/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkDevice.h" #include "include/core/SkColorFilter.h" #include "include/core/SkDrawable.h" #include "include/core/SkImageFilter.h" #include "include/core/SkPathMeasure.h" #include "include/core/SkRSXform.h" #include "include/core/SkShader.h" #include "include/core/SkVertices.h" #include "include/private/SkTo.h" #include "src/core/SkDraw.h" #include "src/core/SkGlyphRun.h" #include "src/core/SkImageFilterCache.h" #include "src/core/SkImageFilter_Base.h" #include "src/core/SkImagePriv.h" #include "src/core/SkLatticeIter.h" #include "src/core/SkMarkerStack.h" #include "src/core/SkMatrixPriv.h" #include "src/core/SkOpts.h" #include "src/core/SkPathPriv.h" #include "src/core/SkRasterClip.h" #include "src/core/SkRectPriv.h" #include "src/core/SkSpecialImage.h" #include "src/core/SkTLazy.h" #include "src/core/SkTextBlobPriv.h" #include "src/image/SkImage_Base.h" #include "src/shaders/SkLocalMatrixShader.h" #include "src/utils/SkPatchUtils.h" SkBaseDevice::SkBaseDevice(const SkImageInfo& info, const SkSurfaceProps& surfaceProps) : SkMatrixProvider(/* localToDevice = */ SkMatrix::I()) , fInfo(info) , fSurfaceProps(surfaceProps) { fDeviceToGlobal.setIdentity(); fGlobalToDevice.setIdentity(); } bool SkBaseDevice::setDeviceCoordinateSystem(const SkM44& deviceToGlobal, const SkM44& localToDevice, int bufferOriginX, int bufferOriginY) { fDeviceToGlobal = deviceToGlobal; fDeviceToGlobal.normalizePerspective(); if (!fDeviceToGlobal.invert(&fGlobalToDevice)) { return false; } fLocalToDevice = localToDevice; fLocalToDevice.normalizePerspective(); if (bufferOriginX | bufferOriginY) { fDeviceToGlobal.preTranslate(bufferOriginX, bufferOriginY); fGlobalToDevice.postTranslate(-bufferOriginX, -bufferOriginY); fLocalToDevice.postTranslate(-bufferOriginX, -bufferOriginY); } fLocalToDevice33 = fLocalToDevice.asM33(); return true; } void SkBaseDevice::setGlobalCTM(const SkM44& ctm) { fLocalToDevice = ctm; fLocalToDevice.normalizePerspective(); // Map from the global CTM state to this device's coordinate system. fLocalToDevice.postConcat(fGlobalToDevice); fLocalToDevice33 = fLocalToDevice.asM33(); } bool SkBaseDevice::isPixelAlignedToGlobal() const { // pixelAligned is set to the identity + integer translation of the device-to-global matrix. // If they are equal then the device is by definition pixel aligned. SkM44 pixelAligned = SkM44(); pixelAligned.setRC(0, 3, SkScalarFloorToScalar(fDeviceToGlobal.rc(0, 3))); pixelAligned.setRC(1, 3, SkScalarFloorToScalar(fDeviceToGlobal.rc(1, 3))); return pixelAligned == fDeviceToGlobal; } SkIPoint SkBaseDevice::getOrigin() const { // getOrigin() is deprecated, the old origin has been moved into the fDeviceToGlobal matrix. // This extracts the origin from the matrix, but asserts that a more complicated coordinate // space hasn't been set of the device. This function can be removed once existing use cases // have been updated to use the device-to-global matrix instead or have themselves been removed // (e.g. Android's device-space clip regions are going away, and are not compatible with the // generalized device coordinate system). SkASSERT(this->isPixelAlignedToGlobal()); return SkIPoint::Make(SkScalarFloorToInt(fDeviceToGlobal.rc(0, 3)), SkScalarFloorToInt(fDeviceToGlobal.rc(1, 3))); } SkMatrix SkBaseDevice::getRelativeTransform(const SkBaseDevice& dstDevice) const { // To get the transform from this space to the other device's, transform from our space to // global and then from global to the other device. return (dstDevice.fGlobalToDevice * fDeviceToGlobal).asM33(); } bool SkBaseDevice::getLocalToMarker(uint32_t id, SkM44* localToMarker) const { // The marker stack stores CTM snapshots, which are "marker to global" matrices. // We ask for the (cached) inverse, which is a "global to marker" matrix. SkM44 globalToMarker; // ID 0 is special, and refers to the CTM (local-to-global) if (fMarkerStack && (id == 0 || fMarkerStack->findMarkerInverse(id, &globalToMarker))) { if (localToMarker) { // globalToMarker will still be the identity if id is zero *localToMarker = globalToMarker * fDeviceToGlobal * fLocalToDevice; } return true; } return false; } static inline bool is_int(float x) { return x == (float) sk_float_round2int(x); } void SkBaseDevice::drawRegion(const SkRegion& region, const SkPaint& paint) { const SkMatrix& localToDevice = this->localToDevice(); bool isNonTranslate = localToDevice.getType() & ~(SkMatrix::kTranslate_Mask); bool complexPaint = paint.getStyle() != SkPaint::kFill_Style || paint.getMaskFilter() || paint.getPathEffect(); bool antiAlias = paint.isAntiAlias() && (!is_int(localToDevice.getTranslateX()) || !is_int(localToDevice.getTranslateY())); if (isNonTranslate || complexPaint || antiAlias) { SkPath path; region.getBoundaryPath(&path); path.setIsVolatile(true); return this->drawPath(path, paint, true); } SkRegion::Iterator it(region); while (!it.done()) { this->drawRect(SkRect::Make(it.rect()), paint); it.next(); } } void SkBaseDevice::drawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool useCenter, const SkPaint& paint) { SkPath path; bool isFillNoPathEffect = SkPaint::kFill_Style == paint.getStyle() && !paint.getPathEffect(); SkPathPriv::CreateDrawArcPath(&path, oval, startAngle, sweepAngle, useCenter, isFillNoPathEffect); this->drawPath(path, paint); } void SkBaseDevice::drawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) { SkPath path; path.addRRect(outer); path.addRRect(inner); path.setFillType(SkPathFillType::kEvenOdd); path.setIsVolatile(true); this->drawPath(path, paint, true); } void SkBaseDevice::drawPatch(const SkPoint cubics[12], const SkColor colors[4], const SkPoint texCoords[4], SkBlendMode bmode, const SkPaint& paint) { SkISize lod = SkPatchUtils::GetLevelOfDetail(cubics, &this->localToDevice()); auto vertices = SkPatchUtils::MakeVertices(cubics, colors, texCoords, lod.width(), lod.height(), this->imageInfo().colorSpace()); if (vertices) { this->drawVertices(vertices.get(), bmode, paint); } } void SkBaseDevice::drawImageLattice(const SkImage* image, const SkCanvas::Lattice& lattice, const SkRect& dst, SkFilterMode filter, const SkPaint& paint) { SkLatticeIter iter(lattice, dst); SkRect srcR, dstR; SkColor c; bool isFixedColor = false; const SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); while (iter.next(&srcR, &dstR, &isFixedColor, &c)) { // TODO: support this fast-path for GPU images if (isFixedColor || (srcR.width() <= 1.0f && srcR.height() <= 1.0f && image->readPixels(nullptr, info, &c, 4, srcR.fLeft, srcR.fTop))) { // Fast draw with drawRect, if this is a patch containing a single color // or if this is a patch containing a single pixel. if (0 != c || !paint.isSrcOver()) { SkPaint paintCopy(paint); int alpha = SkAlphaMul(SkColorGetA(c), SkAlpha255To256(paint.getAlpha())); paintCopy.setColor(SkColorSetA(c, alpha)); this->drawRect(dstR, paintCopy); } } else { this->drawImageRect(image, &srcR, dstR, SkSamplingOptions(filter), paint, SkCanvas::kStrict_SrcRectConstraint); } } } static SkPoint* quad_to_tris(SkPoint tris[6], const SkPoint quad[4]) { tris[0] = quad[0]; tris[1] = quad[1]; tris[2] = quad[2]; tris[3] = quad[0]; tris[4] = quad[2]; tris[5] = quad[3]; return tris + 6; } void SkBaseDevice::drawAtlas(const SkRSXform xform[], const SkRect tex[], const SkColor colors[], int quadCount, SkBlendMode mode, const SkPaint& paint) { const int triCount = quadCount << 1; const int vertexCount = triCount * 3; uint32_t flags = SkVertices::kHasTexCoords_BuilderFlag; if (colors) { flags |= SkVertices::kHasColors_BuilderFlag; } SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, 0, flags); SkPoint* vPos = builder.positions(); SkPoint* vTex = builder.texCoords(); SkColor* vCol = builder.colors(); for (int i = 0; i < quadCount; ++i) { SkPoint tmp[4]; xform[i].toQuad(tex[i].width(), tex[i].height(), tmp); vPos = quad_to_tris(vPos, tmp); tex[i].toQuad(tmp); vTex = quad_to_tris(vTex, tmp); if (colors) { sk_memset32(vCol, colors[i], 6); vCol += 6; } } this->drawVertices(builder.detach().get(), mode, paint); } void SkBaseDevice::drawEdgeAAQuad(const SkRect& r, const SkPoint clip[4], SkCanvas::QuadAAFlags aa, const SkColor4f& color, SkBlendMode mode) { SkPaint paint; paint.setColor4f(color); paint.setBlendMode(mode); paint.setAntiAlias(aa == SkCanvas::kAll_QuadAAFlags); if (clip) { // Draw the clip directly as a quad since it's a filled color with no local coords SkPath clipPath; clipPath.addPoly(clip, 4, true); this->drawPath(clipPath, paint); } else { this->drawRect(r, paint); } } void SkBaseDevice::drawEdgeAAImageSet(const SkCanvas::ImageSetEntry images[], int count, const SkPoint dstClips[], const SkMatrix preViewMatrices[], const SkSamplingOptions& sampling, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { SkASSERT(paint.getStyle() == SkPaint::kFill_Style); SkASSERT(!paint.getPathEffect()); SkPaint entryPaint = paint; const SkM44 baseLocalToDevice = this->localToDevice44(); int clipIndex = 0; for (int i = 0; i < count; ++i) { // TODO: Handle per-edge AA. Right now this mirrors the SkiaRenderer component of Chrome // which turns off antialiasing unless all four edges should be antialiased. This avoids // seaming in tiled composited layers. entryPaint.setAntiAlias(images[i].fAAFlags == SkCanvas::kAll_QuadAAFlags); entryPaint.setAlphaf(paint.getAlphaf() * images[i].fAlpha); bool needsRestore = false; SkASSERT(images[i].fMatrixIndex < 0 || preViewMatrices); if (images[i].fMatrixIndex >= 0) { this->save(); this->setLocalToDevice(baseLocalToDevice * SkM44(preViewMatrices[images[i].fMatrixIndex])); needsRestore = true; } SkASSERT(!images[i].fHasClip || dstClips); if (images[i].fHasClip) { // Since drawImageRect requires a srcRect, the dst clip is implemented as a true clip if (!needsRestore) { this->save(); needsRestore = true; } SkPath clipPath; clipPath.addPoly(dstClips + clipIndex, 4, true); this->clipPath(clipPath, SkClipOp::kIntersect, entryPaint.isAntiAlias()); clipIndex += 4; } this->drawImageRect(images[i].fImage.get(), &images[i].fSrcRect, images[i].fDstRect, sampling, entryPaint, constraint); if (needsRestore) { this->restoreLocal(baseLocalToDevice); } } } /////////////////////////////////////////////////////////////////////////////////////////////////// void SkBaseDevice::drawDrawable(SkDrawable* drawable, const SkMatrix* matrix, SkCanvas* canvas) { drawable->draw(canvas, matrix); } /////////////////////////////////////////////////////////////////////////////////////////////////// void SkBaseDevice::drawSpecial(SkSpecialImage*, const SkMatrix&, const SkSamplingOptions&, const SkPaint&) {} sk_sp SkBaseDevice::makeSpecial(const SkBitmap&) { return nullptr; } sk_sp SkBaseDevice::makeSpecial(const SkImage*) { return nullptr; } sk_sp SkBaseDevice::snapSpecial(const SkIRect&, bool) { return nullptr; } sk_sp SkBaseDevice::snapSpecial() { return this->snapSpecial(SkIRect::MakeWH(this->width(), this->height())); } void SkBaseDevice::drawDevice(SkBaseDevice* device, const SkSamplingOptions& sampling, const SkPaint& paint) { sk_sp deviceImage = device->snapSpecial(); if (deviceImage) { this->drawSpecial(deviceImage.get(), device->getRelativeTransform(*this), sampling, paint); } } void SkBaseDevice::drawFilteredImage(const skif::Mapping& mapping, SkSpecialImage* src, const SkImageFilter* filter, const SkSamplingOptions& sampling, const SkPaint& paint) { SkASSERT(!paint.getImageFilter() && !paint.getMaskFilter()); skif::LayerSpace targetOutput = mapping.deviceToLayer( skif::DeviceSpace(this->devClipBounds())); // FIXME If the saved layer (so src) was created to use F16, should we do all image filtering // in F16 and then only flatten to the destination color encoding at the end? // Currently, this context converts everything to the dst color type ASAP. SkColorType colorType = this->imageInfo().colorType(); if (colorType == kUnknown_SkColorType) { colorType = kRGBA_8888_SkColorType; } // getImageFilterCache returns a bare image filter cache pointer that must be ref'ed until the // filter's filterImage(ctx) function returns. sk_sp cache(this->getImageFilterCache()); skif::Context ctx(mapping, targetOutput, cache.get(), colorType, this->imageInfo().colorSpace(), skif::FilterResult(sk_ref_sp(src))); SkIPoint offset; sk_sp result = as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset); if (result) { SkMatrix deviceMatrixWithOffset = mapping.deviceMatrix(); deviceMatrixWithOffset.preTranslate(offset.fX, offset.fY); this->drawSpecial(result.get(), deviceMatrixWithOffset, sampling, paint); } } /////////////////////////////////////////////////////////////////////////////////////////////////// bool SkBaseDevice::readPixels(const SkPixmap& pm, int x, int y) { return this->onReadPixels(pm, x, y); } bool SkBaseDevice::writePixels(const SkPixmap& pm, int x, int y) { return this->onWritePixels(pm, x, y); } bool SkBaseDevice::onWritePixels(const SkPixmap&, int, int) { return false; } bool SkBaseDevice::onReadPixels(const SkPixmap&, int x, int y) { return false; } bool SkBaseDevice::accessPixels(SkPixmap* pmap) { SkPixmap tempStorage; if (nullptr == pmap) { pmap = &tempStorage; } return this->onAccessPixels(pmap); } bool SkBaseDevice::peekPixels(SkPixmap* pmap) { SkPixmap tempStorage; if (nullptr == pmap) { pmap = &tempStorage; } return this->onPeekPixels(pmap); } ////////////////////////////////////////////////////////////////////////////////////////// #include "src/core/SkUtils.h" // TODO: This does not work for arbitrary shader DAGs (when there is no single leaf local matrix). // What we really need is proper post-LM plumbing for shaders. static sk_sp make_post_inverse_lm(const SkShader* shader, const SkMatrix& m) { SkMatrix inverse; if (!shader || !m.invert(&inverse)) { return nullptr; } // Normal LMs pre-compose. In order to push a post local matrix, we shoot for // something along these lines (where all new components are pre-composed): // // new_lm X current_lm == current_lm X inv(current_lm) X new_lm X current_lm // // We also have two sources of local matrices: // - the actual shader lm // - outer lms applied via SkLocalMatrixShader SkMatrix outer_lm; const auto nested_shader = as_SB(shader)->makeAsALocalMatrixShader(&outer_lm); if (nested_shader) { // unfurl the shader shader = nested_shader.get(); } else { outer_lm.reset(); } const auto lm = *as_SB(shader)->totalLocalMatrix(nullptr); SkMatrix lm_inv; if (!lm.invert(&lm_inv)) { return nullptr; } // Note: since we unfurled the shader above, we don't need to apply an outer_lm inverse return shader->makeWithLocalMatrix(lm_inv * inverse * lm * outer_lm); } void SkBaseDevice::drawGlyphRunList(const SkGlyphRunList& glyphRunList, const SkPaint& paint) { if (!this->localToDevice().isFinite()) { return; } if (!glyphRunList.hasRSXForm()) { this->onDrawGlyphRunList(glyphRunList, paint); } else { this->simplifyGlyphRunRSXFormAndRedraw(glyphRunList, paint); } } void SkBaseDevice::simplifyGlyphRunRSXFormAndRedraw(const SkGlyphRunList& glyphRunList, const SkPaint& paint) { for (const SkGlyphRun& run : glyphRunList) { if (run.scaledRotations().empty()) { this->drawGlyphRunList(SkGlyphRunList{run, run.sourceBounds(paint), {0, 0}}, paint); } else { SkPoint origin = glyphRunList.origin(); SkPoint sharedPos{0, 0}; // we're at the origin SkGlyphID sharedGlyphID; SkGlyphRun glyphRun { run.font(), SkSpan{&sharedPos, 1}, SkSpan{&sharedGlyphID, 1}, SkSpan{}, SkSpan{}, SkSpan{} }; const SkM44 originalLocalToDevice = this->localToDevice44(); for (auto [i, glyphID, pos] : SkMakeEnumerate(run.source())) { sharedGlyphID = glyphID; auto [scos, ssin] = run.scaledRotations()[i]; SkRSXform rsxForm = SkRSXform::Make(scos, ssin, pos.x(), pos.y()); SkMatrix glyphToLocal; glyphToLocal.setRSXform(rsxForm).postTranslate(origin.x(), origin.y()); // We want to rotate each glyph by the rsxform, but we don't want to rotate "space" // (i.e. the shader that cares about the ctm) so we have to undo our little ctm // trick with a localmatrixshader so that the shader draws as if there was no // change to the ctm. SkPaint invertingPaint{paint}; invertingPaint.setShader(make_post_inverse_lm(paint.getShader(), glyphToLocal)); this->setLocalToDevice(originalLocalToDevice * SkM44(glyphToLocal)); this->drawGlyphRunList( SkGlyphRunList{glyphRun, glyphRun.sourceBounds(paint), {0, 0}}, invertingPaint); } this->setLocalToDevice(originalLocalToDevice); } } } ////////////////////////////////////////////////////////////////////////////////////////// sk_sp SkBaseDevice::makeSurface(SkImageInfo const&, SkSurfaceProps const&) { return nullptr; } ////////////////////////////////////////////////////////////////////////////////////////// void SkNoPixelsDevice::onSave() { SkASSERT(!fClipStack.empty()); fClipStack.back().fDeferredSaveCount++; } void SkNoPixelsDevice::onRestore() { SkASSERT(!fClipStack.empty()); if (fClipStack.back().fDeferredSaveCount > 0) { fClipStack.back().fDeferredSaveCount--; } else { fClipStack.pop_back(); SkASSERT(!fClipStack.empty()); } } SkNoPixelsDevice::ClipState& SkNoPixelsDevice::writableClip() { SkASSERT(!fClipStack.empty()); ClipState& current = fClipStack.back(); if (current.fDeferredSaveCount > 0) { current.fDeferredSaveCount--; // Stash current state in case 'current' moves during a resize SkIRect bounds = current.fClipBounds; bool aa = current.fIsAA; bool rect = current.fIsRect; return fClipStack.emplace_back(bounds, aa, rect); } else { return current; } } void SkNoPixelsDevice::onClipRect(const SkRect& rect, SkClipOp op, bool aa) { this->writableClip().op(op, this->localToDevice44(), rect, aa, /*fillsBounds=*/true); } void SkNoPixelsDevice::onClipRRect(const SkRRect& rrect, SkClipOp op, bool aa) { this->writableClip().op(op, this->localToDevice44(), rrect.getBounds(), aa, /*fillsBounds=*/rrect.isRect()); } void SkNoPixelsDevice::onClipPath(const SkPath& path, SkClipOp op, bool aa) { // Toggle op if the path is inverse filled if (path.isInverseFillType()) { op = (op == SkClipOp::kDifference ? SkClipOp::kIntersect : SkClipOp::kDifference); } this->writableClip().op(op, this->localToDevice44(), path.getBounds(), aa, /*fillsBounds=*/false); } void SkNoPixelsDevice::onClipRegion(const SkRegion& globalRgn, SkClipOp op) { this->writableClip().op(op, this->globalToDevice(), SkRect::Make(globalRgn.getBounds()), /*isAA=*/false, /*fillsBounds=*/globalRgn.isRect()); } void SkNoPixelsDevice::onClipShader(sk_sp shader) { this->writableClip().fIsRect = false; } void SkNoPixelsDevice::onReplaceClip(const SkIRect& rect) { SkIRect deviceRect = SkMatrixPriv::MapRect(this->globalToDevice(), SkRect::Make(rect)).round(); if (!deviceRect.intersect(this->bounds())) { deviceRect.setEmpty(); } auto& clip = this->writableClip(); clip.fClipBounds = deviceRect; clip.fIsRect = true; clip.fIsAA = false; } SkBaseDevice::ClipType SkNoPixelsDevice::onGetClipType() const { const auto& clip = this->clip(); if (clip.fClipBounds.isEmpty()) { return ClipType::kEmpty; } else if (clip.fIsRect) { return ClipType::kRect; } else { return ClipType::kComplex; } } void SkNoPixelsDevice::ClipState::op(SkClipOp op, const SkM44& transform, const SkRect& bounds, bool isAA, bool fillsBounds) { const bool isRect = fillsBounds && SkMatrixPriv::IsScaleTranslateAsM33(transform); fIsAA |= isAA; SkRect devBounds = bounds.isEmpty() ? SkRect::MakeEmpty() : SkMatrixPriv::MapRect(transform, bounds); if (op == SkClipOp::kIntersect) { if (!fClipBounds.intersect(isAA ? devBounds.roundOut() : devBounds.round())) { fClipBounds.setEmpty(); } // A rectangular clip remains rectangular if the intersection is a rect fIsRect &= isRect; } else if (isRect) { // Conservatively, we can leave the clip bounds unchanged and respect the difference op. // But, if we're subtracting out an axis-aligned rectangle that fully spans our existing // clip on an axis, we can shrink the clip bounds. SkASSERT(op == SkClipOp::kDifference); SkIRect difference; if (SkRectPriv::Subtract(fClipBounds, isAA ? devBounds.roundIn() : devBounds.round(), &difference)) { fClipBounds = difference; } else { // The difference couldn't be represented as a rect fIsRect = false; } } else { // A non-rect shape was applied fIsRect = false; } }