/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/GrSurfaceProxy.h" #include "src/gpu/GrSurfaceProxyPriv.h" #include "include/gpu/GrRecordingContext.h" #include "src/core/SkMathPriv.h" #include "src/gpu/GrAttachment.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrGpuResourcePriv.h" #include "src/gpu/GrImageInfo.h" #include "src/gpu/GrRecordingContextPriv.h" #include "src/gpu/GrResourceProvider.h" #include "src/gpu/GrSurface.h" #include "src/gpu/GrTexture.h" #include "src/gpu/GrTextureRenderTargetProxy.h" #include "src/gpu/SurfaceFillContext.h" #ifdef SK_DEBUG #include "include/gpu/GrDirectContext.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrRenderTarget.h" static bool is_valid_lazy(const SkISize& dimensions, SkBackingFit fit) { // A "fully" lazy proxy's width and height are not known until instantiation time. // So fully lazy proxies are created with width and height < 0. Regular lazy proxies must be // created with positive widths and heights. The width and height are set to 0 only after a // failed instantiation. The former must be "approximate" fit while the latter can be either. return ((dimensions.fWidth < 0 && dimensions.fHeight < 0 && SkBackingFit::kApprox == fit) || (dimensions.fWidth > 0 && dimensions.fHeight > 0)); } static bool is_valid_non_lazy(SkISize dimensions) { return dimensions.fWidth > 0 && dimensions.fHeight > 0; } #endif // Deferred version GrSurfaceProxy::GrSurfaceProxy(const GrBackendFormat& format, SkISize dimensions, SkBackingFit fit, SkBudgeted budgeted, GrProtected isProtected, GrInternalSurfaceFlags surfaceFlags, UseAllocator useAllocator) : fSurfaceFlags(surfaceFlags) , fFormat(format) , fDimensions(dimensions) , fFit(fit) , fBudgeted(budgeted) , fUseAllocator(useAllocator) , fIsProtected(isProtected) { SkASSERT(fFormat.isValid()); SkASSERT(is_valid_non_lazy(dimensions)); } // Lazy-callback version GrSurfaceProxy::GrSurfaceProxy(LazyInstantiateCallback&& callback, const GrBackendFormat& format, SkISize dimensions, SkBackingFit fit, SkBudgeted budgeted, GrProtected isProtected, GrInternalSurfaceFlags surfaceFlags, UseAllocator useAllocator) : fSurfaceFlags(surfaceFlags) , fFormat(format) , fDimensions(dimensions) , fFit(fit) , fBudgeted(budgeted) , fUseAllocator(useAllocator) , fLazyInstantiateCallback(std::move(callback)) , fIsProtected(isProtected) { SkASSERT(fFormat.isValid()); SkASSERT(fLazyInstantiateCallback); SkASSERT(is_valid_lazy(dimensions, fit)); } // Wrapped version GrSurfaceProxy::GrSurfaceProxy(sk_sp surface, SkBackingFit fit, UseAllocator useAllocator) : fTarget(std::move(surface)) , fSurfaceFlags(fTarget->flags()) , fFormat(fTarget->backendFormat()) , fDimensions(fTarget->dimensions()) , fFit(fit) , fBudgeted(fTarget->resourcePriv().budgetedType() == GrBudgetedType::kBudgeted ? SkBudgeted::kYes : SkBudgeted::kNo) , fUseAllocator(useAllocator) , fUniqueID(fTarget->uniqueID()) // Note: converting from unique resource ID to a proxy ID! , fIsProtected(fTarget->isProtected() ? GrProtected::kYes : GrProtected::kNo) { SkASSERT(fFormat.isValid()); } GrSurfaceProxy::~GrSurfaceProxy() { } sk_sp GrSurfaceProxy::createSurfaceImpl(GrResourceProvider* resourceProvider, int sampleCnt, GrRenderable renderable, GrMipmapped mipMapped) const { SkASSERT(mipMapped == GrMipmapped::kNo || fFit == SkBackingFit::kExact); SkASSERT(!this->isLazy()); SkASSERT(!fTarget); sk_sp surface; if (SkBackingFit::kApprox == fFit) { surface = resourceProvider->createApproxTexture(fDimensions, fFormat, fFormat.textureType(), renderable, sampleCnt, fIsProtected); } else { surface = resourceProvider->createTexture(fDimensions, fFormat, fFormat.textureType(), renderable, sampleCnt, mipMapped, fBudgeted, fIsProtected); } if (!surface) { return nullptr; } return surface; } bool GrSurfaceProxy::canSkipResourceAllocator() const { if (fUseAllocator == UseAllocator::kNo) { // Usually an atlas or onFlush proxy return true; } auto peek = this->peekSurface(); if (!peek) { return false; } // If this resource is already allocated and not recyclable then the resource allocator does // not need to do anything with it. return !peek->resourcePriv().getScratchKey().isValid(); } void GrSurfaceProxy::assign(sk_sp surface) { SkASSERT(!fTarget && surface); SkDEBUGCODE(this->validateSurface(surface.get());) fTarget = std::move(surface); #ifdef SK_DEBUG if (this->asRenderTargetProxy()) { SkASSERT(fTarget->asRenderTarget()); } // In order to give DDL users some flexibility in the destination of there DDLs, // a DDL's target proxy can be more conservative (and thus require less memory) // than the actual GrSurface used to fulfill it. if (!this->isDDLTarget() && kInvalidGpuMemorySize != this->getRawGpuMemorySize_debugOnly()) { // TODO(11373): Can this check be exact? SkASSERT(fTarget->gpuMemorySize() <= this->getRawGpuMemorySize_debugOnly()); } #endif } bool GrSurfaceProxy::instantiateImpl(GrResourceProvider* resourceProvider, int sampleCnt, GrRenderable renderable, GrMipmapped mipMapped, const GrUniqueKey* uniqueKey) { SkASSERT(!this->isLazy()); if (fTarget) { if (uniqueKey && uniqueKey->isValid()) { SkASSERT(fTarget->getUniqueKey().isValid() && fTarget->getUniqueKey() == *uniqueKey); } return true; } sk_sp surface = this->createSurfaceImpl(resourceProvider, sampleCnt, renderable, mipMapped); if (!surface) { return false; } // If there was an invalidation message pending for this key, we might have just processed it, // causing the key (stored on this proxy) to become invalid. if (uniqueKey && uniqueKey->isValid()) { resourceProvider->assignUniqueKeyToResource(*uniqueKey, surface.get()); } this->assign(std::move(surface)); return true; } void GrSurfaceProxy::deinstantiate() { SkASSERT(this->isInstantiated()); fTarget = nullptr; } void GrSurfaceProxy::computeScratchKey(const GrCaps& caps, GrScratchKey* key) const { SkASSERT(!this->isFullyLazy()); GrRenderable renderable = GrRenderable::kNo; int sampleCount = 1; if (const auto* rtp = this->asRenderTargetProxy()) { renderable = GrRenderable::kYes; sampleCount = rtp->numSamples(); } const GrTextureProxy* tp = this->asTextureProxy(); GrMipmapped mipMapped = GrMipmapped::kNo; if (tp) { mipMapped = tp->mipmapped(); } GrTexture::ComputeScratchKey(caps, this->backendFormat(), this->backingStoreDimensions(), renderable, sampleCount, mipMapped, fIsProtected, key); } SkISize GrSurfaceProxy::backingStoreDimensions() const { SkASSERT(!this->isFullyLazy()); if (fTarget) { return fTarget->dimensions(); } if (SkBackingFit::kExact == fFit) { return fDimensions; } return GrResourceProvider::MakeApprox(fDimensions); } bool GrSurfaceProxy::isFunctionallyExact() const { SkASSERT(!this->isFullyLazy()); return fFit == SkBackingFit::kExact || fDimensions == GrResourceProvider::MakeApprox(fDimensions); } bool GrSurfaceProxy::isFormatCompressed(const GrCaps* caps) const { return caps->isFormatCompressed(this->backendFormat()); } #ifdef SK_DEBUG void GrSurfaceProxy::validate(GrContext_Base* context) const { if (fTarget) { SkASSERT(fTarget->getContext()->priv().matches(context)); } } #endif sk_sp GrSurfaceProxy::Copy(GrRecordingContext* rContext, sk_sp src, GrSurfaceOrigin origin, GrMipmapped mipMapped, SkIRect srcRect, SkBackingFit fit, SkBudgeted budgeted, RectsMustMatch rectsMustMatch, sk_sp* outTask) { SkASSERT(!src->isFullyLazy()); int width; int height; SkIPoint dstPoint; if (rectsMustMatch == RectsMustMatch::kYes) { width = src->width(); height = src->height(); dstPoint = {srcRect.fLeft, srcRect.fTop}; } else { width = srcRect.width(); height = srcRect.height(); dstPoint = {0, 0}; } if (!srcRect.intersect(SkIRect::MakeSize(src->dimensions()))) { return {}; } auto format = src->backendFormat().makeTexture2D(); SkASSERT(format.isValid()); if (src->backendFormat().textureType() != GrTextureType::kExternal) { GrImageInfo info(GrColorType::kUnknown, kUnknown_SkAlphaType, nullptr, {width, height}); auto dstContext = rContext->priv().makeSC(info, format, fit, origin, GrRenderable::kNo, 1, mipMapped, src->isProtected(), budgeted); sk_sp copyTask; if (dstContext && (copyTask = dstContext->copy(src, srcRect, dstPoint))) { if (outTask) { *outTask = std::move(copyTask); } return dstContext->asSurfaceProxyRef(); } } if (src->asTextureProxy()) { auto dstContext = rContext->priv().makeSFC(kUnknown_SkAlphaType, nullptr, {width, height}, fit, format, 1, mipMapped, src->isProtected(), GrSwizzle::RGBA(), GrSwizzle::RGBA(), origin, budgeted); GrSurfaceProxyView view(std::move(src), origin, GrSwizzle::RGBA()); if (dstContext && dstContext->blitTexture(std::move(view), srcRect, dstPoint)) { if (outTask) { *outTask = dstContext->refRenderTask(); } return dstContext->asSurfaceProxyRef(); } } // Can't use backend copies or draws. return nullptr; } sk_sp GrSurfaceProxy::Copy(GrRecordingContext* context, sk_sp src, GrSurfaceOrigin origin, GrMipmapped mipMapped, SkBackingFit fit, SkBudgeted budgeted, sk_sp* outTask) { SkASSERT(!src->isFullyLazy()); auto rect = SkIRect::MakeSize(src->dimensions()); return Copy(context, std::move(src), origin, mipMapped, rect, fit, budgeted, RectsMustMatch::kNo, outTask); } #if GR_TEST_UTILS int32_t GrSurfaceProxy::testingOnly_getBackingRefCnt() const { if (fTarget) { return fTarget->testingOnly_getRefCnt(); } return -1; // no backing GrSurface } GrInternalSurfaceFlags GrSurfaceProxy::testingOnly_getFlags() const { return fSurfaceFlags; } SkString GrSurfaceProxy::dump() const { SkString tmp; tmp.appendf("proxyID: %d - surfaceID: %d", this->uniqueID().asUInt(), this->peekSurface() ? this->peekSurface()->uniqueID().asUInt() : -1); return tmp; } #endif void GrSurfaceProxyPriv::exactify(bool allocatedCaseOnly) { SkASSERT(!fProxy->isFullyLazy()); if (this->isExact()) { return; } SkASSERT(SkBackingFit::kApprox == fProxy->fFit); if (fProxy->fTarget) { // The kApprox but already instantiated case. Setting the proxy's width & height to // the instantiated width & height could have side-effects going forward, since we're // obliterating the area of interest information. This call (exactify) only used // when converting an SkSpecialImage to an SkImage so the proxy shouldn't be // used for additional draws. fProxy->fDimensions = fProxy->fTarget->dimensions(); return; } #ifndef SK_CRIPPLE_TEXTURE_REUSE // In the post-implicit-allocation world we can't convert this proxy to be exact fit // at this point. With explicit allocation switching this to exact will result in a // different allocation at flush time. With implicit allocation, allocation would occur // at draw time (rather than flush time) so this pathway was encountered less often (if // at all). if (allocatedCaseOnly) { return; } #endif // The kApprox uninstantiated case. Making this proxy be exact should be okay. // It could mess things up if prior decisions were based on the approximate size. fProxy->fFit = SkBackingFit::kExact; // If fGpuMemorySize is used when caching specialImages for the image filter DAG. If it has // already been computed we want to leave it alone so that amount will be removed when // the special image goes away. If it hasn't been computed yet it might as well compute the // exact amount. } bool GrSurfaceProxyPriv::doLazyInstantiation(GrResourceProvider* resourceProvider) { SkASSERT(fProxy->isLazy()); sk_sp surface; if (const auto& uniqueKey = fProxy->getUniqueKey(); uniqueKey.isValid()) { // First try to reattach to a cached version if the proxy is uniquely keyed surface = resourceProvider->findByUniqueKey(uniqueKey); } bool syncKey = true; bool releaseCallback = false; if (!surface) { auto result = fProxy->fLazyInstantiateCallback(resourceProvider, fProxy->callbackDesc()); surface = std::move(result.fSurface); syncKey = result.fKeyMode == GrSurfaceProxy::LazyInstantiationKeyMode::kSynced; releaseCallback = surface && result.fReleaseCallback; } if (!surface) { fProxy->fDimensions.setEmpty(); return false; } if (fProxy->isFullyLazy()) { // This was a fully lazy proxy. We need to fill in the width & height. For partially // lazy proxies we must preserve the original width & height since that indicates // the content area. fProxy->fDimensions = surface->dimensions(); } SkASSERT(fProxy->width() <= surface->width()); SkASSERT(fProxy->height() <= surface->height()); if (GrTextureProxy* texProxy = fProxy->asTextureProxy()) { texProxy->setTargetKeySync(syncKey); if (syncKey) { const GrUniqueKey& key = texProxy->getUniqueKey(); if (key.isValid()) { if (!surface->asTexture()->getUniqueKey().isValid()) { // If 'surface' is newly created, attach the unique key resourceProvider->assignUniqueKeyToResource(key, surface.get()); } else { // otherwise we had better have reattached to a cached version SkASSERT(surface->asTexture()->getUniqueKey() == key); } } else { SkASSERT(!surface->getUniqueKey().isValid()); } } } this->assign(std::move(surface)); if (releaseCallback) { fProxy->fLazyInstantiateCallback = nullptr; } return true; } #ifdef SK_DEBUG void GrSurfaceProxy::validateSurface(const GrSurface* surface) { SkASSERTF(surface->backendFormat() == fFormat, "%s != %s", surface->backendFormat().toStr().c_str(), fFormat.toStr().c_str()); this->onValidateSurface(surface); } #endif