// /// The result may use various segment modes and switch /// modes to optimize the length of the bit stream. pub fn make_segments(text: &[char]) -> Vec { if text.is_empty() { vec![] } else if QrSegment::is_numeric(text) { vec![QrSegment::make_numeric(text)] } else if QrSegment::is_alphanumeric(text) { vec![QrSegment::make_alphanumeric(text)] } else { let s: String = text.iter().cloned().collect(); vec![QrSegment::make_bytes(s.as_bytes())] } } /// Returns a segment representing an Extended Channel Interpretation /// (ECI) designator with the given assignment value. pub fn make_eci(assignval: u32) -> Self { let mut bb = BitBuffer(Vec::with_capacity(24)); if assignval < (1 << 7) { bb.append_bits(assignval, 8); } else if assignval < (1 << 14) { bb.append_bits(2, 2); bb.append_bits(assignval, 14); } else if assignval < 1_000_000 { bb.append_bits(6, 3); bb.append_bits(assignval, 21); } else { panic!("ECI assignment value out of range"); } QrSegment::new(QrSegmentMode::Eci, 0, bb.0) } /*---- Constructor (low level) ----*/ /// Creates a new QR Code segment with the given attributes and data. /// /// The character count (numchars) must agree with the mode and /// the bit buffer length, but the constraint isn't checked. pub fn new(mode: QrSegmentMode, numchars: usize, data: Vec) -> Self { Self { mode, numchars, data } } /*---- Instance field getters ----*/ /// Returns the mode indicator of this segment. pub fn mode(&self) -> QrSegmentMode { self.mode } /// Returns the character count field of this segment. pub fn num_chars(&self) -> usize { self.numchars } /// Returns the data bits of this segment. pub fn data(&self) -> &Vec { &self.data } /*---- Other static functions ----*/ // Calculates and returns the number of bits needed to encode the given // segments at the given version. The result is None if a segment has too many // characters to fit its length field, or the total bits exceeds usize::MAX. fn get_total_bits(segs: &[Self], version: Version) -> Option { let mut result: usize = 0; for seg in segs { let ccbits: u8 = seg.mode.num_char_count_bits(version); // ccbits can be as large as 16, but usize can be as small as 16 if let Some(limit) = 1usize.checked_shl(u32::from(ccbits)) { if seg.numchars >= limit { return None; // The segment's length doesn't fit the field's bit width } } result = result.checked_add(4 + usize::from(ccbits))?; result = result.checked_add(seg.data.len())?; } Some(result) } /// Tests whether the given string can be encoded as a segment in numeric mode. /// /// A string is encodable iff each character is in the range 0 to 9. pub fn is_numeric(text: &[char]) -> bool { text.iter().all(|&c| '0' <= c && c <= '9') } /// Tests whether the given string can be encoded as a segment in alphanumeric mode. /// /// A string is encodable iff each character is in the following set: 0 to 9, A to Z /// (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon. pub fn is_alphanumeric(text: &[char]) -> bool { text.iter().all(|c| ALPHANUMERIC_CHARSET.contains(c)) } } // The set of all legal characters in alphanumeric mode, // where each character value maps to the index in the string. static ALPHANUMERIC_CHARSET: [char; 45] = ['0','1','2','3','4','5','6','7','8','9', 'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z', ' ','$','%','*','+','-','.','/',':']; /*---- QrSegmentMode functionality ----*/ /// Describes how a segment's data bits are interpreted. #[derive(Clone, Copy, PartialEq, Eq, Debug)] pub enum QrSegmentMode { Numeric, Alphanumeric, Byte, Kanji, Eci, } impl QrSegmentMode { // Returns an unsigned 4-bit integer value (range 0 to 15) // representing the mode indicator bits for this mode object. fn mode_bits(self) -> u32 { use QrSegmentMode::*; match self { Numeric => 0x1, Alphanumeric => 0x2, Byte => 0x4, Kanji => 0x8, Eci => 0x7, } } // Returns the bit width of the character count field for a segment in this mode // in a QR Code at the given version number. The result is in the range [0, 16]. fn num_char_count_bits(self, ver: Version) -> u8 { use QrSegmentMode::*; (match self { Numeric => [10, 12, 14], Alphanumeric => [ 9, 11, 13], Byte => [ 8, 16, 16], Kanji => [ 8, 10, 12], Eci => [ 0, 0, 0], })[usize::from((ver.value() + 7) / 17)] } } /*---- Bit buffer functionality ----*/ /// An appendable sequence of bits (0s and 1s). /// /// Mainly used by QrSegment. pub struct BitBuffer(pub Vec); impl BitBuffer { /// Appends the given number of low-order bits of the given value to this buffer. /// /// Requires len ≤ 31 and val < 2len. pub fn append_bits(&mut self, val: u32, len: u8) { assert!(len <= 31 && (val >> len) == 0, "Value out of range"); self.0.extend((0 .. i32::from(len)).rev().map(|i| get_bit(val, i))); // Append bit by bit } } /*---- Miscellaneous values ----*/ /// The error type when the supplied data does not fit any QR Code version. /// /// Ways to handle this exception include: /// /// - Decrease the error correction level if it was greater than `QrCodeEcc::Low`. /// - If the `encode_segments_advanced()` function was called, then increase the maxversion /// argument if it was less than `Version::MAX`. (This advice does not apply to the /// other factory functions because they search all versions up to `Version::MAX`.) /// - Split the text data into better or optimal segments in order to reduce the number of bits required. /// - Change the text or binary data to be shorter. /// - Change the text to fit the character set of a particular segment mode (e.g. alphanumeric). /// - Propagate the error upward to the caller/user. #[derive(Debug, Clone)] pub struct DataTooLong(String); impl std::error::Error for DataTooLong { fn description(&self) -> &str { &self.0 } } impl std::fmt::Display for DataTooLong { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { f.write_str(&self.0) } } /// A number between 1 and 40 (inclusive). #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)] pub struct Version(u8); impl Version { /// The minimum version number supported in the QR Code Model 2 standard. pub const MIN: Version = Version( 1); /// The maximum version number supported in the QR Code Model 2 standard. pub const MAX: Version = Version(40); /// Creates a version object from the given number. /// /// Panics if the number is outside the range [1, 40]. pub fn new(ver: u8) -> Self { assert!(Version::MIN.value() <= ver && ver <= Version::MAX.value(), "Version number out of range"); Self(ver) } /// Returns the value, which is in the range [1, 40]. pub fn value(self) -> u8 { self.0 } } /// A number between 0 and 7 (inclusive). #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)] pub struct Mask(u8); impl Mask { /// Creates a mask object from the given number. /// /// Panics if the number is outside the range [0, 7]. pub fn new(mask: u8) -> Self { assert!(mask <= 7, "Mask value out of range"); Self(mask) } /// Returns the value, which is in the range [0, 7]. pub fn value(self) -> u8 { self.0 } } // Returns true iff the i'th bit of x is set to 1. fn get_bit(x: u32, i: i32) -> bool { (x >> i) & 1 != 0 }