/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/gl/GrGLCaps.h" #include #include "include/gpu/GrContextOptions.h" #include "src/core/SkCompressedDataUtils.h" #include "src/core/SkMathPriv.h" #include "src/core/SkTSearch.h" #include "src/gpu/GrBackendUtils.h" #include "src/gpu/GrProgramDesc.h" #include "src/gpu/GrShaderCaps.h" #include "src/gpu/GrSurfaceProxyPriv.h" #include "src/gpu/GrTextureProxyPriv.h" #include "src/gpu/SkGr.h" #include "src/gpu/gl/GrGLContext.h" #include "src/gpu/gl/GrGLRenderTarget.h" #include "src/gpu/gl/GrGLTexture.h" #if defined(SK_BUILD_FOR_IOS) #include #endif GrGLCaps::GrGLCaps(const GrContextOptions& contextOptions, const GrGLContextInfo& ctxInfo, const GrGLInterface* glInterface) : INHERITED(contextOptions) { fStandard = ctxInfo.standard(); fPackFlipYSupport = false; fTextureUsageSupport = false; fImagingSupport = false; fVertexArrayObjectSupport = false; fDebugSupport = false; fES2CompatibilitySupport = false; fDrawRangeElementsSupport = false; fBaseVertexBaseInstanceSupport = false; fIsCoreProfile = false; fBindFragDataLocationSupport = false; fRectangleTextureSupport = false; fBindUniformLocationSupport = false; fMipmapLevelControlSupport = false; fMipmapLodControlSupport = false; fUseBufferDataNullHint = false; fDoManualMipmapping = false; fClearToBoundaryValuesIsBroken = false; fClearTextureSupport = false; fDrawArraysBaseVertexIsBroken = false; fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO = false; fUseDrawInsteadOfAllRenderTargetWrites = false; fRequiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines = false; fDontSetBaseOrMaxLevelForExternalTextures = false; fNeverDisableColorWrites = false; fMustSetAnyTexParameterToEnableMipmapping = false; fAllowBGRA8CopyTexSubImage = false; fDisallowDynamicMSAA = false; fMustResetBlendFuncBetweenDualSourceAndDisable = false; fBindTexture0WhenChangingTextureFBOMultisampleCount = false; fRebindColorAttachmentAfterCheckFramebufferStatus = false; fProgramBinarySupport = false; fProgramParameterSupport = false; fSamplerObjectSupport = false; fUseSamplerObjects = false; fTextureSwizzleSupport = false; fTiledRenderingSupport = false; fFBFetchRequiresEnablePerSample = false; fSRGBWriteControl = false; fSkipErrorChecks = false; fShaderCaps = std::make_unique(); // All of Skia's automated testing of ANGLE and all related tuning of performance and driver // workarounds is oriented around the D3D backends of ANGLE. Chrome has started using Skia // on top of ANGLE's GL backend. In this case ANGLE is still interfacing the same underlying // GL driver that our performance and correctness tuning was performed on. To avoid losing // that we strip the ANGLE info and for the rest of caps setup pretend we're directly on top of // the GL driver. Note that this means that some driver workarounds are likely implemented at // two levels of the stack (Skia and ANGLE) but we haven't determined which. if (ctxInfo.angleBackend() == GrGLANGLEBackend::kOpenGL) { this->init(contextOptions, ctxInfo.makeNonAngle(), glInterface); // A major caveat is that ANGLE does not allow client side arrays. fPreferClientSideDynamicBuffers = false; } else { this->init(contextOptions, ctxInfo, glInterface); } } void GrGLCaps::init(const GrContextOptions& contextOptions, const GrGLContextInfo& ctxInfo, const GrGLInterface* gli) { GrGLStandard standard = ctxInfo.standard(); // standard can be unused (optimized away) if SK_ASSUME_GL_ES is set sk_ignore_unused_variable(standard); GrGLVersion version = ctxInfo.version(); if (GR_IS_GR_GL(standard)) { GrGLint max; GR_GL_GetIntegerv(gli, GR_GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, &max); fMaxFragmentUniformVectors = max / 4; if (version >= GR_GL_VER(3, 2)) { GrGLint profileMask; GR_GL_GetIntegerv(gli, GR_GL_CONTEXT_PROFILE_MASK, &profileMask); fIsCoreProfile = SkToBool(profileMask & GR_GL_CONTEXT_CORE_PROFILE_BIT); } } else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) { GR_GL_GetIntegerv(gli, GR_GL_MAX_FRAGMENT_UNIFORM_VECTORS, &fMaxFragmentUniformVectors); } if (fDriverBugWorkarounds.max_fragment_uniform_vectors_32) { fMaxFragmentUniformVectors = std::min(fMaxFragmentUniformVectors, 32); } GR_GL_GetIntegerv(gli, GR_GL_MAX_VERTEX_ATTRIBS, &fMaxVertexAttributes); if (GR_IS_GR_GL(standard)) { fWritePixelsRowBytesSupport = true; fReadPixelsRowBytesSupport = true; fPackFlipYSupport = false; } else if (GR_IS_GR_GL_ES(standard)) { fWritePixelsRowBytesSupport = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_unpack_subimage"); fReadPixelsRowBytesSupport = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_NV_pack_subimage"); fPackFlipYSupport = ctxInfo.hasExtension("GL_ANGLE_pack_reverse_row_order"); } else if (GR_IS_GR_WEBGL(standard)) { // WebGL 2.0 has these fWritePixelsRowBytesSupport = version >= GR_GL_VER(2, 0); fReadPixelsRowBytesSupport = version >= GR_GL_VER(2, 0); } fTransferPixelsToRowBytesSupport = fWritePixelsRowBytesSupport; if (fDriverBugWorkarounds.pack_parameters_workaround_with_pack_buffer) { // In some cases drivers handle copying the last row incorrectly // when using GL_PACK_ROW_LENGTH. Chromium handles this by iterating // through every row and conditionally clobbering that value, but // Skia already has a scratch buffer workaround when pack row length // is not supported, so just use that. fReadPixelsRowBytesSupport = false; } fTextureUsageSupport = GR_IS_GR_GL_ES(standard) && ctxInfo.hasExtension("GL_ANGLE_texture_usage"); if (GR_IS_GR_GL(standard)) { fTextureBarrierSupport = version >= GR_GL_VER(4,5) || ctxInfo.hasExtension("GL_ARB_texture_barrier") || ctxInfo.hasExtension("GL_NV_texture_barrier"); } else if (GR_IS_GR_GL_ES(standard)) { fTextureBarrierSupport = ctxInfo.hasExtension("GL_NV_texture_barrier"); } else if (GR_IS_GR_WEBGL(standard)) { fTextureBarrierSupport = false; } if (GR_IS_GR_GL(standard)) { fSampleLocationsSupport = version >= GR_GL_VER(3,2) || ctxInfo.hasExtension("GL_ARB_texture_multisample"); } else if (GR_IS_GR_GL_ES(standard)) { fSampleLocationsSupport = version >= GR_GL_VER(3,1); } else if (GR_IS_GR_WEBGL(standard)) { fSampleLocationsSupport = false; } fImagingSupport = GR_IS_GR_GL(standard) && ctxInfo.hasExtension("GL_ARB_imaging"); if (((GR_IS_GR_GL(standard) && version >= GR_GL_VER(4,3)) || (GR_IS_GR_GL_ES(standard) && version >= GR_GL_VER(3,0)) || ctxInfo.hasExtension("GL_ARB_invalidate_subdata"))) { fInvalidateFBType = kInvalidate_InvalidateFBType; } else if (ctxInfo.hasExtension("GL_EXT_discard_framebuffer")) { fInvalidateFBType = kDiscard_InvalidateFBType; } // For future reference on Desktop GL, GL_PRIMITIVE_RESTART_FIXED_INDEX appears in 4.3, and // GL_PRIMITIVE_RESTART (where the client must call glPrimitiveRestartIndex) appears in 3.1. if (GR_IS_GR_GL_ES(standard)) { // Primitive restart can cause a 3x slowdown on Adreno. Enable conservatively. // FIXME: Primitive restart would likely be a win on iOS if we had an enum value for it. if (ctxInfo.vendor() == GrGLVendor::kARM) { fUsePrimitiveRestart = version >= GR_GL_VER(3,0); } } if (ctxInfo.vendor() == GrGLVendor::kARM || ctxInfo.vendor() == GrGLVendor::kImagination || ctxInfo.vendor() == GrGLVendor::kQualcomm ) { fPreferFullscreenClears = true; } if (GR_IS_GR_GL(standard)) { fVertexArrayObjectSupport = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_vertex_array_object") || ctxInfo.hasExtension("GL_APPLE_vertex_array_object"); } else if (GR_IS_GR_GL_ES(standard)) { fVertexArrayObjectSupport = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_OES_vertex_array_object"); } else if (GR_IS_GR_WEBGL(standard)) { fVertexArrayObjectSupport = version >= GR_GL_VER(2, 0) || ctxInfo.hasExtension("GL_OES_vertex_array_object") || ctxInfo.hasExtension("OES_vertex_array_object"); } if (GR_IS_GR_GL(standard) && version >= GR_GL_VER(4,3)) { fDebugSupport = true; } else if (GR_IS_GR_GL_ES(standard)) { fDebugSupport = ctxInfo.hasExtension("GL_KHR_debug"); } else if (GR_IS_GR_WEBGL(standard)) { fDebugSupport = false; } if (GR_IS_GR_GL(standard)) { fES2CompatibilitySupport = ctxInfo.hasExtension("GL_ARB_ES2_compatibility"); } else if (GR_IS_GR_GL_ES(standard)) { fES2CompatibilitySupport = true; } else if (GR_IS_GR_WEBGL(standard)) { fES2CompatibilitySupport = true; } if (GR_IS_GR_GL(standard)) { fClientCanDisableMultisample = true; } else if (GR_IS_GR_GL_ES(standard)) { fClientCanDisableMultisample = ctxInfo.hasExtension("GL_EXT_multisample_compatibility"); } else if (GR_IS_GR_WEBGL(standard)) { fClientCanDisableMultisample = false; } if (GR_IS_GR_GL(standard)) { // 3.1 has draw_instanced but not instanced_arrays, for the time being we only care about // instanced arrays, but we could make this more granular if we wanted fDrawInstancedSupport = version >= GR_GL_VER(3, 2) || (ctxInfo.hasExtension("GL_ARB_draw_instanced") && ctxInfo.hasExtension("GL_ARB_instanced_arrays")); } else if (GR_IS_GR_GL_ES(standard)) { fDrawInstancedSupport = version >= GR_GL_VER(3, 0) || (ctxInfo.hasExtension("GL_EXT_draw_instanced") && ctxInfo.hasExtension("GL_EXT_instanced_arrays")) || ctxInfo.hasExtension("GL_ANGLE_instanced_arrays"); } else if (GR_IS_GR_WEBGL(standard)) { // WebGL 2.0 has DrawArraysInstanced and drawElementsInstanced fDrawInstancedSupport = version >= GR_GL_VER(2, 0); } #ifdef GR_DISABLE_TESSELLATION_ON_ES2 if (GR_IS_GR_GL_ES(standard) && version < GR_GL_VER(3, 0)) { // Temporarily disable the tessellation path renderer on Chrome ES2 while we roll the // necessary Skia changes. fDisableTessellationPathRenderer = true; } #else if (GR_IS_GR_GL_ES(standard) && ctxInfo.isOverCommandBuffer() && version < GR_GL_VER(3, 0)) { // Temporarily disable the tessellation path renderer over the ES2 command buffer. This is // an attempt to lower impact while we roll out tessellation in Chrome. fDisableTessellationPathRenderer = true; } #endif if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(3, 0)) { fBindFragDataLocationSupport = true; } } else if (GR_IS_GR_GL_ES(standard)) { if (version >= GR_GL_VER(3, 0) && ctxInfo.hasExtension("GL_EXT_blend_func_extended")) { fBindFragDataLocationSupport = true; } } else if (GR_IS_GR_WEBGL(standard)) { fBindFragDataLocationSupport = false; } fBindUniformLocationSupport = ctxInfo.hasExtension("GL_CHROMIUM_bind_uniform_location"); if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(3, 1) || ctxInfo.hasExtension("GL_ARB_texture_rectangle") || ctxInfo.hasExtension("GL_ANGLE_texture_rectangle")) { fRectangleTextureSupport = true; } } else if (GR_IS_GR_GL_ES(standard)) { fRectangleTextureSupport = ctxInfo.hasExtension("GL_ARB_texture_rectangle") || ctxInfo.hasExtension("GL_ANGLE_texture_rectangle"); } else if (GR_IS_GR_WEBGL(standard)) { fRectangleTextureSupport = false; } // GrCaps defaults fClampToBorderSupport to true, so disable when unsupported if (GR_IS_GR_GL(standard)) { // Clamp to border added in 1.3 if (version < GR_GL_VER(1, 3) && !ctxInfo.hasExtension("GL_ARB_texture_border_clamp")) { fClampToBorderSupport = false; } } else if (GR_IS_GR_GL_ES(standard)) { // GLES didn't have clamp to border until 3.2, but provides several alternative extensions if (version < GR_GL_VER(3, 2) && !ctxInfo.hasExtension("GL_EXT_texture_border_clamp") && !ctxInfo.hasExtension("GL_NV_texture_border_clamp") && !ctxInfo.hasExtension("GL_OES_texture_border_clamp")) { fClampToBorderSupport = false; } } else if (GR_IS_GR_WEBGL(standard)) { // WebGL appears to only have REPEAT, CLAMP_TO_EDGE and MIRRORED_REPEAT fClampToBorderSupport = false; } if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(3,3) || ctxInfo.hasExtension("GL_ARB_texture_swizzle")) { fTextureSwizzleSupport = true; } } else if (GR_IS_GR_GL_ES(standard)) { if (version >= GR_GL_VER(3,0)) { fTextureSwizzleSupport = true; } } else if (GR_IS_GR_WEBGL(standard)) { fTextureSwizzleSupport = false; } if (GR_IS_GR_GL(standard)) { fMipmapLevelControlSupport = true; fMipmapLodControlSupport = true; } else if (GR_IS_GR_GL_ES(standard)) { if (version >= GR_GL_VER(3,0)) { fMipmapLevelControlSupport = true; fMipmapLodControlSupport = true; } } else if (GR_IS_GR_WEBGL(standard)) { fMipmapLevelControlSupport = false; fMipmapLodControlSupport = false; } // Chrome's command buffer will zero out a buffer if null is passed to glBufferData to avoid // letting an application see uninitialized memory. WebGL spec explicitly disallows null values. fUseBufferDataNullHint = !GR_IS_GR_WEBGL(standard) && !ctxInfo.isOverCommandBuffer(); if (GR_IS_GR_GL(standard)) { fClearTextureSupport = (version >= GR_GL_VER(4,4) || ctxInfo.hasExtension("GL_ARB_clear_texture")); } else if (GR_IS_GR_GL_ES(standard)) { fClearTextureSupport = ctxInfo.hasExtension("GL_EXT_clear_texture"); } else if (GR_IS_GR_WEBGL(standard)) { fClearTextureSupport = false; } #if defined(SK_BUILD_FOR_ANDROID) && __ANDROID_API__ >= 26 fSupportsAHardwareBufferImages = true; #endif if (GR_IS_GR_GL(standard)) { fSRGBWriteControl = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_framebuffer_sRGB") || ctxInfo.hasExtension("GL_EXT_framebuffer_sRGB"); } else if (GR_IS_GR_GL_ES(standard)) { // ES through 3.2 requires EXT_srgb_write_control to support toggling // sRGB writing for destinations. fSRGBWriteControl = ctxInfo.hasExtension("GL_EXT_sRGB_write_control"); } // No WebGL support fSkipErrorChecks = ctxInfo.isOverCommandBuffer(); if (GR_IS_GR_WEBGL(standard)) { // Error checks are quite costly in webgl, especially in Chrome. fSkipErrorChecks = true; } // When we are abandoning the context we cannot call into GL thus we should skip any sync work. fMustSyncGpuDuringAbandon = false; /************************************************************************** * GrShaderCaps fields **************************************************************************/ // This must be called after fCoreProfile is set on the GrGLCaps this->initGLSL(ctxInfo, gli); GrShaderCaps* shaderCaps = fShaderCaps.get(); // Enable supported shader-related caps if (GR_IS_GR_GL(standard)) { shaderCaps->fDualSourceBlendingSupport = (version >= GR_GL_VER(3, 3) || ctxInfo.hasExtension("GL_ARB_blend_func_extended")) && ctxInfo.glslGeneration() >= k130_GrGLSLGeneration; shaderCaps->fShaderDerivativeSupport = true; shaderCaps->fIntegerSupport = version >= GR_GL_VER(3, 0) && ctxInfo.glslGeneration() >= k130_GrGLSLGeneration; shaderCaps->fNonsquareMatrixSupport = ctxInfo.glslGeneration() >= k130_GrGLSLGeneration; shaderCaps->fInverseHyperbolicSupport = ctxInfo.glslGeneration() >= k130_GrGLSLGeneration; } else if (GR_IS_GR_GL_ES(standard)) { shaderCaps->fDualSourceBlendingSupport = ctxInfo.hasExtension("GL_EXT_blend_func_extended"); shaderCaps->fShaderDerivativeSupport = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_OES_standard_derivatives"); shaderCaps->fIntegerSupport = version >= GR_GL_VER(3, 0) && ctxInfo.glslGeneration() >= k330_GrGLSLGeneration; // We use this value for GLSL ES 3.0. shaderCaps->fNonsquareMatrixSupport = ctxInfo.glslGeneration() >= k330_GrGLSLGeneration; shaderCaps->fInverseHyperbolicSupport = ctxInfo.glslGeneration() >= k330_GrGLSLGeneration; } else if (GR_IS_GR_WEBGL(standard)) { shaderCaps->fShaderDerivativeSupport = version >= GR_GL_VER(2, 0) || ctxInfo.hasExtension("GL_OES_standard_derivatives") || ctxInfo.hasExtension("OES_standard_derivatives"); shaderCaps->fIntegerSupport = (version >= GR_GL_VER(2, 0)); shaderCaps->fNonsquareMatrixSupport = ctxInfo.glslGeneration() >= k330_GrGLSLGeneration; shaderCaps->fInverseHyperbolicSupport = ctxInfo.glslGeneration() >= k330_GrGLSLGeneration; } if (ctxInfo.hasExtension("GL_NV_conservative_raster")) { fConservativeRasterSupport = true; } if (GR_IS_GR_GL(standard)) { fWireframeSupport = true; } if (GR_IS_GR_GL(standard)) { shaderCaps->fRewriteSwitchStatements = ctxInfo.glslGeneration() < k130_GrGLSLGeneration; // introduced in GLSL 1.3 } else if (GR_IS_GR_GL_ES(standard)) { shaderCaps->fRewriteSwitchStatements = ctxInfo.glslGeneration() < k330_GrGLSLGeneration; // introduced in GLSL ES3 } else if (GR_IS_GR_WEBGL(standard)) { shaderCaps->fRewriteSwitchStatements = version < GR_GL_VER(2, 0); // introduced in WebGL 2 } // Protect ourselves against tracking huge amounts of texture state. static const uint8_t kMaxSaneSamplers = 32; GrGLint maxSamplers; GR_GL_GetIntegerv(gli, GR_GL_MAX_TEXTURE_IMAGE_UNITS, &maxSamplers); shaderCaps->fMaxFragmentSamplers = std::min(kMaxSaneSamplers, maxSamplers); // SGX and Mali GPUs have tiled architectures that have trouble with frequently changing VBOs. // We've measured a performance increase using non-VBO vertex data for dynamic content on these // GPUs. Perhaps we should read the renderer string and limit this decision to specific GPU // families rather than basing it on the vendor alone. // The Chrome command buffer blocks the use of client side buffers (but may emulate VBOs with // them). Client side buffers are not allowed in core profiles. if (GR_IS_GR_GL(standard) || GR_IS_GR_GL_ES(standard)) { if (!ctxInfo.isOverCommandBuffer() && !fIsCoreProfile && (ctxInfo.vendor() == GrGLVendor::kARM || ctxInfo.vendor() == GrGLVendor::kImagination || ctxInfo.vendor() == GrGLVendor::kQualcomm)) { fPreferClientSideDynamicBuffers = true; } } // No client side arrays in WebGL https://www.khronos.org/registry/webgl/specs/1.0/#6.2 if (!contextOptions.fAvoidStencilBuffers) { // To reduce surface area, if we avoid stencil buffers, we also disable MSAA. this->initFSAASupport(contextOptions, ctxInfo, gli); this->initStencilSupport(ctxInfo); } // Setup blit framebuffer if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(3,0) || ctxInfo.hasExtension("GL_ARB_framebuffer_object") || ctxInfo.hasExtension("GL_EXT_framebuffer_blit")) { fBlitFramebufferFlags = 0; } } else if (GR_IS_GR_GL_ES(standard)) { if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_NV_framebuffer_blit")) { fBlitFramebufferFlags = kNoFormatConversionForMSAASrc_BlitFramebufferFlag | kNoMSAADst_BlitFramebufferFlag | kRectsMustMatchForMSAASrc_BlitFramebufferFlag; } else if (ctxInfo.hasExtension("GL_CHROMIUM_framebuffer_multisample") || ctxInfo.hasExtension("GL_ANGLE_framebuffer_blit")) { // The CHROMIUM extension uses the ANGLE version of glBlitFramebuffer and includes its // limitations. fBlitFramebufferFlags = kNoScalingOrMirroring_BlitFramebufferFlag | kResolveMustBeFull_BlitFrambufferFlag | kNoMSAADst_BlitFramebufferFlag | kNoFormatConversion_BlitFramebufferFlag | kRectsMustMatchForMSAASrc_BlitFramebufferFlag; } } // No WebGL 1.0 support for BlitFramebuffer this->initBlendEqationSupport(ctxInfo); if (GR_IS_GR_GL(standard)) { fMapBufferFlags = kCanMap_MapFlag; // we require VBO support and the desktop VBO // extension includes glMapBuffer. if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_map_buffer_range")) { fMapBufferFlags |= kSubset_MapFlag; fMapBufferType = kMapBufferRange_MapBufferType; } else { fMapBufferType = kMapBuffer_MapBufferType; } } else if (GR_IS_GR_GL_ES(standard)) { // Unextended GLES2 doesn't have any buffer mapping. fMapBufferFlags = kNone_MapFlags; if (ctxInfo.hasExtension("GL_CHROMIUM_map_sub")) { fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag; fMapBufferType = kChromium_MapBufferType; } else if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_map_buffer_range")) { fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag; fMapBufferType = kMapBufferRange_MapBufferType; } else if (ctxInfo.hasExtension("GL_OES_mapbuffer")) { fMapBufferFlags = kCanMap_MapFlag; fMapBufferType = kMapBuffer_MapBufferType; } } else if (GR_IS_GR_WEBGL(standard)) { // explicitly removed https://www.khronos.org/registry/webgl/specs/2.0/#5.14 fMapBufferFlags = kNone_MapFlags; } if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(2, 1) || ctxInfo.hasExtension("GL_ARB_pixel_buffer_object") || ctxInfo.hasExtension("GL_EXT_pixel_buffer_object")) { fTransferFromBufferToTextureSupport = true; fTransferFromSurfaceToBufferSupport = true; fTransferBufferType = TransferBufferType::kARB_PBO; } } else if (GR_IS_GR_GL_ES(standard)) { if (version >= GR_GL_VER(3, 0) || (ctxInfo.hasExtension("GL_NV_pixel_buffer_object") && // GL_EXT_unpack_subimage needed to support subtexture rectangles ctxInfo.hasExtension("GL_EXT_unpack_subimage"))) { fTransferFromBufferToTextureSupport = true; fTransferFromSurfaceToBufferSupport = true; if (version < GR_GL_VER(3, 0)) { fTransferBufferType = TransferBufferType::kNV_PBO; } else { fTransferBufferType = TransferBufferType::kARB_PBO; } // TODO: get transfer buffers working in Chrome // } else if (ctxInfo.hasExtension("GL_CHROMIUM_pixel_transfer_buffer_object")) { // fTransferFromBufferToTextureSupport = false; // fTransferFromSurfaceToBufferSupport = false; // fTransferBufferType = TransferBufferType::kChromium; } } else if (GR_IS_GR_WEBGL(standard)) { fTransferFromBufferToTextureSupport = false; fTransferFromSurfaceToBufferSupport = false; } // On many GPUs, map memory is very expensive, so we effectively disable it here by setting the // threshold to the maximum unless the client gives us a hint that map memory is cheap. if (fBufferMapThreshold < 0) { #if 0 // We think mapping on Chromium will be cheaper once we know ahead of time how much space // we will use for all GrMeshDrawOps. Right now we might wind up mapping a large buffer and // using a small subset. fBufferMapThreshold = ctxInfo.isOverCommandBuffer() ? 0 : SK_MaxS32; #else fBufferMapThreshold = SK_MaxS32; #endif } if (GR_IS_GR_GL(standard)) { fNPOTTextureTileSupport = true; fMipmapSupport = true; } else if (GR_IS_GR_GL_ES(standard)) { // Unextended ES2 supports NPOT textures with clamp_to_edge and non-mip filters only // ES3 has no limitations. fNPOTTextureTileSupport = version >= GR_GL_VER(3,0) || ctxInfo.hasExtension("GL_OES_texture_npot"); // ES2 supports MIP mapping for POT textures but our caps don't allow for limited MIP // support. The OES extension or ES 3.0 allow for MIPS on NPOT textures. So, apparently, // does the undocumented GL_IMG_texture_npot extension. This extension does not seem to // to alllow arbitrary wrap modes, however. fMipmapSupport = fNPOTTextureTileSupport || ctxInfo.hasExtension("GL_IMG_texture_npot"); } else if (GR_IS_GR_WEBGL(standard)) { // Texture access works in the WebGL 2.0 API as in the OpenGL ES 3.0 API fNPOTTextureTileSupport = version >= GR_GL_VER(2,0); // All mipmapping and all wrapping modes are supported for non-power-of- // two images [in WebGL 2.0]. fMipmapSupport = fNPOTTextureTileSupport; } GR_GL_GetIntegerv(gli, GR_GL_MAX_TEXTURE_SIZE, &fMaxTextureSize); if (fDriverBugWorkarounds.max_texture_size_limit_4096) { fMaxTextureSize = std::min(fMaxTextureSize, 4096); } GR_GL_GetIntegerv(gli, GR_GL_MAX_RENDERBUFFER_SIZE, &fMaxRenderTargetSize); fMaxPreferredRenderTargetSize = fMaxRenderTargetSize; if (ctxInfo.vendor() == GrGLVendor::kARM) { // On Mali G71, RT's above 4k have been observed to incur a performance cost. fMaxPreferredRenderTargetSize = std::min(4096, fMaxPreferredRenderTargetSize); } fGpuTracingSupport = ctxInfo.hasExtension("GL_EXT_debug_marker"); // Disable scratch texture reuse on Mali and Adreno devices fReuseScratchTextures = (ctxInfo.vendor() != GrGLVendor::kARM); #if 0 fReuseScratchBuffers = ctxInfo.vendor() != GrGLVendor::kARM ctxInfo.vendor() != GrGLVendor::kQualcomm; #endif if (ctxInfo.hasExtension("GL_EXT_window_rectangles")) { GR_GL_GetIntegerv(gli, GR_GL_MAX_WINDOW_RECTANGLES, &fMaxWindowRectangles); } #ifdef SK_BUILD_FOR_WIN // We're assuming that on Windows Chromium we're using ANGLE. bool isANGLE = ctxInfo.angleBackend() != GrGLANGLEBackend::kUnknown || ctxInfo.isOverCommandBuffer(); // On ANGLE deferring flushes can lead to GPU starvation fPreferVRAMUseOverFlushes = !isANGLE; #endif if (ctxInfo.isOverCommandBuffer()) { fMustClearUploadedBufferData = true; } // In a WASM build on Firefox, we see warnings like // WebGL warning: texSubImage2D: This operation requires zeroing texture data. This is slow. // WebGL warning: texSubImage2D: Texture has not been initialized prior to a partial upload, // forcing the browser to clear it. This may be slow. // Setting the initial clear seems to make those warnings go away and offers a substantial // boost in performance in Firefox. Chrome sees a more modest increase. if (GR_IS_GR_WEBGL(standard)) { fShouldInitializeTextures = true; } if (GR_IS_GR_GL(standard)) { // ARB allows mixed size FBO attachments, EXT does not. if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_framebuffer_object")) { fOversizedStencilSupport = true; } else { SkASSERT(ctxInfo.hasExtension("GL_EXT_framebuffer_object")); } } else if (GR_IS_GR_GL_ES(standard)) { // ES 3.0 supports mixed size FBO attachments, 2.0 does not. fOversizedStencilSupport = version >= GR_GL_VER(3, 0); } else if (GR_IS_GR_WEBGL(standard)) { // WebGL 1.0 has some constraints for FBO attachments: // https://www.khronos.org/registry/webgl/specs/1.0/index.html#6.6 // These constraints "no longer apply in WebGL 2" fOversizedStencilSupport = version >= GR_GL_VER(2, 0); } if (GR_IS_GR_GL(standard)) { fBaseVertexBaseInstanceSupport = version >= GR_GL_VER(4,2) || ctxInfo.hasExtension("GL_ARB_base_instance"); if (fBaseVertexBaseInstanceSupport) { fNativeDrawIndirectSupport = version >= GR_GL_VER(4,0) || ctxInfo.hasExtension("GL_ARB_draw_indirect"); if (version >= GR_GL_VER(4,3) || ctxInfo.hasExtension("GL_ARB_multi_draw_indirect")) { fMultiDrawType = MultiDrawType::kMultiDrawIndirect; } } fDrawRangeElementsSupport = version >= GR_GL_VER(2,0); } else if (GR_IS_GR_GL_ES(standard)) { if (ctxInfo.hasExtension("GL_ANGLE_base_vertex_base_instance")) { fBaseVertexBaseInstanceSupport = true; fNativeDrawIndirectSupport = true; fMultiDrawType = MultiDrawType::kANGLEOrWebGL; // The indirect structs need to reside in CPU memory for the ANGLE version. fUseClientSideIndirectBuffers = true; } else { fBaseVertexBaseInstanceSupport = ctxInfo.hasExtension("GL_EXT_base_instance"); if (fBaseVertexBaseInstanceSupport) { fNativeDrawIndirectSupport = (version >= GR_GL_VER(3,1)); // Don't use GL_EXT_multi_draw_indirect. It doesn't allow VAO 0. // https://github.com/KhronosGroup/OpenGL-Registry/blob/main/extensions/EXT/EXT_multi_draw_indirect.txt#L142 } } fDrawRangeElementsSupport = version >= GR_GL_VER(3,0); } else if (GR_IS_GR_WEBGL(standard)) { fBaseVertexBaseInstanceSupport = ctxInfo.hasExtension( "WEBGL_draw_instanced_base_vertex_base_instance"); if (fBaseVertexBaseInstanceSupport && ctxInfo.hasExtension( "GL_WEBGL_multi_draw_instanced_base_vertex_base_instance")) { fNativeDrawIndirectSupport = true; fMultiDrawType = MultiDrawType::kANGLEOrWebGL; } // The indirect structs need to reside in CPU memory for the WebGL version. fUseClientSideIndirectBuffers = true; fDrawRangeElementsSupport = version >= GR_GL_VER(2,0); } // We used to disable this as a correctness workaround (http://anglebug.com/4536). Now it is // disabled because of poor performance (http://skbug.com/11998). if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D11) { fBaseVertexBaseInstanceSupport = false; fNativeDrawIndirectSupport = false; fMultiDrawType = MultiDrawType::kNone; } // We prefer GL sync objects but also support NV_fence_sync. The former can be // used to implements GrFence and GrSemaphore. The latter only implements GrFence. // TODO: support CHROMIUM_sync_point and maybe KHR_fence_sync if (GR_IS_GR_WEBGL(standard)) { // Only in WebGL 2.0 fSemaphoreSupport = fFenceSyncSupport = version >= GR_GL_VER(2, 0); fFenceType = FenceType::kSyncObject; } else if (GR_IS_GR_GL(standard) && (version >= GR_GL_VER(3, 2) || ctxInfo.hasExtension("GL_ARB_sync"))) { fSemaphoreSupport = fFenceSyncSupport = true; fFenceType = FenceType::kSyncObject; } else if (GR_IS_GR_GL_ES(standard) && (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_APPLE_sync"))) { fSemaphoreSupport = fFenceSyncSupport = true; fFenceType = FenceType::kSyncObject; } else if (ctxInfo.hasExtension("GL_NV_fence")) { // This extension can exist in GL and GL ES. We have it last because we prefer the // standard GLsync object implementation which also supports GPU semaphore semantics. fFenceSyncSupport = true; fFenceType = FenceType::kNVFence; } // Safely moving textures between contexts requires semaphores. fCrossContextTextureSupport = fSemaphoreSupport; // Half float vertex attributes requires GL3 or ES3 // It can also work with OES_VERTEX_HALF_FLOAT, but that requires a different enum. if (GR_IS_GR_GL(standard)) { fHalfFloatVertexAttributeSupport = (version >= GR_GL_VER(3, 0)); } else if (GR_IS_GR_GL_ES(standard)) { fHalfFloatVertexAttributeSupport = (version >= GR_GL_VER(3, 0)); } else if (GR_IS_GR_WEBGL(standard)) { // This appears to be supported in 2.0, looking at the spec. fHalfFloatVertexAttributeSupport = (version >= GR_GL_VER(2, 0)); } fDynamicStateArrayGeometryProcessorTextureSupport = true; if (GR_IS_GR_GL(standard)) { fProgramBinarySupport = (version >= GR_GL_VER(4, 1)); fProgramParameterSupport = (version >= GR_GL_VER(4, 1)); } else if (GR_IS_GR_GL_ES(standard)) { fProgramBinarySupport = (version >= GR_GL_VER(3, 0)) || ctxInfo.hasExtension("GL_OES_get_program_binary"); fProgramParameterSupport = (version >= GR_GL_VER(3, 0)); } // Explicitly not supported in WebGL 2.0 // https://www.khronos.org/registry/webgl/specs/2.0/#5.4 if (fProgramBinarySupport) { GrGLint count; GR_GL_GetIntegerv(gli, GR_GL_NUM_PROGRAM_BINARY_FORMATS, &count); fProgramBinarySupport = count > 0; } if (GR_IS_GR_GL(standard)) { fSamplerObjectSupport = version >= GR_GL_VER(3,3) || ctxInfo.hasExtension("GL_ARB_sampler_objects"); } else if (GR_IS_GR_GL_ES(standard)) { fSamplerObjectSupport = version >= GR_GL_VER(3,0); } else if (GR_IS_GR_WEBGL(standard)) { fSamplerObjectSupport = version >= GR_GL_VER(2,0); } // We currently use sampler objects whenever they are available. fUseSamplerObjects = fSamplerObjectSupport; if (GR_IS_GR_GL_ES(standard)) { fTiledRenderingSupport = ctxInfo.hasExtension("GL_QCOM_tiled_rendering"); } if (ctxInfo.vendor() == GrGLVendor::kARM) { fShouldCollapseSrcOverToSrcWhenAble = true; } #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue) { // https://b/195281495 // The TecnoSpark 3 Pro with a PowerVR GE8300 seems to have a steep dithering performance // cliff in the Android Framework fAvoidDithering = true; } #endif FormatWorkarounds formatWorkarounds; if (!contextOptions.fDisableDriverCorrectnessWorkarounds) { this->applyDriverCorrectnessWorkarounds(ctxInfo, contextOptions, gli, shaderCaps, &formatWorkarounds); } // Requires msaa support, ES compatibility have already been detected. this->initFormatTable(ctxInfo, gli, formatWorkarounds); this->finishInitialization(contextOptions); // For now these two are equivalent but we could have dst read in shader via some other method. shaderCaps->fDstReadInShaderSupport = shaderCaps->fFBFetchSupport; } const char* get_glsl_version_decl_string(GrGLStandard standard, GrGLSLGeneration generation, bool isCoreProfile) { if (GR_IS_GR_GL(standard)) { switch (generation) { case k110_GrGLSLGeneration: return "#version 110\n"; case k130_GrGLSLGeneration: return "#version 130\n"; case k140_GrGLSLGeneration: return "#version 140\n"; case k150_GrGLSLGeneration: if (isCoreProfile) { return "#version 150\n"; } else { return "#version 150 compatibility\n"; } case k330_GrGLSLGeneration: if (isCoreProfile) { return "#version 330\n"; } else { return "#version 330 compatibility\n"; } case k400_GrGLSLGeneration: if (isCoreProfile) { return "#version 400\n"; } else { return "#version 400 compatibility\n"; } case k420_GrGLSLGeneration: if (isCoreProfile) { return "#version 420\n"; } else { return "#version 420 compatibility\n"; } default: break; } } else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) { switch (generation) { case k110_GrGLSLGeneration: // ES2s shader language is based on version 1.20 but is version // 1.00 of the ES language. return "#version 100\n"; case k330_GrGLSLGeneration: return "#version 300 es\n"; case k310es_GrGLSLGeneration: return "#version 310 es\n"; case k320es_GrGLSLGeneration: return "#version 320 es\n"; default: break; } } return ""; } bool is_float_fp32(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli, GrGLenum precision) { if (GR_IS_GR_GL(ctxInfo.standard()) && ctxInfo.version() < GR_GL_VER(4,1) && !ctxInfo.hasExtension("GL_ARB_ES2_compatibility")) { // We're on a desktop GL that doesn't have precision info. Assume they're all 32bit float. return true; } // glGetShaderPrecisionFormat doesn't accept GL_GEOMETRY_SHADER as a shader type. Hopefully the // geometry shaders don't have lower precision than vertex and fragment. for (GrGLenum shader : {GR_GL_FRAGMENT_SHADER, GR_GL_VERTEX_SHADER}) { GrGLint range[2]; GrGLint bits; GR_GL_GetShaderPrecisionFormat(gli, shader, precision, range, &bits); if (range[0] < 127 || range[1] < 127 || bits < 23) { return false; } } return true; } void GrGLCaps::initGLSL(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli) { GrGLStandard standard = ctxInfo.standard(); GrGLVersion version = ctxInfo.version(); /************************************************************************** * Caps specific to GrShaderCaps **************************************************************************/ GrShaderCaps* shaderCaps = fShaderCaps.get(); shaderCaps->fGLSLGeneration = ctxInfo.glslGeneration(); if (GR_IS_GR_GL_ES(standard)) { // fFBFetchRequiresEnablePerSample is not a shader cap but is initialized below to keep it // with related FB fetch logic. if (ctxInfo.hasExtension("GL_EXT_shader_framebuffer_fetch")) { shaderCaps->fFBFetchNeedsCustomOutput = (version >= GR_GL_VER(3, 0)); shaderCaps->fFBFetchSupport = true; shaderCaps->fFBFetchColorName = "gl_LastFragData[0]"; shaderCaps->fFBFetchExtensionString = "GL_EXT_shader_framebuffer_fetch"; fFBFetchRequiresEnablePerSample = false; } else if (ctxInfo.hasExtension("GL_NV_shader_framebuffer_fetch")) { // Actually, we haven't seen an ES3.0 device with this extension yet, so we don't know. shaderCaps->fFBFetchNeedsCustomOutput = false; shaderCaps->fFBFetchSupport = true; shaderCaps->fFBFetchColorName = "gl_LastFragData[0]"; shaderCaps->fFBFetchExtensionString = "GL_NV_shader_framebuffer_fetch"; fFBFetchRequiresEnablePerSample = false; } else if (ctxInfo.hasExtension("GL_ARM_shader_framebuffer_fetch")) { // The arm extension also requires an additional flag which we will set onResetContext. shaderCaps->fFBFetchNeedsCustomOutput = false; shaderCaps->fFBFetchSupport = true; shaderCaps->fFBFetchColorName = "gl_LastFragColorARM"; shaderCaps->fFBFetchExtensionString = "GL_ARM_shader_framebuffer_fetch"; fFBFetchRequiresEnablePerSample = true; } shaderCaps->fUsesPrecisionModifiers = true; } else if (GR_IS_GR_GL(standard)) { if (ctxInfo.hasExtension("GL_EXT_shader_framebuffer_fetch")) { shaderCaps->fFBFetchNeedsCustomOutput = (version >= GR_GL_VER(3, 0)); shaderCaps->fFBFetchSupport = true; shaderCaps->fFBFetchColorName = "gl_LastFragData[0]"; shaderCaps->fFBFetchExtensionString = "GL_EXT_shader_framebuffer_fetch"; fFBFetchRequiresEnablePerSample = false; } } else if (GR_IS_GR_WEBGL(standard)) { shaderCaps->fUsesPrecisionModifiers = true; } if (GR_IS_GR_GL(standard)) { shaderCaps->fFlatInterpolationSupport = ctxInfo.glslGeneration() >= k130_GrGLSLGeneration; } else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) { shaderCaps->fFlatInterpolationSupport = ctxInfo.glslGeneration() >= k330_GrGLSLGeneration; // This is the value for GLSL ES 3.0. } // not sure for WebGL // Flat interpolation appears to be slow on Qualcomm GPUs (tested Adreno 405 and 530). // Avoid on ANGLE too, it inserts a geometry shader into the pipeline to implement flat interp. // Is this only true on ANGLE's D3D backends or also on the GL backend? shaderCaps->fPreferFlatInterpolation = shaderCaps->fFlatInterpolationSupport && ctxInfo.vendor() != GrGLVendor::kQualcomm && ctxInfo.angleBackend() == GrGLANGLEBackend::kUnknown; if (GR_IS_GR_GL(standard)) { shaderCaps->fNoPerspectiveInterpolationSupport = ctxInfo.glslGeneration() >= k130_GrGLSLGeneration; } else if (GR_IS_GR_GL_ES(standard)) { if (ctxInfo.hasExtension("GL_NV_shader_noperspective_interpolation") && ctxInfo.glslGeneration() >= k330_GrGLSLGeneration /* GLSL ES 3.0 */) { shaderCaps->fNoPerspectiveInterpolationSupport = true; shaderCaps->fNoPerspectiveInterpolationExtensionString = "GL_NV_shader_noperspective_interpolation"; } } // Not sure for WebGL if (GR_IS_GR_GL(standard)) { shaderCaps->fSampleMaskSupport = ctxInfo.glslGeneration() >= k400_GrGLSLGeneration; } else if (GR_IS_GR_GL_ES(standard)) { if (ctxInfo.glslGeneration() >= k320es_GrGLSLGeneration) { shaderCaps->fSampleMaskSupport = true; } else if (ctxInfo.hasExtension("GL_OES_sample_variables")) { shaderCaps->fSampleMaskSupport = true; shaderCaps->fSampleVariablesExtensionString = "GL_OES_sample_variables"; } } bool hasTessellationSupport = false; if (GR_IS_GR_GL(standard)) { hasTessellationSupport = version >= GR_GL_VER(4,0) || ctxInfo.hasExtension("GL_ARB_tessellation_shader"); } else if (version >= GR_GL_VER(3,2)) { hasTessellationSupport = true; } else if (ctxInfo.hasExtension("GL_OES_tessellation_shader")) { hasTessellationSupport = true; shaderCaps->fTessellationExtensionString = "GL_OES_tessellation_shader"; } if (hasTessellationSupport) { GR_GL_GetIntegerv(gli, GR_GL_MAX_TESS_GEN_LEVEL_OES, &shaderCaps->fMaxTessellationSegments); // Just in case a driver returns a negative number? shaderCaps->fMaxTessellationSegments = std::max(0, shaderCaps->fMaxTessellationSegments); } shaderCaps->fVersionDeclString = get_glsl_version_decl_string(standard, shaderCaps->fGLSLGeneration, fIsCoreProfile); if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) { if (k110_GrGLSLGeneration == shaderCaps->fGLSLGeneration) { shaderCaps->fShaderDerivativeExtensionString = "GL_OES_standard_derivatives"; } } // WebGL might have to check for OES_standard_derivatives if (GR_IS_GR_GL_ES(standard)) { shaderCaps->fSecondaryOutputExtensionString = "GL_EXT_blend_func_extended"; } if (ctxInfo.hasExtension("GL_OES_EGL_image_external")) { if (ctxInfo.glslGeneration() == k110_GrGLSLGeneration) { shaderCaps->fExternalTextureSupport = true; shaderCaps->fExternalTextureExtensionString = "GL_OES_EGL_image_external"; } else if (ctxInfo.hasExtension("GL_OES_EGL_image_external_essl3") || ctxInfo.hasExtension("OES_EGL_image_external_essl3")) { // At least one driver has been found that has this extension without the "GL_" prefix. shaderCaps->fExternalTextureSupport = true; shaderCaps->fExternalTextureExtensionString = "GL_OES_EGL_image_external_essl3"; } } if (GR_IS_GR_GL(standard)) { shaderCaps->fVertexIDSupport = true; } else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) { // Desktop GLSL 3.30 == ES GLSL 3.00. shaderCaps->fVertexIDSupport = ctxInfo.glslGeneration() >= k330_GrGLSLGeneration; } if (GR_IS_GR_GL(standard)) { shaderCaps->fInfinitySupport = shaderCaps->fNonconstantArrayIndexSupport = true; } else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) { // Desktop GLSL 3.30 == ES GLSL 3.00. shaderCaps->fInfinitySupport = shaderCaps->fNonconstantArrayIndexSupport = (ctxInfo.glslGeneration() >= k330_GrGLSLGeneration); } if (GR_IS_GR_GL(standard)) { shaderCaps->fBitManipulationSupport = ctxInfo.glslGeneration() >= k400_GrGLSLGeneration; } else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) { shaderCaps->fBitManipulationSupport = ctxInfo.glslGeneration() >= k310es_GrGLSLGeneration; } shaderCaps->fFloatIs32Bits = is_float_fp32(ctxInfo, gli, GR_GL_HIGH_FLOAT); shaderCaps->fHalfIs32Bits = is_float_fp32(ctxInfo, gli, GR_GL_MEDIUM_FLOAT); shaderCaps->fHasLowFragmentPrecision = ctxInfo.renderer() == GrGLRenderer::kMali4xx; if (GR_IS_GR_GL(standard)) { shaderCaps->fBuiltinFMASupport = ctxInfo.glslGeneration() >= k400_GrGLSLGeneration; } else if (GR_IS_GR_GL_ES(standard)) { shaderCaps->fBuiltinFMASupport = ctxInfo.glslGeneration() >= k320es_GrGLSLGeneration; } shaderCaps->fBuiltinDeterminantSupport = ctxInfo.glslGeneration() >= k150_GrGLSLGeneration; if (GR_IS_GR_WEBGL(standard)) { // WebGL 1.0 doesn't support do-while loops. shaderCaps->fCanUseDoLoops = version >= GR_GL_VER(2, 0); } } void GrGLCaps::initFSAASupport(const GrContextOptions& contextOptions, const GrGLContextInfo& ctxInfo, const GrGLInterface* gli) { if (GR_IS_GR_GL(ctxInfo.standard())) { if (ctxInfo.version() >= GR_GL_VER(3,0) || ctxInfo.hasExtension("GL_ARB_framebuffer_object")) { fMSFBOType = kStandard_MSFBOType; } else if (ctxInfo.hasExtension("GL_EXT_framebuffer_multisample") && ctxInfo.hasExtension("GL_EXT_framebuffer_blit")) { fMSFBOType = kStandard_MSFBOType; } } else if (GR_IS_GR_GL_ES(ctxInfo.standard())) { // We prefer multisampled-render-to-texture extensions over ES3 MSAA because we've observed // ES3 driver bugs on at least one device with a tiled GPU (N10). if (ctxInfo.hasExtension("GL_EXT_multisampled_render_to_texture")) { fMSFBOType = kES_EXT_MsToTexture_MSFBOType; fMSAAResolvesAutomatically = true; } else if (ctxInfo.hasExtension("GL_IMG_multisampled_render_to_texture")) { fMSFBOType = kES_IMG_MsToTexture_MSFBOType; fMSAAResolvesAutomatically = true; } else if (ctxInfo.version() >= GR_GL_VER(3,0)) { fMSFBOType = kStandard_MSFBOType; } else if (ctxInfo.hasExtension("GL_CHROMIUM_framebuffer_multisample")) { fMSFBOType = kStandard_MSFBOType; } else if (ctxInfo.hasExtension("GL_ANGLE_framebuffer_multisample")) { fMSFBOType = kStandard_MSFBOType; } else if (ctxInfo.hasExtension("GL_APPLE_framebuffer_multisample")) { fMSFBOType = kES_Apple_MSFBOType; } } else if (GR_IS_GR_WEBGL(ctxInfo.standard())) { // No support in WebGL 1, but there is for 2.0 if (ctxInfo.version() >= GR_GL_VER(2,0)) { fMSFBOType = kStandard_MSFBOType; } else { fMSFBOType = kNone_MSFBOType; } } } void GrGLCaps::initBlendEqationSupport(const GrGLContextInfo& ctxInfo) { GrShaderCaps* shaderCaps = static_cast(fShaderCaps.get()); bool layoutQualifierSupport = false; if ((GR_IS_GR_GL(fStandard) && shaderCaps->generation() >= k140_GrGLSLGeneration) || (GR_IS_GR_GL_ES(fStandard) && shaderCaps->generation() >= k330_GrGLSLGeneration)) { layoutQualifierSupport = true; } else if (GR_IS_GR_WEBGL(fStandard)) { return; } if (ctxInfo.hasExtension("GL_NV_blend_equation_advanced_coherent")) { fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport; shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction; } else if (ctxInfo.hasExtension("GL_KHR_blend_equation_advanced_coherent") && layoutQualifierSupport) { fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport; shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kGeneralEnable_AdvBlendEqInteraction; } else if (ctxInfo.hasExtension("GL_NV_blend_equation_advanced")) { fBlendEquationSupport = kAdvanced_BlendEquationSupport; shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction; } else if (ctxInfo.hasExtension("GL_KHR_blend_equation_advanced") && layoutQualifierSupport) { fBlendEquationSupport = kAdvanced_BlendEquationSupport; shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kGeneralEnable_AdvBlendEqInteraction; } } void GrGLCaps::initStencilSupport(const GrGLContextInfo& ctxInfo) { // Build up list of legal stencil formats (though perhaps not supported on // the particular gpu/driver) from most preferred to least. // We push back stencil formats onto the fStencilFormats array in order of most preferred to // least preferred. if (GR_IS_GR_GL(ctxInfo.standard())) { bool supportsPackedDS = ctxInfo.version() >= GR_GL_VER(3,0) || ctxInfo.hasExtension("GL_EXT_packed_depth_stencil") || ctxInfo.hasExtension("GL_ARB_framebuffer_object"); // S1 thru S16 formats are in GL 3.0+, EXT_FBO, and ARB_FBO since we // require FBO support we can expect these are legal formats and don't // check. fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX8; fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX16; if (supportsPackedDS) { fStencilFormats.push_back() = GrGLFormat::kDEPTH24_STENCIL8; } } else if (GR_IS_GR_GL_ES(ctxInfo.standard())) { // ES2 has STENCIL_INDEX8 without extensions but requires extensions // for other formats. fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX8; if (ctxInfo.version() >= GR_GL_VER(3,0) || ctxInfo.hasExtension("GL_OES_packed_depth_stencil")) { fStencilFormats.push_back() = GrGLFormat::kDEPTH24_STENCIL8; } } else if (GR_IS_GR_WEBGL(ctxInfo.standard())) { fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX8; if (ctxInfo.version() >= GR_GL_VER(2,0)) { fStencilFormats.push_back() = GrGLFormat::kDEPTH24_STENCIL8; } } } #ifdef SK_ENABLE_DUMP_GPU #include "src/utils/SkJSONWriter.h" static const char* multi_draw_type_name(GrGLCaps::MultiDrawType multiDrawType) { switch (multiDrawType) { case GrGLCaps::MultiDrawType::kNone : return "kNone"; case GrGLCaps::MultiDrawType::kMultiDrawIndirect : return "kMultiDrawIndirect"; case GrGLCaps::MultiDrawType::kANGLEOrWebGL : return "kMultiDrawIndirect"; } SkUNREACHABLE; } void GrGLCaps::onDumpJSON(SkJSONWriter* writer) const { // We are called by the base class, which has already called beginObject(). We choose to nest // all of our caps information in a named sub-object. writer->beginObject("GL caps"); writer->beginArray("Stencil Formats"); for (int i = 0; i < fStencilFormats.count(); ++i) { writer->beginObject(nullptr, false); writer->appendS32("stencil bits", GrGLFormatStencilBits(fStencilFormats[i])); writer->appendS32("total bytes", GrGLFormatBytesPerBlock(fStencilFormats[i])); writer->endObject(); } writer->endArray(); static const char* kMSFBOExtStr[] = { "None", "Standard", "Apple", "IMG MS To Texture", "EXT MS To Texture", }; static_assert(0 == kNone_MSFBOType); static_assert(1 == kStandard_MSFBOType); static_assert(2 == kES_Apple_MSFBOType); static_assert(3 == kES_IMG_MsToTexture_MSFBOType); static_assert(4 == kES_EXT_MsToTexture_MSFBOType); static_assert(SK_ARRAY_COUNT(kMSFBOExtStr) == kLast_MSFBOType + 1); static const char* kInvalidateFBTypeStr[] = { "None", "Discard", "Invalidate", }; static_assert(0 == kNone_InvalidateFBType); static_assert(1 == kDiscard_InvalidateFBType); static_assert(2 == kInvalidate_InvalidateFBType); static_assert(SK_ARRAY_COUNT(kInvalidateFBTypeStr) == kLast_InvalidateFBType + 1); static const char* kMapBufferTypeStr[] = { "None", "MapBuffer", "MapBufferRange", "Chromium", }; static_assert(0 == kNone_MapBufferType); static_assert(1 == kMapBuffer_MapBufferType); static_assert(2 == kMapBufferRange_MapBufferType); static_assert(3 == kChromium_MapBufferType); static_assert(SK_ARRAY_COUNT(kMapBufferTypeStr) == kLast_MapBufferType + 1); writer->appendBool("Core Profile", fIsCoreProfile); writer->appendString("MSAA Type", kMSFBOExtStr[fMSFBOType]); writer->appendString("Invalidate FB Type", kInvalidateFBTypeStr[fInvalidateFBType]); writer->appendString("Map Buffer Type", kMapBufferTypeStr[fMapBufferType]); writer->appendString("Multi Draw Type", multi_draw_type_name(fMultiDrawType)); writer->appendS32("Max FS Uniform Vectors", fMaxFragmentUniformVectors); writer->appendBool("Pack Flip Y support", fPackFlipYSupport); writer->appendBool("Texture Usage support", fTextureUsageSupport); writer->appendBool("GL_ARB_imaging support", fImagingSupport); writer->appendBool("Vertex array object support", fVertexArrayObjectSupport); writer->appendBool("Debug support", fDebugSupport); writer->appendBool("ES2 compatibility support", fES2CompatibilitySupport); writer->appendBool("drawRangeElements support", fDrawRangeElementsSupport); writer->appendBool("Base (vertex base) instance support", fBaseVertexBaseInstanceSupport); writer->appendBool("Bind uniform location support", fBindUniformLocationSupport); writer->appendBool("Rectangle texture support", fRectangleTextureSupport); writer->appendBool("Mipmap LOD control support", fMipmapLodControlSupport); writer->appendBool("Mipmap level control support", fMipmapLevelControlSupport); writer->appendBool("Use buffer data null hint", fUseBufferDataNullHint); writer->appendBool("Clear texture support", fClearTextureSupport); writer->appendBool("Program binary support", fProgramBinarySupport); writer->appendBool("Program parameters support", fProgramParameterSupport); writer->appendBool("Sampler object support", fSamplerObjectSupport); writer->appendBool("Using sampler objects", fUseSamplerObjects); writer->appendBool("Texture swizzle support", fTextureSwizzleSupport); writer->appendBool("Tiled rendering support", fTiledRenderingSupport); writer->appendBool("FB fetch requires enable per sample", fFBFetchRequiresEnablePerSample); writer->appendBool("sRGB Write Control", fSRGBWriteControl); writer->appendBool("Intermediate texture for partial updates of unorm textures ever bound to FBOs", fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO); writer->appendBool("Intermediate texture for all updates of textures bound to FBOs", fUseDrawInsteadOfAllRenderTargetWrites); writer->appendBool("Max instances per draw without crashing (or zero)", fMaxInstancesPerDrawWithoutCrashing); writer->beginArray("formats"); for (int i = 0; i < kGrGLColorFormatCount; ++i) { writer->beginObject(nullptr, false); writer->appendHexU32("flags", fFormatTable[i].fFlags); writer->appendHexU32("f_type", (uint32_t)fFormatTable[i].fFormatType); writer->appendHexU32("c_internal", fFormatTable[i].fCompressedInternalFormat); writer->appendHexU32("i_for_teximage", fFormatTable[i].fInternalFormatForTexImageOrStorage); writer->appendHexU32("i_for_renderbuffer", fFormatTable[i].fInternalFormatForRenderbuffer); writer->appendHexU32("default_ex_format", fFormatTable[i].fDefaultExternalFormat); writer->appendHexU32("default_ex_type", fFormatTable[i].fDefaultExternalType); writer->appendHexU32("default_color_type", (uint32_t)fFormatTable[i].fDefaultColorType); writer->beginArray("surface color types"); for (int j = 0; j < fFormatTable[i].fColorTypeInfoCount; ++j) { const auto& ctInfo = fFormatTable[i].fColorTypeInfos[j]; writer->beginObject(nullptr, false); writer->appendHexU32("colorType", (uint32_t)ctInfo.fColorType); writer->appendHexU32("flags", ctInfo.fFlags); writer->beginArray("data color types"); for (int k = 0; k < ctInfo.fExternalIOFormatCount; ++k) { const auto& ioInfo = ctInfo.fExternalIOFormats[k]; writer->beginObject(nullptr, false); writer->appendHexU32("colorType", (uint32_t)ioInfo.fColorType); writer->appendHexU32("ex_type", ioInfo.fExternalType); writer->appendHexU32("ex_teximage", ioInfo.fExternalTexImageFormat); writer->appendHexU32("ex_read", ioInfo.fExternalReadFormat); writer->endObject(); } writer->endArray(); writer->endObject(); } writer->endArray(); writer->endObject(); } writer->endArray(); writer->endObject(); } #else void GrGLCaps::onDumpJSON(SkJSONWriter* writer) const { } #endif void GrGLCaps::getTexImageExternalFormatAndType(GrGLFormat surfaceFormat, GrGLenum* externalFormat, GrGLenum* externalType) const { const auto& info = this->getFormatInfo(surfaceFormat); *externalType = info.fDefaultExternalType; *externalFormat = info.fDefaultExternalFormat; } void GrGLCaps::getTexSubImageDefaultFormatTypeAndColorType(GrGLFormat format, GrGLenum* externalFormat, GrGLenum* externalType, GrColorType* colorType) const { const auto& info = this->getFormatInfo(format); *externalType = info.fDefaultExternalType; *externalFormat = info.fDefaultExternalFormat; *colorType = info.fDefaultColorType; } void GrGLCaps::getTexSubImageExternalFormatAndType(GrGLFormat surfaceFormat, GrColorType surfaceColorType, GrColorType memoryColorType, GrGLenum* externalFormat, GrGLenum* externalType) const { this->getExternalFormat(surfaceFormat, surfaceColorType, memoryColorType, kTexImage_ExternalFormatUsage, externalFormat, externalType); } void GrGLCaps::getReadPixelsFormat(GrGLFormat surfaceFormat, GrColorType surfaceColorType, GrColorType memoryColorType, GrGLenum* externalFormat, GrGLenum* externalType) const { this->getExternalFormat(surfaceFormat, surfaceColorType, memoryColorType, kReadPixels_ExternalFormatUsage, externalFormat, externalType); } void GrGLCaps::getExternalFormat(GrGLFormat surfaceFormat, GrColorType surfaceColorType, GrColorType memoryColorType, ExternalFormatUsage usage, GrGLenum* externalFormat, GrGLenum* externalType) const { SkASSERT(externalFormat && externalType); *externalFormat = this->getFormatInfo(surfaceFormat).externalFormat( surfaceColorType, memoryColorType, usage); *externalType = this->getFormatInfo(surfaceFormat).externalType( surfaceColorType, memoryColorType); } void GrGLCaps::setStencilFormatIndexForFormat(GrGLFormat format, int index) { SkASSERT(!this->hasStencilFormatBeenDeterminedForFormat(format)); this->getFormatInfo(format).fStencilFormatIndex = index < 0 ? FormatInfo::kUnsupported_StencilFormatIndex : index; } void GrGLCaps::setColorTypeFormat(GrColorType colorType, GrGLFormat format) { int idx = static_cast(colorType); SkASSERT(fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown); fColorTypeToFormatTable[idx] = format; } void GrGLCaps::initFormatTable(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli, const FormatWorkarounds& formatWorkarounds) { GrGLStandard standard = ctxInfo.standard(); // standard can be unused (optimized away) if SK_ASSUME_GL_ES is set sk_ignore_unused_variable(standard); GrGLVersion version = ctxInfo.version(); uint32_t nonMSAARenderFlags = FormatInfo::kFBOColorAttachment_Flag; uint32_t msaaRenderFlags = nonMSAARenderFlags; if (kNone_MSFBOType != fMSFBOType) { msaaRenderFlags |= FormatInfo::kFBOColorAttachmentWithMSAA_Flag; } bool texStorageSupported = false; if (GR_IS_GR_GL(standard)) { // The EXT version can apply to either GL or GLES. texStorageSupported = version >= GR_GL_VER(4,2) || ctxInfo.hasExtension("GL_ARB_texture_storage") || ctxInfo.hasExtension("GL_EXT_texture_storage"); } else if (GR_IS_GR_GL_ES(standard)) { texStorageSupported = version >= GR_GL_VER(3,0) || ctxInfo.hasExtension("GL_EXT_texture_storage"); } else if (GR_IS_GR_WEBGL(standard)) { texStorageSupported = version >= GR_GL_VER(2,0); } if (fDriverBugWorkarounds.disable_texture_storage) { texStorageSupported = false; } #ifdef SK_BUILD_FOR_ANDROID // crbug.com/945506. Telemetry reported a memory usage regression for Android Go Chrome/WebView // when using glTexStorage2D. This appears to affect OOP-R (so not just over command buffer). if (!formatWorkarounds.fDontDisableTexStorageOnAndroid) { texStorageSupported = false; } #endif // ES 2.0 requires that the internal/external formats match so we can't use sized internal // formats for glTexImage until ES 3.0. TODO: Support sized internal formats in WebGL2. bool texImageSupportsSizedInternalFormat = (GR_IS_GR_GL(standard) || (GR_IS_GR_GL_ES(standard) && version >= GR_GL_VER(3,0))); // for now we don't support floating point MSAA on ES uint32_t fpRenderFlags = (GR_IS_GR_GL(standard)) ? msaaRenderFlags : nonMSAARenderFlags; for (int i = 0; i < kGrColorTypeCnt; ++i) { fColorTypeToFormatTable[i] = GrGLFormat::kUnknown; } /////////////////////////////////////////////////////////////////////////// GrGLenum halfFloatType = GR_GL_HALF_FLOAT; if ((GR_IS_GR_GL_ES(standard) && version < GR_GL_VER(3, 0)) || (GR_IS_GR_WEBGL(standard) && version < GR_GL_VER(2, 0))) { halfFloatType = GR_GL_HALF_FLOAT_OES; } // Format: RGBA8 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGBA8); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_RGBA8; info.fDefaultExternalFormat = GR_GL_RGBA; info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE; info.fDefaultColorType = GrColorType::kRGBA_8888; info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; if (GR_IS_GR_GL(standard)) { info.fFlags |= msaaRenderFlags; } else if (GR_IS_GR_GL_ES(standard)) { if (version >= GR_GL_VER(3,0) || ctxInfo.hasExtension("GL_OES_rgb8_rgba8") || ctxInfo.hasExtension("GL_ARM_rgba8")) { info.fFlags |= msaaRenderFlags; } } else if (GR_IS_GR_WEBGL(standard)) { info.fFlags |= msaaRenderFlags; } if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_RGBA8; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RGBA8 : GR_GL_RGBA; } bool supportsBGRAColorType = GR_IS_GR_GL(standard) && (version >= GR_GL_VER(1, 2) || ctxInfo.hasExtension("GL_EXT_bgra")); info.fColorTypeInfoCount = supportsBGRAColorType ? 3 : 2; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: RGBA8, Surface: kRGBA_8888 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRGBA_8888; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kRGBA_8888, GrGLFormat::kRGBA8); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RGBA8, Surface: kRGBA_8888, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_RGBA; ioFormat.fExternalReadFormat = GR_GL_RGBA; } // Format: RGBA8, Surface: kRGBA_8888, Data: kBGRA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kBGRA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; // TODO: Enable this on non-ES GL ioFormat.fExternalReadFormat = formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } } // Format: RGBA8, Surface: kBGRA_8888 if (supportsBGRAColorType) { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kBGRA_8888; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kBGRA_8888, GrGLFormat::kRGBA8); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RGBA8, Surface: kBGRA_8888, Data: kBGRA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kBGRA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_BGRA; ioFormat.fExternalReadFormat = formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: RGBA8, Surface: kBGRA_8888, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } // Format: RGBA8, Surface: kRGB_888x { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRGB_888x; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; ctInfo.fReadSwizzle = GrSwizzle::RGB1(); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 1; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RGBA8, Surface: kRGB_888x, Data: kRGBA_888x { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGB_888x; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_RGBA; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } // Format: R8 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kR8); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_R8; info.fDefaultExternalFormat = GR_GL_RED; info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE; info.fDefaultColorType = GrColorType::kR_8; bool r8Support = false; if (GR_IS_GR_GL(standard)) { r8Support = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_rg"); } else if (GR_IS_GR_GL_ES(standard)) { r8Support = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_texture_rg"); } else if (GR_IS_GR_WEBGL(standard)) { r8Support = ctxInfo.version() >= GR_GL_VER(2, 0); } if (formatWorkarounds.fDisallowR8ForPowerVRSGX54x) { r8Support = false; } if (r8Support) { info.fFlags |= FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag | msaaRenderFlags; } if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_R8; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_R8 : GR_GL_RED; } if (r8Support) { info.fColorTypeInfoCount = 2; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: R8, Surface: kAlpha_8 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kAlpha_8; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; ctInfo.fReadSwizzle = GrSwizzle("000r"); ctInfo.fWriteSwizzle = GrSwizzle("a000"); this->setColorTypeFormat(GrColorType::kAlpha_8, GrGLFormat::kR8); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: R8, Surface: kAlpha_8, Data: kAlpha_8 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kAlpha_8; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_RED; ioFormat.fExternalReadFormat = GR_GL_RED; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: R8, Surface: kAlpha_8, Data: kAlpha_8xxx { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kAlpha_8xxx; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } // Format: R8, Surface: kGray_8 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kGray_8; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; ctInfo.fReadSwizzle = GrSwizzle("rrr1"); this->setColorTypeFormat(GrColorType::kGray_8, GrGLFormat::kR8); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: R8, Surface: kGray_8, Data: kGray_8 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kGray_8; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_RED; ioFormat.fExternalReadFormat = GR_GL_RED; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: R8, Surface: kGray_8, Data: kGray_8xxx { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kGray_8xxx; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: ALPHA8 { bool alpha8IsValidForGL = GR_IS_GR_GL(standard) && (!fIsCoreProfile || version <= GR_GL_VER(3, 0)); bool alpha8IsValidForGLES = GR_IS_GR_GL_ES(standard); bool alpha8IsValidForWebGL = GR_IS_GR_WEBGL(standard); FormatInfo& info = this->getFormatInfo(GrGLFormat::kALPHA8); info.fFormatType = FormatType::kNormalizedFixedPoint; // GL_EXT_texture_storage adds GL_ALPHA8 for texture storage. However, ES3 has glTexStorage // but does not have GL_ALPHA8 (and requires a sized internal format for glTexStorage). // WebGL never has GL_ALPHA8. bool alpha8SizedEnumSupported = alpha8IsValidForGL || (alpha8IsValidForGLES && ctxInfo.hasExtension("GL_EXT_texture_storage")); bool alpha8TexStorageSupported = alpha8SizedEnumSupported && texStorageSupported; bool alpha8IsRenderable = false; if (alpha8IsValidForGL) { // Core profile removes ALPHA8 support. // OpenGL 3.0+ (and GL_ARB_framebuffer_object) supports ALPHA8 as renderable. alpha8IsRenderable = ctxInfo.version() >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_framebuffer_object"); } info.fInternalFormatForRenderbuffer = GR_GL_ALPHA8; info.fDefaultExternalFormat = GR_GL_ALPHA; info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE; info.fDefaultColorType = GrColorType::kAlpha_8; if (alpha8IsValidForGL || alpha8IsValidForGLES || alpha8IsValidForWebGL) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; } if (alpha8IsRenderable && alpha8IsValidForGL) { // We will use ALPHA8 to create MSAA renderbuffers. SkASSERT(alpha8SizedEnumSupported); info.fFlags |= msaaRenderFlags; } if (alpha8TexStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_ALPHA8; } else { // Even if GL_ALPHA8 is added to ES by GL_EXT_texture_storage it doesn't become legal // for glTexImage2D. if (!GR_IS_GR_GL_ES(standard) && texImageSupportsSizedInternalFormat && alpha8SizedEnumSupported) { info.fInternalFormatForTexImageOrStorage = GR_GL_ALPHA8; } else { info.fInternalFormatForTexImageOrStorage = GR_GL_ALPHA; } } if (alpha8IsValidForGL || alpha8IsValidForGLES || alpha8IsValidForWebGL) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: ALPHA8, Surface: kAlpha_8 { if (alpha8IsValidForGL || alpha8IsValidForGLES || alpha8IsValidForWebGL) { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kAlpha_8; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; int idx = static_cast(GrColorType::kAlpha_8); if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) { this->setColorTypeFormat(GrColorType::kAlpha_8, GrGLFormat::kALPHA8); } // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: ALPHA8, Surface: kAlpha_8, Data: kAlpha_8 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kAlpha_8; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_ALPHA; ioFormat.fExternalReadFormat = GR_GL_ALPHA; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: ALPHA8, Surface: kAlpha_8, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } } // Format: LUMINANCE8 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kLUMINANCE8); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_LUMINANCE8; info.fDefaultExternalFormat = GR_GL_LUMINANCE; info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE; info.fDefaultColorType = GrColorType::kGray_8; bool lum8Supported = false; bool lum8SizedFormatSupported = false; if (GR_IS_GR_GL(standard) && !fIsCoreProfile) { lum8Supported = true; lum8SizedFormatSupported = true; } else if (GR_IS_GR_GL_ES(standard)) { lum8Supported = true; // Even on ES3 this extension is required to define LUMINANCE8. lum8SizedFormatSupported = ctxInfo.hasExtension("GL_EXT_texture_storage"); } else if (GR_IS_GR_WEBGL(standard)) { lum8Supported = true; } if (lum8Supported) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; } if (texStorageSupported && lum8SizedFormatSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8; } else if (texImageSupportsSizedInternalFormat && lum8SizedFormatSupported) { info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8; } else { info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE; } // We are not enabling attaching to an FBO for LUMINANCE8 mostly because of confusion in the // spec. For GLES it does not seem to ever support LUMINANCE8 being color-renderable. For GL // versions less than 3.0 it is provided by GL_ARB_framebuffer_object. However, the original // version of that extension did not add LUMINANCE8, but was added in a later revsion. So // even the presence of that extension does not guarantee support. GL 3.0 and higher (core // or compatibility) do not list LUMINANCE8 as color-renderable (which is strange since the // GL_ARB_framebuffer_object extension was meant to bring 3.0 functionality to lower // versions). if (lum8Supported) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: LUMINANCE8, Surface: kGray_8 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kGray_8; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; int idx = static_cast(GrColorType::kGray_8); if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) { this->setColorTypeFormat(GrColorType::kGray_8, GrGLFormat::kLUMINANCE8); } // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: LUMINANCE8, Surface: kGray_8, Data: kGray_8 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kGray_8; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_LUMINANCE; ioFormat.fExternalReadFormat = 0; } // Format: LUMINANCE8, Surface: kGray_8, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: LUMINANCE8_ALPHA8 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kLUMINANCE8_ALPHA8); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_LUMINANCE8_ALPHA8; info.fDefaultExternalFormat = GR_GL_LUMINANCE_ALPHA; info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE; info.fDefaultColorType = GrColorType::kGrayAlpha_88; bool la8Supported = false; bool la8SizedFormatSupported = false; if (GR_IS_GR_GL(standard) && !fIsCoreProfile) { la8Supported = true; la8SizedFormatSupported = true; } else if (GR_IS_GR_GL_ES(standard)) { la8Supported = true; // Even on ES3 this extension is required to define LUMINANCE8_ALPHA8. la8SizedFormatSupported = ctxInfo.hasExtension("GL_EXT_texture_storage"); } else if (GR_IS_GR_WEBGL(standard)) { la8Supported = true; } if (la8Supported) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; } if (texStorageSupported && la8SizedFormatSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8_ALPHA8; } else if (texImageSupportsSizedInternalFormat && la8SizedFormatSupported) { info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8_ALPHA8; } else { info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE_ALPHA; } // See note in LUMINANCE8 section about not attaching to framebuffers. if (la8Supported) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: LUMINANCE8_ALPHA8, Surface: kGrayAlpha_88 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kGrayAlpha_88; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; int idx = static_cast(GrColorType::kGrayAlpha_88); if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) { this->setColorTypeFormat(GrColorType::kGrayAlpha_88, GrGLFormat::kLUMINANCE8_ALPHA8); } // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: LUMINANCE8, Surface: kGrayAlpha_88, Data: kGrayAlpha_88 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kGrayAlpha_88; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_LUMINANCE_ALPHA; ioFormat.fExternalReadFormat = 0; } // Format: LUMINANCE8, Surface: kGrayAlpha_88, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: BGRA8 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kBGRA8); info.fFormatType = FormatType::kNormalizedFixedPoint; // We currently only use the renderbuffer format when allocating msaa renderbuffers, so we // are making decisions here based on that use case. The GL_EXT_texture_format_BGRA8888 // extension adds BGRA color renderbuffer support for ES 2.0, but this does not guarantee // support for MSAA renderbuffers. Additionally, the renderable support was added in a later // revision of the extension. So it is possible for older drivers to support the extension // but only an early revision of it without renderable support. We have no way of // distinguishing between the two. The GL_APPLE_texture_format_BGRA8888 does not add support // for BGRA color renderbuffers at all. Ideally, for both cases we would use RGBA8 for our // format for the MSAA buffer. In the GL_EXT_texture_format_BGRA8888 case we can still // make the resolve BGRA and which will work for glBlitFramebuffer for resolving which just // requires the src and dst be bindable to FBOs. However, we can't do this in the current // world since some devices (e.g. chromium & angle) require the formats in glBlitFramebuffer // to match. We don't have a way to really check this during resolve since we only actually // have GrBackendFormat that is shared by the GrGLRenderTarget. We always set the // renderbuffer format to RGBA8 but disable MSAA unless we have the APPLE extension. // Once we break those up into different surface we can revisit doing this change. info.fInternalFormatForRenderbuffer = GR_GL_RGBA8; info.fDefaultExternalFormat = GR_GL_BGRA; info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE; info.fDefaultColorType = GrColorType::kBGRA_8888; GrGLenum bgraTexImageFormat; // If BGRA is supported as an internal format it must always be specified to glTex[Sub]Image // as a base format. Which base format depends on which extension is used. if (ctxInfo.hasExtension("GL_EXT_texture_format_BGRA8888")) { // GL_EXT_texture_format_BGRA8888: // This extension adds GL_BGRA as an unsized internal format. However, it is // written against ES 2.0 and therefore doesn't define a GL_BGRA8 as ES 2.0 doesn't // have sized internal formats. See later where we check for tex storage BGRA8 // support. bgraTexImageFormat = GR_GL_BGRA; } else { // GL_APPLE_texture_format_BGRA8888: // ES 2.0: the extension makes BGRA an external format but not an internal format. // ES 3.0: the extension explicitly states GL_BGRA8 is not a valid internal format // for glTexImage (just for glTexStorage). bgraTexImageFormat = GR_GL_RGBA; } // TexStorage requires using a sized internal format and BGRA8 is only supported if we have // the GL_APPLE_texture_format_BGRA8888 extension or if we have GL_EXT_texture_storage and // GL_EXT_texture_format_BGRA8888. bool supportsBGRATexStorage = false; if (GR_IS_GR_GL_ES(standard)) { if (ctxInfo.hasExtension("GL_EXT_texture_format_BGRA8888")) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag | nonMSAARenderFlags; // GL_EXT_texture storage has defined interactions with // GL_EXT_texture_format_BGRA8888. However, ES3 supports glTexStorage but // without GL_EXT_texture_storage it does not allow the BGRA8 sized internal format. if (ctxInfo.hasExtension("GL_EXT_texture_storage") && !formatWorkarounds.fDisableBGRATextureStorageForIntelWindowsES) { supportsBGRATexStorage = true; } } else if (ctxInfo.hasExtension("GL_APPLE_texture_format_BGRA8888")) { // This APPLE extension introduces complexity on ES2. It leaves the internal format // as RGBA, but allows BGRA as the external format. From testing, it appears that // the driver remembers the external format when the texture is created (with // TexImage). If you then try to upload data in the other swizzle (with // TexSubImage), it fails. We could work around this, but it adds even more state // tracking to code that is already too tricky. Instead, we opt not to support BGRA // on ES2 with this extension. This also side-steps some ambiguous interactions with // the texture storage extension. if (version >= GR_GL_VER(3,0)) { // The APPLE extension doesn't explicitly make this renderable, but // internally it appears to use RGBA8, which we'll patch up below. info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag | msaaRenderFlags; supportsBGRATexStorage = true; } } } if (texStorageSupported && supportsBGRATexStorage) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_BGRA8; } else { info.fInternalFormatForTexImageOrStorage = bgraTexImageFormat; } if (SkToBool(info.fFlags & FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: BGRA8, Surface: kBGRA_8888 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kBGRA_8888; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kBGRA_8888, GrGLFormat::kBGRA8); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: BGRA8, Surface: kBGRA_8888, Data: kBGRA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kBGRA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_BGRA; ioFormat.fExternalReadFormat = 0; ioFormat.fExternalReadFormat = formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: BGRA8, Surface: kBGRA_8888, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: RGB565 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGB565); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_RGB565; info.fDefaultExternalFormat = GR_GL_RGB; info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT_5_6_5; info.fDefaultColorType = GrColorType::kBGR_565; if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(4, 2) || ctxInfo.hasExtension("GL_ARB_ES2_compatibility")) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag | msaaRenderFlags; } } else if (GR_IS_GR_GL_ES(standard)) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag | msaaRenderFlags; } else if (GR_IS_GR_WEBGL(standard)) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag | msaaRenderFlags; } // 565 is not a sized internal format on desktop GL. So on desktop with // 565 we always use an unsized internal format to let the system pick // the best sized format to convert the 565 data to. Since TexStorage // only allows sized internal formats we disallow it. // // TODO: As of 4.2, regular GL supports 565. This logic is due for an // update. if (texStorageSupported && GR_IS_GR_GL_ES(standard)) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_RGB565; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RGB565 : GR_GL_RGB; } if (SkToBool(info.fFlags &FormatInfo::kTexturable_Flag)) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: RGB565, Surface: kBGR_565 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kBGR_565; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kBGR_565, GrGLFormat::kRGB565); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RGB565, Surface: kBGR_565, Data: kBGR_565 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kBGR_565; ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT_5_6_5; ioFormat.fExternalTexImageFormat = GR_GL_RGB; ioFormat.fExternalReadFormat = GR_GL_RGB; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: RGB565, Surface: kBGR_565, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: RGBA16F { FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGBA16F); info.fFormatType = FormatType::kFloat; info.fInternalFormatForRenderbuffer = GR_GL_RGBA16F; info.fDefaultExternalFormat = GR_GL_RGBA; info.fDefaultExternalType = halfFloatType; info.fDefaultColorType = GrColorType::kRGBA_F16; bool rgba16FTextureSupport = false; bool rgba16FRenderTargetSupport = false; if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(3, 0)) { rgba16FTextureSupport = true; rgba16FRenderTargetSupport = true; } else if (ctxInfo.hasExtension("GL_ARB_texture_float")) { rgba16FTextureSupport = true; } } else if (GR_IS_GR_GL_ES(standard)) { if (version >= GR_GL_VER(3, 0)) { rgba16FTextureSupport = true; rgba16FRenderTargetSupport = version >= GR_GL_VER(3, 2) || ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") || ctxInfo.hasExtension("GL_EXT_color_buffer_float"); } else if (ctxInfo.hasExtension("GL_OES_texture_half_float") && ctxInfo.hasExtension("GL_OES_texture_half_float_linear")) { rgba16FTextureSupport = true; rgba16FRenderTargetSupport = ctxInfo.hasExtension("GL_EXT_color_buffer_half_float"); } } else if (GR_IS_GR_WEBGL(standard)) { if (version >= GR_GL_VER(2, 0)) { rgba16FTextureSupport = true; rgba16FRenderTargetSupport = ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") || ctxInfo.hasExtension("EXT_color_buffer_half_float") || ctxInfo.hasExtension("GL_EXT_color_buffer_float") || ctxInfo.hasExtension("EXT_color_buffer_float"); } else if ((ctxInfo.hasExtension("GL_OES_texture_half_float") || ctxInfo.hasExtension("OES_texture_half_float")) && (ctxInfo.hasExtension("GL_OES_texture_half_float_linear") || ctxInfo.hasExtension("OES_texture_half_float_linear"))) { rgba16FTextureSupport = true; // We don't check for EXT_color_buffer_float as it's only defined for WebGL 2. rgba16FRenderTargetSupport = ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") || ctxInfo.hasExtension("EXT_color_buffer_half_float"); } } if (rgba16FTextureSupport) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; if (rgba16FRenderTargetSupport) { info.fFlags |= fpRenderFlags; } } if (texStorageSupported && !formatWorkarounds.fDisableRGBA16FTexStorageForCrBug1008003) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_RGBA16F; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RGBA16F : GR_GL_RGBA; } if (rgba16FTextureSupport) { uint32_t flags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; info.fColorTypeInfoCount = 2; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: RGBA16F, Surface: kRGBA_F16 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRGBA_F16; ctInfo.fFlags = flags; this->setColorTypeFormat(GrColorType::kRGBA_F16, GrGLFormat::kRGBA16F); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RGBA16F, Surface: kRGBA_F16, Data: kRGBA_F16 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_F16; ioFormat.fExternalType = halfFloatType; ioFormat.fExternalTexImageFormat = GR_GL_RGBA; ioFormat.fExternalReadFormat = GR_GL_RGBA; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: RGBA16F, Surface: kRGBA_F16, Data: kRGBA_F32 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_F32; ioFormat.fExternalType = GR_GL_FLOAT; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } // Format: RGBA16F, Surface: kRGBA_F16_Clamped { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRGBA_F16_Clamped; ctInfo.fFlags = flags; this->setColorTypeFormat(GrColorType::kRGBA_F16_Clamped, GrGLFormat::kRGBA16F); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RGBA16F, Surface: kRGBA_F16_Clamped, Data: kRGBA_F16_Clamped { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_F16_Clamped; ioFormat.fExternalType = halfFloatType; ioFormat.fExternalTexImageFormat = GR_GL_RGBA; ioFormat.fExternalReadFormat = GR_GL_RGBA; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: RGBA16F, Surface: kRGBA_F16_Clamped, Data: kRGBA_F32 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_F32; ioFormat.fExternalType = GR_GL_FLOAT; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: R16F { FormatInfo& info = this->getFormatInfo(GrGLFormat::kR16F); info.fFormatType = FormatType::kFloat; info.fInternalFormatForRenderbuffer = GR_GL_R16F; info.fDefaultExternalFormat = GR_GL_RED; info.fDefaultExternalType = halfFloatType; info.fDefaultColorType = GrColorType::kR_F16; bool r16FTextureSupport = false; bool r16FRenderTargetSupport = false; if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_rg")) { r16FTextureSupport = true; r16FRenderTargetSupport = true; } } else if (GR_IS_GR_GL_ES(standard)) { // It seems possible that a combination of GL_EXT_texture_rg and // GL_EXT_color_buffer_half_float might add this format to ES 2.0 but it is not entirely // clear. The latter mentions interaction but that may only be for renderbuffers as // neither adds the texture format explicitly. // GL_OES_texture_format_half_float makes no reference to RED formats. if (version >= GR_GL_VER(3, 0)) { r16FTextureSupport = true; r16FRenderTargetSupport = version >= GR_GL_VER(3, 2) || ctxInfo.hasExtension("GL_EXT_color_buffer_float") || ctxInfo.hasExtension("GL_EXT_color_buffer_half_float"); } } else if (GR_IS_GR_WEBGL(standard)) { if (version >= GR_GL_VER(2, 0)) { r16FTextureSupport = true; r16FRenderTargetSupport = ctxInfo.hasExtension("GL_EXT_color_buffer_float") || ctxInfo.hasExtension("EXT_color_buffer_float"); } } if (r16FTextureSupport) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; if (r16FRenderTargetSupport) { info.fFlags |= fpRenderFlags; } } if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_R16F; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_R16F : GR_GL_RED; } if (r16FTextureSupport) { // Format: R16F, Surface: kAlpha_F16 info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kAlpha_F16; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; ctInfo.fReadSwizzle = GrSwizzle("000r"); ctInfo.fWriteSwizzle = GrSwizzle("a000"); this->setColorTypeFormat(GrColorType::kAlpha_F16, GrGLFormat::kR16F); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: R16F, Surface: kAlpha_F16, Data: kAlpha_F16 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kAlpha_F16; ioFormat.fExternalType = halfFloatType; ioFormat.fExternalTexImageFormat = GR_GL_RED; ioFormat.fExternalReadFormat = GR_GL_RED; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: R16F, Surface: kAlpha_F16, Data: kAlpha_F32xxx { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kAlpha_F32xxx; ioFormat.fExternalType = GR_GL_FLOAT; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: LUMINANCE16F { // NOTE: We disallow lum16f on ES devices if linear filtering modes are not // supported. This is for simplicity, but a more granular approach is possible. bool lum16FSupported = false; bool lum16FSizedFormatSupported = false; if (GR_IS_GR_GL(standard)) { if (!fIsCoreProfile && ctxInfo.hasExtension("GL_ARB_texture_float")) { lum16FSupported = true; lum16FSizedFormatSupported = true; } } else if (GR_IS_GR_GL_ES(standard)) { if (ctxInfo.hasExtension("GL_OES_texture_half_float_linear") && ctxInfo.hasExtension("GL_OES_texture_half_float")) { lum16FSupported = true; // Even on ES3 this extension is required to define LUMINANCE16F. lum16FSizedFormatSupported = ctxInfo.hasExtension("GL_EXT_texture_storage"); } } // No WebGL support if (formatWorkarounds.fDisableLuminance16F) { lum16FSupported = false; } FormatInfo& info = this->getFormatInfo(GrGLFormat::kLUMINANCE16F); info.fFormatType = FormatType::kFloat; info.fInternalFormatForRenderbuffer = GR_GL_LUMINANCE16F; info.fDefaultExternalFormat = GR_GL_LUMINANCE; info.fDefaultExternalType = halfFloatType; info.fDefaultColorType = GrColorType::kGray_F16; if (lum16FSupported) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; if (texStorageSupported && lum16FSizedFormatSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE16F; } else if (texImageSupportsSizedInternalFormat && lum16FSizedFormatSupported) { info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE16F; } else { info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE; } info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: LUMINANCE16F, Surface: kAlpha_F16 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kAlpha_F16; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; ctInfo.fReadSwizzle = GrSwizzle("000r"); ctInfo.fWriteSwizzle = GrSwizzle("aaa0"); int idx = static_cast(GrColorType::kAlpha_F16); if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) { this->setColorTypeFormat(GrColorType::kAlpha_F16, GrGLFormat::kLUMINANCE16F); } // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: LUMINANCE16F, Surface: kAlpha_F16, Data: kAlpha_F16 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kAlpha_F16; ioFormat.fExternalType = halfFloatType; ioFormat.fExternalTexImageFormat = GR_GL_LUMINANCE; ioFormat.fExternalReadFormat = 0; } // Format: LUMINANCE16F, Surface: kAlpha_F16, Data: kRGBA_F32 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_F32; ioFormat.fExternalType = GR_GL_FLOAT; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: RGB8 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGB8); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_RGB8; info.fDefaultExternalFormat = GR_GL_RGB; info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE; info.fDefaultColorType = GrColorType::kRGB_888; info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; if (GR_IS_GR_GL(standard)) { // Even in OpenGL 4.6 GL_RGB8 is required to be color renderable but not required to be // a supported render buffer format. Since we usually use render buffers for MSAA on // non-ES GL we don't support MSAA for GL_RGB8. On 4.2+ we could check using // glGetInternalFormativ(GL_RENDERBUFFER, GL_RGB8, GL_INTERNALFORMAT_SUPPORTED, ...) if // this becomes an issue. info.fFlags |= nonMSAARenderFlags; } else if (GR_IS_GR_GL_ES(standard)) { // 3.0 and the extension support this as a render buffer format. if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_OES_rgb8_rgba8")) { info.fFlags |= msaaRenderFlags; } } else if (GR_IS_GR_WEBGL(standard)) { // WebGL seems to support RBG8 info.fFlags |= msaaRenderFlags; } if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_RGB8; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RGB8 : GR_GL_RGB; } info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: RGB8, Surface: kRGB_888x { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRGB_888x; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kRGB_888x, GrGLFormat::kRGB8); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RGB8, Surface: kRGB_888x, Data: kRGB_888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGB_888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_RGB; ioFormat.fExternalReadFormat = 0; } // Format: RGB8, Surface: kRGB_888x, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } // Format: RG8 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kRG8); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_RG8; info.fDefaultExternalFormat = GR_GL_RG; info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE; info.fDefaultColorType = GrColorType::kRG_88; bool rg8Support = false; if (GR_IS_GR_GL(standard)) { rg8Support = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_rg"); } else if (GR_IS_GR_GL_ES(standard)) { rg8Support = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_texture_rg"); } else if (GR_IS_GR_WEBGL(standard)) { rg8Support = version >= GR_GL_VER(2, 0); } if (rg8Support) { info.fFlags |= FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag | msaaRenderFlags; if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_RG8; } } if (!(info.fFlags & FormatInfo::kUseTexStorage_Flag)) { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RG8 : GR_GL_RG; } if (rg8Support) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: RG8, Surface: kRG_88 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRG_88; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kRG_88, GrGLFormat::kRG8); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RG8, Surface: kRG_88, Data: kRG_88 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRG_88; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = GR_GL_RG; ioFormat.fExternalReadFormat = 0; if (GR_IS_GR_GL(standard) && !formatWorkarounds.fDisallowDirectRG8ReadPixels) { ioFormat.fExternalReadFormat = GR_GL_RG; } } // Format: RG8, Surface: kRG_88, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: RGB10_A2 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGB10_A2); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_RGB10_A2; info.fDefaultExternalFormat = GR_GL_RGBA; info.fDefaultExternalType = GR_GL_UNSIGNED_INT_2_10_10_10_REV; info.fDefaultColorType = GrColorType::kRGBA_1010102; if (GR_IS_GR_GL(standard) || (GR_IS_GR_GL_ES(standard) && version >= GR_GL_VER(3, 0))) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag | msaaRenderFlags; } else if (GR_IS_GR_GL_ES(standard) && ctxInfo.hasExtension("GL_EXT_texture_type_2_10_10_10_REV")) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; } // No WebGL support if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_RGB10_A2; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RGB10_A2 : GR_GL_RGBA; } if (SkToBool(info.fFlags & FormatInfo::kTexturable_Flag)) { bool supportsBGRAColorType = GR_IS_GR_GL(standard) && (version >= GR_GL_VER(1, 2) || ctxInfo.hasExtension("GL_EXT_bgra")); info.fColorTypeInfoCount = supportsBGRAColorType ? 2 : 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: RGB10_A2, Surface: kRGBA_1010102 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRGBA_1010102; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kRGBA_1010102, GrGLFormat::kRGB10_A2); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RGB10_A2, Surface: kRGBA_1010102, Data: kRGBA_1010102 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_1010102; ioFormat.fExternalType = GR_GL_UNSIGNED_INT_2_10_10_10_REV; ioFormat.fExternalTexImageFormat = GR_GL_RGBA; ioFormat.fExternalReadFormat = GR_GL_RGBA; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: RGB10_A2, Surface: kRGBA_1010102, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } //------------------------------------------------------------------ // Format: RGB10_A2, Surface: kBGRA_1010102 if (supportsBGRAColorType) { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kBGRA_1010102; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kBGRA_1010102, GrGLFormat::kRGB10_A2); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RGB10_A2, Surface: kBGRA_1010102, Data: kBGRA_1010102 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kBGRA_1010102; ioFormat.fExternalType = GR_GL_UNSIGNED_INT_2_10_10_10_REV; ioFormat.fExternalTexImageFormat = GR_GL_BGRA; ioFormat.fExternalReadFormat = formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: RGB10_A2, Surface: kBGRA_1010102, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: RGBA4 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGBA4); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_RGBA4; info.fDefaultExternalFormat = GR_GL_RGBA; info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT_4_4_4_4; info.fDefaultColorType = GrColorType::kABGR_4444; info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(4, 2)) { info.fFlags |= msaaRenderFlags; } } else if (GR_IS_GR_GL_ES(standard)) { info.fFlags |= msaaRenderFlags; } else if (GR_IS_GR_WEBGL(standard)) { info.fFlags |= msaaRenderFlags; } if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_RGBA4; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RGBA4 : GR_GL_RGBA; } info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: RGBA4, Surface: kABGR_4444 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kABGR_4444; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kABGR_4444, GrGLFormat::kRGBA4); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: RGBA4, Surface: kABGR_4444, Data: kABGR_4444 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kABGR_4444; ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT_4_4_4_4; ioFormat.fExternalTexImageFormat = GR_GL_RGBA; ioFormat.fExternalReadFormat = GR_GL_RGBA; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: RGBA4, Surface: kABGR_4444, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } // Format: SRGB8_ALPHA8 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kSRGB8_ALPHA8); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_SRGB8_ALPHA8; info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE; info.fDefaultColorType = GrColorType::kRGBA_8888_SRGB; // We may modify the default external format below. info.fDefaultExternalFormat = GR_GL_RGBA; bool srgb8Alpha8TexStorageSupported = texStorageSupported; bool srgb8Alpha8TextureSupport = false; bool srgb8Alpha8RenderTargetSupport = false; if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(3, 0)) { srgb8Alpha8TextureSupport = true; srgb8Alpha8RenderTargetSupport = true; } else if (ctxInfo.hasExtension("GL_EXT_texture_sRGB")) { srgb8Alpha8TextureSupport = true; if (ctxInfo.hasExtension("GL_ARB_framebuffer_sRGB") || ctxInfo.hasExtension("GL_EXT_framebuffer_sRGB")) { srgb8Alpha8RenderTargetSupport = true; } } } else if (GR_IS_GR_GL_ES(standard)) { if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_sRGB")) { srgb8Alpha8TextureSupport = true; srgb8Alpha8RenderTargetSupport = true; } if (version < GR_GL_VER(3, 0)) { // ES 2.0 requires that the external format matches the internal format. info.fDefaultExternalFormat = GR_GL_SRGB_ALPHA; // There is no defined interaction between GL_EXT_sRGB and GL_EXT_texture_storage. srgb8Alpha8TexStorageSupported = false; } } else if (GR_IS_GR_WEBGL(standard)) { // sRGB extension should be on most WebGL 1.0 contexts, although sometimes under 2 // names. if (version >= GR_GL_VER(2, 0) || ctxInfo.hasExtension("GL_EXT_sRGB") || ctxInfo.hasExtension("EXT_sRGB")) { srgb8Alpha8TextureSupport = true; srgb8Alpha8RenderTargetSupport = true; } if (version < GR_GL_VER(2, 0)) { // WebGL 1.0 requires that the external format matches the internal format. info.fDefaultExternalFormat = GR_GL_SRGB_ALPHA; // There is no extension to WebGL 1 that adds glTexStorage. SkASSERT(!srgb8Alpha8TexStorageSupported); } } if (srgb8Alpha8TextureSupport) { info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; if (srgb8Alpha8RenderTargetSupport) { info.fFlags |= formatWorkarounds.fDisableSRGBRenderWithMSAAForMacAMD ? nonMSAARenderFlags : msaaRenderFlags; } } if (srgb8Alpha8TexStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_SRGB8_ALPHA8; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_SRGB8_ALPHA8 : GR_GL_SRGB_ALPHA; } if (srgb8Alpha8TextureSupport) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: SRGB8_ALPHA8, Surface: kRGBA_8888_SRGB { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRGBA_8888_SRGB; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kRGBA_8888_SRGB, GrGLFormat::kSRGB8_ALPHA8); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 1; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: SRGB8_ALPHA8, Surface: kRGBA_8888_SRGB, Data: kRGBA_8888_SRGB { // GL does not do srgb<->rgb conversions when transferring between cpu and gpu. // Thus, the external format is GL_RGBA. See below for note about ES2.0 and // glTex[Sub]Image. GrGLenum texImageExternalFormat = GR_GL_RGBA; // OpenGL ES 2.0 + GL_EXT_sRGB allows GL_SRGB_ALPHA to be specified as the // param to Tex(Sub)Image. ES 2.0 requires the and // params to match. Thus, on ES 2.0 we will use GL_SRGB_ALPHA as the // param. On OpenGL and ES 3.0+ GL_SRGB_ALPHA does not work for the // param to glTexImage. if (GR_IS_GR_GL_ES(standard) && version == GR_GL_VER(2,0)) { texImageExternalFormat = GR_GL_SRGB_ALPHA; } auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888_SRGB; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = texImageExternalFormat; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: COMPRESSED_RGB8_BC1 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kCOMPRESSED_RGB8_BC1); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForTexImageOrStorage = GR_GL_COMPRESSED_RGB_S3TC_DXT1_EXT; if (GR_IS_GR_GL(standard) || GR_IS_GR_GL_ES(standard)) { if (ctxInfo.hasExtension("GL_EXT_texture_compression_s3tc")) { info.fFlags = FormatInfo::kTexturable_Flag; } } // No WebGL support // There are no support GrColorTypes for this format } // Format: COMPRESSED_RGBA8_BC1 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kCOMPRESSED_RGBA8_BC1); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForTexImageOrStorage = GR_GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; if (GR_IS_GR_GL(standard) || GR_IS_GR_GL_ES(standard)) { if (ctxInfo.hasExtension("GL_EXT_texture_compression_s3tc")) { info.fFlags = FormatInfo::kTexturable_Flag; } } // No WebGL support // There are no support GrColorTypes for this format } // Format: COMPRESSED_RGB8_ETC2 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kCOMPRESSED_RGB8_ETC2); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForTexImageOrStorage = GR_GL_COMPRESSED_RGB8_ETC2; if (!formatWorkarounds.fDisallowETC2Compression) { if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(4, 3) || ctxInfo.hasExtension("GL_ARB_ES3_compatibility")) { info.fFlags = FormatInfo::kTexturable_Flag; } } else if (GR_IS_GR_GL_ES(standard)) { if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_OES_compressed_ETC2_RGB8_texture")) { info.fFlags = FormatInfo::kTexturable_Flag; } } // No WebGL support } // There are no support GrColorTypes for this format } // Format: COMPRESSED_ETC1_RGB8 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kCOMPRESSED_ETC1_RGB8); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForTexImageOrStorage = GR_GL_COMPRESSED_ETC1_RGB8; if (GR_IS_GR_GL_ES(standard)) { if (ctxInfo.hasExtension("GL_OES_compressed_ETC1_RGB8_texture")) { info.fFlags = FormatInfo::kTexturable_Flag; } } // No GL or WebGL support // There are no support GrColorTypes for this format } // Format: R16 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kR16); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_R16; info.fDefaultExternalFormat = GR_GL_RED; info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT; info.fDefaultColorType = GrColorType::kR_16; bool r16Supported = false; if (!formatWorkarounds.fDisallowTextureUnorm16) { if (GR_IS_GR_GL(standard)) { r16Supported = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_rg"); } else if (GR_IS_GR_GL_ES(standard)) { r16Supported = ctxInfo.hasExtension("GL_EXT_texture_norm16"); } // No WebGL support } if (r16Supported) { info.fFlags = FormatInfo::kTexturable_Flag | msaaRenderFlags; if (!formatWorkarounds.fDisallowUnorm16Transfers) { info.fFlags |= FormatInfo::kTransfers_Flag; } } if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_R16; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_R16 : GR_GL_RED; } if (r16Supported) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: R16, Surface: kAlpha_16 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kAlpha_16; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; ctInfo.fReadSwizzle = GrSwizzle("000r"); ctInfo.fWriteSwizzle = GrSwizzle("a000"); this->setColorTypeFormat(GrColorType::kAlpha_16, GrGLFormat::kR16); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: R16, Surface: kAlpha_16, Data: kAlpha_16 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kAlpha_16; ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT; ioFormat.fExternalTexImageFormat = GR_GL_RED; ioFormat.fExternalReadFormat = GR_GL_RED; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: R16, Surface: kAlpha_16, Data: kAlpha_8xxx { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kAlpha_8xxx; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: RG16 { FormatInfo& info = this->getFormatInfo(GrGLFormat::kRG16); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RG16 : GR_GL_RG; info.fInternalFormatForRenderbuffer = GR_GL_RG16; info.fDefaultExternalFormat = GR_GL_RG; info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT; info.fDefaultColorType = GrColorType::kRG_1616; bool rg16Supported = false; if (!formatWorkarounds.fDisallowTextureUnorm16) { if (GR_IS_GR_GL(standard)) { rg16Supported = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_rg"); } else if (GR_IS_GR_GL_ES(standard)) { rg16Supported = ctxInfo.hasExtension("GL_EXT_texture_norm16"); } // No WebGL support } if (rg16Supported) { info.fFlags = FormatInfo::kTexturable_Flag | msaaRenderFlags; if (!formatWorkarounds.fDisallowUnorm16Transfers) { info.fFlags |= FormatInfo::kTransfers_Flag; } } if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_RG16; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RG16 : GR_GL_RG; } if (rg16Supported) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: GR_GL_RG16, Surface: kRG_1616 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRG_1616; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kRG_1616, GrGLFormat::kRG16); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: GR_GL_RG16, Surface: kRG_1616, Data: kRG_1616 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRG_1616; ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT; ioFormat.fExternalTexImageFormat = GR_GL_RG; ioFormat.fExternalReadFormat = GR_GL_RG; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: GR_GL_RG16, Surface: kRG_1616, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format: RGBA16 { bool rgba16Support = false; if (!formatWorkarounds.fDisallowTextureUnorm16) { if (GR_IS_GR_GL(standard)) { rgba16Support = version >= GR_GL_VER(3, 0); } else if (GR_IS_GR_GL_ES(standard)) { rgba16Support = ctxInfo.hasExtension("GL_EXT_texture_norm16"); } // No WebGL support } FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGBA16); info.fFormatType = FormatType::kNormalizedFixedPoint; info.fInternalFormatForRenderbuffer = GR_GL_RGBA16; info.fDefaultExternalFormat = GR_GL_RGBA; info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT; info.fDefaultColorType = GrColorType::kRGBA_16161616; if (rgba16Support) { info.fFlags = FormatInfo::kTexturable_Flag | msaaRenderFlags; if (!formatWorkarounds.fDisallowUnorm16Transfers) { info.fFlags |= FormatInfo::kTransfers_Flag; } } if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_RGBA16; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RGBA16 : GR_GL_RGBA; } if (rgba16Support) { // Format: GR_GL_RGBA16, Surface: kRGBA_16161616 info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRGBA_16161616; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kRGBA_16161616, GrGLFormat::kRGBA16); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: GR_GL_RGBA16, Surface: kRGBA_16161616, Data: kRGBA_16161616 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_16161616; ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT; ioFormat.fExternalTexImageFormat = GR_GL_RGBA; ioFormat.fExternalReadFormat = GR_GL_RGBA; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: GR_GL_RGBA16, Surface: kRGBA_16161616, Data: kRGBA_8888 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_8888; ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } // Format:RG16F { bool rg16FTextureSupport = false; bool rg16FRenderTargetSupport = false; if (GR_IS_GR_GL(standard)) { if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_float")) { rg16FTextureSupport = true; rg16FRenderTargetSupport = true; } } else if (GR_IS_GR_GL_ES(standard)) { // It seems possible that a combination of GL_EXT_texture_rg and // GL_EXT_color_buffer_half_float might add this format to ES 2.0 but it is not entirely // clear. The latter mentions interaction but that may only be for renderbuffers as // neither adds the texture format explicitly. // GL_OES_texture_format_half_float makes no reference to RG formats. if (version >= GR_GL_VER(3, 0)) { rg16FTextureSupport = true; rg16FRenderTargetSupport = version >= GR_GL_VER(3, 2) || ctxInfo.hasExtension("GL_EXT_color_buffer_float") || ctxInfo.hasExtension("GL_EXT_color_buffer_half_float"); } } else if (GR_IS_GR_WEBGL(standard)) { if (version >= GR_GL_VER(2, 0)) { rg16FTextureSupport = true; rg16FRenderTargetSupport = ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") || ctxInfo.hasExtension("EXT_color_buffer_half_float") || ctxInfo.hasExtension("GL_EXT_color_buffer_float") || ctxInfo.hasExtension("EXT_color_buffer_float"); } } FormatInfo& info = this->getFormatInfo(GrGLFormat::kRG16F); info.fFormatType = FormatType::kFloat; info.fInternalFormatForRenderbuffer = GR_GL_RG16F; info.fDefaultExternalFormat = GR_GL_RG; info.fDefaultExternalType = halfFloatType; info.fDefaultColorType = GrColorType::kRG_F16; if (rg16FTextureSupport) { info.fFlags |= FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag; if (rg16FRenderTargetSupport) { info.fFlags |= fpRenderFlags; } } if (texStorageSupported) { info.fFlags |= FormatInfo::kUseTexStorage_Flag; info.fInternalFormatForTexImageOrStorage = GR_GL_RG16F; } else { info.fInternalFormatForTexImageOrStorage = texImageSupportsSizedInternalFormat ? GR_GL_RG16F : GR_GL_RG; } if (rg16FTextureSupport) { info.fColorTypeInfoCount = 1; info.fColorTypeInfos = std::make_unique(info.fColorTypeInfoCount); int ctIdx = 0; // Format: GR_GL_RG16F, Surface: kRG_F16 { auto& ctInfo = info.fColorTypeInfos[ctIdx++]; ctInfo.fColorType = GrColorType::kRG_F16; ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; this->setColorTypeFormat(GrColorType::kRG_F16, GrGLFormat::kRG16F); // External IO ColorTypes: ctInfo.fExternalIOFormatCount = 2; ctInfo.fExternalIOFormats = std::make_unique( ctInfo.fExternalIOFormatCount); int ioIdx = 0; // Format: GR_GL_RG16F, Surface: kRG_F16, Data: kRG_F16 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRG_F16; ioFormat.fExternalType = halfFloatType; ioFormat.fExternalTexImageFormat = GR_GL_RG; ioFormat.fExternalReadFormat = GR_GL_RG; // Not guaranteed by ES/WebGL. ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard); } // Format: GR_GL_RG16F, Surface: kRG_F16, Data: kRGBA_F32 { auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++]; ioFormat.fColorType = GrColorType::kRGBA_F32; ioFormat.fExternalType = GR_GL_FLOAT; ioFormat.fExternalTexImageFormat = 0; ioFormat.fExternalReadFormat = GR_GL_RGBA; } } } } this->setupSampleCounts(ctxInfo, gli); #ifdef SK_DEBUG for (int i = 0; i < kGrGLColorFormatCount; ++i) { if (GrGLFormat::kUnknown == static_cast(i)) { continue; } const auto& formatInfo = fFormatTable[i]; // Make sure we didn't set fbo attachable with msaa and not fbo attachable. SkASSERT(!((formatInfo.fFlags & FormatInfo::kFBOColorAttachmentWithMSAA_Flag) && !(formatInfo.fFlags & FormatInfo::kFBOColorAttachment_Flag))); // Make sure we set all the formats' FormatType SkASSERT(formatInfo.fFormatType != FormatType::kUnknown); // Make sure if we added a ColorTypeInfo we filled it out for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) { const auto& ctInfo = formatInfo.fColorTypeInfos[j]; SkASSERT(ctInfo.fColorType != GrColorType::kUnknown); // Seems silly to add a color type if we don't support any flags on it. SkASSERT(ctInfo.fFlags); // Make sure if we added any ExternalIOFormats we filled it out for (int k = 0; k < ctInfo.fExternalIOFormatCount; ++k) { const auto& ioInfo = ctInfo.fExternalIOFormats[k]; SkASSERT(ioInfo.fColorType != GrColorType::kUnknown); } } } #endif } void GrGLCaps::setupSampleCounts(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli) { GrGLStandard standard = ctxInfo.standard(); // standard can be unused (optimized away) if SK_ASSUME_GL_ES is set sk_ignore_unused_variable(standard); GrGLVersion version = ctxInfo.version(); for (int i = 0; i < kGrGLColorFormatCount; ++i) { if (FormatInfo::kFBOColorAttachmentWithMSAA_Flag & fFormatTable[i].fFlags) { // We assume that MSAA rendering is supported only if we support non-MSAA rendering. SkASSERT(FormatInfo::kFBOColorAttachment_Flag & fFormatTable[i].fFlags); if ((GR_IS_GR_GL(standard) && (version >= GR_GL_VER(4,2) || ctxInfo.hasExtension("GL_ARB_internalformat_query"))) || (GR_IS_GR_GL_ES(standard) && version >= GR_GL_VER(3,0))) { int count; GrGLFormat grGLFormat = static_cast(i); GrGLenum glFormat = this->getRenderbufferInternalFormat(grGLFormat); GR_GL_GetInternalformativ(gli, GR_GL_RENDERBUFFER, glFormat, GR_GL_NUM_SAMPLE_COUNTS, 1, &count); if (count) { std::unique_ptr temp(new int[count]); GR_GL_GetInternalformativ(gli, GR_GL_RENDERBUFFER, glFormat, GR_GL_SAMPLES, count, temp.get()); // GL has a concept of MSAA rasterization with a single sample but we do not. if (count && temp[count - 1] == 1) { --count; SkASSERT(!count || temp[count -1] > 1); } fFormatTable[i].fColorSampleCounts.setCount(count+1); // We initialize our supported values with 1 (no msaa) and reverse the order // returned by GL so that the array is ascending. fFormatTable[i].fColorSampleCounts[0] = 1; for (int j = 0; j < count; ++j) { #if defined(SK_BUILD_FOR_IOS) && TARGET_OS_SIMULATOR // The iOS simulator is reporting incorrect values for sample counts, // so force them to be a power of 2. fFormatTable[i].fColorSampleCounts[j+1] = SkPrevPow2(temp[count - j - 1]); #else fFormatTable[i].fColorSampleCounts[j+1] = temp[count - j - 1]; #endif } } } else { // Fake out the table using some semi-standard counts up to the max allowed sample // count. int maxSampleCnt = 1; if (GrGLCaps::kES_IMG_MsToTexture_MSFBOType == fMSFBOType) { GR_GL_GetIntegerv(gli, GR_GL_MAX_SAMPLES_IMG, &maxSampleCnt); } else if (GrGLCaps::kNone_MSFBOType != fMSFBOType) { GR_GL_GetIntegerv(gli, GR_GL_MAX_SAMPLES, &maxSampleCnt); } // Chrome has a mock GL implementation that returns 0. maxSampleCnt = std::max(1, maxSampleCnt); static constexpr int kDefaultSamples[] = {1, 2, 4, 8}; int count = SK_ARRAY_COUNT(kDefaultSamples); for (; count > 0; --count) { if (kDefaultSamples[count - 1] <= maxSampleCnt) { break; } } if (count > 0) { fFormatTable[i].fColorSampleCounts.append(count, kDefaultSamples); } } } else if (FormatInfo::kFBOColorAttachment_Flag & fFormatTable[i].fFlags) { fFormatTable[i].fColorSampleCounts.setCount(1); fFormatTable[i].fColorSampleCounts[0] = 1; } } } bool GrGLCaps::canCopyTexSubImage(GrGLFormat dstFormat, bool dstHasMSAARenderBuffer, const GrTextureType* dstTypeIfTexture, GrGLFormat srcFormat, bool srcHasMSAARenderBuffer, const GrTextureType* srcTypeIfTexture) const { // When it comes to format types and component sizes the gl spec is fairly complex as // requirements differ depending on many properties (e.g. if the internalFormat was created with // a sized format or not). These affect the rules about which format types can be copied to // which other types. For now we are being more restrictive and requiring that the types must // match exactly. if (this->getFormatDefaultExternalType(dstFormat) != this->getFormatDefaultExternalType(srcFormat)) { return false; } // Either both the src and dst formats need to be SRGB or both need to not be SRGB if (GrGLFormatIsSRGB(dstFormat) != GrGLFormatIsSRGB(srcFormat)) { return false; } if (GR_IS_GR_GL_ES(fStandard)) { // Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage // and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. // ANGLE, for one, does not allow it. However, we've found it works on some drivers and // avoids bugs with using glBlitFramebuffer. if ((dstFormat == GrGLFormat::kBGRA8 || srcFormat == GrGLFormat::kBGRA8) && !fAllowBGRA8CopyTexSubImage) { return false; } // Table 3.9 of the ES2 spec and 3.16 of ES3 spec indicates the supported internal base // formats with CopyTexSubImage. Each base format can be copied to itself or formats with // less channels. uint32_t dstChannels = GrGLFormatChannels(dstFormat); uint32_t srcChannels = GrGLFormatChannels(srcFormat); if (!dstChannels || !srcChannels) { // The formats don't represent color channels (i.e. may be depth stencil) return false; } // The dst channels have to be a subset of the srcChannels, except R, RG, or RGB, channels // can go to LUM. (See expansion of Table 3.9 in EXT_texture_rg). if ((dstChannels & srcChannels) != srcChannels) { if (dstChannels == kGray_SkColorChannelFlag || dstChannels == kGrayAlpha_SkColorChannelFlags) { // The dst can't have gray if the src is alpha-only. if (srcChannels == kAlpha_SkColorChannelFlag) { return false; } } else { return false; } } } // CopyTexSubImage is invalid or doesn't copy what we want when we have msaa render buffers. if (dstHasMSAARenderBuffer || srcHasMSAARenderBuffer) { return false; } // CopyTex(Sub)Image writes to a texture and we have no way of dynamically wrapping a RT in a // texture. if (!dstTypeIfTexture) { return false; } // Check that we could wrap the source in an FBO, that the dst is not TEXTURE_EXTERNAL, that no // mirroring is required return this->canFormatBeFBOColorAttachment(srcFormat) && (!srcTypeIfTexture || *srcTypeIfTexture != GrTextureType::kExternal) && *dstTypeIfTexture != GrTextureType::kExternal; } bool GrGLCaps::canCopyAsBlit(GrGLFormat dstFormat, int dstSampleCnt, const GrTextureType* dstTypeIfTexture, GrGLFormat srcFormat, int srcSampleCnt, const GrTextureType* srcTypeIfTexture, const SkRect& srcBounds, bool srcBoundsExact, const SkIRect& srcRect, const SkIPoint& dstPoint) const { auto blitFramebufferFlags = fBlitFramebufferFlags; if (!this->canFormatBeFBOColorAttachment(dstFormat) || !this->canFormatBeFBOColorAttachment(srcFormat)) { return false; } if (dstTypeIfTexture && *dstTypeIfTexture == GrTextureType::kExternal) { return false; } if (srcTypeIfTexture && *srcTypeIfTexture == GrTextureType::kExternal) { return false; } if (GrGLCaps::kNoSupport_BlitFramebufferFlag & blitFramebufferFlags) { return false; } if (GrGLCaps::kResolveMustBeFull_BlitFrambufferFlag & blitFramebufferFlags) { if (srcSampleCnt > 1) { if (1 == dstSampleCnt) { return false; } if (SkRect::Make(srcRect) != srcBounds || !srcBoundsExact) { return false; } } } if (GrGLCaps::kNoMSAADst_BlitFramebufferFlag & blitFramebufferFlags) { if (dstSampleCnt > 1) { return false; } } if (GrGLCaps::kNoFormatConversion_BlitFramebufferFlag & blitFramebufferFlags) { if (srcFormat != dstFormat) { return false; } } else if (GrGLCaps::kNoFormatConversionForMSAASrc_BlitFramebufferFlag & blitFramebufferFlags) { if (srcSampleCnt > 1 && srcFormat != dstFormat) { return false; } } if (GrGLCaps::kRectsMustMatchForMSAASrc_BlitFramebufferFlag & blitFramebufferFlags) { if (srcSampleCnt > 1) { if (dstPoint.fX != srcRect.fLeft || dstPoint.fY != srcRect.fTop) { return false; } } } return true; } bool GrGLCaps::canCopyAsDraw(GrGLFormat dstFormat, bool srcIsTexturable) const { return this->isFormatRenderable(dstFormat, 1) && srcIsTexturable; } static bool has_msaa_render_buffer(const GrSurfaceProxy* surf, const GrGLCaps& glCaps) { const GrRenderTargetProxy* rt = surf->asRenderTargetProxy(); if (!rt) { return false; } // A RT has a separate MSAA renderbuffer if: // 1) It's multisampled // 2) We're using an extension with separate MSAA renderbuffers // 3) It's not FBO 0, which is special and always auto-resolves return rt->numSamples() > 1 && glCaps.usesMSAARenderBuffers() && !rt->glRTFBOIDIs0(); } bool GrGLCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src, const SkIRect& srcRect, const SkIPoint& dstPoint) const { int dstSampleCnt = 0; int srcSampleCnt = 0; if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) { dstSampleCnt = rtProxy->numSamples(); } if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) { srcSampleCnt = rtProxy->numSamples(); } SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy())); SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy())); const GrTextureProxy* dstTex = dst->asTextureProxy(); const GrTextureProxy* srcTex = src->asTextureProxy(); GrTextureType dstTexType; GrTextureType* dstTexTypePtr = nullptr; GrTextureType srcTexType; GrTextureType* srcTexTypePtr = nullptr; if (dstTex) { dstTexType = dstTex->textureType(); dstTexTypePtr = &dstTexType; } if (srcTex) { srcTexType = srcTex->textureType(); srcTexTypePtr = &srcTexType; } auto dstFormat = dst->backendFormat().asGLFormat(); auto srcFormat = src->backendFormat().asGLFormat(); return this->canCopyTexSubImage(dstFormat, has_msaa_render_buffer(dst, *this), dstTexTypePtr, srcFormat, has_msaa_render_buffer(src, *this), srcTexTypePtr) || this->canCopyAsBlit(dstFormat, dstSampleCnt, dstTexTypePtr, srcFormat, srcSampleCnt, srcTexTypePtr, src->getBoundsRect(), src->priv().isExact(), srcRect, dstPoint) || this->canCopyAsDraw(dstFormat, SkToBool(srcTex)); } GrCaps::DstCopyRestrictions GrGLCaps::getDstCopyRestrictions(const GrRenderTargetProxy* src, GrColorType colorType) const { // If the src is a texture, we can implement the blit as a draw assuming the config is // renderable. if (src->asTextureProxy() && !this->isFormatAsColorTypeRenderable(colorType, src->backendFormat())) { return {}; } if (const auto* texProxy = src->asTextureProxy()) { if (texProxy->textureType() == GrTextureType::kExternal) { // Not supported for FBO blit or CopyTexSubImage. Caller will have to fall back to a // draw (if the source is also a texture). return {}; } } // We look for opportunities to use CopyTexSubImage, or fbo blit. If neither are // possible and we return false to fallback to creating a render target dst for render-to- // texture. This code prefers CopyTexSubImage to fbo blit and avoids triggering temporary fbo // creation. It isn't clear that avoiding temporary fbo creation is actually optimal. DstCopyRestrictions blitFramebufferRestrictions = {}; if (src->numSamples() > 1 && (fBlitFramebufferFlags & kResolveMustBeFull_BlitFrambufferFlag)) { blitFramebufferRestrictions.fRectsMustMatch = GrSurfaceProxy::RectsMustMatch::kYes; blitFramebufferRestrictions.fMustCopyWholeSrc = true; // Mirroring causes rects to mismatch later, don't allow it. } else if (src->numSamples() > 1 && (fBlitFramebufferFlags & kRectsMustMatchForMSAASrc_BlitFramebufferFlag)) { blitFramebufferRestrictions.fRectsMustMatch = GrSurfaceProxy::RectsMustMatch::kYes; } auto srcFormat = src->backendFormat().asGLFormat(); // Check for format issues with glCopyTexSubImage2D if (srcFormat == GrGLFormat::kBGRA8) { // glCopyTexSubImage2D doesn't work with this config. If the bgra can be used with fbo blit // then we set up for that, otherwise fail. if (this->canFormatBeFBOColorAttachment(srcFormat)) { return blitFramebufferRestrictions; } // Caller will have to use a draw. return {}; } { bool srcIsMSAARenderbuffer = src->numSamples() > 1 && this->usesMSAARenderBuffers(); if (srcIsMSAARenderbuffer) { // It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer. Set up for FBO // blit or fail. if (this->canFormatBeFBOColorAttachment(srcFormat)) { return blitFramebufferRestrictions; } // Caller will have to use a draw. return {}; } } // We'll do a CopyTexSubImage, no restrictions. return {}; } void GrGLCaps::applyDriverCorrectnessWorkarounds(const GrGLContextInfo& ctxInfo, const GrContextOptions& contextOptions, const GrGLInterface* glInterface, GrShaderCaps* shaderCaps, FormatWorkarounds* formatWorkarounds) { // A driver bug on the nexus 6 causes incorrect dst copies when invalidate is called beforehand. // Thus we are disabling this extension for now on Adreno4xx devices. if (ctxInfo.renderer() == GrGLRenderer::kAdreno430 || ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other || fDriverBugWorkarounds.disable_discard_framebuffer) { fInvalidateFBType = kNone_InvalidateFBType; } if (ctxInfo.renderer() == GrGLRenderer::kIntelCherryView) { // When running DMSAA_dst_read_with_existing_barrier with DMSAA disabled on linux Intel // HD405, the test fails when using texture barriers. Oddly the gpu doing the draw which // uses the barrier correctly. It is the next draw, which does not use or need a barrier, // that is blending with a dst as if the barrier draw didn't happen. Since this GPU is not // that important to us and this driver bug could probably manifest itself in the wild, we // are just disabling texture barrier support for the gpu. fTextureBarrierSupport = false; } // glClearTexImage seems to have a bug in NVIDIA drivers that was fixed sometime between // 340.96 and 367.57. if (GR_IS_GR_GL(ctxInfo.standard()) && ctxInfo.driver() == GrGLDriver::kNVIDIA && ctxInfo.driverVersion() < GR_GL_DRIVER_VER(367, 57, 0)) { fClearTextureSupport = false; } // glBlitFramebuffer seems to produce incorrect results on QC, Mali400, and Tegra3 but // glCopyTexSubImage2D works (even though there is no extension that specifically allows it). if (ctxInfo.vendor() == GrGLVendor::kQualcomm || ctxInfo.renderer() == GrGLRenderer::kMali4xx || ctxInfo.renderer() == GrGLRenderer::kTegra_PreK1) { fAllowBGRA8CopyTexSubImage = true; } // http://anglebug.com/6030 if (fMSFBOType == kES_EXT_MsToTexture_MSFBOType && ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D11) { fDisallowDynamicMSAA = true; } // http://skbug.com/12081 if (GR_IS_GR_WEBGL(ctxInfo.standard())) { fDisallowDynamicMSAA = true; } #if defined(__has_feature) #if defined(SK_BUILD_FOR_MAC) && __has_feature(thread_sanitizer) // See skbug.com/7058 fMapBufferType = kNone_MapBufferType; fMapBufferFlags = kNone_MapFlags; fTransferFromBufferToTextureSupport = false; fTransferFromSurfaceToBufferSupport = false; fTransferBufferType = TransferBufferType::kNone; #endif #endif // We found that the Galaxy J5 with an Adreno 306 running 6.0.1 has a bug where // GL_INVALID_OPERATION thrown by glDrawArrays when using a buffer that was mapped. The same bug // did not reproduce on a Nexus7 2013 with a 320 running Android M with driver 127.0. It's // unclear whether this really affects a wide range of devices. if (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx && ctxInfo.driverVersion() > GR_GL_DRIVER_VER(127, 0, 0)) { fMapBufferType = kNone_MapBufferType; fMapBufferFlags = kNone_MapFlags; fTransferFromBufferToTextureSupport = false; fTransferFromSurfaceToBufferSupport = false; fTransferBufferType = TransferBufferType::kNone; } // The TransferPixelsToTexture test fails on ANGLE D3D9 and D3D11 if this is enabled. // https://anglebug.com/5542 if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D9 || ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D11) { fTransferPixelsToRowBytesSupport = false; } // Using MIPs on this GPU seems to be a source of trouble. if (ctxInfo.renderer() == GrGLRenderer::kPowerVR54x) { fMipmapSupport = false; } #ifdef SK_BUILD_FOR_ANDROID if (ctxInfo.renderer() == GrGLRenderer::kPowerVR54x) { // Flutter found glTexSubImage2D for GL_RED is much slower than GL_ALPHA on the // "MC18 PERSONAL SHOPPER" formatWorkarounds->fDisallowR8ForPowerVRSGX54x = true; } #endif if (ctxInfo.isOverCommandBuffer() && ctxInfo.version() >= GR_GL_VER(3,0)) { formatWorkarounds->fDisallowTextureUnorm16 = true; // http://crbug.com/1224108 formatWorkarounds->fDisallowETC2Compression = true; // http://crbug.com/1224111 fTransferFromSurfaceToBufferSupport = false; // http://crbug.com/1224138 // http://crbug.com/1224117 fMapBufferFlags = kNone_MapFlags; fMapBufferType = kNone_MapBufferType; } // https://b.corp.google.com/issues/143074513 // https://skbug.com/11152 if (ctxInfo.renderer() == GrGLRenderer::kAdreno615 || ctxInfo.renderer() == GrGLRenderer::kAdreno620) { fMSFBOType = kNone_MSFBOType; fMSAAResolvesAutomatically = false; } #ifndef SK_BUILD_FOR_IOS if (ctxInfo.renderer() == GrGLRenderer::kPowerVR54x || ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue || (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx && !ctxInfo.isOverCommandBuffer())) { fPerformColorClearsAsDraws = true; } #endif // A lot of GPUs have trouble with full screen clears (skbug.com/7195) if (ctxInfo.renderer() == GrGLRenderer::kAMDRadeonHD7xxx || ctxInfo.renderer() == GrGLRenderer::kAMDRadeonR9M4xx) { fPerformColorClearsAsDraws = true; } #ifdef SK_BUILD_FOR_MAC // crbug.com/768134 - On MacBook Pros, the Intel Iris Pro doesn't always perform // full screen clears // crbug.com/773107 - On MacBook Pros, a wide range of Intel GPUs don't always // perform full screen clears. // Update on 4/4/2018 - This appears to be fixed on driver 10.30.12 on a macOS 10.13.2 on a // Retina MBP Early 2015 with Iris 6100. It is possibly fixed on earlier drivers as well. // crbug.com/1039912 - Crash rate in glClear spiked after OS update, affecting mostly // Broadwell on 10.13+ if (ctxInfo.vendor() == GrGLVendor::kIntel && (ctxInfo.driverVersion() < GR_GL_DRIVER_VER(10, 30, 12) || ctxInfo.renderer() == GrGLRenderer::kIntelBroadwell)) { fPerformColorClearsAsDraws = true; } // crbug.com/969609 - NVIDIA on Mac sometimes segfaults during glClear in chrome. It seems // mostly concentrated in 10.13/14, GT 650Ms, driver 12+. But there are instances of older // drivers and GTX 775s, so we'll start with a broader workaround. if (ctxInfo.vendor() == GrGLVendor::kNVIDIA) { fPerformColorClearsAsDraws = true; } #endif // See crbug.com/755871. This could probably be narrowed to just partial clears as the driver // bugs seems to involve clearing too much and not skipping the clear. // See crbug.com/768134. This is also needed for full clears and was seen on an nVidia K620 // but only for D3D11 ANGLE. if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D11) { fPerformColorClearsAsDraws = true; } if (ctxInfo.renderer() == GrGLRenderer::kAdreno430 || ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other) { // This is known to be fixed sometime between driver 145.0 and 219.0 if (ctxInfo.driverVersion() <= GR_GL_DRIVER_VER(219, 0, 0)) { fPerformStencilClearsAsDraws = true; } // This is known to be fixed sometime between driver 129.0 and 145.0 on Nexus 6P. // On driver 129 on Android M it fails the unit tests called WritePixelsPendingIO without // the workaround. It passes on Android N with driver 145 without the workaround. // skbug.com/11834 if (ctxInfo.driverVersion() < GR_GL_DRIVER_VER(145, 0, 0)) { fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO = true; } } if (fDriverBugWorkarounds.gl_clear_broken) { fPerformColorClearsAsDraws = true; fPerformStencilClearsAsDraws = true; } if (ctxInfo.vendor() == GrGLVendor::kQualcomm) { // It appears that all the Adreno GPUs have less than optimal performance when // drawing w/ large index buffers. fAvoidLargeIndexBufferDraws = true; } // This was reproduced on the following configurations: // - A Galaxy J5 (Adreno 306) running Android 6 with driver 140.0 // - A Nexus 7 2013 (Adreno 320) running Android 5 with driver 104.0 // - A Nexus 7 2013 (Adreno 320) running Android 6 with driver 127.0 // - A Nexus 5 (Adreno 330) running Android 6 with driver 127.0 // and not produced on: // - A Nexus 7 2013 (Adreno 320) running Android 4 with driver 53.0 // The particular lines that get dropped from test images varies across different devices. if (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx && ctxInfo.driverVersion() > GR_GL_DRIVER_VER(53, 0, 0)) { fRequiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines = true; } // TODO: Don't apply this on iOS? if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue) { // Our Chromebook with GrGLRenderer::kPowerVRRogue crashes on large instanced draws. The // current minimum number of instances observed to crash is somewhere between 2^14 and 2^15. // Keep the number of instances below 1000, just to be safe. fMaxInstancesPerDrawWithoutCrashing = 999; } else if (fDriverBugWorkarounds.disallow_large_instanced_draw) { fMaxInstancesPerDrawWithoutCrashing = 0x4000000; } #ifndef SK_BUILD_FOR_IOS if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue) { // We saw this bug on a TecnoSpark 3 Pro with a PowerVR GE8300. // GL_VERSION: "OpenGL ES 3.2 build 1.10@51309121" // Possibly this could be more limited by driver version or HW generation. // When using samplers, we are seeing a bug where the gpu is sometimes not sampling the // correct mip level data. A workaround to this issue is that when binding a texture we also // set some texture state, and it seems like any inividual state works (e.g. min/mag filter, // base level, max level, etc.). Currently we just set the min filter level every time we // bind a texture as the workaround. fMustSetAnyTexParameterToEnableMipmapping = true; // ColorTypeBackendAllocationTest failed for kAlpha_8 and kGray_8 when using // GL_UNPACK_ROW_LENGTH. Perhaps this could be a more limited workaround by applying // only to single channel 8 bit unorm formats but we only have a monolithic query for this // support at present. fWritePixelsRowBytesSupport = false; // TransferPixelsToTextureTest fails for all color types on // TecnoSpark 3 Pro with a PowerVR GE8300, GL_VERSION: "OpenGL ES 3.2 build 1.10@51309121" // if GL_UNPACK_ROW_LENGTH is used. fTransferPixelsToRowBytesSupport = false; } #endif // Texture uploads sometimes seem to be ignored to textures bound to FBOS on Tegra3. if (ctxInfo.renderer() == GrGLRenderer::kTegra_PreK1) { fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO = true; fUseDrawInsteadOfAllRenderTargetWrites = true; } #ifdef SK_BUILD_FOR_MAC static constexpr bool isMAC = true; #else static constexpr bool isMAC = false; #endif #ifdef SK_BUILD_FOR_ANDROID // Older versions of Android have problems with setting GL_TEXTURE_BASE_LEVEL or // GL_TEXTURE_MAX_LEVEL on GL_TEXTURE_EXTERTNAL_OES textures. We just leave them as is and hope // the client never changes them either. fDontSetBaseOrMaxLevelForExternalTextures = true; // PowerVR can crash setting the levels on Android up to Q for any texture? // https://crbug.com/1123874 if (ctxInfo.vendor() == GrGLVendor::kImagination) { fMipmapLevelControlSupport = false; } #endif // We support manual mip-map generation (via iterative downsampling draw calls). This fixes // bugs on some cards/drivers that produce incorrect mip-maps for sRGB textures when using // glGenerateMipmap. Our implementation requires mip-level sampling control. Additionally, // it can be much slower (especially on mobile GPUs), so we opt-in only when necessary: if (fMipmapLevelControlSupport && !ctxInfo.isOverCommandBuffer() && // http://crbug.com/1224110 (contextOptions.fDoManualMipmapping || ctxInfo.vendor() == GrGLVendor::kIntel || (ctxInfo.driver() == GrGLDriver::kNVIDIA && isMAC) || ctxInfo.vendor() == GrGLVendor::kATI)) { fDoManualMipmapping = true; } // See http://crbug.com/710443 #ifdef SK_BUILD_FOR_MAC if (ctxInfo.renderer() == GrGLRenderer::kIntelBroadwell) { fClearToBoundaryValuesIsBroken = true; } #endif if (ctxInfo.vendor() == GrGLVendor::kQualcomm) { fDrawArraysBaseVertexIsBroken = true; } // https://b.corp.google.com/issues/188410972 if (ctxInfo.renderer() == GrGLRenderer::kVirgl) { fDrawInstancedSupport = false; } // http://anglebug.com/4538 if (fBaseVertexBaseInstanceSupport && !fDrawInstancedSupport) { fBaseVertexBaseInstanceSupport = false; fNativeDrawIndirectSupport = false; fMultiDrawType = MultiDrawType::kNone; } // Currently the extension is advertised but fb fetch is broken on 500 series Adrenos like the // Galaxy S7. // TODO: Once this is fixed we can update the check here to look at a driver version number too. if (ctxInfo.renderer() == GrGLRenderer::kAdreno530 || ctxInfo.renderer() == GrGLRenderer::kAdreno5xx_other) { shaderCaps->fFBFetchSupport = false; } // On the NexusS and GalaxyNexus, the use of 'any' causes the compilation error "Calls to any // function that may require a gradient calculation inside a conditional block may return // undefined results". This appears to be an issue with the 'any' call since even the simple // "result=black; if (any()) result=white;" code fails to compile. shaderCaps->fCanUseAnyFunctionInShader = (ctxInfo.vendor() != GrGLVendor::kImagination); if (ctxInfo.renderer() == GrGLRenderer::kTegra_PreK1) { // The Tegra3 compiler will sometimes never return if we have min(abs(x), 1.0), // so we must do the abs first in a separate expression. shaderCaps->fCanUseMinAndAbsTogether = false; // Tegra3 fract() seems to trigger undefined behavior for negative values, so we // must avoid this condition. shaderCaps->fCanUseFractForNegativeValues = false; // Seeing crashes on Tegra3 with inlined functions that have early returns. Looks like the // do { ... break; } while (false); construct is causing a crash in the driver. shaderCaps->fCanUseDoLoops = false; } // On Intel GPU there is an issue where it reads the second argument to atan "- %s.x" as an int // thus must us -1.0 * %s.x to work correctly if (ctxInfo.vendor() == GrGLVendor::kIntel) { shaderCaps->fMustForceNegatedAtanParamToFloat = true; } #if defined(SK_BUILD_FOR_MAC) if (ctxInfo.vendor() == GrGLVendor::kATI) { // The Radeon GLSL compiler on Mac gets confused by ldexp(..., -x). // Convert to ldexp(..., x * -1). // http://skbug.com/12076 shaderCaps->fMustForceNegatedLdexpParamToMultiply = true; } #endif // On some Intel GPUs there is an issue where the driver outputs bogus values in the shader // when floor and abs are called on the same line. Thus we must execute an Op between them to // make sure the compiler doesn't re-inline them even if we break the calls apart. if (ctxInfo.vendor() == GrGLVendor::kIntel) { shaderCaps->fMustDoOpBetweenFloorAndAbs = true; } // On Adreno devices with framebuffer fetch support, there is a bug where they always return // the original dst color when reading the outColor even after being written to. By using a // local outColor we can work around this bug. if (shaderCaps->fFBFetchSupport && ctxInfo.vendor() == GrGLVendor::kQualcomm) { shaderCaps->fRequiresLocalOutputColorForFBFetch = true; } // Newer Mali GPUs do incorrect static analysis in specific situations: If there is uniform // color, and that uniform contains an opaque color, and the output of the shader is only based // on that uniform plus soemthing un-trackable (like a texture read), the compiler will deduce // that the shader always outputs opaque values. In that case, it appears to remove the shader // based blending code it normally injects, turning SrcOver into Src. To fix this, we always // insert an extra bit of math on the uniform that confuses the compiler just enough... if (ctxInfo.renderer() == GrGLRenderer::kMaliT) { shaderCaps->fMustObfuscateUniformColor = true; } // On Mali G series GPUs, applying transfer functions in the fragment shader with half-floats // produces answers that are much less accurate than expected/required. This forces full floats // for some intermediate values to get acceptable results. if (ctxInfo.renderer() == GrGLRenderer::kMaliG) { fShaderCaps->fColorSpaceMathNeedsFloat = true; } // On Mali 400 there is a bug using dFd* in the x direction. So we avoid using it when possible. if (ctxInfo.renderer() == GrGLRenderer::kMali4xx) { fShaderCaps->fAvoidDfDxForGradientsWhenPossible = true; } #ifdef SK_BUILD_FOR_WIN // Check for ANGLE on Windows, so we can workaround a bug in D3D itself (anglebug.com/2098). // // Basically, if a shader has a construct like: // // float x = someCondition ? someValue : 0; // float2 result = (0 == x) ? float2(x, x) // : float2(2 * x / x, 0); // // ... the compiler will produce an error 'NaN and infinity literals not allowed', even though // we've explicitly guarded the division with a check against zero. This manifests in much // more complex ways in some of our shaders, so we use this caps bit to add an epsilon value // to the denominator of divisions, even when we've added checks that the denominator isn't 0. if (ctxInfo.angleBackend() != GrGLANGLEBackend::kUnknown || ctxInfo.isOverCommandBuffer()) { shaderCaps->fMustGuardDivisionEvenAfterExplicitZeroCheck = true; } #endif // The Adreno 5xx and 6xx produce incorrect results when comparing a pair of matrices. if (ctxInfo.renderer() == GrGLRenderer::kAdreno530 || ctxInfo.renderer() == GrGLRenderer::kAdreno5xx_other || ctxInfo.renderer() == GrGLRenderer::kAdreno615 || ctxInfo.renderer() == GrGLRenderer::kAdreno620 || ctxInfo.renderer() == GrGLRenderer::kAdreno630 || ctxInfo.renderer() == GrGLRenderer::kAdreno640 || ctxInfo.renderer() == GrGLRenderer::kAdreno6xx_other) { shaderCaps->fRewriteMatrixComparisons = true; } // We've seen Adreno 3xx devices produce incorrect (flipped) values for gl_FragCoord, in some // (rare) situations. It's sporadic, and mostly on older drivers. Additionally, old Adreno // compilers (see crbug.com/skia/4078) crash when accessing .zw of gl_FragCoord, so just bypass // using gl_FragCoord at all to get around it. if (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx) { shaderCaps->fCanUseFragCoord = false; } // gl_FragCoord has an incorrect subpixel offset on legacy Tegra hardware. if (ctxInfo.renderer() == GrGLRenderer::kTegra_PreK1) { shaderCaps->fCanUseFragCoord = false; } // On Mali G71, mediump ints don't appear capable of representing every integer beyond +/-2048. // (Are they implemented with fp16?) if (ctxInfo.vendor() == GrGLVendor::kARM) { shaderCaps->fIncompleteShortIntPrecision = true; } if (fDriverBugWorkarounds.add_and_true_to_loop_condition) { shaderCaps->fAddAndTrueToLoopCondition = true; } if (fDriverBugWorkarounds.unfold_short_circuit_as_ternary_operation) { shaderCaps->fUnfoldShortCircuitAsTernary = true; } if (fDriverBugWorkarounds.emulate_abs_int_function) { shaderCaps->fEmulateAbsIntFunction = true; } if (fDriverBugWorkarounds.rewrite_do_while_loops) { shaderCaps->fRewriteDoWhileLoops = true; } if (fDriverBugWorkarounds.remove_pow_with_constant_exponent) { shaderCaps->fRemovePowWithConstantExponent = true; } if (fDriverBugWorkarounds.disable_dual_source_blending_support) { shaderCaps->fDualSourceBlendingSupport = false; } if (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx || ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other) { shaderCaps->fMustWriteToFragColor = true; } // Disabling advanced blend on various platforms with major known issues. We also block Chrome // command buffer for now until its own denylists can be updated. if (ctxInfo.renderer() == GrGLRenderer::kAdreno430 || ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other || ctxInfo.renderer() == GrGLRenderer::kAdreno530 || ctxInfo.renderer() == GrGLRenderer::kAdreno5xx_other || ctxInfo.driver() == GrGLDriver::kIntel || ctxInfo.isOverCommandBuffer() || ctxInfo.vendor() == GrGLVendor::kARM /* http://skbug.com/11906 */) { fBlendEquationSupport = kBasic_BlendEquationSupport; shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kNotSupported_AdvBlendEqInteraction; } // Non-coherent advanced blend has an issue on NVIDIA pre 337.00. if (ctxInfo.driver() == GrGLDriver::kNVIDIA && ctxInfo.driverVersion() < GR_GL_DRIVER_VER(337, 00, 0) && kAdvanced_BlendEquationSupport == fBlendEquationSupport) { fBlendEquationSupport = kBasic_BlendEquationSupport; shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kNotSupported_AdvBlendEqInteraction; } if (fDriverBugWorkarounds.disable_blend_equation_advanced) { fBlendEquationSupport = kBasic_BlendEquationSupport; shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kNotSupported_AdvBlendEqInteraction; } if (this->advancedBlendEquationSupport()) { if (ctxInfo.driver() == GrGLDriver::kNVIDIA && ctxInfo.driverVersion() < GR_GL_DRIVER_VER(355, 00, 0)) { // Disable color-dodge and color-burn on pre-355.00 NVIDIA. fAdvBlendEqDisableFlags |= (1 << kColorDodge_GrBlendEquation) | (1 << kColorBurn_GrBlendEquation); } if (ctxInfo.vendor() == GrGLVendor::kARM) { // Disable color-burn on ARM until the fix is released. fAdvBlendEqDisableFlags |= (1 << kColorBurn_GrBlendEquation); } } // On Adreno 5xx devices, there is a bug where we first draw using dual source blending. Thus // the dst blend func references the dst. Then the next draw we disable blending. However, on // the second draw the driver has a bug where it tries to access the second color output again. // This is fixed by reseting the blend function to anything that does not reference src2 when we // disable blending. if (ctxInfo.renderer() == GrGLRenderer::kAdreno530 || ctxInfo.renderer() == GrGLRenderer::kAdreno5xx_other || ctxInfo.renderer() == GrGLRenderer::kAdreno620 || ctxInfo.renderer() == GrGLRenderer::kAdreno640) { fMustResetBlendFuncBetweenDualSourceAndDisable = true; } // Many ES3 drivers only advertise the ES2 image_external extension, but support the _essl3 // extension, and require that it be enabled to work with ESSL3. Other devices require the ES2 // extension to be enabled, even when using ESSL3. Enabling both extensions fixes both cases. // skbug.com/7713 if (ctxInfo.hasExtension("GL_OES_EGL_image_external") && ctxInfo.glslGeneration() >= k330_GrGLSLGeneration && !shaderCaps->fExternalTextureSupport) { // i.e. Missing the _essl3 extension shaderCaps->fExternalTextureSupport = true; shaderCaps->fExternalTextureExtensionString = "GL_OES_EGL_image_external"; shaderCaps->fSecondExternalTextureExtensionString = "GL_OES_EGL_image_external_essl3"; } #ifdef SK_BUILD_FOR_IOS // iOS drivers appear to implement TexSubImage by creating a staging buffer, and copying // UNPACK_ROW_LENGTH * height bytes. That's unsafe in several scenarios, and the simplest fix // is to just disable the feature. // https://github.com/flutter/flutter/issues/16718 // https://bugreport.apple.com/web/?problemID=39948888 fWritePixelsRowBytesSupport = false; // This affects all iOS devices for transfering from a PBO as well (presumably the issue is in // the GL->Metal layer). fTransferPixelsToRowBytesSupport = false; #endif if (ctxInfo.vendor() == GrGLVendor::kIntel || // IntelIris640 drops draws completely. ctxInfo.renderer() == GrGLRenderer::kMaliT || // Some curves appear flat on GalaxyS6. ctxInfo.renderer() == GrGLRenderer::kAdreno3xx || ctxInfo.renderer() == GrGLRenderer::kAdreno430 || ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other || // We get garbage on Adreno405. ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D9) { // D3D9 conic strokes fail. fDisableTessellationPathRenderer = true; } // We found that on Wembley devices (PowerVR GE8320) that using tessellation path renderer would // cause lots of rendering errors where it seemed like vertices were in the wrong place. This // led to lots of GMs drawing nothing (e.g. dashing4) or lots of garbage. The Wembley devices // were running Android 12 with a driver version of 1.13. We previously had TecnoSpark devices // with the same GPU running on Android P (driver 1.10) which did not have this issue. We don't // know when the bug appeared in the driver so for now we disable tessellation path renderer for // all matching gpus regardless of driver version. if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue) { fDisableTessellationPathRenderer = true; } // http://skbug.com/9739 bool isNVIDIAPascal = ctxInfo.driver() == GrGLDriver::kNVIDIA && ctxInfo.hasExtension("GL_NV_conservative_raster_pre_snap_triangles") && // Pascal+. !ctxInfo.hasExtension("GL_NV_conservative_raster_underestimation"); // Volta+. if (isNVIDIAPascal && ctxInfo.driverVersion() < GR_GL_DRIVER_VER(440, 00, 0)) { if (GR_IS_GR_GL(ctxInfo.standard())) { // glMemoryBarrier wasn't around until version 4.2. if (ctxInfo.version() >= GR_GL_VER(4,2)) { fRequiresManualFBBarrierAfterTessellatedStencilDraw = true; } else { shaderCaps->fMaxTessellationSegments = 0; } } else { // glMemoryBarrier wasn't around until es version 3.1. if (ctxInfo.version() >= GR_GL_VER(3,1)) { fRequiresManualFBBarrierAfterTessellatedStencilDraw = true; } else { shaderCaps->fMaxTessellationSegments = 0; } } } if (ctxInfo.driver() == GrGLDriver::kQualcomm) { // Qualcomm fails to link programs with tessellation and does not give an error message. // http://skbug.com/9740 shaderCaps->fMaxTessellationSegments = 0; } #ifdef SK_BUILD_FOR_WIN // glDrawElementsIndirect fails GrMeshTest on every Win10 Intel bot. if (ctxInfo.driver() == GrGLDriver::kIntel || (ctxInfo.angleVendor() == GrGLVendor::kIntel && ctxInfo.angleBackend() == GrGLANGLEBackend::kOpenGL)) { fNativeDrawIndexedIndirectIsBroken = true; fUseClientSideIndirectBuffers = true; } #endif // PowerVRGX6250 drops every pixel if we modify the sample mask while color writes are disabled. if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue) { fNeverDisableColorWrites = true; shaderCaps->fMustWriteToFragColor = true; } // It appears that Qualcomm drivers don't actually support // GL_NV_shader_noperspective_interpolation in ES 3.00 or 3.10 shaders, only 3.20. // https://crbug.com/986581 if (ctxInfo.vendor() == GrGLVendor::kQualcomm && k320es_GrGLSLGeneration != ctxInfo.glslGeneration()) { shaderCaps->fNoPerspectiveInterpolationSupport = false; } // We disable srgb write control for Adreno4xx devices. // see: https://bug.skia.org/5329 if (ctxInfo.renderer() == GrGLRenderer::kAdreno430 || ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other) { fSRGBWriteControl = false; } // MacPro devices with AMD cards fail to create MSAA sRGB render buffers. #if defined(SK_BUILD_FOR_MAC) if (ctxInfo.vendor() == GrGLVendor::kATI) { formatWorkarounds->fDisableSRGBRenderWithMSAAForMacAMD = true; } #endif // Command buffer fails glTexSubImage2D with type == GL_HALF_FLOAT_OES if a GL_RGBA16F texture // is created with glTexStorage2D. See crbug.com/1008003. formatWorkarounds->fDisableRGBA16FTexStorageForCrBug1008003 = ctxInfo.isOverCommandBuffer() && ctxInfo.version() < GR_GL_VER(3, 0); #if defined(SK_BUILD_FOR_WIN) // On Intel Windows ES contexts it seems that using texture storage with BGRA causes // problems with cross-context SkImages. formatWorkarounds->fDisableBGRATextureStorageForIntelWindowsES = ctxInfo.driver() == GrGLDriver::kIntel && GR_IS_GR_GL_ES(ctxInfo.standard()); #endif // On the Intel Iris 6100, interacting with LUM16F seems to confuse the driver. After // writing to/reading from a LUM16F texture reads from/writes to other formats behave // erratically. // All Adrenos claim to support LUM16F but don't appear to actually do so. // The failing devices/gpus were: Nexus5/Adreno330, Nexus5x/Adreno418, Pixel/Adreno530, // Pixel2XL/Adreno540 and Pixel3/Adreno630 formatWorkarounds->fDisableLuminance16F = ctxInfo.renderer() == GrGLRenderer::kIntelBroadwell || ctxInfo.vendor() == GrGLVendor::kQualcomm; #ifdef SK_BUILD_FOR_MAC // On a MacBookPro 11.5 running MacOS 10.13 with a Radeon M370X the TransferPixelsFrom test // fails when transferring out from a GL_RG8 texture using GL_RG/GL_UNSIGNED_BYTE. // The same error also occurs in MacOS 10.15 with a Radeon Pro 5300M. formatWorkarounds->fDisallowDirectRG8ReadPixels = ctxInfo.renderer() == GrGLRenderer::kAMDRadeonR9M3xx || ctxInfo.renderer() == GrGLRenderer::kAMDRadeonPro5xxx || ctxInfo.renderer() == GrGLRenderer::kAMDRadeonProVegaxx; #endif #ifdef SK_BUILD_FOR_ANDROID // We don't usually use glTexStorage() on Android for performance reasons. (crbug.com/945506). // On a NVIDIA Shield TV running Android 7.0 creating a texture with glTexImage2D() with // internal format GL_LUMINANCE8 fails. However, it succeeds with glTexStorage2D(). // // Additionally, on the Nexus 9 running Android 6.0.1 formats added by GL_EXT_texture_rg and // GL_EXT_texture_norm16 cause errors if they are created with glTexImage2D() with // an unsized internal format. We wouldn't normally do that but Chrome can limit us // artificially to ES2. (crbug.com/1003481) if (ctxInfo.vendor() == GrGLVendor::kNVIDIA) { formatWorkarounds->fDontDisableTexStorageOnAndroid = true; } #endif // https://github.com/flutter/flutter/issues/38700 if (ctxInfo.driver() == GrGLDriver::kAndroidEmulator) { shaderCaps->fNoDefaultPrecisionForExternalSamplers = true; } // http://skbug.com/9491: Nexus5 produces rendering artifacts when we use QCOM_tiled_rendering. if (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx) { fTiledRenderingSupport = false; } // https://github.com/flutter/flutter/issues/47164 // https://github.com/flutter/flutter/issues/47804 if (fTiledRenderingSupport && (!glInterface->fFunctions.fStartTiling || !glInterface->fFunctions.fEndTiling)) { // Some devices expose the QCOM tiled memory extension string but don't actually provide the // start and end tiling functions (see above flutter bugs). To work around this, the funcs // are marked optional in the interface generator, but we turn off the tiled rendering cap // if they aren't provided. This disabling is in driver workarounds so that SKQP will still // fail on devices that advertise the extension w/o the functions. fTiledRenderingSupport = false; } if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D9) { formatWorkarounds->fDisallowBGRA8ReadPixels = true; } // We disable MSAA for all Intel GPUs. Before Gen9, performance was very bad. Even with Gen9, // we've seen driver crashes in the wild. We don't have data on Gen11 yet. // (crbug.com/527565, crbug.com/983926) if (ctxInfo.vendor() == GrGLVendor::kIntel || ctxInfo.angleVendor() == GrGLVendor::kIntel) { fMSFBOType = kNone_MSFBOType; } // ANGLE doesn't support do-while loops. if (ctxInfo.angleBackend() != GrGLANGLEBackend::kUnknown) { shaderCaps->fCanUseDoLoops = false; } // ANGLE's D3D9 backend + AMD GPUs are flaky with program binary caching (skbug.com/10395) if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D9 && ctxInfo.angleVendor() == GrGLVendor::kATI) { fProgramBinarySupport = false; } // Two Adreno 530 devices (LG G6 and OnePlus 3T) appear to have driver bugs that are corrupting // SkSL::Program memory. To get better/different crash reports, disable node-pooling, so that // program allocations aren't reused. (crbug.com/1147008, crbug.com/1164271) if (ctxInfo.renderer() == GrGLRenderer::kAdreno530) { shaderCaps->fUseNodePools = false; } // skbug.com/11204. Avoid recursion issue in SurfaceContext::writePixels. if (fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO) { fReuseScratchTextures = false; } // skbug.com/11935. Don't reorder on these GPUs in GL on old drivers. if ((ctxInfo.renderer() == GrGLRenderer::kAdreno620 || ctxInfo.renderer() == GrGLRenderer::kAdreno640) && ctxInfo.driverVersion() < GR_GL_DRIVER_VER(571, 0, 0)) { fAvoidReorderingRenderTasks = true; } // http://skbug.com/11965 if (ctxInfo.renderer() == GrGLRenderer::kGoogleSwiftShader) { fShaderCaps->fVertexIDSupport = false; } // http://crbug.com/1197152 // http://b/187364475 // We could limit this < 1.13 on ChromeOS but we don't really have a good way to detect // ChromeOS from here. if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue && ctxInfo.driver() == GrGLDriver::kImagination && ctxInfo.driverVersion() < GR_GL_DRIVER_VER(1, 16, 0)) { fShaderCaps->fShaderDerivativeSupport = false; } if (ctxInfo.driver() == GrGLDriver::kFreedreno) { formatWorkarounds->fDisallowUnorm16Transfers = true; } // If we keep rebind the same texture to an FBO's color attachment but changing between MSAA and // non-MSAA we get corruption in the texture contents. Binding texture 0 and then rebinding the // original texture avoids this. // This was found on Nexus 5, Android 6.0.1, build M4B30Z // GL_VENDOR : "Qualcomm" // GL_RENDERER: "Adreno (TM) 330" // GL_VERSION : "OpenGL ES 3.0 V@127.0 AU@ (GIT@I96aee987eb)" // // We also so alpha blending issues on these GMs skbug_9819, p3_ovals, p3 on Mali-Gxx devices // The GM issues were observed on a Galaxy S9 running Android 10: // GL_VERSION : "OpenGL ES 3.2 v1.r19p0-01rel0.###other-sha0123456789ABCDEF0###" // GL_RENDERER: "Mali-G72" // GL_VENDOR : "ARM" // and a P30 running Android 9: // GL_VERSION : "OpenGL ES 3.2 v1.r16p0-01rel0.4aee637066427cbcd25297324dba15f5" // GL_RENDERER: "Mali-G76" // GL_VENDOR : "ARM" // but *not* a Galaxy S20 running Android 10: // GL_VERSION : "OpenGL ES 3.2 v1.r20p0-01rel0.###other-sha0123456789ABCDEF0###" // GL_RENDERER: "Mali-G77" // GL_VENDOR : "ARM" // It's unclear if the difference is driver version or Bifrost vs Valhall. The workaround is // fairly trivial so just applying to all Bifrost and Valhall. if ((ctxInfo.renderer() == GrGLRenderer::kAdreno3xx && ctxInfo.driver() == GrGLDriver::kQualcomm) || (ctxInfo.renderer() == GrGLRenderer::kMaliG)) { fBindTexture0WhenChangingTextureFBOMultisampleCount = true; } // skbug.com/12640 // We found that on the Galaxy S7 the TransferPixelsTo test would fail after adding // glCheckFramebufferStatus() checks when making new FBOs. Note that the returned status was // GL_FRAMEBUFFER_COMPLETE. Switching the color binding to ID 0 and back to the original // afterwards works around the issue. // GL_VENDOR : "ARM" // GL_RENDERER: "Mali-T880" // GL_VERSION : "OpenGL ES 3.2 v1.r22p0-01rel0.f294e54ceb2cb2d81039204fa4b0402e" // // This *didn't* reproduce on a Kevin ChromeOS device: // GL_VENDOR : "ARM" // GL_RENDERER: "Mali-T860" // GL_VERSION : "OpenGL ES 3.2 v1.r26p0-01rel0.217d2597f6bd19b169343737782e56e3" if (ctxInfo.renderer() == GrGLRenderer::kMaliT && ctxInfo.driver() == GrGLDriver::kARM && ctxInfo.driverVersion() < GR_GL_DRIVER_VER(1, 26, 0)) { fRebindColorAttachmentAfterCheckFramebufferStatus = true; } } void GrGLCaps::onApplyOptionsOverrides(const GrContextOptions& options) { if (options.fDisableDriverCorrectnessWorkarounds) { SkASSERT(!fDoManualMipmapping); SkASSERT(!fClearToBoundaryValuesIsBroken); SkASSERT(0 == fMaxInstancesPerDrawWithoutCrashing); SkASSERT(!fDrawArraysBaseVertexIsBroken); SkASSERT(!fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO); SkASSERT(!fUseDrawInsteadOfAllRenderTargetWrites); SkASSERT(!fRequiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines); SkASSERT(!fDontSetBaseOrMaxLevelForExternalTextures); SkASSERT(!fNeverDisableColorWrites); } if (options.fShaderCacheStrategy < GrContextOptions::ShaderCacheStrategy::kBackendBinary) { fProgramBinarySupport = false; } switch (options.fSkipGLErrorChecks) { case GrContextOptions::Enable::kNo: fSkipErrorChecks = false; break; case GrContextOptions::Enable::kYes: fSkipErrorChecks = true; break; case GrContextOptions::Enable::kDefault: break; } } bool GrGLCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const { if (fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO) { if (auto tex = static_cast(surface->asTexture())) { if (tex->hasBaseLevelBeenBoundToFBO()) { return false; } } } if (auto rt = surface->asRenderTarget()) { if (fUseDrawInsteadOfAllRenderTargetWrites) { return false; } if (rt->numSamples() > 1 && this->usesMSAARenderBuffers()) { return false; } return SkToBool(surface->asTexture()); } return true; } GrCaps::SurfaceReadPixelsSupport GrGLCaps::surfaceSupportsReadPixels( const GrSurface* surface) const { if (auto tex = static_cast(surface->asTexture())) { // We don't support reading pixels directly from EXTERNAL textures as it would require // binding the texture to a FBO. For now we also disallow reading back directly // from compressed textures. if (tex->target() == GR_GL_TEXTURE_EXTERNAL || GrGLFormatIsCompressed(tex->format())) { return SurfaceReadPixelsSupport::kCopyToTexture2D; } } else if (auto rt = static_cast(surface->asRenderTarget())) { // glReadPixels does not allow reading back from a MSAA framebuffer. If the underlying // GrSurface doesn't have a second FBO to resolve to then we must make a copy. if (rt->numSamples() > 1 && !rt->asTexture()) { return SurfaceReadPixelsSupport::kCopyToTexture2D; } } return SurfaceReadPixelsSupport::kSupported; } size_t offset_alignment_for_transfer_buffer(GrGLenum externalType) { // This switch is derived from a table titled "Pixel data type parameter values and the // corresponding GL data types" in the OpenGL spec (Table 8.2 in OpenGL 4.5). switch (externalType) { case GR_GL_UNSIGNED_BYTE: return sizeof(GrGLubyte); case GR_GL_BYTE: return sizeof(GrGLbyte); case GR_GL_UNSIGNED_SHORT: return sizeof(GrGLushort); case GR_GL_SHORT: return sizeof(GrGLshort); case GR_GL_UNSIGNED_INT: return sizeof(GrGLuint); case GR_GL_INT: return sizeof(GrGLint); case GR_GL_HALF_FLOAT: return sizeof(GrGLhalf); case GR_GL_HALF_FLOAT_OES: return sizeof(GrGLhalf); case GR_GL_FLOAT: return sizeof(GrGLfloat); case GR_GL_UNSIGNED_SHORT_5_6_5: return sizeof(GrGLushort); case GR_GL_UNSIGNED_SHORT_4_4_4_4: return sizeof(GrGLushort); case GR_GL_UNSIGNED_SHORT_5_5_5_1: return sizeof(GrGLushort); case GR_GL_UNSIGNED_INT_2_10_10_10_REV: return sizeof(GrGLuint); #if 0 // GL types we currently don't use. Here for future reference. case GR_GL_UNSIGNED_BYTE_3_3_2: return sizeof(GrGLubyte); case GR_GL_UNSIGNED_BYTE_2_3_3_REV: return sizeof(GrGLubyte); case GR_GL_UNSIGNED_SHORT_5_6_5_REV: return sizeof(GrGLushort); case GR_GL_UNSIGNED_SHORT_4_4_4_4_REV: return sizeof(GrGLushort); case GR_GL_UNSIGNED_SHORT_1_5_5_5_REV: return sizeof(GrGLushort); case GR_GL_UNSIGNED_INT_8_8_8_8: return sizeof(GrGLuint); case GR_GL_UNSIGNED_INT_8_8_8_8_REV: return sizeof(GrGLuint); case GR_GL_UNSIGNED_INT_10_10_10_2: return sizeof(GrGLuint); case GR_GL_UNSIGNED_INT_24_8: return sizeof(GrGLuint); case GR_GL_UNSIGNED_INT_10F_11F_11F_REV: return sizeof(GrGLuint); case GR_GL_UNSIGNED_INT_5_9_9_9_REV: return sizeof(GrGLuint); // This one is not corresponding to a GL data type and the spec just says it is 4. case GR_GL_FLOAT_32_UNSIGNED_INT_24_8_REV: return 4; #endif default: return 0; } } GrCaps::SupportedRead GrGLCaps::onSupportedReadPixelsColorType( GrColorType srcColorType, const GrBackendFormat& srcBackendFormat, GrColorType dstColorType) const { SkImage::CompressionType compression = GrBackendFormatToCompressionType(srcBackendFormat); if (compression != SkImage::CompressionType::kNone) { return {SkCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x : GrColorType::kRGBA_8888, 0}; } // We first try to find a supported read pixels GrColorType that matches the requested // dstColorType. If that doesn't exists we will use any valid read pixels GrColorType. GrCaps::SupportedRead fallbackRead = {GrColorType::kUnknown, 0}; const auto& formatInfo = this->getFormatInfo(srcBackendFormat.asGLFormat()); bool foundSrcCT = false; for (int i = 0; !foundSrcCT && i < formatInfo.fColorTypeInfoCount; ++i) { if (formatInfo.fColorTypeInfos[i].fColorType == srcColorType) { const ColorTypeInfo& ctInfo = formatInfo.fColorTypeInfos[i]; foundSrcCT = true; for (int j = 0; j < ctInfo.fExternalIOFormatCount; ++j) { const auto& ioInfo = ctInfo.fExternalIOFormats[j]; if (ioInfo.fExternalReadFormat != 0) { if (formatInfo.fHaveQueriedImplementationReadSupport || !ioInfo.fRequiresImplementationReadQuery) { GrGLenum transferOffsetAlignment = 0; if (formatInfo.fFlags & FormatInfo::kTransfers_Flag) { transferOffsetAlignment = offset_alignment_for_transfer_buffer(ioInfo.fExternalType); } if (ioInfo.fColorType == dstColorType) { return {dstColorType, transferOffsetAlignment}; } // Currently we just pick the first supported format that we find as our // fallback. if (fallbackRead.fColorType == GrColorType::kUnknown) { fallbackRead = {ioInfo.fColorType, transferOffsetAlignment}; } } } } } } return fallbackRead; } GrCaps::SupportedWrite GrGLCaps::supportedWritePixelsColorType(GrColorType surfaceColorType, const GrBackendFormat& surfaceFormat, GrColorType srcColorType) const { // We first try to find a supported write pixels GrColorType that matches the data's // srcColorType. If that doesn't exists we will use any supported GrColorType. GrColorType fallbackCT = GrColorType::kUnknown; const auto& formatInfo = this->getFormatInfo(surfaceFormat.asGLFormat()); bool foundSurfaceCT = false; size_t transferOffsetAlignment = 0; if (formatInfo.fFlags & FormatInfo::kTransfers_Flag) { transferOffsetAlignment = 1; } for (int i = 0; !foundSurfaceCT && i < formatInfo.fColorTypeInfoCount; ++i) { if (formatInfo.fColorTypeInfos[i].fColorType == surfaceColorType) { const ColorTypeInfo& ctInfo = formatInfo.fColorTypeInfos[i]; foundSurfaceCT = true; for (int j = 0; j < ctInfo.fExternalIOFormatCount; ++j) { const auto& ioInfo = ctInfo.fExternalIOFormats[j]; if (ioInfo.fExternalTexImageFormat != 0) { if (ioInfo.fColorType == srcColorType) { return {srcColorType, transferOffsetAlignment}; } // Currently we just pick the first supported format that we find as our // fallback. if (fallbackCT == GrColorType::kUnknown) { fallbackCT = ioInfo.fColorType; } } } } } return {fallbackCT, transferOffsetAlignment}; } bool GrGLCaps::onIsWindowRectanglesSupportedForRT(const GrBackendRenderTarget& backendRT) const { GrGLFramebufferInfo fbInfo; SkAssertResult(backendRT.getGLFramebufferInfo(&fbInfo)); // Window Rectangles are not supported for FBO 0; return fbInfo.fFBOID != 0; } bool GrGLCaps::isFormatSRGB(const GrBackendFormat& format) const { return format.asGLFormat() == GrGLFormat::kSRGB8_ALPHA8; } bool GrGLCaps::isFormatTexturable(const GrBackendFormat& format, GrTextureType textureType) const { if (textureType == GrTextureType::kRectangle && !this->rectangleTextureSupport()) { return false; } return this->isFormatTexturable(format.asGLFormat()); } bool GrGLCaps::isFormatTexturable(GrGLFormat format) const { const FormatInfo& info = this->getFormatInfo(format); return SkToBool(info.fFlags & FormatInfo::kTexturable_Flag); } bool GrGLCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format, int sampleCount) const { if (format.textureType() == GrTextureType::kRectangle && !this->rectangleTextureSupport()) { return false; } if (format.textureType() == GrTextureType::kExternal) { return false; } auto f = format.asGLFormat(); const FormatInfo& info = this->getFormatInfo(f); if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) { return false; } return this->isFormatRenderable(f, sampleCount); } bool GrGLCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const { if (format.textureType() == GrTextureType::kRectangle && !this->rectangleTextureSupport()) { return false; } if (format.textureType() == GrTextureType::kExternal) { return false; } return this->isFormatRenderable(format.asGLFormat(), sampleCount); } int GrGLCaps::getRenderTargetSampleCount(int requestedCount, GrGLFormat format) const { const FormatInfo& info = this->getFormatInfo(format); int count = info.fColorSampleCounts.count(); if (!count) { return 0; } requestedCount = std::max(1, requestedCount); if (1 == requestedCount) { return info.fColorSampleCounts[0] == 1 ? 1 : 0; } for (int sampleCount : info.fColorSampleCounts) { if (sampleCount >= requestedCount) { if (fDriverBugWorkarounds.max_msaa_sample_count_4) { sampleCount = std::min(sampleCount, 4); } return sampleCount; } } return 0; } int GrGLCaps::maxRenderTargetSampleCount(GrGLFormat format) const { const FormatInfo& info = this->getFormatInfo(format); const auto& table = info.fColorSampleCounts; if (!table.count()) { return 0; } int count = table[table.count() - 1]; if (fDriverBugWorkarounds.max_msaa_sample_count_4) { count = std::min(count, 4); } return count; } bool GrGLCaps::canFormatBeFBOColorAttachment(GrGLFormat format) const { return SkToBool(this->getFormatInfo(format).fFlags & FormatInfo::kFBOColorAttachment_Flag); } bool GrGLCaps::isFormatCopyable(const GrBackendFormat& format) const { // In GL we have three ways to be able to copy. CopyTexImage, blit, and draw. CopyTexImage // requires the src to be an FBO attachment, blit requires both src and dst to be FBO // attachments, and draw requires the dst to be an FBO attachment. Thus to copy from and to // the same config, we need that config to be bindable to an FBO. return this->canFormatBeFBOColorAttachment(format.asGLFormat()); } bool GrGLCaps::formatSupportsTexStorage(GrGLFormat format) const { return SkToBool(this->getFormatInfo(format).fFlags & FormatInfo::kUseTexStorage_Flag); } bool GrGLCaps::shouldQueryImplementationReadSupport(GrGLFormat format) const { const auto& formatInfo = const_cast(this)->getFormatInfo(format); if (!formatInfo.fHaveQueriedImplementationReadSupport) { // Check whether we will actually learn anything useful. bool needQuery = false; for (int i = 0; i < formatInfo.fColorTypeInfoCount && !needQuery; ++i) { const auto& surfCTInfo = formatInfo.fColorTypeInfos[i]; for (int j = 0; j < surfCTInfo.fExternalIOFormatCount; ++j) { if (surfCTInfo.fExternalIOFormats[j].fRequiresImplementationReadQuery) { needQuery = true; break; } } } if (!needQuery) { // Pretend we already checked it. const_cast(formatInfo).fHaveQueriedImplementationReadSupport = true; } } return !formatInfo.fHaveQueriedImplementationReadSupport; } void GrGLCaps::didQueryImplementationReadSupport(GrGLFormat format, GrGLenum readFormat, GrGLenum readType) const { auto& formatInfo = const_cast(this)->getFormatInfo(format); for (int i = 0; i < formatInfo.fColorTypeInfoCount; ++i) { auto& surfCTInfo = formatInfo.fColorTypeInfos[i]; for (int j = 0; j < surfCTInfo.fExternalIOFormatCount; ++j) { auto& readCTInfo = surfCTInfo.fExternalIOFormats[j]; if (readCTInfo.fRequiresImplementationReadQuery) { if (readCTInfo.fExternalReadFormat != readFormat || readCTInfo.fExternalType != readType) { // Don't zero out fExternalType. It's also used for writing data to the texture! readCTInfo.fExternalReadFormat = 0; } } } } formatInfo.fHaveQueriedImplementationReadSupport = true; } bool GrGLCaps::onAreColorTypeAndFormatCompatible(GrColorType ct, const GrBackendFormat& format) const { GrGLFormat glFormat = format.asGLFormat(); const auto& info = this->getFormatInfo(glFormat); for (int i = 0; i < info.fColorTypeInfoCount; ++i) { if (info.fColorTypeInfos[i].fColorType == ct) { return true; } } return false; } GrBackendFormat GrGLCaps::onGetDefaultBackendFormat(GrColorType ct) const { auto format = this->getFormatFromColorType(ct); if (format == GrGLFormat::kUnknown) { return {}; } return GrBackendFormat::MakeGL(GrGLFormatToEnum(format), GR_GL_TEXTURE_2D); } GrBackendFormat GrGLCaps::getBackendFormatFromCompressionType( SkImage::CompressionType compressionType) const { switch (compressionType) { case SkImage::CompressionType::kNone: return {}; case SkImage::CompressionType::kETC2_RGB8_UNORM: // if ETC2 is available default to that format if (this->isFormatTexturable(GrGLFormat::kCOMPRESSED_RGB8_ETC2)) { return GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGB8_ETC2, GR_GL_TEXTURE_2D); } if (this->isFormatTexturable(GrGLFormat::kCOMPRESSED_ETC1_RGB8)) { return GrBackendFormat::MakeGL(GR_GL_COMPRESSED_ETC1_RGB8, GR_GL_TEXTURE_2D); } return {}; case SkImage::CompressionType::kBC1_RGB8_UNORM: if (this->isFormatTexturable(GrGLFormat::kCOMPRESSED_RGB8_BC1)) { return GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGB_S3TC_DXT1_EXT, GR_GL_TEXTURE_2D); } return {}; case SkImage::CompressionType::kBC1_RGBA8_UNORM: if (this->isFormatTexturable(GrGLFormat::kCOMPRESSED_RGBA8_BC1)) { return GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GR_GL_TEXTURE_2D); } return {}; } SkUNREACHABLE; } GrSwizzle GrGLCaps::onGetReadSwizzle(const GrBackendFormat& format, GrColorType colorType) const { GrGLFormat glFormat = format.asGLFormat(); const auto& info = this->getFormatInfo(glFormat); for (int i = 0; i < info.fColorTypeInfoCount; ++i) { const auto& ctInfo = info.fColorTypeInfos[i]; if (ctInfo.fColorType == colorType) { return ctInfo.fReadSwizzle; } } SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.", (int)colorType, (int)glFormat); return {}; } GrSwizzle GrGLCaps::getWriteSwizzle(const GrBackendFormat& format, GrColorType colorType) const { const auto& info = this->getFormatInfo(format.asGLFormat()); for (int i = 0; i < info.fColorTypeInfoCount; ++i) { const auto& ctInfo = info.fColorTypeInfos[i]; if (ctInfo.fColorType == colorType) { return ctInfo.fWriteSwizzle; } } SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.", (int)colorType, (int)format.asGLFormat()); return {}; } GrDstSampleFlags GrGLCaps::onGetDstSampleFlagsForProxy(const GrRenderTargetProxy* rt) const { if (rt->asTextureProxy()) { return GrDstSampleFlags::kRequiresTextureBarrier; } return GrDstSampleFlags::kNone; } bool GrGLCaps::onSupportsDynamicMSAA(const GrRenderTargetProxy* rtProxy) const { return !fDisallowDynamicMSAA; } uint64_t GrGLCaps::computeFormatKey(const GrBackendFormat& format) const { auto glFormat = format.asGLFormat(); return (uint64_t)(glFormat); } GrProgramDesc GrGLCaps::makeDesc(GrRenderTarget* /* rt */, const GrProgramInfo& programInfo, ProgramDescOverrideFlags overrideFlags) const { SkASSERT(overrideFlags == ProgramDescOverrideFlags::kNone); GrProgramDesc desc; GrProgramDesc::Build(&desc, programInfo, *this); return desc; } #if GR_TEST_UTILS std::vector GrGLCaps::getTestingCombinations() const { std::vector combos = { { GrColorType::kAlpha_8, GrBackendFormat::MakeGL(GR_GL_ALPHA8, GR_GL_TEXTURE_2D) }, { GrColorType::kAlpha_8, GrBackendFormat::MakeGL(GR_GL_R8, GR_GL_TEXTURE_2D) }, { GrColorType::kBGR_565, GrBackendFormat::MakeGL(GR_GL_RGB565, GR_GL_TEXTURE_2D) }, { GrColorType::kABGR_4444, GrBackendFormat::MakeGL(GR_GL_RGBA4, GR_GL_TEXTURE_2D) }, { GrColorType::kRGBA_8888, GrBackendFormat::MakeGL(GR_GL_RGBA8, GR_GL_TEXTURE_2D) }, { GrColorType::kRGBA_8888_SRGB, GrBackendFormat::MakeGL(GR_GL_SRGB8_ALPHA8, GR_GL_TEXTURE_2D) }, { GrColorType::kRGB_888x, GrBackendFormat::MakeGL(GR_GL_RGBA8, GR_GL_TEXTURE_2D) }, { GrColorType::kRGB_888x, GrBackendFormat::MakeGL(GR_GL_RGB8, GR_GL_TEXTURE_2D) }, { GrColorType::kRGB_888x, GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGB8_ETC2, GR_GL_TEXTURE_2D) }, { GrColorType::kRGB_888x, GrBackendFormat::MakeGL(GR_GL_COMPRESSED_ETC1_RGB8, GR_GL_TEXTURE_2D) }, { GrColorType::kRGB_888x, GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGB_S3TC_DXT1_EXT, GR_GL_TEXTURE_2D) }, { GrColorType::kRGBA_8888, GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GR_GL_TEXTURE_2D) }, { GrColorType::kRG_88, GrBackendFormat::MakeGL(GR_GL_RG8, GR_GL_TEXTURE_2D) }, { GrColorType::kRGBA_1010102, GrBackendFormat::MakeGL(GR_GL_RGB10_A2, GR_GL_TEXTURE_2D) }, { GrColorType::kGray_8, GrBackendFormat::MakeGL(GR_GL_LUMINANCE8, GR_GL_TEXTURE_2D) }, { GrColorType::kGray_8, GrBackendFormat::MakeGL(GR_GL_R8, GR_GL_TEXTURE_2D) }, { GrColorType::kGrayAlpha_88, GrBackendFormat::MakeGL(GR_GL_LUMINANCE8_ALPHA8, GR_GL_TEXTURE_2D) }, { GrColorType::kAlpha_F16, GrBackendFormat::MakeGL(GR_GL_R16F, GR_GL_TEXTURE_2D) }, { GrColorType::kAlpha_F16, GrBackendFormat::MakeGL(GR_GL_LUMINANCE16F, GR_GL_TEXTURE_2D) }, { GrColorType::kRGBA_F16, GrBackendFormat::MakeGL(GR_GL_RGBA16F, GR_GL_TEXTURE_2D) }, { GrColorType::kRGBA_F16_Clamped, GrBackendFormat::MakeGL(GR_GL_RGBA16F, GR_GL_TEXTURE_2D) }, { GrColorType::kAlpha_16, GrBackendFormat::MakeGL(GR_GL_R16, GR_GL_TEXTURE_2D) }, { GrColorType::kRG_1616, GrBackendFormat::MakeGL(GR_GL_RG16, GR_GL_TEXTURE_2D) }, { GrColorType::kRGBA_16161616, GrBackendFormat::MakeGL(GR_GL_RGBA16, GR_GL_TEXTURE_2D) }, { GrColorType::kRG_F16, GrBackendFormat::MakeGL(GR_GL_RG16F, GR_GL_TEXTURE_2D) }, }; if (GR_IS_GR_GL(fStandard)) { combos.push_back({ GrColorType::kBGRA_8888, GrBackendFormat::MakeGL(GR_GL_RGBA8, GR_GL_TEXTURE_2D) }); combos.push_back({ GrColorType::kBGRA_1010102, GrBackendFormat::MakeGL(GR_GL_RGB10_A2, GR_GL_TEXTURE_2D) }); } else { SkASSERT(GR_IS_GR_GL_ES(fStandard) || GR_IS_GR_WEBGL(fStandard)); combos.push_back({ GrColorType::kBGRA_8888, GrBackendFormat::MakeGL(GR_GL_BGRA8, GR_GL_TEXTURE_2D) }); } if (this->rectangleTextureSupport()) { size_t count2D = combos.size(); for (size_t i = 0; i < count2D; ++i) { auto combo2D = combos[i]; GrGLenum formatEnum = GrGLFormatToEnum(combo2D.fFormat.asGLFormat()); combos.push_back({combo2D.fColorType, GrBackendFormat::MakeGL(formatEnum, GR_GL_TEXTURE_RECTANGLE)}); } } return combos; } #endif