/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/private/SkPathRef.h" #include "include/core/SkPath.h" #include "include/private/SkNx.h" #include "include/private/SkOnce.h" #include "include/private/SkTo.h" #include "src/core/SkBuffer.h" #include "src/core/SkPathPriv.h" #include "src/core/SkSafeMath.h" ////////////////////////////////////////////////////////////////////////////// SkPathRef::Editor::Editor(sk_sp* pathRef, int incReserveVerbs, int incReservePoints) { SkASSERT(incReserveVerbs >= 0); SkASSERT(incReservePoints >= 0); if ((*pathRef)->unique()) { (*pathRef)->incReserve(incReserveVerbs, incReservePoints); } else { SkPathRef* copy = new SkPathRef; copy->copy(**pathRef, incReserveVerbs, incReservePoints); pathRef->reset(copy); } fPathRef = pathRef->get(); fPathRef->callGenIDChangeListeners(); fPathRef->fGenerationID = 0; fPathRef->fBoundsIsDirty = true; SkDEBUGCODE(fPathRef->fEditorsAttached++;) } // Sort of like makeSpace(0) but the the additional requirement that we actively shrink the // allocations to just fit the current needs. makeSpace() will only grow, but never shrinks. // void SkPath::shrinkToFit() { // Since this can relocate the allocated arrays, we have to defensively copy ourselves if // we're not the only owner of the pathref... since relocating the arrays will invalidate // any existing iterators. if (!fPathRef->unique()) { SkPathRef* pr = new SkPathRef; pr->copy(*fPathRef, 0, 0); fPathRef.reset(pr); } fPathRef->fPoints.shrinkToFit(); fPathRef->fVerbs.shrinkToFit(); fPathRef->fConicWeights.shrinkToFit(); SkDEBUGCODE(fPathRef->validate();) } ////////////////////////////////////////////////////////////////////////////// size_t SkPathRef::approximateBytesUsed() const { return sizeof(SkPathRef) + fPoints .reserved() * sizeof(fPoints [0]) + fVerbs .reserved() * sizeof(fVerbs [0]) + fConicWeights.reserved() * sizeof(fConicWeights[0]); } SkPathRef::~SkPathRef() { // Deliberately don't validate() this path ref, otherwise there's no way // to read one that's not valid and then free its memory without asserting. SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;) SkDEBUGCODE(fEditorsAttached.store(0x7777777);) } static SkPathRef* gEmpty = nullptr; SkPathRef* SkPathRef::CreateEmpty() { static SkOnce once; once([]{ gEmpty = new SkPathRef; gEmpty->computeBounds(); // Avoids races later to be the first to do this. }); return SkRef(gEmpty); } static void transform_dir_and_start(const SkMatrix& matrix, bool isRRect, bool* isCCW, unsigned* start) { int inStart = *start; int rm = 0; if (isRRect) { // Degenerate rrect indices to oval indices and remember the remainder. // Ovals have one index per side whereas rrects have two. rm = inStart & 0b1; inStart /= 2; } // Is the antidiagonal non-zero (otherwise the diagonal is zero) int antiDiag; // Is the non-zero value in the top row (either kMScaleX or kMSkewX) negative int topNeg; // Are the two non-zero diagonal or antidiagonal values the same sign. int sameSign; if (matrix.get(SkMatrix::kMScaleX) != 0) { antiDiag = 0b00; if (matrix.get(SkMatrix::kMScaleX) > 0) { topNeg = 0b00; sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b01 : 0b00; } else { topNeg = 0b10; sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b00 : 0b01; } } else { antiDiag = 0b01; if (matrix.get(SkMatrix::kMSkewX) > 0) { topNeg = 0b00; sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b01 : 0b00; } else { topNeg = 0b10; sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b00 : 0b01; } } if (sameSign != antiDiag) { // This is a rotation (and maybe scale). The direction is unchanged. // Trust me on the start computation (or draw yourself some pictures) *start = (inStart + 4 - (topNeg | antiDiag)) % 4; SkASSERT(*start < 4); if (isRRect) { *start = 2 * *start + rm; } } else { // This is a mirror (and maybe scale). The direction is reversed. *isCCW = !*isCCW; // Trust me on the start computation (or draw yourself some pictures) *start = (6 + (topNeg | antiDiag) - inStart) % 4; SkASSERT(*start < 4); if (isRRect) { *start = 2 * *start + (rm ? 0 : 1); } } } void SkPathRef::CreateTransformedCopy(sk_sp* dst, const SkPathRef& src, const SkMatrix& matrix) { SkDEBUGCODE(src.validate();) if (matrix.isIdentity()) { if (dst->get() != &src) { src.ref(); dst->reset(const_cast(&src)); SkDEBUGCODE((*dst)->validate();) } return; } sk_sp srcKeepAlive; if (!(*dst)->unique()) { // If dst and src are the same then we are about to drop our only ref on the common path // ref. Some other thread may have owned src when we checked unique() above but it may not // continue to do so. Add another ref so we continue to be an owner until we're done. if (dst->get() == &src) { srcKeepAlive.reset(SkRef(&src)); } dst->reset(new SkPathRef); } if (dst->get() != &src) { (*dst)->fVerbs = src.fVerbs; (*dst)->fConicWeights = src.fConicWeights; (*dst)->callGenIDChangeListeners(); (*dst)->fGenerationID = 0; // mark as dirty // don't copy, just allocate the points (*dst)->fPoints.setCount(src.fPoints.count()); } matrix.mapPoints((*dst)->fPoints.begin(), src.fPoints.begin(), src.fPoints.count()); // Need to check this here in case (&src == dst) bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1; /* * Here we optimize the bounds computation, by noting if the bounds are * already known, and if so, we just transform those as well and mark * them as "known", rather than force the transformed path to have to * recompute them. * * Special gotchas if the path is effectively empty (<= 1 point) or * if it is non-finite. In those cases bounds need to stay empty, * regardless of the matrix. */ if (canXformBounds) { (*dst)->fBoundsIsDirty = false; if (src.fIsFinite) { matrix.mapRect(&(*dst)->fBounds, src.fBounds); if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) { (*dst)->fBounds.setEmpty(); } } else { (*dst)->fIsFinite = false; (*dst)->fBounds.setEmpty(); } } else { (*dst)->fBoundsIsDirty = true; } (*dst)->fSegmentMask = src.fSegmentMask; // It's an oval only if it stays a rect. bool rectStaysRect = matrix.rectStaysRect(); (*dst)->fIsOval = src.fIsOval && rectStaysRect; (*dst)->fIsRRect = src.fIsRRect && rectStaysRect; if ((*dst)->fIsOval || (*dst)->fIsRRect) { unsigned start = src.fRRectOrOvalStartIdx; bool isCCW = SkToBool(src.fRRectOrOvalIsCCW); transform_dir_and_start(matrix, (*dst)->fIsRRect, &isCCW, &start); (*dst)->fRRectOrOvalIsCCW = isCCW; (*dst)->fRRectOrOvalStartIdx = start; } if (dst->get() == &src) { (*dst)->callGenIDChangeListeners(); (*dst)->fGenerationID = 0; } SkDEBUGCODE((*dst)->validate();) } void SkPathRef::Rewind(sk_sp* pathRef) { if ((*pathRef)->unique()) { SkDEBUGCODE((*pathRef)->validate();) (*pathRef)->callGenIDChangeListeners(); (*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite (*pathRef)->fGenerationID = 0; (*pathRef)->fPoints.rewind(); (*pathRef)->fVerbs.rewind(); (*pathRef)->fConicWeights.rewind(); (*pathRef)->fSegmentMask = 0; (*pathRef)->fIsOval = false; (*pathRef)->fIsRRect = false; SkDEBUGCODE((*pathRef)->validate();) } else { int oldVCnt = (*pathRef)->countVerbs(); int oldPCnt = (*pathRef)->countPoints(); pathRef->reset(new SkPathRef); (*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt); } } bool SkPathRef::operator== (const SkPathRef& ref) const { SkDEBUGCODE(this->validate();) SkDEBUGCODE(ref.validate();) // We explicitly check fSegmentMask as a quick-reject. We could skip it, // since it is only a cache of info in the fVerbs, but its a fast way to // notice a difference if (fSegmentMask != ref.fSegmentMask) { return false; } bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID; #ifdef SK_RELEASE if (genIDMatch) { return true; } #endif if (fPoints != ref.fPoints || fConicWeights != ref.fConicWeights || fVerbs != ref.fVerbs) { SkASSERT(!genIDMatch); return false; } if (ref.fVerbs.count() == 0) { SkASSERT(ref.fPoints.count() == 0); } return true; } void SkPathRef::writeToBuffer(SkWBuffer* buffer) const { SkDEBUGCODE(this->validate();) SkDEBUGCODE(size_t beforePos = buffer->pos();) // Call getBounds() to ensure (as a side-effect) that fBounds // and fIsFinite are computed. const SkRect& bounds = this->getBounds(); // We store fSegmentMask for older readers, but current readers can't trust it, so they // don't read it. int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) | (fSegmentMask << kSegmentMask_SerializationShift); buffer->write32(packed); // TODO: write gen ID here. Problem: We don't know if we're cross process or not from // SkWBuffer. Until this is fixed we write 0. buffer->write32(0); buffer->write32(fVerbs.count()); buffer->write32(fPoints.count()); buffer->write32(fConicWeights.count()); buffer->write(fVerbs.begin(), fVerbs.bytes()); buffer->write(fPoints.begin(), fVerbs.bytes()); buffer->write(fConicWeights.begin(), fConicWeights.bytes()); buffer->write(&bounds, sizeof(bounds)); SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize()); } uint32_t SkPathRef::writeSize() const { return uint32_t(5 * sizeof(uint32_t) + fVerbs.bytes() + fPoints.bytes() + fConicWeights.bytes() + sizeof(SkRect)); } void SkPathRef::copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints) { SkDEBUGCODE(this->validate();) this->resetToSize(ref.fVerbs.count(), ref.fPoints.count(), ref.fConicWeights.count(), additionalReserveVerbs, additionalReservePoints); fVerbs = ref.fVerbs; fPoints = ref.fPoints; fConicWeights = ref.fConicWeights; fBoundsIsDirty = ref.fBoundsIsDirty; if (!fBoundsIsDirty) { fBounds = ref.fBounds; fIsFinite = ref.fIsFinite; } fSegmentMask = ref.fSegmentMask; fIsOval = ref.fIsOval; fIsRRect = ref.fIsRRect; fRRectOrOvalIsCCW = ref.fRRectOrOvalIsCCW; fRRectOrOvalStartIdx = ref.fRRectOrOvalStartIdx; SkDEBUGCODE(this->validate();) } void SkPathRef::interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const { const SkScalar* inValues = &ending.getPoints()->fX; SkScalar* outValues = &out->getWritablePoints()->fX; int count = out->countPoints() * 2; for (int index = 0; index < count; ++index) { outValues[index] = outValues[index] * weight + inValues[index] * (1 - weight); } out->fBoundsIsDirty = true; out->fIsOval = false; out->fIsRRect = false; } std::tuple SkPathRef::growForVerbsInPath(const SkPathRef& path) { SkDEBUGCODE(this->validate();) fSegmentMask |= path.fSegmentMask; fBoundsIsDirty = true; // this also invalidates fIsFinite fIsOval = false; fIsRRect = false; if (int numVerbs = path.countVerbs()) { memcpy(fVerbs.append(numVerbs), path.fVerbs.begin(), numVerbs * sizeof(fVerbs[0])); } SkPoint* pts = nullptr; if (int numPts = path.countPoints()) { pts = fPoints.append(numPts); } SkScalar* weights = nullptr; if (int numConics = path.countWeights()) { weights = fConicWeights.append(numConics); } SkDEBUGCODE(this->validate();) return {pts, weights}; } SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights) { SkDEBUGCODE(this->validate();) int pCnt; switch (verb) { case SkPath::kMove_Verb: pCnt = numVbs; break; case SkPath::kLine_Verb: fSegmentMask |= SkPath::kLine_SegmentMask; pCnt = numVbs; break; case SkPath::kQuad_Verb: fSegmentMask |= SkPath::kQuad_SegmentMask; pCnt = 2 * numVbs; break; case SkPath::kConic_Verb: fSegmentMask |= SkPath::kConic_SegmentMask; pCnt = 2 * numVbs; break; case SkPath::kCubic_Verb: fSegmentMask |= SkPath::kCubic_SegmentMask; pCnt = 3 * numVbs; break; case SkPath::kClose_Verb: SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb"); pCnt = 0; break; case SkPath::kDone_Verb: SkDEBUGFAIL("growForRepeatedVerb called for kDone"); pCnt = 0; break; default: SkDEBUGFAIL("default should not be reached"); pCnt = 0; break; } fBoundsIsDirty = true; // this also invalidates fIsFinite fIsOval = false; fIsRRect = false; memset(fVerbs.append(numVbs), verb, numVbs); if (SkPath::kConic_Verb == verb) { SkASSERT(weights); *weights = fConicWeights.append(numVbs); } SkPoint* pts = fPoints.append(pCnt); SkDEBUGCODE(this->validate();) return pts; } SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) { SkDEBUGCODE(this->validate();) int pCnt; unsigned mask = 0; switch (verb) { case SkPath::kMove_Verb: pCnt = 1; break; case SkPath::kLine_Verb: mask = SkPath::kLine_SegmentMask; pCnt = 1; break; case SkPath::kQuad_Verb: mask = SkPath::kQuad_SegmentMask; pCnt = 2; break; case SkPath::kConic_Verb: mask = SkPath::kConic_SegmentMask; pCnt = 2; break; case SkPath::kCubic_Verb: mask = SkPath::kCubic_SegmentMask; pCnt = 3; break; case SkPath::kClose_Verb: pCnt = 0; break; case SkPath::kDone_Verb: SkDEBUGFAIL("growForVerb called for kDone"); pCnt = 0; break; default: SkDEBUGFAIL("default is not reached"); pCnt = 0; break; } fSegmentMask |= mask; fBoundsIsDirty = true; // this also invalidates fIsFinite fIsOval = false; fIsRRect = false; *fVerbs.append() = verb; if (SkPath::kConic_Verb == verb) { *fConicWeights.append() = weight; } SkPoint* pts = fPoints.append(pCnt); SkDEBUGCODE(this->validate();) return pts; } uint32_t SkPathRef::genID() const { SkASSERT(fEditorsAttached.load() == 0); static const uint32_t kMask = (static_cast(1) << SkPathPriv::kPathRefGenIDBitCnt) - 1; if (fGenerationID == 0) { if (fPoints.count() == 0 && fVerbs.count() == 0) { fGenerationID = kEmptyGenID; } else { static std::atomic nextID{kEmptyGenID + 1}; do { fGenerationID = nextID.fetch_add(1, std::memory_order_relaxed) & kMask; } while (fGenerationID == 0 || fGenerationID == kEmptyGenID); } } return fGenerationID; } void SkPathRef::addGenIDChangeListener(sk_sp listener) { if (this == gEmpty) { return; } fGenIDChangeListeners.add(std::move(listener)); } int SkPathRef::genIDChangeListenerCount() { return fGenIDChangeListeners.count(); } // we need to be called *before* the genID gets changed or zerod void SkPathRef::callGenIDChangeListeners() { fGenIDChangeListeners.changed(); } SkRRect SkPathRef::getRRect() const { const SkRect& bounds = this->getBounds(); SkVector radii[4] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}}; Iter iter(*this); SkPoint pts[4]; uint8_t verb = iter.next(pts); SkASSERT(SkPath::kMove_Verb == verb); while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { if (SkPath::kConic_Verb == verb) { SkVector v1_0 = pts[1] - pts[0]; SkVector v2_1 = pts[2] - pts[1]; SkVector dxdy; if (v1_0.fX) { SkASSERT(!v2_1.fX && !v1_0.fY); dxdy.set(SkScalarAbs(v1_0.fX), SkScalarAbs(v2_1.fY)); } else if (!v1_0.fY) { SkASSERT(!v2_1.fX || !v2_1.fY); dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v2_1.fY)); } else { SkASSERT(!v2_1.fY); dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v1_0.fY)); } SkRRect::Corner corner = pts[1].fX == bounds.fLeft ? pts[1].fY == bounds.fTop ? SkRRect::kUpperLeft_Corner : SkRRect::kLowerLeft_Corner : pts[1].fY == bounds.fTop ? SkRRect::kUpperRight_Corner : SkRRect::kLowerRight_Corner; SkASSERT(!radii[corner].fX && !radii[corner].fY); radii[corner] = dxdy; } else { SkASSERT((verb == SkPath::kLine_Verb && (!(pts[1].fX - pts[0].fX) || !(pts[1].fY - pts[0].fY))) || verb == SkPath::kClose_Verb); } } SkRRect rrect; rrect.setRectRadii(bounds, radii); return rrect; } /////////////////////////////////////////////////////////////////////////////// SkPathRef::Iter::Iter() { #ifdef SK_DEBUG fPts = nullptr; fConicWeights = nullptr; #endif // need to init enough to make next() harmlessly return kDone_Verb fVerbs = nullptr; fVerbStop = nullptr; } SkPathRef::Iter::Iter(const SkPathRef& path) { this->setPathRef(path); } void SkPathRef::Iter::setPathRef(const SkPathRef& path) { fPts = path.points(); fVerbs = path.verbsBegin(); fVerbStop = path.verbsEnd(); fConicWeights = path.conicWeights(); if (fConicWeights) { fConicWeights -= 1; // begin one behind } // Don't allow iteration through non-finite points. if (!path.isFinite()) { fVerbStop = fVerbs; } } uint8_t SkPathRef::Iter::next(SkPoint pts[4]) { SkASSERT(pts); SkDEBUGCODE(unsigned peekResult = this->peek();) if (fVerbs == fVerbStop) { SkASSERT(peekResult == SkPath::kDone_Verb); return (uint8_t) SkPath::kDone_Verb; } // fVerbs points one beyond next verb so decrement first. unsigned verb = *fVerbs++; const SkPoint* srcPts = fPts; switch (verb) { case SkPath::kMove_Verb: pts[0] = srcPts[0]; srcPts += 1; break; case SkPath::kLine_Verb: pts[0] = srcPts[-1]; pts[1] = srcPts[0]; srcPts += 1; break; case SkPath::kConic_Verb: fConicWeights += 1; [[fallthrough]]; case SkPath::kQuad_Verb: pts[0] = srcPts[-1]; pts[1] = srcPts[0]; pts[2] = srcPts[1]; srcPts += 2; break; case SkPath::kCubic_Verb: pts[0] = srcPts[-1]; pts[1] = srcPts[0]; pts[2] = srcPts[1]; pts[3] = srcPts[2]; srcPts += 3; break; case SkPath::kClose_Verb: break; case SkPath::kDone_Verb: SkASSERT(fVerbs == fVerbStop); break; } fPts = srcPts; SkASSERT(peekResult == verb); return (uint8_t) verb; } uint8_t SkPathRef::Iter::peek() const { return fVerbs < fVerbStop ? *fVerbs : (uint8_t) SkPath::kDone_Verb; } bool SkPathRef::isValid() const { if (fIsOval || fIsRRect) { // Currently we don't allow both of these to be set, even though ovals are ro if (fIsOval == fIsRRect) { return false; } if (fIsOval) { if (fRRectOrOvalStartIdx >= 4) { return false; } } else { if (fRRectOrOvalStartIdx >= 8) { return false; } } } if (!fBoundsIsDirty && !fBounds.isEmpty()) { bool isFinite = true; Sk2s leftTop = Sk2s(fBounds.fLeft, fBounds.fTop); Sk2s rightBot = Sk2s(fBounds.fRight, fBounds.fBottom); for (int i = 0; i < fPoints.count(); ++i) { Sk2s point = Sk2s(fPoints[i].fX, fPoints[i].fY); #ifdef SK_DEBUG if (fPoints[i].isFinite() && ((point < leftTop).anyTrue() || (point > rightBot).anyTrue())) { SkDebugf("bad SkPathRef bounds: %g %g %g %g\n", fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); for (int j = 0; j < fPoints.count(); ++j) { if (i == j) { SkDebugf("*** bounds do not contain: "); } SkDebugf("%g %g\n", fPoints[j].fX, fPoints[j].fY); } return false; } #endif if (fPoints[i].isFinite() && (point < leftTop).anyTrue() && !(point > rightBot).anyTrue()) return false; if (!fPoints[i].isFinite()) { isFinite = false; } } if (SkToBool(fIsFinite) != isFinite) { return false; } } return true; } bool SkPathRef::dataMatchesVerbs() const { const auto info = sk_path_analyze_verbs(fVerbs.begin(), fVerbs.count()); return info.valid && info.segmentMask == fSegmentMask && info.points == fPoints.count() && info.weights == fConicWeights.count(); } ////////////////////////////////////////////////////////////////////////////////////////////////// SkPathEdgeIter::SkPathEdgeIter(const SkPath& path) { fMoveToPtr = fPts = path.fPathRef->points(); fVerbs = path.fPathRef->verbsBegin(); fVerbsStop = path.fPathRef->verbsEnd(); fConicWeights = path.fPathRef->conicWeights(); if (fConicWeights) { fConicWeights -= 1; // begin one behind } fNeedsCloseLine = false; fNextIsNewContour = false; SkDEBUGCODE(fIsConic = false;) }