/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkGlyph_DEFINED #define SkGlyph_DEFINED #include "include/core/SkPath.h" #include "include/core/SkTypes.h" #include "include/private/SkChecksum.h" #include "include/private/SkFixed.h" #include "include/private/SkTo.h" #include "include/private/SkVx.h" #include "src/core/SkMask.h" #include "src/core/SkMathPriv.h" class SkArenaAlloc; class SkScalerContext; // A combination of SkGlyphID and sub-pixel position information. struct SkPackedGlyphID { inline static constexpr uint32_t kImpossibleID = ~0u; enum { // Lengths kGlyphIDLen = 16u, kSubPixelPosLen = 2u, // Bit positions kSubPixelX = 0u, kGlyphID = kSubPixelPosLen, kSubPixelY = kGlyphIDLen + kSubPixelPosLen, kEndData = kGlyphIDLen + 2 * kSubPixelPosLen, // Masks kGlyphIDMask = (1u << kGlyphIDLen) - 1, kSubPixelPosMask = (1u << kSubPixelPosLen) - 1, kMaskAll = (1u << kEndData) - 1, // Location of sub pixel info in a fixed pointer number. kFixedPointBinaryPointPos = 16u, kFixedPointSubPixelPosBits = kFixedPointBinaryPointPos - kSubPixelPosLen, }; inline static constexpr SkScalar kSubpixelRound = 1.f / (1u << (SkPackedGlyphID::kSubPixelPosLen + 1)); inline static constexpr SkIPoint kXYFieldMask{kSubPixelPosMask << kSubPixelX, kSubPixelPosMask << kSubPixelY}; constexpr explicit SkPackedGlyphID(SkGlyphID glyphID) : fID{(uint32_t)glyphID << kGlyphID} { } constexpr SkPackedGlyphID(SkGlyphID glyphID, SkFixed x, SkFixed y) : fID {PackIDXY(glyphID, x, y)} { } constexpr SkPackedGlyphID(SkGlyphID glyphID, uint32_t x, uint32_t y) : fID {PackIDSubXSubY(glyphID, x, y)} { } SkPackedGlyphID(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) : fID{PackIDSkPoint(glyphID, pt, mask)} { } constexpr explicit SkPackedGlyphID(uint32_t v) : fID{v & kMaskAll} { } constexpr SkPackedGlyphID() : fID{kImpossibleID} {} bool operator==(const SkPackedGlyphID& that) const { return fID == that.fID; } bool operator!=(const SkPackedGlyphID& that) const { return !(*this == that); } bool operator<(SkPackedGlyphID that) const { return this->fID < that.fID; } SkGlyphID glyphID() const { return (fID >> kGlyphID) & kGlyphIDMask; } uint32_t value() const { return fID; } SkFixed getSubXFixed() const { return this->subToFixed(kSubPixelX); } SkFixed getSubYFixed() const { return this->subToFixed(kSubPixelY); } uint32_t hash() const { return SkChecksum::CheapMix(fID); } SkString dump() const { SkString str; str.appendf("glyphID: %d, x: %d, y:%d", glyphID(), getSubXFixed(), getSubYFixed()); return str; } private: static constexpr uint32_t PackIDSubXSubY(SkGlyphID glyphID, uint32_t x, uint32_t y) { SkASSERT(x < (1u << kSubPixelPosLen)); SkASSERT(y < (1u << kSubPixelPosLen)); return (x << kSubPixelX) | (y << kSubPixelY) | (glyphID << kGlyphID); } // Assumptions: pt is properly rounded. mask is set for the x or y fields. // // A sub-pixel field is a number on the interval [2^kSubPixel, 2^(kSubPixel + kSubPixelPosLen)). // Where kSubPixel is either kSubPixelX or kSubPixelY. Given a number x on [0, 1) we can // generate a sub-pixel field using: // sub-pixel-field = x * 2^(kSubPixel + kSubPixelPosLen) // // We can generate the integer sub-pixel field by &-ing the integer part of sub-filed with the // sub-pixel field mask. // int-sub-pixel-field = int(sub-pixel-field) & (kSubPixelPosMask << kSubPixel) // // The last trick is to extend the range from [0, 1) to [0, 2). The extend range is // necessary because the modulo 1 calculation (pt - floor(pt)) generates numbers on [-1, 1). // This does not round (floor) properly when converting to integer. Adding one to the range // causes truncation and floor to be the same. Coincidentally, masking to produce the field also // removes the +1. static uint32_t PackIDSkPoint(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) { #if 0 // TODO: why does this code not work on GCC 8.3 x86 Debug builds? using namespace skvx; using XY = Vec<2, float>; using SubXY = Vec<2, int>; const XY magic = {1.f * (1u << (kSubPixelPosLen + kSubPixelX)), 1.f * (1u << (kSubPixelPosLen + kSubPixelY))}; XY pos{pt.x(), pt.y()}; XY subPos = (pos - floor(pos)) + 1.0f; SubXY sub = cast(subPos * magic) & SubXY{mask.x(), mask.y()}; #else const float magicX = 1.f * (1u << (kSubPixelPosLen + kSubPixelX)), magicY = 1.f * (1u << (kSubPixelPosLen + kSubPixelY)); float x = pt.x(), y = pt.y(); x = (x - floorf(x)) + 1.0f; y = (y - floorf(y)) + 1.0f; int sub[] = { (int)(x * magicX) & mask.x(), (int)(y * magicY) & mask.y(), }; #endif SkASSERT(sub[0] / (1u << kSubPixelX) < (1u << kSubPixelPosLen)); SkASSERT(sub[1] / (1u << kSubPixelY) < (1u << kSubPixelPosLen)); return (glyphID << kGlyphID) | sub[0] | sub[1]; } static constexpr uint32_t PackIDXY(SkGlyphID glyphID, SkFixed x, SkFixed y) { return PackIDSubXSubY(glyphID, FixedToSub(x), FixedToSub(y)); } static constexpr uint32_t FixedToSub(SkFixed n) { return ((uint32_t)n >> kFixedPointSubPixelPosBits) & kSubPixelPosMask; } constexpr SkFixed subToFixed(uint32_t subPixelPosBit) const { uint32_t subPixelPosition = (fID >> subPixelPosBit) & kSubPixelPosMask; return subPixelPosition << kFixedPointSubPixelPosBits; } uint32_t fID; }; class SkGlyphRect; namespace skglyph { SkGlyphRect rect_union(SkGlyphRect, SkGlyphRect); SkGlyphRect rect_intersection(SkGlyphRect, SkGlyphRect); } // namespace skglyph // SkGlyphRect encodes rectangles with coordinates on [-32767, 32767]. It is specialized for // rectangle union and intersection operations. class SkGlyphRect { public: SkGlyphRect(int16_t left, int16_t top, int16_t right, int16_t bottom) : fRect{left, top, (int16_t)-right, (int16_t)-bottom} { SkDEBUGCODE(const int32_t min = std::numeric_limits::min()); SkASSERT(left != min && top != min && right != min && bottom != min); } bool empty() const { return fRect[0] >= -fRect[2] || fRect[1] >= -fRect[3]; } SkRect rect() const { return SkRect::MakeLTRB(fRect[0], fRect[1], -fRect[2], -fRect[3]); } SkIRect iRect() const { return SkIRect::MakeLTRB(fRect[0], fRect[1], -fRect[2], -fRect[3]); } SkGlyphRect offset(int16_t x, int16_t y) const { return SkGlyphRect{fRect + Storage{x, y, SkTo(-x), SkTo(-y)}}; } skvx::Vec<2, int16_t> topLeft() const { return {fRect[0], fRect[1]}; } friend SkGlyphRect skglyph::rect_union(SkGlyphRect, SkGlyphRect); friend SkGlyphRect skglyph::rect_intersection(SkGlyphRect, SkGlyphRect); private: using Storage = skvx::Vec<4, int16_t>; SkGlyphRect(Storage rect) : fRect{rect} { } Storage fRect; }; namespace skglyph { inline SkGlyphRect empty_rect() { constexpr int16_t max = std::numeric_limits::max(); return {max, max, -max, -max}; } inline SkGlyphRect full_rect() { constexpr int16_t max = std::numeric_limits::max(); return {-max, -max, max, max}; } inline SkGlyphRect rect_union(SkGlyphRect a, SkGlyphRect b) { return skvx::min(a.fRect, b.fRect); } inline SkGlyphRect rect_intersection(SkGlyphRect a, SkGlyphRect b) { return skvx::max(a.fRect, b.fRect); } } // namespace skglyph struct SkGlyphPrototype; class SkGlyph { public: // SkGlyph() is used for testing. constexpr SkGlyph() : SkGlyph{SkPackedGlyphID()} { } constexpr explicit SkGlyph(SkPackedGlyphID id) : fID{id} { } SkVector advanceVector() const { return SkVector{fAdvanceX, fAdvanceY}; } SkScalar advanceX() const { return fAdvanceX; } SkScalar advanceY() const { return fAdvanceY; } SkGlyphID getGlyphID() const { return fID.glyphID(); } SkPackedGlyphID getPackedID() const { return fID; } SkFixed getSubXFixed() const { return fID.getSubXFixed(); } SkFixed getSubYFixed() const { return fID.getSubYFixed(); } size_t rowBytes() const; size_t rowBytesUsingFormat(SkMask::Format format) const; // Call this to set all of the metrics fields to 0 (e.g. if the scaler // encounters an error measuring a glyph). Note: this does not alter the // fImage, fPath, fID, fMaskFormat fields. void zeroMetrics(); SkMask mask() const; SkMask mask(SkPoint position) const; // Image // If we haven't already tried to associate an image with this glyph // (i.e. setImageHasBeenCalled() returns false), then use the // SkScalerContext or const void* argument to set the image. bool setImage(SkArenaAlloc* alloc, SkScalerContext* scalerContext); bool setImage(SkArenaAlloc* alloc, const void* image); // Merge the from glyph into this glyph using alloc to allocate image data. Return the number // of bytes allocated. Copy the width, height, top, left, format, and image into this glyph // making a copy of the image using the alloc. size_t setMetricsAndImage(SkArenaAlloc* alloc, const SkGlyph& from); // Returns true if the image has been set. bool setImageHasBeenCalled() const { return fImage != nullptr || this->isEmpty() || this->imageTooLarge(); } // Return a pointer to the path if the image exists, otherwise return nullptr. const void* image() const { SkASSERT(this->setImageHasBeenCalled()); return fImage; } // Return the size of the image. size_t imageSize() const; // Path // If we haven't already tried to associate a path to this glyph // (i.e. setPathHasBeenCalled() returns false), then use the // SkScalerContext or SkPath argument to try to do so. N.B. this // may still result in no path being associated with this glyph, // e.g. if you pass a null SkPath or the typeface is bitmap-only. // // This setPath() call is sticky... once you call it, the glyph // stays in its state permanently, ignoring any future calls. // // Returns true if this is the first time you called setPath() // and there actually is a path; call path() to get it. bool setPath(SkArenaAlloc* alloc, SkScalerContext* scalerContext); bool setPath(SkArenaAlloc* alloc, const SkPath* path); // Returns true if that path has been set. bool setPathHasBeenCalled() const { return fPathData != nullptr; } // Return a pointer to the path if it exists, otherwise return nullptr. Only works if the // path was previously set. const SkPath* path() const; // Format bool isColor() const { return fMaskFormat == SkMask::kARGB32_Format; } SkMask::Format maskFormat() const { return fMaskFormat; } size_t formatAlignment() const; // Bounds int maxDimension() const { return std::max(fWidth, fHeight); } SkIRect iRect() const { return SkIRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); } SkRect rect() const { return SkRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); } SkGlyphRect glyphRect() const { return {fLeft, fTop, SkTo(fLeft + fWidth), SkTo(fTop + fHeight)}; } int left() const { return fLeft; } int top() const { return fTop; } int width() const { return fWidth; } int height() const { return fHeight; } bool isEmpty() const { // fHeight == 0 -> fWidth == 0; SkASSERT(fHeight != 0 || fWidth == 0); return fWidth == 0; } bool imageTooLarge() const { return fWidth >= kMaxGlyphWidth; } // Make sure that the intercept information is on the glyph and return it, or return it if it // already exists. // * bounds - either end of the gap for the character. // * scale, xPos - information about how wide the gap is. // * array - accumulated gaps for many characters if not null. // * count - the number of gaps. void ensureIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos, SkScalar* array, int* count, SkArenaAlloc* alloc); private: // There are two sides to an SkGlyph, the scaler side (things that create glyph data) have // access to all the fields. Scalers are assumed to maintain all the SkGlyph invariants. The // consumer side has a tighter interface. friend class RandomScalerContext; friend class RemoteStrike; friend class SkScalerContext; friend class SkScalerContextProxy; friend class SkScalerContext_Empty; friend class SkScalerContext_FreeType; friend class SkScalerContext_FreeType_Base; friend class SkScalerContext_DW; friend class SkScalerContext_GDI; friend class SkScalerContext_Mac; friend class SkStrikeClientImpl; friend class SkTestScalerContext; friend class SkTestSVGScalerContext; friend class SkUserScalerContext; friend class TestSVGTypeface; friend class TestTypeface; inline static constexpr uint16_t kMaxGlyphWidth = 1u << 13u; // Support horizontal and vertical skipping strike-through / underlines. // The caller walks the linked list looking for a match. For a horizontal underline, // the fBounds contains the top and bottom of the underline. The fInterval pair contains the // beginning and end of of the intersection of the bounds and the glyph's path. // If interval[0] >= interval[1], no intersection was found. struct Intercept { Intercept* fNext; SkScalar fBounds[2]; // for horz underlines, the boundaries in Y SkScalar fInterval[2]; // the outside intersections of the axis and the glyph }; struct PathData { Intercept* fIntercept{nullptr}; SkPath fPath; bool fHasPath{false}; }; size_t allocImage(SkArenaAlloc* alloc); // path == nullptr indicates that there is no path. void installPath(SkArenaAlloc* alloc, const SkPath* path); // The width and height of the glyph mask. uint16_t fWidth = 0, fHeight = 0; // The offset from the glyphs origin on the baseline to the top left of the glyph mask. int16_t fTop = 0, fLeft = 0; // fImage must remain null if the glyph is empty or if width > kMaxGlyphWidth. void* fImage = nullptr; // Path data has tricky state. If the glyph isEmpty, then fPathData should always be nullptr, // else if fPathData is not null, then a path has been requested. The fPath field of fPathData // may still be null after the request meaning that there is no path for this glyph. PathData* fPathData = nullptr; // The advance for this glyph. float fAdvanceX = 0, fAdvanceY = 0; SkMask::Format fMaskFormat{SkMask::kBW_Format}; // Used by the DirectWrite scaler to track state. int8_t fForceBW = 0; SkPackedGlyphID fID; }; #endif