/* * Copyright 2021 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef skgpu_geom_Rect_DEFINED #define skgpu_geom_Rect_DEFINED #include "experimental/graphite/src/geom/VectorTypes.h" #include "include/core/SkRect.h" namespace skgpu { #define AI SK_ALWAYS_INLINE /** * SIMD rect implementation. Vales are stored internally in the form: [left, top, -right, -bot]. * * Some operations (e.g., intersect, inset) may return a negative or empty rect * (negative meaning, left >= right or top >= bot). * * Operations on a rect that is either negative or empty, while well-defined, might not give the * intended result. It is the caller's responsibility to check isEmptyOrNegative() if needed. */ class Rect { public: AI Rect() = default; AI Rect(float l, float t, float r, float b) : fVals(NegateBotRight({l,t,r,b})) {} AI Rect(float2 topLeft, float2 botRight) : fVals(topLeft, -botRight) {} AI Rect(const SkRect& r) : fVals(NegateBotRight(float4::Load(r.asScalars()))) {} AI static Rect XYWH(float x, float y, float w, float h) { return Rect(x, y, x + w, y + h); } AI static Rect XYWH(float2 topLeft, float2 size) { return Rect(topLeft, topLeft + size); } AI static Rect WH(float w, float h) { return Rect(0, 0, w, h); } AI static Rect WH(float2 size) { return Rect(float2(0), size); } AI static Rect Point(float2 p) { return Rect(p, p); } AI static Rect FromVals(float4 vals) { // vals.zw must already be negated. return Rect(vals); } // Constructs a Rect with ltrb = [-inf, -inf, inf, inf], useful for accumulating intersections AI static Rect Infinite() { return FromVals(float4{SK_FloatNegativeInfinity}); } // Constructs a negative Rect with ltrb = [inf, inf, -inf, -inf], useful for accumulating unions AI static Rect InfiniteInverted() { return FromVals(float4{SK_FloatInfinity}); } AI bool operator==(Rect rect) const { return all(fVals == rect.fVals); } AI bool operator!=(Rect rect) const { return any(fVals != rect.fVals); } AI const float4& vals() const { return fVals; } // [left, top, -right, -bot]. AI float4& vals() { return fVals; } // [left, top, -right, -bot]. AI float x() const { return fVals.x(); } AI float y() const { return fVals.y(); } AI float left() const { return fVals.x(); } AI float top() const { return fVals.y(); } AI float right() const { return -fVals.z(); } AI float bot() const { return -fVals.w(); } AI float2 topLeft() const { return fVals.xy(); } AI float2 botRight() const { return -fVals.zw(); } AI float4 ltrb() const { return NegateBotRight(fVals); } AI void setLeft(float left) { fVals.x() = left; } AI void setTop(float top) { fVals.y() = top; } AI void setRight(float right) { fVals.z() = -right; } AI void setBot(float bot) { fVals.w() = -bot; } AI void setTopLeft(float2 topLeft) { fVals.xy() = topLeft; } AI void setBotRight(float2 botRight) { fVals.zw() = -botRight; } AI SkRect asSkRect() const { SkRect r; this->ltrb().store(&r); return r; } AI bool isEmptyNegativeOrNaN() const { return !all(fVals.xy() + fVals.zw() < 0); // !([l-r, r-b] < 0) == ([w, h] <= 0) // Use "!(-size < 0)" in order to detect NaN. } AI float2 size() const { return -(fVals.xy() + fVals.zw()); } // == [-(l-r), -(t-b)] == [w, h] AI float2 center() const { float4 p = fVals * float4(.5f, .5f, -.5f, -.5f); // == [l, t, r, b] * .5 return p.xy() + p.zw(); // == [(l + r)/2, (t + b)/2] } AI float area() const { float2 negativeSize = fVals.xy() + fVals.zw(); // == [l-r, t-b] == [-w, -h] return negativeSize.x() * negativeSize.y(); } // A rect stored in a complementary form of: [right, bottom, -left, -top]. Store a local // ComplementRect object if intersects() will be called many times. struct ComplementRect { AI ComplementRect(Rect rect) : fVals(-rect.fVals.zwxy()) {} float4 fVals; // [right, bottom, -left, -top] }; AI bool intersects(ComplementRect comp) const { return all(fVals < comp.fVals); } AI bool contains(Rect rect) const { return all(fVals <= rect.fVals); } // Some operations may return a negative or empty rect. Operations on a rect that either is // negative or empty, while well-defined, might not give the intended result. It is the caller's // responsibility to check isEmptyOrNegative() if needed. AI Rect makeRoundIn() const { return ceil(fVals); } AI Rect makeRoundOut() const { return floor(fVals); } AI Rect makeInset(float inset) const { return fVals + inset; } AI Rect makeInset(float2 inset) const { return fVals + inset.xyxy(); } AI Rect makeOutset(float outset) const { return fVals - outset; } AI Rect makeOutset(float2 outset) const { return fVals - outset.xyxy(); } AI Rect makeOffset(float2 offset) const { return fVals + float4(offset, -offset); } AI Rect makeJoin(Rect rect) const { return min(fVals, rect.fVals); } AI Rect makeIntersect(Rect rect) const { return max(fVals, rect.fVals); } AI Rect makeSorted() const { return min(fVals, -fVals.zwxy()); } AI Rect& roundIn() { return *this = this->makeRoundIn(); } AI Rect& roundOut() { return *this = this->makeRoundOut(); } AI Rect& inset(float inset) { return *this = this->makeInset(inset); } AI Rect& inset(float2 inset) { return *this = this->makeInset(inset); } AI Rect& outset(float outset) { return *this = this->makeOutset(outset); } AI Rect& outset(float2 outset) { return *this = this->makeOutset(outset); } AI Rect& offset(float2 offset) { return *this = this->makeOffset(offset); } AI Rect& join(Rect rect) { return *this = this->makeJoin(rect); } AI Rect& intersect(Rect rect) { return *this = this->makeIntersect(rect); } AI Rect& sort() { return *this = this->makeSorted(); } private: AI static float4 NegateBotRight(float4 vals) { // Returns [vals.xy, -vals.zw]. return skvx::bit_pun(skvx::bit_pun(vals) ^ uint4(0, 0, 1u << 31, 1u << 31)); } AI Rect(float4 vals) : fVals(vals) {} // vals.zw must already be negated. float4 fVals; // [left, top, -right, -bottom] }; #undef AI } // namespace skgpu #endif // skgpu_geom_Rect_DEFINED