/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/vk/GrVkAMDMemoryAllocator.h" #include "include/gpu/vk/GrVkExtensions.h" #include "src/core/SkTraceEvent.h" #include "src/gpu/vk/GrVkInterface.h" #include "src/gpu/vk/GrVkMemory.h" #include "src/gpu/vk/GrVkUtil.h" #ifndef SK_USE_VMA sk_sp GrVkAMDMemoryAllocator::Make(VkInstance instance, VkPhysicalDevice physicalDevice, VkDevice device, uint32_t physicalDeviceVersion, const GrVkExtensions* extensions, sk_sp interface, const GrVkCaps* caps) { return nullptr; } #else sk_sp GrVkAMDMemoryAllocator::Make(VkInstance instance, VkPhysicalDevice physicalDevice, VkDevice device, uint32_t physicalDeviceVersion, const GrVkExtensions* extensions, sk_sp interface, const GrVkCaps* caps) { #define GR_COPY_FUNCTION(NAME) functions.vk##NAME = interface->fFunctions.f##NAME #define GR_COPY_FUNCTION_KHR(NAME) functions.vk##NAME##KHR = interface->fFunctions.f##NAME VmaVulkanFunctions functions; GR_COPY_FUNCTION(GetPhysicalDeviceProperties); GR_COPY_FUNCTION(GetPhysicalDeviceMemoryProperties); GR_COPY_FUNCTION(AllocateMemory); GR_COPY_FUNCTION(FreeMemory); GR_COPY_FUNCTION(MapMemory); GR_COPY_FUNCTION(UnmapMemory); GR_COPY_FUNCTION(FlushMappedMemoryRanges); GR_COPY_FUNCTION(InvalidateMappedMemoryRanges); GR_COPY_FUNCTION(BindBufferMemory); GR_COPY_FUNCTION(BindImageMemory); GR_COPY_FUNCTION(GetBufferMemoryRequirements); GR_COPY_FUNCTION(GetImageMemoryRequirements); GR_COPY_FUNCTION(CreateBuffer); GR_COPY_FUNCTION(DestroyBuffer); GR_COPY_FUNCTION(CreateImage); GR_COPY_FUNCTION(DestroyImage); GR_COPY_FUNCTION(CmdCopyBuffer); GR_COPY_FUNCTION_KHR(GetBufferMemoryRequirements2); GR_COPY_FUNCTION_KHR(GetImageMemoryRequirements2); GR_COPY_FUNCTION_KHR(BindBufferMemory2); GR_COPY_FUNCTION_KHR(BindImageMemory2); GR_COPY_FUNCTION_KHR(GetPhysicalDeviceMemoryProperties2); VmaAllocatorCreateInfo info; info.flags = VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT; if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || (extensions->hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) && extensions->hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1))) { info.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; } info.physicalDevice = physicalDevice; info.device = device; // 4MB was picked for the size here by looking at memory usage of Android apps and runs of DM. // It seems to be a good compromise of not wasting unused allocated space and not making too // many small allocations. The AMD allocator will start making blocks at 1/8 the max size and // builds up block size as needed before capping at the max set here. info.preferredLargeHeapBlockSize = 4*1024*1024; info.pAllocationCallbacks = nullptr; info.pDeviceMemoryCallbacks = nullptr; info.frameInUseCount = 0; info.pHeapSizeLimit = nullptr; info.pVulkanFunctions = &functions; info.pRecordSettings = nullptr; info.instance = instance; info.vulkanApiVersion = physicalDeviceVersion; VmaAllocator allocator; vmaCreateAllocator(&info, &allocator); return sk_sp(new GrVkAMDMemoryAllocator( allocator, std::move(interface), caps->mustUseCoherentHostVisibleMemory())); } GrVkAMDMemoryAllocator::GrVkAMDMemoryAllocator(VmaAllocator allocator, sk_sp interface, bool mustUseCoherentHostVisibleMemory) : fAllocator(allocator) , fInterface(std::move(interface)) , fMustUseCoherentHostVisibleMemory(mustUseCoherentHostVisibleMemory) {} GrVkAMDMemoryAllocator::~GrVkAMDMemoryAllocator() { vmaDestroyAllocator(fAllocator); fAllocator = VK_NULL_HANDLE; } VkResult GrVkAMDMemoryAllocator::allocateImageMemory(VkImage image, AllocationPropertyFlags flags, GrVkBackendMemory* backendMemory) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); VmaAllocationCreateInfo info; info.flags = 0; info.usage = VMA_MEMORY_USAGE_UNKNOWN; info.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; info.preferredFlags = 0; info.memoryTypeBits = 0; info.pool = VK_NULL_HANDLE; info.pUserData = nullptr; if (AllocationPropertyFlags::kDedicatedAllocation & flags) { info.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; } if (AllocationPropertyFlags::kLazyAllocation & flags) { info.requiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; } if (AllocationPropertyFlags::kProtected & flags) { info.requiredFlags |= VK_MEMORY_PROPERTY_PROTECTED_BIT; } VmaAllocation allocation; VkResult result = vmaAllocateMemoryForImage(fAllocator, image, &info, &allocation, nullptr); if (VK_SUCCESS == result) { *backendMemory = (GrVkBackendMemory)allocation; } return result; } VkResult GrVkAMDMemoryAllocator::allocateBufferMemory(VkBuffer buffer, BufferUsage usage, AllocationPropertyFlags flags, GrVkBackendMemory* backendMemory) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); VmaAllocationCreateInfo info; info.flags = 0; info.usage = VMA_MEMORY_USAGE_UNKNOWN; info.memoryTypeBits = 0; info.pool = VK_NULL_HANDLE; info.pUserData = nullptr; switch (usage) { case BufferUsage::kGpuOnly: info.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; info.preferredFlags = 0; break; case BufferUsage::kCpuWritesGpuReads: // When doing cpu writes and gpu reads the general rule of thumb is to use coherent // memory. Though this depends on the fact that we are not doing any cpu reads and the // cpu writes are sequential. For sparse writes we'd want cpu cached memory, however we // don't do these types of writes in Skia. // // TODO: In the future there may be times where specific types of memory could benefit // from a coherent and cached memory. Typically these allow for the gpu to read cpu // writes from the cache without needing to flush the writes throughout the cache. The // reverse is not true and GPU writes tend to invalidate the cache regardless. Also // these gpu cache read access are typically lower bandwidth than non-cached memory. // For now Skia doesn't really have a need or want of this type of memory. But if we // ever do we could pass in an AllocationPropertyFlag that requests the cached property. info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; info.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; break; case BufferUsage::kTransfersFromCpuToGpu: info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; break; case BufferUsage::kTransfersFromGpuToCpu: info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; info.preferredFlags = VK_MEMORY_PROPERTY_HOST_CACHED_BIT; break; } if (fMustUseCoherentHostVisibleMemory && (info.requiredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) { info.requiredFlags |= VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; } if (AllocationPropertyFlags::kDedicatedAllocation & flags) { info.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; } if ((AllocationPropertyFlags::kLazyAllocation & flags) && BufferUsage::kGpuOnly == usage) { info.preferredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; } if (AllocationPropertyFlags::kPersistentlyMapped & flags) { SkASSERT(BufferUsage::kGpuOnly != usage); info.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT; } VmaAllocation allocation; VkResult result = vmaAllocateMemoryForBuffer(fAllocator, buffer, &info, &allocation, nullptr); if (VK_SUCCESS == result) { *backendMemory = (GrVkBackendMemory)allocation; } return result; } void GrVkAMDMemoryAllocator::freeMemory(const GrVkBackendMemory& memoryHandle) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); const VmaAllocation allocation = (const VmaAllocation)memoryHandle; vmaFreeMemory(fAllocator, allocation); } void GrVkAMDMemoryAllocator::getAllocInfo(const GrVkBackendMemory& memoryHandle, GrVkAlloc* alloc) const { const VmaAllocation allocation = (const VmaAllocation)memoryHandle; VmaAllocationInfo vmaInfo; vmaGetAllocationInfo(fAllocator, allocation, &vmaInfo); VkMemoryPropertyFlags memFlags; vmaGetMemoryTypeProperties(fAllocator, vmaInfo.memoryType, &memFlags); uint32_t flags = 0; if (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT & memFlags) { flags |= GrVkAlloc::kMappable_Flag; } if (!SkToBool(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT & memFlags)) { flags |= GrVkAlloc::kNoncoherent_Flag; } if (VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT & memFlags) { flags |= GrVkAlloc::kLazilyAllocated_Flag; } alloc->fMemory = vmaInfo.deviceMemory; alloc->fOffset = vmaInfo.offset; alloc->fSize = vmaInfo.size; alloc->fFlags = flags; alloc->fBackendMemory = memoryHandle; } VkResult GrVkAMDMemoryAllocator::mapMemory(const GrVkBackendMemory& memoryHandle, void** data) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); const VmaAllocation allocation = (const VmaAllocation)memoryHandle; return vmaMapMemory(fAllocator, allocation, data); } void GrVkAMDMemoryAllocator::unmapMemory(const GrVkBackendMemory& memoryHandle) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); const VmaAllocation allocation = (const VmaAllocation)memoryHandle; vmaUnmapMemory(fAllocator, allocation); } VkResult GrVkAMDMemoryAllocator::flushMemory(const GrVkBackendMemory& memoryHandle, VkDeviceSize offset, VkDeviceSize size) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); const VmaAllocation allocation = (const VmaAllocation)memoryHandle; return vmaFlushAllocation(fAllocator, allocation, offset, size); } VkResult GrVkAMDMemoryAllocator::invalidateMemory(const GrVkBackendMemory& memoryHandle, VkDeviceSize offset, VkDeviceSize size) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); const VmaAllocation allocation = (const VmaAllocation)memoryHandle; return vmaInvalidateAllocation(fAllocator, allocation, offset, size); } uint64_t GrVkAMDMemoryAllocator::totalUsedMemory() const { VmaStats stats; vmaCalculateStats(fAllocator, &stats); return stats.total.usedBytes; } uint64_t GrVkAMDMemoryAllocator::totalAllocatedMemory() const { VmaStats stats; vmaCalculateStats(fAllocator, &stats); return stats.total.usedBytes + stats.total.unusedBytes; } #endif // SK_USE_VMA