/*------------------------------------------------------------------------- * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2015 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Api Feature Query tests *//*--------------------------------------------------------------------*/ #include "vktApiFeatureInfo.hpp" #include "vktTestCaseUtil.hpp" #include "vktTestGroupUtil.hpp" #include "vktCustomInstancesDevices.hpp" #include "vkPlatform.hpp" #include "vkStrUtil.hpp" #include "vkRef.hpp" #include "vkRefUtil.hpp" #include "vkDeviceUtil.hpp" #include "vkQueryUtil.hpp" #include "vkImageUtil.hpp" #include "vkApiVersion.hpp" #include "tcuTestLog.hpp" #include "tcuFormatUtil.hpp" #include "tcuTextureUtil.hpp" #include "tcuResultCollector.hpp" #include "tcuCommandLine.hpp" #include "deUniquePtr.hpp" #include "deString.h" #include "deStringUtil.hpp" #include "deSTLUtil.hpp" #include "deMemory.h" #include "deMath.h" #include #include #include #include namespace vkt { namespace api { namespace { #include "vkApiExtensionDependencyInfo.inl" using namespace vk; using std::vector; using std::set; using std::string; using tcu::TestLog; using tcu::ScopedLogSection; const deUint32 DEUINT32_MAX = std::numeric_limits::max(); enum { GUARD_SIZE = 0x20, //!< Number of bytes to check GUARD_VALUE = 0xcd, //!< Data pattern }; static const VkDeviceSize MINIMUM_REQUIRED_IMAGE_RESOURCE_SIZE = (1LLU<<31); //!< Minimum value for VkImageFormatProperties::maxResourceSize (2GiB) enum LimitFormat { LIMIT_FORMAT_SIGNED_INT, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_FORMAT_FLOAT, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_FORMAT_BITMASK, LIMIT_FORMAT_LAST }; enum LimitType { LIMIT_TYPE_MIN, LIMIT_TYPE_MAX, LIMIT_TYPE_NONE, LIMIT_TYPE_LAST }; #define LIMIT(_X_) DE_OFFSET_OF(VkPhysicalDeviceLimits, _X_), (const char*)(#_X_) #define FEATURE(_X_) DE_OFFSET_OF(VkPhysicalDeviceFeatures, _X_) bool validateFeatureLimits(VkPhysicalDeviceProperties* properties, VkPhysicalDeviceFeatures* features, TestLog& log) { bool limitsOk = true; VkPhysicalDeviceLimits* limits = &properties->limits; deUint32 shaderStages = 3; deUint32 maxPerStageResourcesMin = deMin32(128, limits->maxPerStageDescriptorUniformBuffers + limits->maxPerStageDescriptorStorageBuffers + limits->maxPerStageDescriptorSampledImages + limits->maxPerStageDescriptorStorageImages + limits->maxPerStageDescriptorInputAttachments + limits->maxColorAttachments); if (features->tessellationShader) { shaderStages += 2; } if (features->geometryShader) { shaderStages++; } struct FeatureLimitTable { deUint32 offset; const char* name; deUint32 uintVal; //!< Format is UNSIGNED_INT deInt32 intVal; //!< Format is SIGNED_INT deUint64 deviceSizeVal; //!< Format is DEVICE_SIZE float floatVal; //!< Format is FLOAT LimitFormat format; LimitType type; deInt32 unsuppTableNdx; deBool pot; } featureLimitTable[] = //!< Based on 1.0.28 Vulkan spec { { LIMIT(maxImageDimension1D), 4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxImageDimension2D), 4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxImageDimension3D), 256, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxImageDimensionCube), 4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxImageArrayLayers), 256, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxTexelBufferElements), 65536, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxUniformBufferRange), 16384, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxStorageBufferRange), 134217728, 0, 0, 0, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxPushConstantsSize), 128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxMemoryAllocationCount), 4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxSamplerAllocationCount), 4000, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(bufferImageGranularity), 0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1, false }, { LIMIT(bufferImageGranularity), 0, 0, 131072, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1, false }, { LIMIT(sparseAddressSpaceSize), 0, 0, 2UL*1024*1024*1024, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxBoundDescriptorSets), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxPerStageDescriptorSamplers), 16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxPerStageDescriptorUniformBuffers), 12, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxPerStageDescriptorStorageBuffers), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxPerStageDescriptorSampledImages), 16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxPerStageDescriptorStorageImages), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxPerStageDescriptorInputAttachments), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxPerStageResources), maxPerStageResourcesMin, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxDescriptorSetSamplers), shaderStages * 16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxDescriptorSetUniformBuffers), shaderStages * 12, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxDescriptorSetUniformBuffersDynamic), 8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxDescriptorSetStorageBuffers), shaderStages * 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxDescriptorSetStorageBuffersDynamic), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxDescriptorSetSampledImages), shaderStages * 16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxDescriptorSetStorageImages), shaderStages * 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxDescriptorSetInputAttachments), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxVertexInputAttributes), 16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxVertexInputBindings), 16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxVertexInputAttributeOffset), 2047, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxVertexInputBindingStride), 2048, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxVertexOutputComponents), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxTessellationGenerationLevel), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxTessellationPatchSize), 32, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxTessellationControlPerVertexInputComponents), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxTessellationControlPerVertexOutputComponents), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxTessellationControlPerPatchOutputComponents), 120, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxTessellationControlTotalOutputComponents), 2048, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxTessellationEvaluationInputComponents), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxTessellationEvaluationOutputComponents), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxGeometryShaderInvocations), 32, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxGeometryInputComponents), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxGeometryOutputComponents), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxGeometryOutputVertices), 256, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxGeometryTotalOutputComponents), 1024, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxFragmentInputComponents), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxFragmentOutputAttachments), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxFragmentDualSrcAttachments), 1, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxFragmentCombinedOutputResources), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxComputeSharedMemorySize), 16384, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxComputeWorkGroupCount[0]), 65535, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxComputeWorkGroupCount[1]), 65535, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxComputeWorkGroupCount[2]), 65535, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxComputeWorkGroupInvocations), 128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxComputeWorkGroupSize[0]), 128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxComputeWorkGroupSize[1]), 128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxComputeWorkGroupSize[2]), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(subPixelPrecisionBits), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(subTexelPrecisionBits), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(mipmapPrecisionBits), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxDrawIndexedIndexValue), (deUint32)~0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxDrawIndirectCount), 65535, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxSamplerLodBias), 0, 0, 0, 2.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxSamplerAnisotropy), 0, 0, 0, 16.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxViewports), 16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxViewportDimensions[0]), 4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(maxViewportDimensions[1]), 4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1, false }, { LIMIT(viewportBoundsRange[0]), 0, 0, 0, -8192.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1, false }, { LIMIT(viewportBoundsRange[1]), 0, 0, 0, 8191.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(viewportSubPixelBits), 0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(minMemoryMapAlignment), 64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(minTexelBufferOffsetAlignment), 0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1, true }, { LIMIT(minTexelBufferOffsetAlignment), 0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1, true }, { LIMIT(minUniformBufferOffsetAlignment), 0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1, true }, { LIMIT(minUniformBufferOffsetAlignment), 0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1, true }, { LIMIT(minStorageBufferOffsetAlignment), 0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1, true }, { LIMIT(minStorageBufferOffsetAlignment), 0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1, true }, { LIMIT(minTexelOffset), 0, -8, 0, 0.0f, LIMIT_FORMAT_SIGNED_INT, LIMIT_TYPE_MAX, -1, false }, { LIMIT(maxTexelOffset), 7, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(minTexelGatherOffset), 0, -8, 0, 0.0f, LIMIT_FORMAT_SIGNED_INT, LIMIT_TYPE_MAX, -1, false }, { LIMIT(maxTexelGatherOffset), 7, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(minInterpolationOffset), 0, 0, 0, -0.5f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1, false }, { LIMIT(maxInterpolationOffset), 0, 0, 0, 0.5f - (1.0f/deFloatPow(2.0f, (float)limits->subPixelInterpolationOffsetBits)), LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(subPixelInterpolationOffsetBits), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxFramebufferWidth), 4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxFramebufferHeight), 4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxFramebufferLayers), 0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(framebufferColorSampleCounts), VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1, false }, { LIMIT(framebufferDepthSampleCounts), VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1, false }, { LIMIT(framebufferStencilSampleCounts), VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1, false }, { LIMIT(framebufferNoAttachmentsSampleCounts), VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxColorAttachments), 4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(sampledImageColorSampleCounts), VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1, false }, { LIMIT(sampledImageIntegerSampleCounts), VK_SAMPLE_COUNT_1_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1, false }, { LIMIT(sampledImageDepthSampleCounts), VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1, false }, { LIMIT(sampledImageStencilSampleCounts), VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1, false }, { LIMIT(storageImageSampleCounts), VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxSampleMaskWords), 1, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(timestampComputeAndGraphics), 0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1, false }, { LIMIT(timestampPeriod), 0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1, false }, { LIMIT(maxClipDistances), 8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxCullDistances), 8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(maxCombinedClipAndCullDistances), 8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(discreteQueuePriorities), 2, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(pointSizeRange[0]), 0, 0, 0, 0.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(pointSizeRange[0]), 0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1, false }, { LIMIT(pointSizeRange[1]), 0, 0, 0, 64.0f - limits->pointSizeGranularity , LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(lineWidthRange[0]), 0, 0, 0, 0.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(lineWidthRange[0]), 0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1, false }, { LIMIT(lineWidthRange[1]), 0, 0, 0, 8.0f - limits->lineWidthGranularity, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1, false }, { LIMIT(pointSizeGranularity), 0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1, false }, { LIMIT(lineWidthGranularity), 0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1, false }, { LIMIT(strictLines), 0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1, false }, { LIMIT(standardSampleLocations), 0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1, false }, { LIMIT(optimalBufferCopyOffsetAlignment), 0, 0, 0, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_NONE, -1, true }, { LIMIT(optimalBufferCopyRowPitchAlignment), 0, 0, 0, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_NONE, -1, true }, { LIMIT(nonCoherentAtomSize), 0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1, true }, { LIMIT(nonCoherentAtomSize), 0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1, true }, }; const struct UnsupportedFeatureLimitTable { deUint32 limitOffset; const char* name; deUint32 featureOffset; deUint32 uintVal; //!< Format is UNSIGNED_INT deInt32 intVal; //!< Format is SIGNED_INT deUint64 deviceSizeVal; //!< Format is DEVICE_SIZE float floatVal; //!< Format is FLOAT } unsupportedFeatureTable[] = { { LIMIT(sparseAddressSpaceSize), FEATURE(sparseBinding), 0, 0, 0, 0.0f }, { LIMIT(maxTessellationGenerationLevel), FEATURE(tessellationShader), 0, 0, 0, 0.0f }, { LIMIT(maxTessellationPatchSize), FEATURE(tessellationShader), 0, 0, 0, 0.0f }, { LIMIT(maxTessellationControlPerVertexInputComponents), FEATURE(tessellationShader), 0, 0, 0, 0.0f }, { LIMIT(maxTessellationControlPerVertexOutputComponents), FEATURE(tessellationShader), 0, 0, 0, 0.0f }, { LIMIT(maxTessellationControlPerPatchOutputComponents), FEATURE(tessellationShader), 0, 0, 0, 0.0f }, { LIMIT(maxTessellationControlTotalOutputComponents), FEATURE(tessellationShader), 0, 0, 0, 0.0f }, { LIMIT(maxTessellationEvaluationInputComponents), FEATURE(tessellationShader), 0, 0, 0, 0.0f }, { LIMIT(maxTessellationEvaluationOutputComponents), FEATURE(tessellationShader), 0, 0, 0, 0.0f }, { LIMIT(maxGeometryShaderInvocations), FEATURE(geometryShader), 0, 0, 0, 0.0f }, { LIMIT(maxGeometryInputComponents), FEATURE(geometryShader), 0, 0, 0, 0.0f }, { LIMIT(maxGeometryOutputComponents), FEATURE(geometryShader), 0, 0, 0, 0.0f }, { LIMIT(maxGeometryOutputVertices), FEATURE(geometryShader), 0, 0, 0, 0.0f }, { LIMIT(maxGeometryTotalOutputComponents), FEATURE(geometryShader), 0, 0, 0, 0.0f }, { LIMIT(maxFragmentDualSrcAttachments), FEATURE(dualSrcBlend), 0, 0, 0, 0.0f }, { LIMIT(maxDrawIndexedIndexValue), FEATURE(fullDrawIndexUint32), (1<<24)-1, 0, 0, 0.0f }, { LIMIT(maxDrawIndirectCount), FEATURE(multiDrawIndirect), 1, 0, 0, 0.0f }, { LIMIT(maxSamplerAnisotropy), FEATURE(samplerAnisotropy), 1, 0, 0, 0.0f }, { LIMIT(maxViewports), FEATURE(multiViewport), 1, 0, 0, 0.0f }, { LIMIT(minTexelGatherOffset), FEATURE(shaderImageGatherExtended), 0, 0, 0, 0.0f }, { LIMIT(maxTexelGatherOffset), FEATURE(shaderImageGatherExtended), 0, 0, 0, 0.0f }, { LIMIT(minInterpolationOffset), FEATURE(sampleRateShading), 0, 0, 0, 0.0f }, { LIMIT(maxInterpolationOffset), FEATURE(sampleRateShading), 0, 0, 0, 0.0f }, { LIMIT(subPixelInterpolationOffsetBits), FEATURE(sampleRateShading), 0, 0, 0, 0.0f }, { LIMIT(storageImageSampleCounts), FEATURE(shaderStorageImageMultisample), VK_SAMPLE_COUNT_1_BIT, 0, 0, 0.0f }, { LIMIT(maxClipDistances), FEATURE(shaderClipDistance), 0, 0, 0, 0.0f }, { LIMIT(maxCullDistances), FEATURE(shaderCullDistance), 0, 0, 0, 0.0f }, { LIMIT(maxCombinedClipAndCullDistances), FEATURE(shaderClipDistance), 0, 0, 0, 0.0f }, { LIMIT(pointSizeRange[0]), FEATURE(largePoints), 0, 0, 0, 1.0f }, { LIMIT(pointSizeRange[1]), FEATURE(largePoints), 0, 0, 0, 1.0f }, { LIMIT(lineWidthRange[0]), FEATURE(wideLines), 0, 0, 0, 1.0f }, { LIMIT(lineWidthRange[1]), FEATURE(wideLines), 0, 0, 0, 1.0f }, { LIMIT(pointSizeGranularity), FEATURE(largePoints), 0, 0, 0, 0.0f }, { LIMIT(lineWidthGranularity), FEATURE(wideLines), 0, 0, 0, 0.0f } }; log << TestLog::Message << *limits << TestLog::EndMessage; //!< First build a map from limit to unsupported table index for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) { for (deUint32 unsuppNdx = 0; unsuppNdx < DE_LENGTH_OF_ARRAY(unsupportedFeatureTable); unsuppNdx++) { if (unsupportedFeatureTable[unsuppNdx].limitOffset == featureLimitTable[ndx].offset) { featureLimitTable[ndx].unsuppTableNdx = unsuppNdx; break; } } } for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) { switch (featureLimitTable[ndx].format) { case LIMIT_FORMAT_UNSIGNED_INT: { deUint32 limitToCheck = featureLimitTable[ndx].uintVal; if (featureLimitTable[ndx].unsuppTableNdx != -1) { if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE) limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].uintVal; } if (featureLimitTable[ndx].pot) { if (!deIntIsPow2(*((deUint32*)((deUint8*)limits + featureLimitTable[ndx].offset)))) { log << TestLog::Message << "limit Validation failed " << featureLimitTable[ndx].name << " is not a power of two." << TestLog::EndMessage; limitsOk = false; } } if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN) { if (*((deUint32*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck) { log << TestLog::Message << "limit Validation failed " << featureLimitTable[ndx].name << " not valid-limit type MIN - actual is " << *((deUint32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage; limitsOk = false; } } else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX) { if (*((deUint32*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck) { log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name << " not valid-limit type MAX - actual is " << *((deUint32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage; limitsOk = false; } } break; } case LIMIT_FORMAT_FLOAT: { float limitToCheck = featureLimitTable[ndx].floatVal; if (featureLimitTable[ndx].unsuppTableNdx != -1) { if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE) limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].floatVal; } if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN) { if (*((float*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck) { log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name << " not valid-limit type MIN - actual is " << *((float*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage; limitsOk = false; } } else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX) { if (*((float*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck) { log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name << " not valid-limit type MAX actual is " << *((float*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage; limitsOk = false; } } break; } case LIMIT_FORMAT_SIGNED_INT: { deInt32 limitToCheck = featureLimitTable[ndx].intVal; if (featureLimitTable[ndx].unsuppTableNdx != -1) { if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE) limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].intVal; } if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN) { if (*((deInt32*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck) { log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name << " not valid-limit type MIN actual is " << *((deInt32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage; limitsOk = false; } } else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX) { if (*((deInt32*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck) { log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name << " not valid-limit type MAX actual is " << *((deInt32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage; limitsOk = false; } } break; } case LIMIT_FORMAT_DEVICE_SIZE: { deUint64 limitToCheck = featureLimitTable[ndx].deviceSizeVal; if (featureLimitTable[ndx].unsuppTableNdx != -1) { if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE) limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].deviceSizeVal; } if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN) { if (*((deUint64*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck) { log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name << " not valid-limit type MIN actual is " << *((deUint64*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage; limitsOk = false; } } else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX) { if (*((deUint64*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck) { log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name << " not valid-limit type MAX actual is " << *((deUint64*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage; limitsOk = false; } } break; } case LIMIT_FORMAT_BITMASK: { deUint32 limitToCheck = featureLimitTable[ndx].uintVal; if (featureLimitTable[ndx].unsuppTableNdx != -1) { if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE) limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].uintVal; } if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN) { if ((*((deUint32*)((deUint8*)limits+featureLimitTable[ndx].offset)) & limitToCheck) != limitToCheck) { log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name << " not valid-limit type bitmask actual is " << *((deUint64*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage; limitsOk = false; } } break; } default: DE_ASSERT(0); limitsOk = false; } } if (limits->maxFramebufferWidth > limits->maxViewportDimensions[0] || limits->maxFramebufferHeight > limits->maxViewportDimensions[1]) { log << TestLog::Message << "limit validation failed, maxFramebufferDimension of " << "[" << limits->maxFramebufferWidth << ", " << limits->maxFramebufferHeight << "] " << "is larger than maxViewportDimension of " << "[" << limits->maxViewportDimensions[0] << ", " << limits->maxViewportDimensions[1] << "]" << TestLog::EndMessage; limitsOk = false; } if (limits->viewportBoundsRange[0] > float(-2 * limits->maxViewportDimensions[0])) { log << TestLog::Message << "limit validation failed, viewPortBoundsRange[0] of " << limits->viewportBoundsRange[0] << "is larger than -2*maxViewportDimension[0] of " << -2*limits->maxViewportDimensions[0] << TestLog::EndMessage; limitsOk = false; } if (limits->viewportBoundsRange[1] < float(2 * limits->maxViewportDimensions[1] - 1)) { log << TestLog::Message << "limit validation failed, viewportBoundsRange[1] of " << limits->viewportBoundsRange[1] << "is less than 2*maxViewportDimension[1] of " << 2*limits->maxViewportDimensions[1] << TestLog::EndMessage; limitsOk = false; } return limitsOk; } void validateLimitsCheckSupport (Context& context) { if (!context.contextSupports(vk::ApiVersion(1, 2, 0))) TCU_THROW(NotSupportedError, "At least Vulkan 1.2 required to run test"); } typedef struct FeatureLimitTableItem_ { const void* cond; const char* condName; const void* ptr; const char* name; deUint32 uintVal; //!< Format is UNSIGNED_INT deInt32 intVal; //!< Format is SIGNED_INT deUint64 deviceSizeVal; //!< Format is DEVICE_SIZE float floatVal; //!< Format is FLOAT LimitFormat format; LimitType type; } FeatureLimitTableItem; template bool validateNumericLimit (const T limitToCheck, const T reportedValue, const LimitType limitType, const char* limitName, TestLog& log) { if (limitType == LIMIT_TYPE_MIN) { if (reportedValue < limitToCheck) { log << TestLog::Message << "Limit validation failed " << limitName << " reported value is " << reportedValue << " expected MIN " << limitToCheck << TestLog::EndMessage; return false; } log << TestLog::Message << limitName << "=" << reportedValue << " (>=" << limitToCheck << ")" << TestLog::EndMessage; } else if (limitType == LIMIT_TYPE_MAX) { if (reportedValue > limitToCheck) { log << TestLog::Message << "Limit validation failed " << limitName << " reported value is " << reportedValue << " expected MAX " << limitToCheck << TestLog::EndMessage; return false; } log << TestLog::Message << limitName << "=" << reportedValue << " (<=" << limitToCheck << ")" << TestLog::EndMessage; } return true; } template bool validateBitmaskLimit (const T limitToCheck, const T reportedValue, const LimitType limitType, const char* limitName, TestLog& log) { if (limitType == LIMIT_TYPE_MIN) { if ((reportedValue & limitToCheck) != limitToCheck) { log << TestLog::Message << "Limit validation failed " << limitName << " reported value is " << reportedValue << " expected MIN " << limitToCheck << TestLog::EndMessage; return false; } log << TestLog::Message << limitName << "=" << tcu::toHex(reportedValue) << " (contains " << tcu::toHex(limitToCheck) << ")" << TestLog::EndMessage; } return true; } bool validateLimit (FeatureLimitTableItem limit, TestLog& log) { if (*((VkBool32*)limit.cond) == DE_FALSE) { log << TestLog::Message << "Limit validation skipped '" << limit.name << "' due to " << limit.condName << " == false'" << TestLog::EndMessage; return true; } switch (limit.format) { case LIMIT_FORMAT_UNSIGNED_INT: { const deUint32 limitToCheck = limit.uintVal; const deUint32 reportedValue = *(deUint32*)limit.ptr; return validateNumericLimit(limitToCheck, reportedValue, limit.type, limit.name, log); } case LIMIT_FORMAT_FLOAT: { const float limitToCheck = limit.floatVal; const float reportedValue = *(float*)limit.ptr; return validateNumericLimit(limitToCheck, reportedValue, limit.type, limit.name, log); } case LIMIT_FORMAT_SIGNED_INT: { const deInt32 limitToCheck = limit.intVal; const deInt32 reportedValue = *(deInt32*)limit.ptr; return validateNumericLimit(limitToCheck, reportedValue, limit.type, limit.name, log); } case LIMIT_FORMAT_DEVICE_SIZE: { const deUint64 limitToCheck = limit.deviceSizeVal; const deUint64 reportedValue = *(deUint64*)limit.ptr; return validateNumericLimit(limitToCheck, reportedValue, limit.type, limit.name, log); } case LIMIT_FORMAT_BITMASK: { const deUint32 limitToCheck = limit.uintVal; const deUint32 reportedValue = *(deUint32*)limit.ptr; return validateBitmaskLimit(limitToCheck, reportedValue, limit.type, limit.name, log); } default: TCU_THROW(InternalError, "Unknown LimitFormat specified"); } } #ifdef PN #error PN defined #else #define PN(_X_) &(_X_), (const char*)(#_X_) #endif #define LIM_MIN_UINT32(X) deUint32(X), 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN #define LIM_MAX_UINT32(X) deUint32(X), 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MAX #define LIM_NONE_UINT32 0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE #define LIM_MIN_INT32(X) 0, deInt32(X), 0, 0.0f, LIMIT_FORMAT_SIGNED_INT, LIMIT_TYPE_MIN #define LIM_MAX_INT32(X) 0, deInt32(X), 0, 0.0f, LIMIT_FORMAT_SIGNED_INT, LIMIT_TYPE_MAX #define LIM_NONE_INT32 0, 0, 0, 0.0f, LIMIT_FORMAT_SIGNED_INT, LIMIT_TYPE_NONE #define LIM_MIN_DEVSIZE(X) 0, 0, VkDeviceSize(X), 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN #define LIM_MAX_DEVSIZE(X) 0, 0, VkDeviceSize(X), 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX #define LIM_NONE_DEVSIZE 0, 0, 0, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_NONE #define LIM_MIN_FLOAT(X) 0, 0, 0, float(X), LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN #define LIM_MAX_FLOAT(X) 0, 0, 0, float(X), LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX #define LIM_NONE_FLOAT 0, 0, 0, 0.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_NONE #define LIM_MIN_BITI32(X) deUint32(X), 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN #define LIM_MAX_BITI32(X) deUint32(X), 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MAX #define LIM_NONE_BITI32 0, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_NONE tcu::TestStatus validateLimits12 (Context& context) { const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const InstanceInterface& vki = context.getInstanceInterface(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; const VkPhysicalDeviceFeatures2& features2 = context.getDeviceFeatures2(); const VkPhysicalDeviceFeatures& features = features2.features; const VkPhysicalDeviceVulkan12Features features12 = getPhysicalDeviceVulkan12Features(vki, physicalDevice); const VkPhysicalDeviceProperties2& properties2 = context.getDeviceProperties2(); const VkPhysicalDeviceVulkan12Properties vulkan12Properties = getPhysicalDeviceVulkan12Properties(vki, physicalDevice); const VkPhysicalDeviceVulkan11Properties vulkan11Properties = getPhysicalDeviceVulkan11Properties(vki, physicalDevice); const VkPhysicalDeviceLimits& limits = properties2.properties.limits; const VkBool32 checkAlways = VK_TRUE; const VkBool32 checkVulkan12Limit = VK_TRUE; deUint32 shaderStages = 3; deUint32 maxPerStageResourcesMin = deMin32(128, limits.maxPerStageDescriptorUniformBuffers + limits.maxPerStageDescriptorStorageBuffers + limits.maxPerStageDescriptorSampledImages + limits.maxPerStageDescriptorStorageImages + limits.maxPerStageDescriptorInputAttachments + limits.maxColorAttachments); if (features.tessellationShader) { shaderStages += 2; } if (features.geometryShader) { shaderStages++; } FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(limits.maxImageDimension1D), LIM_MIN_UINT32(4096) }, { PN(checkAlways), PN(limits.maxImageDimension2D), LIM_MIN_UINT32(4096) }, { PN(checkAlways), PN(limits.maxImageDimension3D), LIM_MIN_UINT32(256) }, { PN(checkAlways), PN(limits.maxImageDimensionCube), LIM_MIN_UINT32(4096) }, { PN(checkAlways), PN(limits.maxImageArrayLayers), LIM_MIN_UINT32(256) }, { PN(checkAlways), PN(limits.maxTexelBufferElements), LIM_MIN_UINT32(65536) }, { PN(checkAlways), PN(limits.maxUniformBufferRange), LIM_MIN_UINT32(16384) }, { PN(checkAlways), PN(limits.maxStorageBufferRange), LIM_MIN_UINT32((1<<27)) }, { PN(checkAlways), PN(limits.maxPushConstantsSize), LIM_MIN_UINT32(128) }, { PN(checkAlways), PN(limits.maxMemoryAllocationCount), LIM_MIN_UINT32(4096) }, { PN(checkAlways), PN(limits.maxSamplerAllocationCount), LIM_MIN_UINT32(4000) }, { PN(checkAlways), PN(limits.bufferImageGranularity), LIM_MIN_DEVSIZE(1) }, { PN(checkAlways), PN(limits.bufferImageGranularity), LIM_MAX_DEVSIZE(131072) }, { PN(features.sparseBinding), PN(limits.sparseAddressSpaceSize), LIM_MIN_DEVSIZE((1ull<<31)) }, { PN(checkAlways), PN(limits.maxBoundDescriptorSets), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.maxPerStageDescriptorSamplers), LIM_MIN_UINT32(16) }, { PN(checkAlways), PN(limits.maxPerStageDescriptorUniformBuffers), LIM_MIN_UINT32(12) }, { PN(checkAlways), PN(limits.maxPerStageDescriptorStorageBuffers), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.maxPerStageDescriptorSampledImages), LIM_MIN_UINT32(16) }, { PN(checkAlways), PN(limits.maxPerStageDescriptorStorageImages), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.maxPerStageDescriptorInputAttachments), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.maxPerStageResources), LIM_MIN_UINT32(maxPerStageResourcesMin) }, { PN(checkAlways), PN(limits.maxDescriptorSetSamplers), LIM_MIN_UINT32(shaderStages * 16) }, { PN(checkAlways), PN(limits.maxDescriptorSetUniformBuffers), LIM_MIN_UINT32(shaderStages * 12) }, { PN(checkAlways), PN(limits.maxDescriptorSetUniformBuffersDynamic), LIM_MIN_UINT32(8) }, { PN(checkAlways), PN(limits.maxDescriptorSetStorageBuffers), LIM_MIN_UINT32(shaderStages * 4) }, { PN(checkAlways), PN(limits.maxDescriptorSetStorageBuffersDynamic), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.maxDescriptorSetSampledImages), LIM_MIN_UINT32(shaderStages * 16) }, { PN(checkAlways), PN(limits.maxDescriptorSetStorageImages), LIM_MIN_UINT32(shaderStages * 4) }, { PN(checkAlways), PN(limits.maxDescriptorSetInputAttachments), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.maxVertexInputAttributes), LIM_MIN_UINT32(16) }, { PN(checkAlways), PN(limits.maxVertexInputBindings), LIM_MIN_UINT32(16) }, { PN(checkAlways), PN(limits.maxVertexInputAttributeOffset), LIM_MIN_UINT32(2047) }, { PN(checkAlways), PN(limits.maxVertexInputBindingStride), LIM_MIN_UINT32(2048) }, { PN(checkAlways), PN(limits.maxVertexOutputComponents), LIM_MIN_UINT32(64) }, { PN(features.tessellationShader), PN(limits.maxTessellationGenerationLevel), LIM_MIN_UINT32(64) }, { PN(features.tessellationShader), PN(limits.maxTessellationPatchSize), LIM_MIN_UINT32(32) }, { PN(features.tessellationShader), PN(limits.maxTessellationControlPerVertexInputComponents), LIM_MIN_UINT32(64) }, { PN(features.tessellationShader), PN(limits.maxTessellationControlPerVertexOutputComponents), LIM_MIN_UINT32(64) }, { PN(features.tessellationShader), PN(limits.maxTessellationControlPerPatchOutputComponents), LIM_MIN_UINT32(120) }, { PN(features.tessellationShader), PN(limits.maxTessellationControlTotalOutputComponents), LIM_MIN_UINT32(2048) }, { PN(features.tessellationShader), PN(limits.maxTessellationEvaluationInputComponents), LIM_MIN_UINT32(64) }, { PN(features.tessellationShader), PN(limits.maxTessellationEvaluationOutputComponents), LIM_MIN_UINT32(64) }, { PN(features.geometryShader), PN(limits.maxGeometryShaderInvocations), LIM_MIN_UINT32(32) }, { PN(features.geometryShader), PN(limits.maxGeometryInputComponents), LIM_MIN_UINT32(64) }, { PN(features.geometryShader), PN(limits.maxGeometryOutputComponents), LIM_MIN_UINT32(64) }, { PN(features.geometryShader), PN(limits.maxGeometryOutputVertices), LIM_MIN_UINT32(256) }, { PN(features.geometryShader), PN(limits.maxGeometryTotalOutputComponents), LIM_MIN_UINT32(1024) }, { PN(checkAlways), PN(limits.maxFragmentInputComponents), LIM_MIN_UINT32(64) }, { PN(checkAlways), PN(limits.maxFragmentOutputAttachments), LIM_MIN_UINT32(4) }, { PN(features.dualSrcBlend), PN(limits.maxFragmentDualSrcAttachments), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(limits.maxFragmentCombinedOutputResources), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.maxComputeSharedMemorySize), LIM_MIN_UINT32(16384) }, { PN(checkAlways), PN(limits.maxComputeWorkGroupCount[0]), LIM_MIN_UINT32(65535) }, { PN(checkAlways), PN(limits.maxComputeWorkGroupCount[1]), LIM_MIN_UINT32(65535) }, { PN(checkAlways), PN(limits.maxComputeWorkGroupCount[2]), LIM_MIN_UINT32(65535) }, { PN(checkAlways), PN(limits.maxComputeWorkGroupInvocations), LIM_MIN_UINT32(128) }, { PN(checkAlways), PN(limits.maxComputeWorkGroupSize[0]), LIM_MIN_UINT32(128) }, { PN(checkAlways), PN(limits.maxComputeWorkGroupSize[1]), LIM_MIN_UINT32(128) }, { PN(checkAlways), PN(limits.maxComputeWorkGroupSize[2]), LIM_MIN_UINT32(64) }, { PN(checkAlways), PN(limits.subPixelPrecisionBits), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.subTexelPrecisionBits), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.mipmapPrecisionBits), LIM_MIN_UINT32(4) }, { PN(features.fullDrawIndexUint32), PN(limits.maxDrawIndexedIndexValue), LIM_MIN_UINT32((deUint32)~0) }, { PN(features.multiDrawIndirect), PN(limits.maxDrawIndirectCount), LIM_MIN_UINT32(65535) }, { PN(checkAlways), PN(limits.maxSamplerLodBias), LIM_MIN_FLOAT(2.0f) }, { PN(features.samplerAnisotropy), PN(limits.maxSamplerAnisotropy), LIM_MIN_FLOAT(16.0f) }, { PN(features.multiViewport), PN(limits.maxViewports), LIM_MIN_UINT32(16) }, { PN(checkAlways), PN(limits.maxViewportDimensions[0]), LIM_MIN_UINT32(4096) }, { PN(checkAlways), PN(limits.maxViewportDimensions[1]), LIM_MIN_UINT32(4096) }, { PN(checkAlways), PN(limits.viewportBoundsRange[0]), LIM_MAX_FLOAT(-8192.0f) }, { PN(checkAlways), PN(limits.viewportBoundsRange[1]), LIM_MIN_FLOAT(8191.0f) }, { PN(checkAlways), PN(limits.viewportSubPixelBits), LIM_MIN_UINT32(0) }, { PN(checkAlways), PN(limits.minMemoryMapAlignment), LIM_MIN_UINT32(64) }, { PN(checkAlways), PN(limits.minTexelBufferOffsetAlignment), LIM_MIN_DEVSIZE(1) }, { PN(checkAlways), PN(limits.minTexelBufferOffsetAlignment), LIM_MAX_DEVSIZE(256) }, { PN(checkAlways), PN(limits.minUniformBufferOffsetAlignment), LIM_MIN_DEVSIZE(1) }, { PN(checkAlways), PN(limits.minUniformBufferOffsetAlignment), LIM_MAX_DEVSIZE(256) }, { PN(checkAlways), PN(limits.minStorageBufferOffsetAlignment), LIM_MIN_DEVSIZE(1) }, { PN(checkAlways), PN(limits.minStorageBufferOffsetAlignment), LIM_MAX_DEVSIZE(256) }, { PN(checkAlways), PN(limits.minTexelOffset), LIM_MAX_INT32(-8) }, { PN(checkAlways), PN(limits.maxTexelOffset), LIM_MIN_INT32(7) }, { PN(features.shaderImageGatherExtended), PN(limits.minTexelGatherOffset), LIM_MAX_INT32(-8) }, { PN(features.shaderImageGatherExtended), PN(limits.maxTexelGatherOffset), LIM_MIN_INT32(7) }, { PN(features.sampleRateShading), PN(limits.minInterpolationOffset), LIM_MAX_FLOAT(-0.5f) }, { PN(features.sampleRateShading), PN(limits.maxInterpolationOffset), LIM_MIN_FLOAT(0.5f - (1.0f/deFloatPow(2.0f, (float)limits.subPixelInterpolationOffsetBits))) }, { PN(features.sampleRateShading), PN(limits.subPixelInterpolationOffsetBits), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.maxFramebufferWidth), LIM_MIN_UINT32(4096) }, { PN(checkAlways), PN(limits.maxFramebufferHeight), LIM_MIN_UINT32(4096) }, { PN(checkAlways), PN(limits.maxFramebufferLayers), LIM_MIN_UINT32(256) }, { PN(checkAlways), PN(limits.framebufferColorSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT) }, { PN(checkVulkan12Limit), PN(vulkan12Properties.framebufferIntegerColorSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_1_BIT) }, { PN(checkAlways), PN(limits.framebufferDepthSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT) }, { PN(checkAlways), PN(limits.framebufferStencilSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT) }, { PN(checkAlways), PN(limits.framebufferNoAttachmentsSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT) }, { PN(checkAlways), PN(limits.maxColorAttachments), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(limits.sampledImageColorSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT) }, { PN(checkAlways), PN(limits.sampledImageIntegerSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_1_BIT) }, { PN(checkAlways), PN(limits.sampledImageDepthSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT) }, { PN(checkAlways), PN(limits.sampledImageStencilSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT) }, { PN(features.shaderStorageImageMultisample), PN(limits.storageImageSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT) }, { PN(checkAlways), PN(limits.maxSampleMaskWords), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(limits.timestampComputeAndGraphics), LIM_NONE_UINT32 }, { PN(checkAlways), PN(limits.timestampPeriod), LIM_NONE_UINT32 }, { PN(features.shaderClipDistance), PN(limits.maxClipDistances), LIM_MIN_UINT32(8) }, { PN(features.shaderCullDistance), PN(limits.maxCullDistances), LIM_MIN_UINT32(8) }, { PN(features.shaderClipDistance), PN(limits.maxCombinedClipAndCullDistances), LIM_MIN_UINT32(8) }, { PN(checkAlways), PN(limits.discreteQueuePriorities), LIM_MIN_UINT32(2) }, { PN(features.largePoints), PN(limits.pointSizeRange[0]), LIM_MIN_FLOAT(0.0f) }, { PN(features.largePoints), PN(limits.pointSizeRange[0]), LIM_MAX_FLOAT(1.0f) }, { PN(features.largePoints), PN(limits.pointSizeRange[1]), LIM_MIN_FLOAT(64.0f - limits.pointSizeGranularity) }, { PN(features.wideLines), PN(limits.lineWidthRange[0]), LIM_MIN_FLOAT(0.0f) }, { PN(features.wideLines), PN(limits.lineWidthRange[0]), LIM_MAX_FLOAT(1.0f) }, { PN(features.wideLines), PN(limits.lineWidthRange[1]), LIM_MIN_FLOAT(8.0f - limits.lineWidthGranularity) }, { PN(features.largePoints), PN(limits.pointSizeGranularity), LIM_MIN_FLOAT(0.0f) }, { PN(features.largePoints), PN(limits.pointSizeGranularity), LIM_MAX_FLOAT(1.0f) }, { PN(features.wideLines), PN(limits.lineWidthGranularity), LIM_MIN_FLOAT(0.0f) }, { PN(features.wideLines), PN(limits.lineWidthGranularity), LIM_MAX_FLOAT(1.0f) }, { PN(checkAlways), PN(limits.strictLines), LIM_NONE_UINT32 }, { PN(checkAlways), PN(limits.standardSampleLocations), LIM_NONE_UINT32 }, { PN(checkAlways), PN(limits.optimalBufferCopyOffsetAlignment), LIM_NONE_DEVSIZE }, { PN(checkAlways), PN(limits.optimalBufferCopyRowPitchAlignment), LIM_NONE_DEVSIZE }, { PN(checkAlways), PN(limits.nonCoherentAtomSize), LIM_MIN_DEVSIZE(1) }, { PN(checkAlways), PN(limits.nonCoherentAtomSize), LIM_MAX_DEVSIZE(256) }, // VK_KHR_multiview { PN(checkVulkan12Limit), PN(vulkan11Properties.maxMultiviewViewCount), LIM_MIN_UINT32(6) }, { PN(checkVulkan12Limit), PN(vulkan11Properties.maxMultiviewInstanceIndex), LIM_MIN_UINT32((1<<27) - 1) }, // VK_KHR_maintenance3 { PN(checkVulkan12Limit), PN(vulkan11Properties.maxPerSetDescriptors), LIM_MIN_UINT32(1024) }, { PN(checkVulkan12Limit), PN(vulkan11Properties.maxMemoryAllocationSize), LIM_MIN_DEVSIZE(1<<30) }, // VK_EXT_descriptor_indexing { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxUpdateAfterBindDescriptorsInAllPools), LIM_MIN_UINT32(500000) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindSamplers), LIM_MIN_UINT32(500000) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindUniformBuffers), LIM_MIN_UINT32(12) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindStorageBuffers), LIM_MIN_UINT32(500000) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindSampledImages), LIM_MIN_UINT32(500000) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindStorageImages), LIM_MIN_UINT32(500000) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindInputAttachments), LIM_MIN_UINT32(4) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageUpdateAfterBindResources), LIM_MIN_UINT32(500000) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindSamplers), LIM_MIN_UINT32(500000) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindUniformBuffers), LIM_MIN_UINT32(shaderStages * 12) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindUniformBuffersDynamic), LIM_MIN_UINT32(8) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindStorageBuffers), LIM_MIN_UINT32(500000) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindStorageBuffersDynamic), LIM_MIN_UINT32(4) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindSampledImages), LIM_MIN_UINT32(500000) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindStorageImages), LIM_MIN_UINT32(500000) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindInputAttachments), LIM_MIN_UINT32(4) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindSamplers), LIM_MIN_UINT32(limits.maxPerStageDescriptorSamplers) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindUniformBuffers), LIM_MIN_UINT32(limits.maxPerStageDescriptorUniformBuffers) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindStorageBuffers), LIM_MIN_UINT32(limits.maxPerStageDescriptorStorageBuffers) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindSampledImages), LIM_MIN_UINT32(limits.maxPerStageDescriptorSampledImages) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindStorageImages), LIM_MIN_UINT32(limits.maxPerStageDescriptorStorageImages) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageDescriptorUpdateAfterBindInputAttachments), LIM_MIN_UINT32(limits.maxPerStageDescriptorInputAttachments) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxPerStageUpdateAfterBindResources), LIM_MIN_UINT32(limits.maxPerStageResources) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindSamplers), LIM_MIN_UINT32(limits.maxDescriptorSetSamplers) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindUniformBuffers), LIM_MIN_UINT32(limits.maxDescriptorSetUniformBuffers) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindUniformBuffersDynamic), LIM_MIN_UINT32(limits.maxDescriptorSetUniformBuffersDynamic) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindStorageBuffers), LIM_MIN_UINT32(limits.maxDescriptorSetStorageBuffers) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindStorageBuffersDynamic), LIM_MIN_UINT32(limits.maxDescriptorSetStorageBuffersDynamic) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindSampledImages), LIM_MIN_UINT32(limits.maxDescriptorSetSampledImages) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindStorageImages), LIM_MIN_UINT32(limits.maxDescriptorSetStorageImages) }, { PN(features12.descriptorIndexing), PN(vulkan12Properties.maxDescriptorSetUpdateAfterBindInputAttachments), LIM_MIN_UINT32(limits.maxDescriptorSetInputAttachments) }, // timelineSemaphore { PN(checkVulkan12Limit), PN(vulkan12Properties.maxTimelineSemaphoreValueDifference), LIM_MIN_DEVSIZE((1ull<<31) - 1) }, }; log << TestLog::Message << limits << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limits.maxFramebufferWidth > limits.maxViewportDimensions[0] || limits.maxFramebufferHeight > limits.maxViewportDimensions[1]) { log << TestLog::Message << "limit validation failed, maxFramebufferDimension of " << "[" << limits.maxFramebufferWidth << ", " << limits.maxFramebufferHeight << "] " << "is larger than maxViewportDimension of " << "[" << limits.maxViewportDimensions[0] << ", " << limits.maxViewportDimensions[1] << "]" << TestLog::EndMessage; limitsOk = false; } if (limits.viewportBoundsRange[0] > float(-2 * limits.maxViewportDimensions[0])) { log << TestLog::Message << "limit validation failed, viewPortBoundsRange[0] of " << limits.viewportBoundsRange[0] << "is larger than -2*maxViewportDimension[0] of " << -2*limits.maxViewportDimensions[0] << TestLog::EndMessage; limitsOk = false; } if (limits.viewportBoundsRange[1] < float(2 * limits.maxViewportDimensions[1] - 1)) { log << TestLog::Message << "limit validation failed, viewportBoundsRange[1] of " << limits.viewportBoundsRange[1] << "is less than 2*maxViewportDimension[1] of " << 2*limits.maxViewportDimensions[1] << TestLog::EndMessage; limitsOk = false; } if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportKhrPushDescriptor (Context& context) { context.requireDeviceFunctionality("VK_KHR_push_descriptor"); } tcu::TestStatus validateLimitsKhrPushDescriptor (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDevicePushDescriptorPropertiesKHR& pushDescriptorPropertiesKHR = context.getPushDescriptorProperties(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(pushDescriptorPropertiesKHR.maxPushDescriptors), LIM_MIN_UINT32(32) }, }; log << TestLog::Message << pushDescriptorPropertiesKHR << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportKhrMultiview (Context& context) { context.requireDeviceFunctionality("VK_KHR_multiview"); } tcu::TestStatus validateLimitsKhrMultiview (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceMultiviewProperties& multiviewProperties = context.getMultiviewProperties(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { // VK_KHR_multiview { PN(checkAlways), PN(multiviewProperties.maxMultiviewViewCount), LIM_MIN_UINT32(6) }, { PN(checkAlways), PN(multiviewProperties.maxMultiviewInstanceIndex), LIM_MIN_UINT32((1<<27) - 1) }, }; log << TestLog::Message << multiviewProperties << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtDiscardRectangles (Context& context) { context.requireDeviceFunctionality("VK_EXT_discard_rectangles"); } tcu::TestStatus validateLimitsExtDiscardRectangles (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceDiscardRectanglePropertiesEXT& discardRectanglePropertiesEXT = context.getDiscardRectanglePropertiesEXT(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(discardRectanglePropertiesEXT.maxDiscardRectangles), LIM_MIN_UINT32(4) }, }; log << TestLog::Message << discardRectanglePropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtSampleLocations (Context& context) { context.requireDeviceFunctionality("VK_EXT_sample_locations"); } tcu::TestStatus validateLimitsExtSampleLocations (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceSampleLocationsPropertiesEXT& sampleLocationsPropertiesEXT = context.getSampleLocationsPropertiesEXT(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(sampleLocationsPropertiesEXT.sampleLocationSampleCounts), LIM_MIN_BITI32(VK_SAMPLE_COUNT_4_BIT) }, { PN(checkAlways), PN(sampleLocationsPropertiesEXT.maxSampleLocationGridSize.width), LIM_MIN_FLOAT(0.0f) }, { PN(checkAlways), PN(sampleLocationsPropertiesEXT.maxSampleLocationGridSize.height), LIM_MIN_FLOAT(0.0f) }, { PN(checkAlways), PN(sampleLocationsPropertiesEXT.sampleLocationCoordinateRange[0]), LIM_MAX_FLOAT(0.0f) }, { PN(checkAlways), PN(sampleLocationsPropertiesEXT.sampleLocationCoordinateRange[1]), LIM_MIN_FLOAT(0.9375f) }, { PN(checkAlways), PN(sampleLocationsPropertiesEXT.sampleLocationSubPixelBits), LIM_MIN_UINT32(4) }, }; log << TestLog::Message << sampleLocationsPropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtExternalMemoryHost (Context& context) { context.requireDeviceFunctionality("VK_EXT_external_memory_host"); } tcu::TestStatus validateLimitsExtExternalMemoryHost (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceExternalMemoryHostPropertiesEXT& externalMemoryHostPropertiesEXT = context.getExternalMemoryHostPropertiesEXT(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(externalMemoryHostPropertiesEXT.minImportedHostPointerAlignment), LIM_MAX_DEVSIZE(65536) }, }; log << TestLog::Message << externalMemoryHostPropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtBlendOperationAdvanced (Context& context) { context.requireDeviceFunctionality("VK_EXT_blend_operation_advanced"); } tcu::TestStatus validateLimitsExtBlendOperationAdvanced (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT& blendOperationAdvancedPropertiesEXT = context.getBlendOperationAdvancedPropertiesEXT(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(blendOperationAdvancedPropertiesEXT.advancedBlendMaxColorAttachments), LIM_MIN_UINT32(1) }, }; log << TestLog::Message << blendOperationAdvancedPropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportKhrMaintenance3 (Context& context) { context.requireDeviceFunctionality("VK_KHR_maintenance3"); } tcu::TestStatus validateLimitsKhrMaintenance3 (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceMaintenance3Properties& maintenance3Properties = context.getMaintenance3Properties(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(maintenance3Properties.maxPerSetDescriptors), LIM_MIN_UINT32(1024) }, { PN(checkAlways), PN(maintenance3Properties.maxMemoryAllocationSize), LIM_MIN_DEVSIZE(1<<30) }, }; log << TestLog::Message << maintenance3Properties << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtConservativeRasterization (Context& context) { context.requireDeviceFunctionality("VK_EXT_conservative_rasterization"); } tcu::TestStatus validateLimitsExtConservativeRasterization (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceConservativeRasterizationPropertiesEXT& conservativeRasterizationPropertiesEXT = context.getConservativeRasterizationPropertiesEXT(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(conservativeRasterizationPropertiesEXT.primitiveOverestimationSize), LIM_MIN_FLOAT(0.0f) }, { PN(checkAlways), PN(conservativeRasterizationPropertiesEXT.maxExtraPrimitiveOverestimationSize), LIM_MIN_FLOAT(0.0f) }, { PN(checkAlways), PN(conservativeRasterizationPropertiesEXT.extraPrimitiveOverestimationSizeGranularity), LIM_MIN_FLOAT(0.0f) }, }; log << TestLog::Message << conservativeRasterizationPropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtDescriptorIndexing (Context& context) { const std::string& requiredDeviceExtension = "VK_EXT_descriptor_indexing"; const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const InstanceInterface& vki = context.getInstanceInterface(); const std::vector deviceExtensionProperties = enumerateDeviceExtensionProperties(vki, physicalDevice, DE_NULL); if (!isExtensionSupported(deviceExtensionProperties, RequiredExtension(requiredDeviceExtension))) TCU_THROW(NotSupportedError, requiredDeviceExtension + " is not supported"); // Extension string is present, then extension is really supported and should have been added into chain in DefaultDevice properties and features } tcu::TestStatus validateLimitsExtDescriptorIndexing (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceProperties2& properties2 = context.getDeviceProperties2(); const VkPhysicalDeviceLimits& limits = properties2.properties.limits; const VkPhysicalDeviceDescriptorIndexingPropertiesEXT& descriptorIndexingPropertiesEXT = context.getDescriptorIndexingProperties(); const VkPhysicalDeviceFeatures& features = context.getDeviceFeatures(); const deUint32 tessellationShaderCount = (features.tessellationShader) ? 2 : 0; const deUint32 geometryShaderCount = (features.geometryShader) ? 1 : 0; const deUint32 shaderStages = 3 + tessellationShaderCount + geometryShaderCount; TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxUpdateAfterBindDescriptorsInAllPools), LIM_MIN_UINT32(500000) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindSamplers), LIM_MIN_UINT32(500000) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindUniformBuffers), LIM_MIN_UINT32(12) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindStorageBuffers), LIM_MIN_UINT32(500000) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindSampledImages), LIM_MIN_UINT32(500000) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindStorageImages), LIM_MIN_UINT32(500000) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindInputAttachments), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageUpdateAfterBindResources), LIM_MIN_UINT32(500000) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindSamplers), LIM_MIN_UINT32(500000) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindUniformBuffers), LIM_MIN_UINT32(shaderStages * 12) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindUniformBuffersDynamic), LIM_MIN_UINT32(8) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindStorageBuffers), LIM_MIN_UINT32(500000) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindStorageBuffersDynamic), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindSampledImages), LIM_MIN_UINT32(500000) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindStorageImages), LIM_MIN_UINT32(500000) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindInputAttachments), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindSamplers), LIM_MIN_UINT32(limits.maxPerStageDescriptorSamplers) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindUniformBuffers), LIM_MIN_UINT32(limits.maxPerStageDescriptorUniformBuffers) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindStorageBuffers), LIM_MIN_UINT32(limits.maxPerStageDescriptorStorageBuffers) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindSampledImages), LIM_MIN_UINT32(limits.maxPerStageDescriptorSampledImages) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindStorageImages), LIM_MIN_UINT32(limits.maxPerStageDescriptorStorageImages) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageDescriptorUpdateAfterBindInputAttachments), LIM_MIN_UINT32(limits.maxPerStageDescriptorInputAttachments) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxPerStageUpdateAfterBindResources), LIM_MIN_UINT32(limits.maxPerStageResources) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindSamplers), LIM_MIN_UINT32(limits.maxDescriptorSetSamplers) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindUniformBuffers), LIM_MIN_UINT32(limits.maxDescriptorSetUniformBuffers) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindUniformBuffersDynamic), LIM_MIN_UINT32(limits.maxDescriptorSetUniformBuffersDynamic) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindStorageBuffers), LIM_MIN_UINT32(limits.maxDescriptorSetStorageBuffers) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindStorageBuffersDynamic), LIM_MIN_UINT32(limits.maxDescriptorSetStorageBuffersDynamic) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindSampledImages), LIM_MIN_UINT32(limits.maxDescriptorSetSampledImages) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindStorageImages), LIM_MIN_UINT32(limits.maxDescriptorSetStorageImages) }, { PN(checkAlways), PN(descriptorIndexingPropertiesEXT.maxDescriptorSetUpdateAfterBindInputAttachments), LIM_MIN_UINT32(limits.maxDescriptorSetInputAttachments) }, }; log << TestLog::Message << descriptorIndexingPropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtInlineUniformBlock (Context& context) { context.requireDeviceFunctionality("VK_EXT_inline_uniform_block"); } tcu::TestStatus validateLimitsExtInlineUniformBlock (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceInlineUniformBlockPropertiesEXT& inlineUniformBlockPropertiesEXT = context.getInlineUniformBlockPropertiesEXT(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(inlineUniformBlockPropertiesEXT.maxInlineUniformBlockSize), LIM_MIN_UINT32(256) }, { PN(checkAlways), PN(inlineUniformBlockPropertiesEXT.maxPerStageDescriptorInlineUniformBlocks), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(inlineUniformBlockPropertiesEXT.maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(inlineUniformBlockPropertiesEXT.maxDescriptorSetInlineUniformBlocks), LIM_MIN_UINT32(4) }, { PN(checkAlways), PN(inlineUniformBlockPropertiesEXT.maxDescriptorSetUpdateAfterBindInlineUniformBlocks), LIM_MIN_UINT32(4) }, }; log << TestLog::Message << inlineUniformBlockPropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtVertexAttributeDivisor (Context& context) { context.requireDeviceFunctionality("VK_EXT_vertex_attribute_divisor"); } tcu::TestStatus validateLimitsExtVertexAttributeDivisor (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT& vertexAttributeDivisorPropertiesEXT = context.getVertexAttributeDivisorPropertiesEXT(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(vertexAttributeDivisorPropertiesEXT.maxVertexAttribDivisor), LIM_MIN_UINT32((1<<16) - 1) }, }; log << TestLog::Message << vertexAttributeDivisorPropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportNvMeshShader (Context& context) { const std::string& requiredDeviceExtension = "VK_NV_mesh_shader"; const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const InstanceInterface& vki = context.getInstanceInterface(); const std::vector deviceExtensionProperties = enumerateDeviceExtensionProperties(vki, physicalDevice, DE_NULL); if (!isExtensionSupported(deviceExtensionProperties, RequiredExtension(requiredDeviceExtension))) TCU_THROW(NotSupportedError, requiredDeviceExtension + " is not supported"); } tcu::TestStatus validateLimitsNvMeshShader (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const InstanceInterface& vki = context.getInstanceInterface(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; VkPhysicalDeviceMeshShaderPropertiesNV meshShaderPropertiesNV = initVulkanStructure(); VkPhysicalDeviceProperties2 properties2 = initVulkanStructure(&meshShaderPropertiesNV); vki.getPhysicalDeviceProperties2(physicalDevice, &properties2); FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(meshShaderPropertiesNV.maxDrawMeshTasksCount), LIM_MIN_UINT32(deUint32((1ull<<16) - 1)) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxTaskWorkGroupInvocations), LIM_MIN_UINT32(32) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxTaskWorkGroupSize[0]), LIM_MIN_UINT32(32) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxTaskWorkGroupSize[1]), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxTaskWorkGroupSize[2]), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxTaskTotalMemorySize), LIM_MIN_UINT32(16384) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxTaskOutputCount), LIM_MIN_UINT32((1<<16) - 1) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxMeshWorkGroupInvocations), LIM_MIN_UINT32(32) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxMeshWorkGroupSize[0]), LIM_MIN_UINT32(32) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxMeshWorkGroupSize[1]), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxMeshWorkGroupSize[2]), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxMeshTotalMemorySize), LIM_MIN_UINT32(16384) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxMeshOutputVertices), LIM_MIN_UINT32(256) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxMeshOutputPrimitives), LIM_MIN_UINT32(256) }, { PN(checkAlways), PN(meshShaderPropertiesNV.maxMeshMultiviewViewCount), LIM_MIN_UINT32(1) }, }; log << TestLog::Message << meshShaderPropertiesNV << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtTransformFeedback (Context& context) { context.requireDeviceFunctionality("VK_EXT_transform_feedback"); } tcu::TestStatus validateLimitsExtTransformFeedback (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceTransformFeedbackPropertiesEXT& transformFeedbackPropertiesEXT = context.getTransformFeedbackPropertiesEXT(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(transformFeedbackPropertiesEXT.maxTransformFeedbackStreams), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(transformFeedbackPropertiesEXT.maxTransformFeedbackBuffers), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(transformFeedbackPropertiesEXT.maxTransformFeedbackBufferSize), LIM_MIN_DEVSIZE(1ull<<27) }, { PN(checkAlways), PN(transformFeedbackPropertiesEXT.maxTransformFeedbackStreamDataSize), LIM_MIN_UINT32(512) }, { PN(checkAlways), PN(transformFeedbackPropertiesEXT.maxTransformFeedbackBufferDataSize), LIM_MIN_UINT32(512) }, { PN(checkAlways), PN(transformFeedbackPropertiesEXT.maxTransformFeedbackBufferDataStride), LIM_MIN_UINT32(512) }, }; log << TestLog::Message << transformFeedbackPropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtFragmentDensityMap (Context& context) { context.requireDeviceFunctionality("VK_EXT_fragment_density_map"); } tcu::TestStatus validateLimitsExtFragmentDensityMap (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceFragmentDensityMapPropertiesEXT& fragmentDensityMapPropertiesEXT = context.getFragmentDensityMapPropertiesEXT(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(fragmentDensityMapPropertiesEXT.minFragmentDensityTexelSize.width), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(fragmentDensityMapPropertiesEXT.minFragmentDensityTexelSize.height), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(fragmentDensityMapPropertiesEXT.maxFragmentDensityTexelSize.width), LIM_MIN_UINT32(1) }, { PN(checkAlways), PN(fragmentDensityMapPropertiesEXT.maxFragmentDensityTexelSize.height), LIM_MIN_UINT32(1) }, }; log << TestLog::Message << fragmentDensityMapPropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportNvRayTracing (Context& context) { const std::string& requiredDeviceExtension = "VK_NV_ray_tracing"; const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const InstanceInterface& vki = context.getInstanceInterface(); const std::vector deviceExtensionProperties = enumerateDeviceExtensionProperties(vki, physicalDevice, DE_NULL); if (!isExtensionSupported(deviceExtensionProperties, RequiredExtension(requiredDeviceExtension))) TCU_THROW(NotSupportedError, requiredDeviceExtension + " is not supported"); } tcu::TestStatus validateLimitsNvRayTracing (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const InstanceInterface& vki = context.getInstanceInterface(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; VkPhysicalDeviceRayTracingPropertiesNV rayTracingPropertiesNV = initVulkanStructure(); VkPhysicalDeviceProperties2 properties2 = initVulkanStructure(&rayTracingPropertiesNV); vki.getPhysicalDeviceProperties2(physicalDevice, &properties2); FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(rayTracingPropertiesNV.shaderGroupHandleSize), LIM_MIN_UINT32(16) }, { PN(checkAlways), PN(rayTracingPropertiesNV.maxRecursionDepth), LIM_MIN_UINT32(31) }, { PN(checkAlways), PN(rayTracingPropertiesNV.shaderGroupBaseAlignment), LIM_MIN_UINT32(64) }, { PN(checkAlways), PN(rayTracingPropertiesNV.maxGeometryCount), LIM_MIN_UINT32((1<<24) - 1) }, { PN(checkAlways), PN(rayTracingPropertiesNV.maxInstanceCount), LIM_MIN_UINT32((1<<24) - 1) }, { PN(checkAlways), PN(rayTracingPropertiesNV.maxTriangleCount), LIM_MIN_UINT32((1<<29) - 1) }, { PN(checkAlways), PN(rayTracingPropertiesNV.maxDescriptorSetAccelerationStructures), LIM_MIN_UINT32(16) }, }; log << TestLog::Message << rayTracingPropertiesNV << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportKhrTimelineSemaphore (Context& context) { context.requireDeviceFunctionality("VK_KHR_timeline_semaphore"); } tcu::TestStatus validateLimitsKhrTimelineSemaphore (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceTimelineSemaphorePropertiesKHR& timelineSemaphorePropertiesKHR = context.getTimelineSemaphoreProperties(); bool limitsOk = true; TestLog& log = context.getTestContext().getLog(); FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(timelineSemaphorePropertiesKHR.maxTimelineSemaphoreValueDifference), LIM_MIN_DEVSIZE((1ull<<31) - 1) }, }; log << TestLog::Message << timelineSemaphorePropertiesKHR << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportExtLineRasterization (Context& context) { context.requireDeviceFunctionality("VK_EXT_line_rasterization"); } tcu::TestStatus validateLimitsExtLineRasterization (Context& context) { const VkBool32 checkAlways = VK_TRUE; const VkPhysicalDeviceLineRasterizationPropertiesEXT& lineRasterizationPropertiesEXT = context.getLineRasterizationPropertiesEXT(); TestLog& log = context.getTestContext().getLog(); bool limitsOk = true; FeatureLimitTableItem featureLimitTable[] = { { PN(checkAlways), PN(lineRasterizationPropertiesEXT.lineSubPixelPrecisionBits), LIM_MIN_UINT32(4) }, }; log << TestLog::Message << lineRasterizationPropertiesEXT << TestLog::EndMessage; for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++) limitsOk = validateLimit(featureLimitTable[ndx], log) && limitsOk; if (limitsOk) return tcu::TestStatus::pass("pass"); else return tcu::TestStatus::fail("fail"); } void checkSupportFeatureBitInfluence (Context& context) { if (!context.contextSupports(vk::ApiVersion(1, 2, 0))) TCU_THROW(NotSupportedError, "At least Vulkan 1.2 required to run test"); } void createTestDevice (Context& context, void* pNext, const char* const* ppEnabledExtensionNames, deUint32 enabledExtensionCount) { const PlatformInterface& platformInterface = context.getPlatformInterface(); const auto validationEnabled = context.getTestContext().getCommandLine().isValidationEnabled(); const Unique instance (createDefaultInstance(platformInterface, context.getUsedApiVersion())); const InstanceDriver instanceDriver (platformInterface, instance.get()); const VkPhysicalDevice physicalDevice = chooseDevice(instanceDriver, instance.get(), context.getTestContext().getCommandLine()); const deUint32 queueFamilyIndex = 0; const deUint32 queueCount = 1; const deUint32 queueIndex = 0; const float queuePriority = 1.0f; const vector queueFamilyProperties = getPhysicalDeviceQueueFamilyProperties(instanceDriver, physicalDevice); const VkDeviceQueueCreateInfo deviceQueueCreateInfo = { VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // VkStructureType sType; DE_NULL, // const void* pNext; (VkDeviceQueueCreateFlags)0u, // VkDeviceQueueCreateFlags flags; queueFamilyIndex, // deUint32 queueFamilyIndex; queueCount, // deUint32 queueCount; &queuePriority, // const float* pQueuePriorities; }; const VkDeviceCreateInfo deviceCreateInfo = { VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, // VkStructureType sType; pNext, // const void* pNext; (VkDeviceCreateFlags)0u, // VkDeviceCreateFlags flags; 1, // deUint32 queueCreateInfoCount; &deviceQueueCreateInfo, // const VkDeviceQueueCreateInfo* pQueueCreateInfos; 0, // deUint32 enabledLayerCount; DE_NULL, // const char* const* ppEnabledLayerNames; enabledExtensionCount, // deUint32 enabledExtensionCount; ppEnabledExtensionNames, // const char* const* ppEnabledExtensionNames; DE_NULL, // const VkPhysicalDeviceFeatures* pEnabledFeatures; }; const Unique device (createCustomDevice(validationEnabled, platformInterface, *instance, instanceDriver, physicalDevice, &deviceCreateInfo)); const DeviceDriver deviceDriver (platformInterface, instance.get(), device.get()); const VkQueue queue = getDeviceQueue(deviceDriver, *device, queueFamilyIndex, queueIndex); VK_CHECK(deviceDriver.queueWaitIdle(queue)); } void cleanVulkanStruct (void* structPtr, size_t structSize) { struct StructureBase { VkStructureType sType; void* pNext; }; VkStructureType sType = ((StructureBase*)structPtr)->sType; deMemset(structPtr, 0, structSize); ((StructureBase*)structPtr)->sType = sType; } tcu::TestStatus featureBitInfluenceOnDeviceCreate (Context& context) { #define FEATURE_TABLE_ITEM(CORE, EXT, FIELD, STR) { &(CORE), sizeof(CORE), &(CORE.FIELD), #CORE "." #FIELD, &(EXT), sizeof(EXT), &(EXT.FIELD), #EXT "." #FIELD, STR } #define DEPENDENCY_DUAL_ITEM(CORE, EXT, FIELD, PARENT) { &(CORE.FIELD), &(CORE.PARENT) }, { &(EXT.FIELD), &(EXT.PARENT) } #define DEPENDENCY_SINGLE_ITEM(CORE, FIELD, PARENT) { &(CORE.FIELD), &(CORE.PARENT) } const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const InstanceInterface& vki = context.getInstanceInterface(); TestLog& log = context.getTestContext().getLog(); const std::vector deviceExtensionProperties = enumerateDeviceExtensionProperties(vki, physicalDevice, DE_NULL); VkPhysicalDeviceFeatures2 features2 = initVulkanStructure(); VkPhysicalDeviceVulkan11Features vulkan11Features = initVulkanStructure(); VkPhysicalDeviceVulkan12Features vulkan12Features = initVulkanStructure(); VkPhysicalDevice16BitStorageFeaturesKHR sixteenBitStorageFeatures = initVulkanStructure(); VkPhysicalDeviceMultiviewFeatures multiviewFeatures = initVulkanStructure(); VkPhysicalDeviceVariablePointersFeatures variablePointersFeatures = initVulkanStructure(); VkPhysicalDeviceProtectedMemoryFeatures protectedMemoryFeatures = initVulkanStructure(); VkPhysicalDeviceSamplerYcbcrConversionFeatures samplerYcbcrConversionFeatures = initVulkanStructure(); VkPhysicalDeviceShaderDrawParametersFeatures shaderDrawParametersFeatures = initVulkanStructure(); VkPhysicalDevice8BitStorageFeatures eightBitStorageFeatures = initVulkanStructure(); VkPhysicalDeviceShaderAtomicInt64Features shaderAtomicInt64Features = initVulkanStructure(); VkPhysicalDeviceShaderFloat16Int8Features shaderFloat16Int8Features = initVulkanStructure(); VkPhysicalDeviceDescriptorIndexingFeatures descriptorIndexingFeatures = initVulkanStructure(); VkPhysicalDeviceScalarBlockLayoutFeatures scalarBlockLayoutFeatures = initVulkanStructure(); VkPhysicalDeviceImagelessFramebufferFeatures imagelessFramebufferFeatures = initVulkanStructure(); VkPhysicalDeviceUniformBufferStandardLayoutFeatures uniformBufferStandardLayoutFeatures = initVulkanStructure(); VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures shaderSubgroupExtendedTypesFeatures = initVulkanStructure(); VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures separateDepthStencilLayoutsFeatures = initVulkanStructure(); VkPhysicalDeviceHostQueryResetFeatures hostQueryResetFeatures = initVulkanStructure(); VkPhysicalDeviceTimelineSemaphoreFeatures timelineSemaphoreFeatures = initVulkanStructure(); VkPhysicalDeviceBufferDeviceAddressFeatures bufferDeviceAddressFeatures = initVulkanStructure(); VkPhysicalDeviceVulkanMemoryModelFeatures vulkanMemoryModelFeatures = initVulkanStructure(); struct DummyExtensionFeatures { VkStructureType sType; void* pNext; VkBool32 descriptorIndexing; VkBool32 samplerFilterMinmax; } dummyExtensionFeatures; struct FeatureTable { void* coreStructPtr; size_t coreStructSize; VkBool32* coreFieldPtr; const char* coreFieldName; void* extStructPtr; size_t extStructSize; VkBool32* extFieldPtr; const char* extFieldName; const char* extString; } featureTable[] = { FEATURE_TABLE_ITEM(vulkan11Features, sixteenBitStorageFeatures, storageBuffer16BitAccess, "VK_KHR_16bit_storage"), FEATURE_TABLE_ITEM(vulkan11Features, sixteenBitStorageFeatures, uniformAndStorageBuffer16BitAccess, "VK_KHR_16bit_storage"), FEATURE_TABLE_ITEM(vulkan11Features, sixteenBitStorageFeatures, storagePushConstant16, "VK_KHR_16bit_storage"), FEATURE_TABLE_ITEM(vulkan11Features, sixteenBitStorageFeatures, storageInputOutput16, "VK_KHR_16bit_storage"), FEATURE_TABLE_ITEM(vulkan11Features, multiviewFeatures, multiview, "VK_KHR_multiview"), FEATURE_TABLE_ITEM(vulkan11Features, multiviewFeatures, multiviewGeometryShader, "VK_KHR_multiview"), FEATURE_TABLE_ITEM(vulkan11Features, multiviewFeatures, multiviewTessellationShader, "VK_KHR_multiview"), FEATURE_TABLE_ITEM(vulkan11Features, variablePointersFeatures, variablePointersStorageBuffer, "VK_KHR_variable_pointers"), FEATURE_TABLE_ITEM(vulkan11Features, variablePointersFeatures, variablePointers, "VK_KHR_variable_pointers"), FEATURE_TABLE_ITEM(vulkan11Features, protectedMemoryFeatures, protectedMemory, DE_NULL), FEATURE_TABLE_ITEM(vulkan11Features, samplerYcbcrConversionFeatures, samplerYcbcrConversion, "VK_KHR_sampler_ycbcr_conversion"), FEATURE_TABLE_ITEM(vulkan11Features, shaderDrawParametersFeatures, shaderDrawParameters, DE_NULL), FEATURE_TABLE_ITEM(vulkan12Features, eightBitStorageFeatures, storageBuffer8BitAccess, "VK_KHR_8bit_storage"), FEATURE_TABLE_ITEM(vulkan12Features, eightBitStorageFeatures, uniformAndStorageBuffer8BitAccess, "VK_KHR_8bit_storage"), FEATURE_TABLE_ITEM(vulkan12Features, eightBitStorageFeatures, storagePushConstant8, "VK_KHR_8bit_storage"), FEATURE_TABLE_ITEM(vulkan12Features, shaderAtomicInt64Features, shaderBufferInt64Atomics, "VK_KHR_shader_atomic_int64"), FEATURE_TABLE_ITEM(vulkan12Features, shaderAtomicInt64Features, shaderSharedInt64Atomics, "VK_KHR_shader_atomic_int64"), FEATURE_TABLE_ITEM(vulkan12Features, shaderFloat16Int8Features, shaderFloat16, "VK_KHR_shader_float16_int8"), FEATURE_TABLE_ITEM(vulkan12Features, shaderFloat16Int8Features, shaderInt8, "VK_KHR_shader_float16_int8"), FEATURE_TABLE_ITEM(vulkan12Features, dummyExtensionFeatures, descriptorIndexing, DE_NULL), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, shaderInputAttachmentArrayDynamicIndexing, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, shaderUniformTexelBufferArrayDynamicIndexing, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, shaderStorageTexelBufferArrayDynamicIndexing, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, shaderUniformBufferArrayNonUniformIndexing, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, shaderSampledImageArrayNonUniformIndexing, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, shaderStorageBufferArrayNonUniformIndexing, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, shaderStorageImageArrayNonUniformIndexing, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, shaderInputAttachmentArrayNonUniformIndexing, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, shaderUniformTexelBufferArrayNonUniformIndexing, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, shaderStorageTexelBufferArrayNonUniformIndexing, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, descriptorBindingUniformBufferUpdateAfterBind, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, descriptorBindingSampledImageUpdateAfterBind, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, descriptorBindingStorageImageUpdateAfterBind, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, descriptorBindingStorageBufferUpdateAfterBind, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, descriptorBindingUniformTexelBufferUpdateAfterBind, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, descriptorBindingStorageTexelBufferUpdateAfterBind, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, descriptorBindingUpdateUnusedWhilePending, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, descriptorBindingPartiallyBound, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, descriptorBindingVariableDescriptorCount, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, descriptorIndexingFeatures, runtimeDescriptorArray, "VK_EXT_descriptor_indexing"), FEATURE_TABLE_ITEM(vulkan12Features, dummyExtensionFeatures, samplerFilterMinmax, "VK_EXT_sampler_filter_minmax"), FEATURE_TABLE_ITEM(vulkan12Features, scalarBlockLayoutFeatures, scalarBlockLayout, "VK_EXT_scalar_block_layout"), FEATURE_TABLE_ITEM(vulkan12Features, imagelessFramebufferFeatures, imagelessFramebuffer, "VK_KHR_imageless_framebuffer"), FEATURE_TABLE_ITEM(vulkan12Features, uniformBufferStandardLayoutFeatures, uniformBufferStandardLayout, "VK_KHR_uniform_buffer_standard_layout"), FEATURE_TABLE_ITEM(vulkan12Features, shaderSubgroupExtendedTypesFeatures, shaderSubgroupExtendedTypes, "VK_KHR_shader_subgroup_extended_types"), FEATURE_TABLE_ITEM(vulkan12Features, separateDepthStencilLayoutsFeatures, separateDepthStencilLayouts, "VK_KHR_separate_depth_stencil_layouts"), FEATURE_TABLE_ITEM(vulkan12Features, hostQueryResetFeatures, hostQueryReset, "VK_EXT_host_query_reset"), FEATURE_TABLE_ITEM(vulkan12Features, timelineSemaphoreFeatures, timelineSemaphore, "VK_KHR_timeline_semaphore"), FEATURE_TABLE_ITEM(vulkan12Features, bufferDeviceAddressFeatures, bufferDeviceAddress, "VK_EXT_buffer_device_address"), FEATURE_TABLE_ITEM(vulkan12Features, bufferDeviceAddressFeatures, bufferDeviceAddressCaptureReplay, "VK_EXT_buffer_device_address"), FEATURE_TABLE_ITEM(vulkan12Features, bufferDeviceAddressFeatures, bufferDeviceAddressMultiDevice, "VK_EXT_buffer_device_address"), FEATURE_TABLE_ITEM(vulkan12Features, vulkanMemoryModelFeatures, vulkanMemoryModel, "VK_KHR_vulkan_memory_model"), FEATURE_TABLE_ITEM(vulkan12Features, vulkanMemoryModelFeatures, vulkanMemoryModelDeviceScope, "VK_KHR_vulkan_memory_model"), FEATURE_TABLE_ITEM(vulkan12Features, vulkanMemoryModelFeatures, vulkanMemoryModelAvailabilityVisibilityChains, "VK_KHR_vulkan_memory_model"), }; struct FeatureDependencyTable { VkBool32* featurePtr; VkBool32* dependOnPtr; } featureDependencyTable[] = { DEPENDENCY_DUAL_ITEM (vulkan11Features, multiviewFeatures, multiviewGeometryShader, multiview), DEPENDENCY_DUAL_ITEM (vulkan11Features, multiviewFeatures, multiviewTessellationShader, multiview), DEPENDENCY_DUAL_ITEM (vulkan11Features, variablePointersFeatures, variablePointers, variablePointersStorageBuffer), DEPENDENCY_DUAL_ITEM (vulkan12Features, bufferDeviceAddressFeatures, bufferDeviceAddressCaptureReplay, bufferDeviceAddress), DEPENDENCY_DUAL_ITEM (vulkan12Features, bufferDeviceAddressFeatures, bufferDeviceAddressMultiDevice, bufferDeviceAddress), DEPENDENCY_DUAL_ITEM (vulkan12Features, vulkanMemoryModelFeatures, vulkanMemoryModelDeviceScope, vulkanMemoryModel), DEPENDENCY_DUAL_ITEM (vulkan12Features, vulkanMemoryModelFeatures, vulkanMemoryModelAvailabilityVisibilityChains, vulkanMemoryModel), }; deMemset(&dummyExtensionFeatures, 0, sizeof(dummyExtensionFeatures)); for (size_t featureTableNdx = 0; featureTableNdx < DE_LENGTH_OF_ARRAY(featureTable); ++featureTableNdx) { FeatureTable& testedFeature = featureTable[featureTableNdx]; VkBool32 coreFeatureState= DE_FALSE; VkBool32 extFeatureState = DE_FALSE; // Core test { void* structPtr = testedFeature.coreStructPtr; size_t structSize = testedFeature.coreStructSize; VkBool32* featurePtr = testedFeature.coreFieldPtr; if (structPtr != &dummyExtensionFeatures) features2.pNext = structPtr; vki.getPhysicalDeviceFeatures2(physicalDevice, &features2); coreFeatureState = featurePtr[0]; log << TestLog::Message << "Feature status " << testedFeature.coreFieldName << "=" << coreFeatureState << TestLog::EndMessage; if (coreFeatureState) { cleanVulkanStruct(structPtr, structSize); featurePtr[0] = DE_TRUE; for (size_t featureDependencyTableNdx = 0; featureDependencyTableNdx < DE_LENGTH_OF_ARRAY(featureDependencyTable); ++featureDependencyTableNdx) if (featureDependencyTable[featureDependencyTableNdx].featurePtr == featurePtr) featureDependencyTable[featureDependencyTableNdx].dependOnPtr[0] = DE_TRUE; createTestDevice(context, &features2, DE_NULL, 0u); } } // ext test { void* structPtr = testedFeature.extStructPtr; size_t structSize = testedFeature.extStructSize; VkBool32* featurePtr = testedFeature.extFieldPtr; const char* extStringPtr = testedFeature.extString; if (structPtr != &dummyExtensionFeatures) features2.pNext = structPtr; if (extStringPtr == DE_NULL || isExtensionSupported(deviceExtensionProperties, RequiredExtension(extStringPtr))) { vki.getPhysicalDeviceFeatures2(physicalDevice, &features2); extFeatureState = *featurePtr; log << TestLog::Message << "Feature status " << testedFeature.extFieldName << "=" << extFeatureState << TestLog::EndMessage; if (extFeatureState) { cleanVulkanStruct(structPtr, structSize); featurePtr[0] = DE_TRUE; for (size_t featureDependencyTableNdx = 0; featureDependencyTableNdx < DE_LENGTH_OF_ARRAY(featureDependencyTable); ++featureDependencyTableNdx) if (featureDependencyTable[featureDependencyTableNdx].featurePtr == featurePtr) featureDependencyTable[featureDependencyTableNdx].dependOnPtr[0] = DE_TRUE; createTestDevice(context, &features2, &extStringPtr, (extStringPtr == DE_NULL) ? 0u : 1u ); } } } } return tcu::TestStatus::pass("pass"); } template class CheckIncompleteResult { public: virtual ~CheckIncompleteResult (void) {} virtual void getResult (Context& context, T* data) = 0; void operator() (Context& context, tcu::ResultCollector& results, const std::size_t expectedCompleteSize) { if (expectedCompleteSize == 0) return; vector outputData (expectedCompleteSize); const deUint32 usedSize = static_cast(expectedCompleteSize / 3); ValidateQueryBits::fillBits(outputData.begin(), outputData.end()); // unused entries should have this pattern intact m_count = usedSize; m_result = VK_SUCCESS; getResult(context, &outputData[0]); // update m_count and m_result if (m_count != usedSize || m_result != VK_INCOMPLETE || !ValidateQueryBits::checkBits(outputData.begin() + m_count, outputData.end())) results.fail("Query didn't return VK_INCOMPLETE"); } protected: deUint32 m_count; VkResult m_result; }; struct CheckEnumeratePhysicalDevicesIncompleteResult : public CheckIncompleteResult { void getResult (Context& context, VkPhysicalDevice* data) { m_result = context.getInstanceInterface().enumeratePhysicalDevices(context.getInstance(), &m_count, data); } }; struct CheckEnumeratePhysicalDeviceGroupsIncompleteResult : public CheckIncompleteResult { void getResult (Context& context, VkPhysicalDeviceGroupProperties* data) { m_result = context.getInstanceInterface().enumeratePhysicalDeviceGroups(context.getInstance(), &m_count, data); } }; struct CheckEnumerateInstanceLayerPropertiesIncompleteResult : public CheckIncompleteResult { void getResult (Context& context, VkLayerProperties* data) { m_result = context.getPlatformInterface().enumerateInstanceLayerProperties(&m_count, data); } }; struct CheckEnumerateDeviceLayerPropertiesIncompleteResult : public CheckIncompleteResult { void getResult (Context& context, VkLayerProperties* data) { m_result = context.getInstanceInterface().enumerateDeviceLayerProperties(context.getPhysicalDevice(), &m_count, data); } }; struct CheckEnumerateInstanceExtensionPropertiesIncompleteResult : public CheckIncompleteResult { CheckEnumerateInstanceExtensionPropertiesIncompleteResult (std::string layerName = std::string()) : m_layerName(layerName) {} void getResult (Context& context, VkExtensionProperties* data) { const char* pLayerName = (m_layerName.length() != 0 ? m_layerName.c_str() : DE_NULL); m_result = context.getPlatformInterface().enumerateInstanceExtensionProperties(pLayerName, &m_count, data); } private: const std::string m_layerName; }; struct CheckEnumerateDeviceExtensionPropertiesIncompleteResult : public CheckIncompleteResult { CheckEnumerateDeviceExtensionPropertiesIncompleteResult (std::string layerName = std::string()) : m_layerName(layerName) {} void getResult (Context& context, VkExtensionProperties* data) { const char* pLayerName = (m_layerName.length() != 0 ? m_layerName.c_str() : DE_NULL); m_result = context.getInstanceInterface().enumerateDeviceExtensionProperties(context.getPhysicalDevice(), pLayerName, &m_count, data); } private: const std::string m_layerName; }; tcu::TestStatus enumeratePhysicalDevices (Context& context) { TestLog& log = context.getTestContext().getLog(); tcu::ResultCollector results (log); const vector devices = enumeratePhysicalDevices(context.getInstanceInterface(), context.getInstance()); log << TestLog::Integer("NumDevices", "Number of devices", "", QP_KEY_TAG_NONE, deInt64(devices.size())); for (size_t ndx = 0; ndx < devices.size(); ndx++) log << TestLog::Message << ndx << ": " << devices[ndx] << TestLog::EndMessage; CheckEnumeratePhysicalDevicesIncompleteResult()(context, results, devices.size()); return tcu::TestStatus(results.getResult(), results.getMessage()); } tcu::TestStatus enumeratePhysicalDeviceGroups (Context& context) { TestLog& log = context.getTestContext().getLog(); tcu::ResultCollector results (log); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_device_group_creation")); const InstanceDriver& vki (instance.getDriver()); const vector devicegroups = enumeratePhysicalDeviceGroups(vki, instance); log << TestLog::Integer("NumDevices", "Number of device groups", "", QP_KEY_TAG_NONE, deInt64(devicegroups.size())); for (size_t ndx = 0; ndx < devicegroups.size(); ndx++) log << TestLog::Message << ndx << ": " << devicegroups[ndx] << TestLog::EndMessage; CheckEnumeratePhysicalDeviceGroupsIncompleteResult()(context, results, devicegroups.size()); return tcu::TestStatus(results.getResult(), results.getMessage()); } template void collectDuplicates (set& duplicates, const vector& values) { set seen; for (size_t ndx = 0; ndx < values.size(); ndx++) { const T& value = values[ndx]; if (!seen.insert(value).second) duplicates.insert(value); } } void checkDuplicates (tcu::ResultCollector& results, const char* what, const vector& values) { set duplicates; collectDuplicates(duplicates, values); for (set::const_iterator iter = duplicates.begin(); iter != duplicates.end(); ++iter) { std::ostringstream msg; msg << "Duplicate " << what << ": " << *iter; results.fail(msg.str()); } } void checkDuplicateExtensions (tcu::ResultCollector& results, const vector& extensions) { checkDuplicates(results, "extension", extensions); } void checkDuplicateLayers (tcu::ResultCollector& results, const vector& layers) { checkDuplicates(results, "layer", layers); } void checkKhrExtensions (tcu::ResultCollector& results, const vector& extensions, const int numAllowedKhrExtensions, const char* const* allowedKhrExtensions) { const set allowedExtSet (allowedKhrExtensions, allowedKhrExtensions+numAllowedKhrExtensions); for (vector::const_iterator extIter = extensions.begin(); extIter != extensions.end(); ++extIter) { // Only Khronos-controlled extensions are checked if (de::beginsWith(*extIter, "VK_KHR_") && !de::contains(allowedExtSet, *extIter)) { results.fail("Unknown extension " + *extIter); } } } void checkInstanceExtensions (tcu::ResultCollector& results, const vector& extensions) { #include "vkInstanceExtensions.inl" checkKhrExtensions(results, extensions, DE_LENGTH_OF_ARRAY(s_allowedInstanceKhrExtensions), s_allowedInstanceKhrExtensions); checkDuplicateExtensions(results, extensions); } void checkDeviceExtensions (tcu::ResultCollector& results, const vector& extensions) { #include "vkDeviceExtensions.inl" checkKhrExtensions(results, extensions, DE_LENGTH_OF_ARRAY(s_allowedDeviceKhrExtensions), s_allowedDeviceKhrExtensions); checkDuplicateExtensions(results, extensions); } void checkInstanceExtensionDependencies(tcu::ResultCollector& results, int dependencyLength, const std::tuple* dependencies, deUint32 versionMajor, deUint32 versionMinor, const vector& extensionProperties) { for (int ndx = 0; ndx < dependencyLength; ndx++) { deUint32 currentVersionMajor, currentVersionMinor; const char* extensionFirst; const char* extensionSecond; std::tie(currentVersionMajor, currentVersionMinor, extensionFirst, extensionSecond) = dependencies[ndx]; if (currentVersionMajor != versionMajor || currentVersionMinor != versionMinor) continue; if (isExtensionSupported(extensionProperties, RequiredExtension(extensionFirst)) && !isExtensionSupported(extensionProperties, RequiredExtension(extensionSecond))) { results.fail("Extension " + string(extensionFirst) + " is missing dependency: " + string(extensionSecond)); } } } void checkDeviceExtensionDependencies(tcu::ResultCollector& results, int dependencyLength, const std::tuple* dependencies, deUint32 versionMajor, deUint32 versionMinor, const vector& instanceExtensionProperties, const vector& deviceExtensionProperties) { for (int ndx = 0; ndx < dependencyLength; ndx++) { deUint32 currentVersionMajor, currentVersionMinor; const char* extensionFirst; const char* extensionSecond; std::tie(currentVersionMajor, currentVersionMinor, extensionFirst, extensionSecond) = dependencies[ndx]; if (currentVersionMajor != versionMajor || currentVersionMinor != versionMinor) continue; if (isExtensionSupported(deviceExtensionProperties, RequiredExtension(extensionFirst)) && !isExtensionSupported(deviceExtensionProperties, RequiredExtension(extensionSecond)) && !isExtensionSupported(instanceExtensionProperties, RequiredExtension(extensionSecond))) { results.fail("Extension " + string(extensionFirst) + " is missing dependency: " + string(extensionSecond)); } } } tcu::TestStatus enumerateInstanceLayers (Context& context) { TestLog& log = context.getTestContext().getLog(); tcu::ResultCollector results (log); const vector properties = enumerateInstanceLayerProperties(context.getPlatformInterface()); vector layerNames; for (size_t ndx = 0; ndx < properties.size(); ndx++) { log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage; layerNames.push_back(properties[ndx].layerName); } checkDuplicateLayers(results, layerNames); CheckEnumerateInstanceLayerPropertiesIncompleteResult()(context, results, layerNames.size()); return tcu::TestStatus(results.getResult(), results.getMessage()); } tcu::TestStatus enumerateInstanceExtensions (Context& context) { TestLog& log = context.getTestContext().getLog(); tcu::ResultCollector results (log); { const ScopedLogSection section (log, "Global", "Global Extensions"); const vector properties = enumerateInstanceExtensionProperties(context.getPlatformInterface(), DE_NULL); vector extensionNames; for (size_t ndx = 0; ndx < properties.size(); ndx++) { log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage; extensionNames.push_back(properties[ndx].extensionName); } checkInstanceExtensions(results, extensionNames); CheckEnumerateInstanceExtensionPropertiesIncompleteResult()(context, results, properties.size()); for (const auto& version : releasedApiVersions) { deUint32 versionMajor, versionMinor; std::tie(std::ignore, versionMajor, versionMinor) = version; if (context.contextSupports(vk::ApiVersion(versionMajor, versionMinor, 0))) { checkInstanceExtensionDependencies(results, DE_LENGTH_OF_ARRAY(instanceExtensionDependencies), instanceExtensionDependencies, versionMajor, versionMinor, properties); break; } } } { const vector layers = enumerateInstanceLayerProperties(context.getPlatformInterface()); for (vector::const_iterator layer = layers.begin(); layer != layers.end(); ++layer) { const ScopedLogSection section (log, layer->layerName, string("Layer: ") + layer->layerName); const vector properties = enumerateInstanceExtensionProperties(context.getPlatformInterface(), layer->layerName); vector extensionNames; for (size_t extNdx = 0; extNdx < properties.size(); extNdx++) { log << TestLog::Message << extNdx << ": " << properties[extNdx] << TestLog::EndMessage; extensionNames.push_back(properties[extNdx].extensionName); } checkInstanceExtensions(results, extensionNames); CheckEnumerateInstanceExtensionPropertiesIncompleteResult(layer->layerName)(context, results, properties.size()); } } return tcu::TestStatus(results.getResult(), results.getMessage()); } tcu::TestStatus testNoKhxExtensions (Context& context) { VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const PlatformInterface& vkp = context.getPlatformInterface(); const InstanceInterface& vki = context.getInstanceInterface(); tcu::ResultCollector results(context.getTestContext().getLog()); bool testSucceeded = true; deUint32 instanceExtensionsCount; deUint32 deviceExtensionsCount; // grab number of instance and device extensions vkp.enumerateInstanceExtensionProperties(DE_NULL, &instanceExtensionsCount, DE_NULL); vki.enumerateDeviceExtensionProperties(physicalDevice, DE_NULL, &deviceExtensionsCount, DE_NULL); vector extensionsProperties(instanceExtensionsCount + deviceExtensionsCount); // grab instance and device extensions into single vector if (instanceExtensionsCount) vkp.enumerateInstanceExtensionProperties(DE_NULL, &instanceExtensionsCount, &extensionsProperties[0]); if (deviceExtensionsCount) vki.enumerateDeviceExtensionProperties(physicalDevice, DE_NULL, &deviceExtensionsCount, &extensionsProperties[instanceExtensionsCount]); // iterate over all extensions and verify their names vector::const_iterator extension = extensionsProperties.begin(); while (extension != extensionsProperties.end()) { // KHX author ID is no longer used, all KHX extensions have been promoted to KHR status std::string extensionName(extension->extensionName); bool caseFailed = de::beginsWith(extensionName, "VK_KHX_"); if (caseFailed) { results.fail("Invalid extension name " + extensionName); testSucceeded = false; } ++extension; } if (testSucceeded) return tcu::TestStatus::pass("No extensions begining with \"VK_KHX\""); return tcu::TestStatus::fail("One or more extensions begins with \"VK_KHX\""); } tcu::TestStatus enumerateDeviceLayers (Context& context) { TestLog& log = context.getTestContext().getLog(); tcu::ResultCollector results (log); const vector properties = enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice()); vector layerNames; for (size_t ndx = 0; ndx < properties.size(); ndx++) { log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage; layerNames.push_back(properties[ndx].layerName); } checkDuplicateLayers(results, layerNames); CheckEnumerateDeviceLayerPropertiesIncompleteResult()(context, results, layerNames.size()); return tcu::TestStatus(results.getResult(), results.getMessage()); } tcu::TestStatus enumerateDeviceExtensions (Context& context) { TestLog& log = context.getTestContext().getLog(); tcu::ResultCollector results (log); { const ScopedLogSection section (log, "Global", "Global Extensions"); const vector instanceExtensionProperties = enumerateInstanceExtensionProperties(context.getPlatformInterface(), DE_NULL); const vector deviceExtensionProperties = enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), DE_NULL); vector deviceExtensionNames; for (size_t ndx = 0; ndx < deviceExtensionProperties.size(); ndx++) { log << TestLog::Message << ndx << ": " << deviceExtensionProperties[ndx] << TestLog::EndMessage; deviceExtensionNames.push_back(deviceExtensionProperties[ndx].extensionName); } checkDeviceExtensions(results, deviceExtensionNames); CheckEnumerateDeviceExtensionPropertiesIncompleteResult()(context, results, deviceExtensionProperties.size()); for (const auto& version : releasedApiVersions) { deUint32 versionMajor, versionMinor; std::tie(std::ignore, versionMajor, versionMinor) = version; if (context.contextSupports(vk::ApiVersion(versionMajor, versionMinor, 0))) { checkDeviceExtensionDependencies(results, DE_LENGTH_OF_ARRAY(deviceExtensionDependencies), deviceExtensionDependencies, versionMajor, versionMinor, instanceExtensionProperties, deviceExtensionProperties); break; } } } { const vector layers = enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice()); for (vector::const_iterator layer = layers.begin(); layer != layers.end(); ++layer) { const ScopedLogSection section (log, layer->layerName, string("Layer: ") + layer->layerName); const vector properties = enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), layer->layerName); vector extensionNames; for (size_t extNdx = 0; extNdx < properties.size(); extNdx++) { log << TestLog::Message << extNdx << ": " << properties[extNdx] << TestLog::EndMessage; extensionNames.push_back(properties[extNdx].extensionName); } checkDeviceExtensions(results, extensionNames); CheckEnumerateDeviceExtensionPropertiesIncompleteResult(layer->layerName)(context, results, properties.size()); } } return tcu::TestStatus(results.getResult(), results.getMessage()); } tcu::TestStatus extensionCoreVersions (Context& context) { deUint32 major; deUint32 minor; const char* extName; auto& log = context.getTestContext().getLog(); tcu::ResultCollector results (log); const auto instanceExtensionProperties = enumerateInstanceExtensionProperties(context.getPlatformInterface(), DE_NULL); const auto deviceExtensionProperties = enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), DE_NULL); for (const auto& majorMinorName : extensionRequiredCoreVersion) { std::tie(major, minor, extName) = majorMinorName; const RequiredExtension reqExt (extName); if ((isExtensionSupported(instanceExtensionProperties, reqExt) || isExtensionSupported(deviceExtensionProperties, reqExt)) && !context.contextSupports(vk::ApiVersion(major, minor, 0u))) { results.fail("Required core version for " + std::string(extName) + " not met (" + de::toString(major) + "." + de::toString(minor) + ")"); } } return tcu::TestStatus(results.getResult(), results.getMessage()); } #define VK_SIZE_OF(STRUCT, MEMBER) (sizeof(((STRUCT*)0)->MEMBER)) #define OFFSET_TABLE_ENTRY(STRUCT, MEMBER) { (size_t)DE_OFFSET_OF(STRUCT, MEMBER), VK_SIZE_OF(STRUCT, MEMBER) } tcu::TestStatus deviceFeatures (Context& context) { using namespace ValidateQueryBits; TestLog& log = context.getTestContext().getLog(); VkPhysicalDeviceFeatures* features; deUint8 buffer[sizeof(VkPhysicalDeviceFeatures) + GUARD_SIZE]; const QueryMemberTableEntry featureOffsetTable[] = { OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, robustBufferAccess), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, fullDrawIndexUint32), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, imageCubeArray), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, independentBlend), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, geometryShader), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, tessellationShader), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sampleRateShading), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, dualSrcBlend), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, logicOp), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, multiDrawIndirect), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, drawIndirectFirstInstance), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, depthClamp), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, depthBiasClamp), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, fillModeNonSolid), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, depthBounds), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, wideLines), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, largePoints), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, alphaToOne), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, multiViewport), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, samplerAnisotropy), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, textureCompressionETC2), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, textureCompressionASTC_LDR), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, textureCompressionBC), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, occlusionQueryPrecise), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, pipelineStatisticsQuery), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, vertexPipelineStoresAndAtomics), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, fragmentStoresAndAtomics), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderTessellationAndGeometryPointSize), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderImageGatherExtended), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageExtendedFormats), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageMultisample), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageReadWithoutFormat), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageWriteWithoutFormat), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderUniformBufferArrayDynamicIndexing), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderSampledImageArrayDynamicIndexing), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageBufferArrayDynamicIndexing), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageArrayDynamicIndexing), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderClipDistance), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderCullDistance), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderFloat64), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderInt64), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderInt16), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderResourceResidency), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderResourceMinLod), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseBinding), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyBuffer), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyImage2D), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyImage3D), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency2Samples), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency4Samples), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency8Samples), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency16Samples), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyAliased), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, variableMultisampleRate), OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, inheritedQueries), { 0, 0 } }; deMemset(buffer, GUARD_VALUE, sizeof(buffer)); features = reinterpret_cast(buffer); context.getInstanceInterface().getPhysicalDeviceFeatures(context.getPhysicalDevice(), features); log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage << TestLog::Message << *features << TestLog::EndMessage; // Requirements and dependencies { if (!features->robustBufferAccess) return tcu::TestStatus::fail("robustBufferAccess is not supported"); // multiViewport requires MultiViewport (SPIR-V capability) support, which depends on Geometry if (features->multiViewport && !features->geometryShader) return tcu::TestStatus::fail("multiViewport is supported but geometryShader is not"); } for (int ndx = 0; ndx < GUARD_SIZE; ndx++) { if (buffer[ndx + sizeof(VkPhysicalDeviceFeatures)] != GUARD_VALUE) { log << TestLog::Message << "deviceFeatures - Guard offset " << ndx << " not valid" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceFeatures buffer overflow"); } } if (!validateInitComplete(context.getPhysicalDevice(), &InstanceInterface::getPhysicalDeviceFeatures, context.getInstanceInterface(), featureOffsetTable)) { log << TestLog::Message << "deviceFeatures - VkPhysicalDeviceFeatures not completely initialized" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceFeatures incomplete initialization"); } return tcu::TestStatus::pass("Query succeeded"); } static const ValidateQueryBits::QueryMemberTableEntry s_physicalDevicePropertiesOffsetTable[] = { OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, apiVersion), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, driverVersion), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, vendorID), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, deviceID), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, deviceType), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, pipelineCacheUUID), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimension1D), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimension2D), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimension3D), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimensionCube), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageArrayLayers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTexelBufferElements), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxUniformBufferRange), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxStorageBufferRange), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPushConstantsSize), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxMemoryAllocationCount), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSamplerAllocationCount), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.bufferImageGranularity), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sparseAddressSpaceSize), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxBoundDescriptorSets), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorSamplers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorUniformBuffers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorStorageBuffers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorSampledImages), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorStorageImages), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorInputAttachments), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageResources), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetSamplers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetUniformBuffers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetUniformBuffersDynamic), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetStorageBuffers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetStorageBuffersDynamic), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetSampledImages), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetStorageImages), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetInputAttachments), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputAttributes), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputBindings), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputAttributeOffset), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputBindingStride), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexOutputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationGenerationLevel), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationPatchSize), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlPerVertexInputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlPerVertexOutputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlPerPatchOutputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlTotalOutputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationEvaluationInputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationEvaluationOutputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryShaderInvocations), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryInputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryOutputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryOutputVertices), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryTotalOutputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentInputComponents), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentOutputAttachments), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentDualSrcAttachments), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentCombinedOutputResources), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeSharedMemorySize), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeWorkGroupCount[3]), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeWorkGroupInvocations), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeWorkGroupSize[3]), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.subPixelPrecisionBits), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.subTexelPrecisionBits), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.mipmapPrecisionBits), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDrawIndexedIndexValue), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDrawIndirectCount), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSamplerLodBias), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSamplerAnisotropy), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxViewports), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxViewportDimensions[2]), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.viewportBoundsRange[2]), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.viewportSubPixelBits), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minMemoryMapAlignment), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minTexelBufferOffsetAlignment), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minUniformBufferOffsetAlignment), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minStorageBufferOffsetAlignment), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minTexelOffset), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTexelOffset), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minTexelGatherOffset), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTexelGatherOffset), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minInterpolationOffset), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxInterpolationOffset), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.subPixelInterpolationOffsetBits), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFramebufferWidth), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFramebufferHeight), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFramebufferLayers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferColorSampleCounts), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferDepthSampleCounts), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferStencilSampleCounts), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferNoAttachmentsSampleCounts), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxColorAttachments), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageColorSampleCounts), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageIntegerSampleCounts), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageDepthSampleCounts), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageStencilSampleCounts), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.storageImageSampleCounts), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSampleMaskWords), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.timestampComputeAndGraphics), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.timestampPeriod), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxClipDistances), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxCullDistances), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxCombinedClipAndCullDistances), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.discreteQueuePriorities), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.pointSizeRange[2]), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.lineWidthRange[2]), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.pointSizeGranularity), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.lineWidthGranularity), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.strictLines), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.standardSampleLocations), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.optimalBufferCopyOffsetAlignment), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.optimalBufferCopyRowPitchAlignment), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.nonCoherentAtomSize), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyStandard2DBlockShape), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyStandard2DMultisampleBlockShape), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyStandard3DBlockShape), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyAlignedMipSize), OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyNonResidentStrict), { 0, 0 } }; tcu::TestStatus deviceProperties (Context& context) { using namespace ValidateQueryBits; TestLog& log = context.getTestContext().getLog(); VkPhysicalDeviceProperties* props; VkPhysicalDeviceFeatures features; deUint8 buffer[sizeof(VkPhysicalDeviceProperties) + GUARD_SIZE]; props = reinterpret_cast(buffer); deMemset(props, GUARD_VALUE, sizeof(buffer)); context.getInstanceInterface().getPhysicalDeviceProperties(context.getPhysicalDevice(), props); context.getInstanceInterface().getPhysicalDeviceFeatures(context.getPhysicalDevice(), &features); log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage << TestLog::Message << *props << TestLog::EndMessage; if (!validateFeatureLimits(props, &features, log)) return tcu::TestStatus::fail("deviceProperties - feature limits failed"); for (int ndx = 0; ndx < GUARD_SIZE; ndx++) { if (buffer[ndx + sizeof(VkPhysicalDeviceProperties)] != GUARD_VALUE) { log << TestLog::Message << "deviceProperties - Guard offset " << ndx << " not valid" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceProperties buffer overflow"); } } if (!validateInitComplete(context.getPhysicalDevice(), &InstanceInterface::getPhysicalDeviceProperties, context.getInstanceInterface(), s_physicalDevicePropertiesOffsetTable)) { log << TestLog::Message << "deviceProperties - VkPhysicalDeviceProperties not completely initialized" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceProperties incomplete initialization"); } // Check if deviceName string is properly terminated. if (deStrnlen(props->deviceName, VK_MAX_PHYSICAL_DEVICE_NAME_SIZE) == VK_MAX_PHYSICAL_DEVICE_NAME_SIZE) { log << TestLog::Message << "deviceProperties - VkPhysicalDeviceProperties deviceName not properly initialized" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceProperties incomplete initialization"); } { const ApiVersion deviceVersion = unpackVersion(props->apiVersion); const ApiVersion deqpVersion = unpackVersion(VK_API_VERSION_1_2); if (deviceVersion.majorNum != deqpVersion.majorNum) { log << TestLog::Message << "deviceProperties - API Major Version " << deviceVersion.majorNum << " is not valid" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceProperties apiVersion not valid"); } if (deviceVersion.minorNum > deqpVersion.minorNum) { log << TestLog::Message << "deviceProperties - API Minor Version " << deviceVersion.minorNum << " is not valid for this version of dEQP" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceProperties apiVersion not valid"); } } return tcu::TestStatus::pass("DeviceProperites query succeeded"); } tcu::TestStatus deviceQueueFamilyProperties (Context& context) { TestLog& log = context.getTestContext().getLog(); const vector queueProperties = getPhysicalDeviceQueueFamilyProperties(context.getInstanceInterface(), context.getPhysicalDevice()); log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage; for (size_t queueNdx = 0; queueNdx < queueProperties.size(); queueNdx++) log << TestLog::Message << queueNdx << ": " << queueProperties[queueNdx] << TestLog::EndMessage; return tcu::TestStatus::pass("Querying queue properties succeeded"); } tcu::TestStatus deviceMemoryProperties (Context& context) { TestLog& log = context.getTestContext().getLog(); VkPhysicalDeviceMemoryProperties* memProps; deUint8 buffer[sizeof(VkPhysicalDeviceMemoryProperties) + GUARD_SIZE]; memProps = reinterpret_cast(buffer); deMemset(buffer, GUARD_VALUE, sizeof(buffer)); context.getInstanceInterface().getPhysicalDeviceMemoryProperties(context.getPhysicalDevice(), memProps); log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage << TestLog::Message << *memProps << TestLog::EndMessage; for (deInt32 ndx = 0; ndx < GUARD_SIZE; ndx++) { if (buffer[ndx + sizeof(VkPhysicalDeviceMemoryProperties)] != GUARD_VALUE) { log << TestLog::Message << "deviceMemoryProperties - Guard offset " << ndx << " not valid" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryProperties buffer overflow"); } } if (memProps->memoryHeapCount >= VK_MAX_MEMORY_HEAPS) { log << TestLog::Message << "deviceMemoryProperties - HeapCount larger than " << (deUint32)VK_MAX_MEMORY_HEAPS << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryProperties HeapCount too large"); } if (memProps->memoryHeapCount == 1) { if ((memProps->memoryHeaps[0].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) == 0) { log << TestLog::Message << "deviceMemoryProperties - Single heap is not marked DEVICE_LOCAL" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryProperties invalid HeapFlags"); } } const VkMemoryPropertyFlags validPropertyFlags[] = { 0, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT }; const VkMemoryPropertyFlags requiredPropertyFlags[] = { VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT }; bool requiredFlagsFound[DE_LENGTH_OF_ARRAY(requiredPropertyFlags)]; std::fill(DE_ARRAY_BEGIN(requiredFlagsFound), DE_ARRAY_END(requiredFlagsFound), false); for (deUint32 memoryNdx = 0; memoryNdx < memProps->memoryTypeCount; memoryNdx++) { bool validPropTypeFound = false; if (memProps->memoryTypes[memoryNdx].heapIndex >= memProps->memoryHeapCount) { log << TestLog::Message << "deviceMemoryProperties - heapIndex " << memProps->memoryTypes[memoryNdx].heapIndex << " larger than heapCount" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryProperties - invalid heapIndex"); } const VkMemoryPropertyFlags bitsToCheck = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT|VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; for (const VkMemoryPropertyFlags* requiredFlagsIterator = DE_ARRAY_BEGIN(requiredPropertyFlags); requiredFlagsIterator != DE_ARRAY_END(requiredPropertyFlags); requiredFlagsIterator++) if ((memProps->memoryTypes[memoryNdx].propertyFlags & *requiredFlagsIterator) == *requiredFlagsIterator) requiredFlagsFound[requiredFlagsIterator - DE_ARRAY_BEGIN(requiredPropertyFlags)] = true; if (de::contains(DE_ARRAY_BEGIN(validPropertyFlags), DE_ARRAY_END(validPropertyFlags), memProps->memoryTypes[memoryNdx].propertyFlags & bitsToCheck)) validPropTypeFound = true; if (!validPropTypeFound) { log << TestLog::Message << "deviceMemoryProperties - propertyFlags " << memProps->memoryTypes[memoryNdx].propertyFlags << " not valid" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryProperties propertyFlags not valid"); } if (memProps->memoryTypes[memoryNdx].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) { if ((memProps->memoryHeaps[memProps->memoryTypes[memoryNdx].heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) == 0) { log << TestLog::Message << "deviceMemoryProperties - DEVICE_LOCAL memory type references heap which is not DEVICE_LOCAL" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryProperties inconsistent memoryType and HeapFlags"); } } else { if (memProps->memoryHeaps[memProps->memoryTypes[memoryNdx].heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) { log << TestLog::Message << "deviceMemoryProperties - non-DEVICE_LOCAL memory type references heap with is DEVICE_LOCAL" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryProperties inconsistent memoryType and HeapFlags"); } } } bool* requiredFlagsFoundIterator = std::find(DE_ARRAY_BEGIN(requiredFlagsFound), DE_ARRAY_END(requiredFlagsFound), false); if (requiredFlagsFoundIterator != DE_ARRAY_END(requiredFlagsFound)) { DE_ASSERT(requiredFlagsFoundIterator - DE_ARRAY_BEGIN(requiredFlagsFound) <= DE_LENGTH_OF_ARRAY(requiredPropertyFlags)); log << TestLog::Message << "deviceMemoryProperties - required property flags " << getMemoryPropertyFlagsStr(requiredPropertyFlags[requiredFlagsFoundIterator - DE_ARRAY_BEGIN(requiredFlagsFound)]) << " not found" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryProperties propertyFlags not valid"); } return tcu::TestStatus::pass("Querying memory properties succeeded"); } tcu::TestStatus deviceGroupPeerMemoryFeatures (Context& context) { TestLog& log = context.getTestContext().getLog(); const PlatformInterface& vkp = context.getPlatformInterface(); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_device_group_creation")); const InstanceDriver& vki (instance.getDriver()); const tcu::CommandLine& cmdLine = context.getTestContext().getCommandLine(); const deUint32 devGroupIdx = cmdLine.getVKDeviceGroupId() - 1; const deUint32 deviceIdx = vk::chooseDeviceIndex(context.getInstanceInterface(), instance, cmdLine); const float queuePriority = 1.0f; VkPhysicalDeviceMemoryProperties memProps; VkPeerMemoryFeatureFlags* peerMemFeatures; deUint8 buffer [sizeof(VkPeerMemoryFeatureFlags) + GUARD_SIZE]; deUint32 numPhysicalDevices = 0; deUint32 queueFamilyIndex = 0; const vector deviceGroupProps = enumeratePhysicalDeviceGroups(vki, instance); std::vector deviceExtensions; deviceExtensions.push_back("VK_KHR_device_group"); if (!isCoreDeviceExtension(context.getUsedApiVersion(), "VK_KHR_device_group")) deviceExtensions.push_back("VK_KHR_device_group"); const std::vector queueProps = getPhysicalDeviceQueueFamilyProperties(vki, deviceGroupProps[devGroupIdx].physicalDevices[deviceIdx]); for (size_t queueNdx = 0; queueNdx < queueProps.size(); queueNdx++) { if (queueProps[queueNdx].queueFlags & VK_QUEUE_GRAPHICS_BIT) queueFamilyIndex = (deUint32)queueNdx; } const VkDeviceQueueCreateInfo deviceQueueCreateInfo = { VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, //type DE_NULL, //pNext (VkDeviceQueueCreateFlags)0u, //flags queueFamilyIndex, //queueFamilyIndex; 1u, //queueCount; &queuePriority, //pQueuePriorities; }; // Need atleast 2 devices for peer memory features numPhysicalDevices = deviceGroupProps[devGroupIdx].physicalDeviceCount; if (numPhysicalDevices < 2) TCU_THROW(NotSupportedError, "Need a device Group with at least 2 physical devices."); // Create device groups const VkDeviceGroupDeviceCreateInfo deviceGroupInfo = { VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO, //stype DE_NULL, //pNext deviceGroupProps[devGroupIdx].physicalDeviceCount, //physicalDeviceCount deviceGroupProps[devGroupIdx].physicalDevices //physicalDevices }; const VkDeviceCreateInfo deviceCreateInfo = { VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, //sType; &deviceGroupInfo, //pNext; (VkDeviceCreateFlags)0u, //flags 1, //queueRecordCount; &deviceQueueCreateInfo, //pRequestedQueues; 0, //layerCount; DE_NULL, //ppEnabledLayerNames; deUint32(deviceExtensions.size()), //extensionCount; (deviceExtensions.empty() ? DE_NULL : &deviceExtensions[0]), //ppEnabledExtensionNames; DE_NULL, //pEnabledFeatures; }; Move deviceGroup = createCustomDevice(context.getTestContext().getCommandLine().isValidationEnabled(), vkp, instance, vki, deviceGroupProps[devGroupIdx].physicalDevices[deviceIdx], &deviceCreateInfo); const DeviceDriver vk (vkp, instance, *deviceGroup); context.getInstanceInterface().getPhysicalDeviceMemoryProperties(deviceGroupProps[devGroupIdx].physicalDevices[deviceIdx], &memProps); peerMemFeatures = reinterpret_cast(buffer); deMemset(buffer, GUARD_VALUE, sizeof(buffer)); for (deUint32 heapIndex = 0; heapIndex < memProps.memoryHeapCount; heapIndex++) { for (deUint32 localDeviceIndex = 0; localDeviceIndex < numPhysicalDevices; localDeviceIndex++) { for (deUint32 remoteDeviceIndex = 0; remoteDeviceIndex < numPhysicalDevices; remoteDeviceIndex++) { if (localDeviceIndex != remoteDeviceIndex) { vk.getDeviceGroupPeerMemoryFeatures(deviceGroup.get(), heapIndex, localDeviceIndex, remoteDeviceIndex, peerMemFeatures); // Check guard for (deInt32 ndx = 0; ndx < GUARD_SIZE; ndx++) { if (buffer[ndx + sizeof(VkPeerMemoryFeatureFlags)] != GUARD_VALUE) { log << TestLog::Message << "deviceGroupPeerMemoryFeatures - Guard offset " << ndx << " not valid" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceGroupPeerMemoryFeatures buffer overflow"); } } VkPeerMemoryFeatureFlags requiredFlag = VK_PEER_MEMORY_FEATURE_COPY_DST_BIT; VkPeerMemoryFeatureFlags maxValidFlag = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT|VK_PEER_MEMORY_FEATURE_COPY_DST_BIT| VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT|VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT; if ((!(*peerMemFeatures & requiredFlag)) || *peerMemFeatures > maxValidFlag) return tcu::TestStatus::fail("deviceGroupPeerMemoryFeatures invalid flag"); log << TestLog::Message << "deviceGroup = " << deviceGroup.get() << TestLog::EndMessage << TestLog::Message << "heapIndex = " << heapIndex << TestLog::EndMessage << TestLog::Message << "localDeviceIndex = " << localDeviceIndex << TestLog::EndMessage << TestLog::Message << "remoteDeviceIndex = " << remoteDeviceIndex << TestLog::EndMessage << TestLog::Message << "PeerMemoryFeatureFlags = " << *peerMemFeatures << TestLog::EndMessage; } } // remote device } // local device } // heap Index return tcu::TestStatus::pass("Querying deviceGroup peer memory features succeeded"); } tcu::TestStatus deviceMemoryBudgetProperties (Context& context) { TestLog& log = context.getTestContext().getLog(); deUint8 buffer[sizeof(VkPhysicalDeviceMemoryBudgetPropertiesEXT) + GUARD_SIZE]; if (!context.isDeviceFunctionalitySupported("VK_EXT_memory_budget")) TCU_THROW(NotSupportedError, "VK_EXT_memory_budget is not supported"); VkPhysicalDeviceMemoryBudgetPropertiesEXT *budgetProps = reinterpret_cast(buffer); deMemset(buffer, GUARD_VALUE, sizeof(buffer)); budgetProps->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT; budgetProps->pNext = DE_NULL; VkPhysicalDeviceMemoryProperties2 memProps; deMemset(&memProps, 0, sizeof(memProps)); memProps.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2; memProps.pNext = budgetProps; context.getInstanceInterface().getPhysicalDeviceMemoryProperties2(context.getPhysicalDevice(), &memProps); log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage << TestLog::Message << *budgetProps << TestLog::EndMessage; for (deInt32 ndx = 0; ndx < GUARD_SIZE; ndx++) { if (buffer[ndx + sizeof(VkPhysicalDeviceMemoryBudgetPropertiesEXT)] != GUARD_VALUE) { log << TestLog::Message << "deviceMemoryBudgetProperties - Guard offset " << ndx << " not valid" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryBudgetProperties buffer overflow"); } } for (deUint32 i = 0; i < memProps.memoryProperties.memoryHeapCount; ++i) { if (budgetProps->heapBudget[i] == 0) { log << TestLog::Message << "deviceMemoryBudgetProperties - Supported heaps must report nonzero budget" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryBudgetProperties invalid heap budget (zero)"); } if (budgetProps->heapBudget[i] > memProps.memoryProperties.memoryHeaps[i].size) { log << TestLog::Message << "deviceMemoryBudgetProperties - Heap budget must be less than or equal to heap size" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryBudgetProperties invalid heap budget (too large)"); } } for (deUint32 i = memProps.memoryProperties.memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; ++i) { if (budgetProps->heapBudget[i] != 0 || budgetProps->heapUsage[i] != 0) { log << TestLog::Message << "deviceMemoryBudgetProperties - Unused heaps must report budget/usage of zero" << TestLog::EndMessage; return tcu::TestStatus::fail("deviceMemoryBudgetProperties invalid unused heaps"); } } return tcu::TestStatus::pass("Querying memory budget properties succeeded"); } namespace { #include "vkMandatoryFeatures.inl" } tcu::TestStatus deviceMandatoryFeatures(Context& context) { if ( checkMandatoryFeatures(context) ) return tcu::TestStatus::pass("Passed"); return tcu::TestStatus::fail("Not all mandatory features are supported ( see: vkspec.html#features-requirements )"); } VkFormatFeatureFlags getBaseRequiredOptimalTilingFeatures (VkFormat format) { struct Formatpair { VkFormat format; VkFormatFeatureFlags flags; }; enum { SAIM = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, BLSR = VK_FORMAT_FEATURE_BLIT_SRC_BIT, SIFL = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT, COAT = VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT, BLDS = VK_FORMAT_FEATURE_BLIT_DST_BIT, CABL = VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, STIM = VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT, STIA = VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT, DSAT = VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT, TRSR = VK_FORMAT_FEATURE_TRANSFER_SRC_BIT, TRDS = VK_FORMAT_FEATURE_TRANSFER_DST_BIT }; static const Formatpair formatflags[] = { { VK_FORMAT_B4G4R4A4_UNORM_PACK16, SAIM | BLSR | TRSR | TRDS | SIFL }, { VK_FORMAT_R5G6B5_UNORM_PACK16, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_A1R5G5B5_UNORM_PACK16, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_R8_UNORM, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_R8_SNORM, SAIM | BLSR | TRSR | TRDS | SIFL }, { VK_FORMAT_R8_UINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_R8_SINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_R8G8_UNORM, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_R8G8_SNORM, SAIM | BLSR | TRSR | TRDS | SIFL }, { VK_FORMAT_R8G8_UINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_R8G8_SINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_R8G8B8A8_UNORM, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | STIM | CABL }, { VK_FORMAT_R8G8B8A8_SNORM, SAIM | BLSR | TRSR | TRDS | SIFL | STIM }, { VK_FORMAT_R8G8B8A8_UINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_R8G8B8A8_SINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_R8G8B8A8_SRGB, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_B8G8R8A8_UNORM, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_B8G8R8A8_SRGB, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_A8B8G8R8_UNORM_PACK32, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_A8B8G8R8_SNORM_PACK32, SAIM | BLSR | TRSR | TRDS | SIFL }, { VK_FORMAT_A8B8G8R8_UINT_PACK32, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_A8B8G8R8_SINT_PACK32, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_A8B8G8R8_SRGB_PACK32, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_A2B10G10R10_UNORM_PACK32, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_A2B10G10R10_UINT_PACK32, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_R16_UINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_R16_SINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_R16_SFLOAT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_R16G16_UINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_R16G16_SINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS }, { VK_FORMAT_R16G16_SFLOAT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | CABL }, { VK_FORMAT_R16G16B16A16_UINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_R16G16B16A16_SINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_R16G16B16A16_SFLOAT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | SIFL | STIM | CABL }, { VK_FORMAT_R32_UINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM | STIA }, { VK_FORMAT_R32_SINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM | STIA }, { VK_FORMAT_R32_SFLOAT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_R32G32_UINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_R32G32_SINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_R32G32_SFLOAT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_R32G32B32A32_UINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_R32G32B32A32_SINT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_R32G32B32A32_SFLOAT, SAIM | BLSR | TRSR | TRDS | COAT | BLDS | STIM }, { VK_FORMAT_B10G11R11_UFLOAT_PACK32, SAIM | BLSR | TRSR | TRDS | SIFL }, { VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, SAIM | BLSR | TRSR | TRDS | SIFL }, { VK_FORMAT_D16_UNORM, SAIM | BLSR | TRSR | TRDS | DSAT }, }; size_t formatpairs = sizeof(formatflags) / sizeof(Formatpair); for (unsigned int i = 0; i < formatpairs; i++) if (formatflags[i].format == format) return formatflags[i].flags; return 0; } VkFormatFeatureFlags getRequiredOptimalExtendedTilingFeatures (Context& context, VkFormat format, VkFormatFeatureFlags queriedFlags) { VkFormatFeatureFlags flags = (VkFormatFeatureFlags)0; // VK_EXT_sampler_filter_minmax: // If filterMinmaxSingleComponentFormats is VK_TRUE, the following formats must // support the VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT feature with // VK_IMAGE_TILING_OPTIMAL, if they support VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT. static const VkFormat s_requiredSampledImageFilterMinMaxFormats[] = { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_SNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_SNORM, VK_FORMAT_R16_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_D16_UNORM, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_D32_SFLOAT, VK_FORMAT_D16_UNORM_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_D32_SFLOAT_S8_UINT, }; if ((queriedFlags & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) != 0) { if (de::contains(context.getDeviceExtensions().begin(), context.getDeviceExtensions().end(), "VK_EXT_sampler_filter_minmax")) { if (de::contains(DE_ARRAY_BEGIN(s_requiredSampledImageFilterMinMaxFormats), DE_ARRAY_END(s_requiredSampledImageFilterMinMaxFormats), format)) { VkPhysicalDeviceSamplerFilterMinmaxProperties physicalDeviceSamplerMinMaxProperties = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT, DE_NULL, DE_FALSE, DE_FALSE }; { VkPhysicalDeviceProperties2 physicalDeviceProperties; physicalDeviceProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; physicalDeviceProperties.pNext = &physicalDeviceSamplerMinMaxProperties; const InstanceInterface& vk = context.getInstanceInterface(); vk.getPhysicalDeviceProperties2(context.getPhysicalDevice(), &physicalDeviceProperties); } if (physicalDeviceSamplerMinMaxProperties.filterMinmaxSingleComponentFormats) { flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT; } } } } // VK_EXT_filter_cubic: // If cubic filtering is supported, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT must be supported for the following image view types: // VK_IMAGE_VIEW_TYPE_2D, VK_IMAGE_VIEW_TYPE_2D_ARRAY static const VkFormat s_requiredSampledImageFilterCubicFormats[] = { VK_FORMAT_R4G4_UNORM_PACK8, VK_FORMAT_R4G4B4A4_UNORM_PACK16, VK_FORMAT_B4G4R4A4_UNORM_PACK16, VK_FORMAT_R5G6B5_UNORM_PACK16, VK_FORMAT_B5G6R5_UNORM_PACK16, VK_FORMAT_R5G5B5A1_UNORM_PACK16, VK_FORMAT_B5G5R5A1_UNORM_PACK16, VK_FORMAT_A1R5G5B5_UNORM_PACK16, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_SNORM, VK_FORMAT_R8_SRGB, VK_FORMAT_R8G8_UNORM, VK_FORMAT_R8G8_SNORM, VK_FORMAT_R8G8_SRGB, VK_FORMAT_R8G8B8_UNORM, VK_FORMAT_R8G8B8_SNORM, VK_FORMAT_R8G8B8_SRGB, VK_FORMAT_B8G8R8_UNORM, VK_FORMAT_B8G8R8_SNORM, VK_FORMAT_B8G8R8_SRGB, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8G8B8A8_SNORM, VK_FORMAT_R8G8B8A8_SRGB, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_B8G8R8A8_SNORM, VK_FORMAT_B8G8R8A8_SRGB, VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_FORMAT_A8B8G8R8_SNORM_PACK32, VK_FORMAT_A8B8G8R8_SRGB_PACK32 }; static const VkFormat s_requiredSampledImageFilterCubicFormatsETC2[] = { VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK }; if ( (queriedFlags & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) != 0 && de::contains(context.getDeviceExtensions().begin(), context.getDeviceExtensions().end(), "VK_EXT_filter_cubic") ) { if ( de::contains(DE_ARRAY_BEGIN(s_requiredSampledImageFilterCubicFormats), DE_ARRAY_END(s_requiredSampledImageFilterCubicFormats), format) ) flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT; VkPhysicalDeviceFeatures2 coreFeatures; deMemset(&coreFeatures, 0, sizeof(coreFeatures)); coreFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; coreFeatures.pNext = DE_NULL; context.getInstanceInterface().getPhysicalDeviceFeatures2(context.getPhysicalDevice(), &coreFeatures); if ( coreFeatures.features.textureCompressionETC2 && de::contains(DE_ARRAY_BEGIN(s_requiredSampledImageFilterCubicFormatsETC2), DE_ARRAY_END(s_requiredSampledImageFilterCubicFormatsETC2), format) ) flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT; } return flags; } VkFormatFeatureFlags getRequiredBufferFeatures (VkFormat format) { static const VkFormat s_requiredVertexBufferFormats[] = { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_SNORM, VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R8G8_UNORM, VK_FORMAT_R8G8_SNORM, VK_FORMAT_R8G8_UINT, VK_FORMAT_R8G8_SINT, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8G8B8A8_SNORM, VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_FORMAT_A8B8G8R8_SNORM_PACK32, VK_FORMAT_A8B8G8R8_UINT_PACK32, VK_FORMAT_A8B8G8R8_SINT_PACK32, VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_SNORM, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT, VK_FORMAT_R16_SFLOAT, VK_FORMAT_R16G16_UNORM, VK_FORMAT_R16G16_SNORM, VK_FORMAT_R16G16_UINT, VK_FORMAT_R16G16_SINT, VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R32_UINT, VK_FORMAT_R32_SINT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_UINT, VK_FORMAT_R32G32_SINT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R32G32B32_UINT, VK_FORMAT_R32G32B32_SINT, VK_FORMAT_R32G32B32_SFLOAT, VK_FORMAT_R32G32B32A32_UINT, VK_FORMAT_R32G32B32A32_SINT, VK_FORMAT_R32G32B32A32_SFLOAT }; static const VkFormat s_requiredUniformTexelBufferFormats[] = { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_SNORM, VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R8G8_UNORM, VK_FORMAT_R8G8_SNORM, VK_FORMAT_R8G8_UINT, VK_FORMAT_R8G8_SINT, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8G8B8A8_SNORM, VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_FORMAT_A8B8G8R8_SNORM_PACK32, VK_FORMAT_A8B8G8R8_UINT_PACK32, VK_FORMAT_A8B8G8R8_SINT_PACK32, VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_FORMAT_A2B10G10R10_UINT_PACK32, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT, VK_FORMAT_R16_SFLOAT, VK_FORMAT_R16G16_UINT, VK_FORMAT_R16G16_SINT, VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R32_UINT, VK_FORMAT_R32_SINT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_UINT, VK_FORMAT_R32G32_SINT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R32G32B32A32_UINT, VK_FORMAT_R32G32B32A32_SINT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_B10G11R11_UFLOAT_PACK32 }; static const VkFormat s_requiredStorageTexelBufferFormats[] = { VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8G8B8A8_SNORM, VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_FORMAT_A8B8G8R8_SNORM_PACK32, VK_FORMAT_A8B8G8R8_UINT_PACK32, VK_FORMAT_A8B8G8R8_SINT_PACK32, VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R32_UINT, VK_FORMAT_R32_SINT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_UINT, VK_FORMAT_R32G32_SINT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R32G32B32A32_UINT, VK_FORMAT_R32G32B32A32_SINT, VK_FORMAT_R32G32B32A32_SFLOAT }; static const VkFormat s_requiredStorageTexelBufferAtomicFormats[] = { VK_FORMAT_R32_UINT, VK_FORMAT_R32_SINT }; VkFormatFeatureFlags flags = (VkFormatFeatureFlags)0; if (de::contains(DE_ARRAY_BEGIN(s_requiredVertexBufferFormats), DE_ARRAY_END(s_requiredVertexBufferFormats), format)) flags |= VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT; if (de::contains(DE_ARRAY_BEGIN(s_requiredUniformTexelBufferFormats), DE_ARRAY_END(s_requiredUniformTexelBufferFormats), format)) flags |= VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT; if (de::contains(DE_ARRAY_BEGIN(s_requiredStorageTexelBufferFormats), DE_ARRAY_END(s_requiredStorageTexelBufferFormats), format)) flags |= VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT; if (de::contains(DE_ARRAY_BEGIN(s_requiredStorageTexelBufferAtomicFormats), DE_ARRAY_END(s_requiredStorageTexelBufferAtomicFormats), format)) flags |= VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT; return flags; } VkPhysicalDeviceSamplerYcbcrConversionFeatures getPhysicalDeviceSamplerYcbcrConversionFeatures (const InstanceInterface& vk, VkPhysicalDevice physicalDevice) { VkPhysicalDeviceFeatures2 coreFeatures; VkPhysicalDeviceSamplerYcbcrConversionFeatures ycbcrFeatures; deMemset(&coreFeatures, 0, sizeof(coreFeatures)); deMemset(&ycbcrFeatures, 0, sizeof(ycbcrFeatures)); coreFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; coreFeatures.pNext = &ycbcrFeatures; ycbcrFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES; vk.getPhysicalDeviceFeatures2(physicalDevice, &coreFeatures); return ycbcrFeatures; } void checkYcbcrApiSupport (Context& context) { // check if YCbcr API and are supported by implementation // the support for formats and YCbCr may still be optional - see isYcbcrConversionSupported below if (!vk::isCoreDeviceExtension(context.getUsedApiVersion(), "VK_KHR_sampler_ycbcr_conversion")) { if (!context.isDeviceFunctionalitySupported("VK_KHR_sampler_ycbcr_conversion")) TCU_THROW(NotSupportedError, "VK_KHR_sampler_ycbcr_conversion is not supported"); // Hard dependency for ycbcr TCU_CHECK(de::contains(context.getInstanceExtensions().begin(), context.getInstanceExtensions().end(), "VK_KHR_get_physical_device_properties2")); } } bool isYcbcrConversionSupported (Context& context) { checkYcbcrApiSupport(context); const VkPhysicalDeviceSamplerYcbcrConversionFeatures ycbcrFeatures = getPhysicalDeviceSamplerYcbcrConversionFeatures(context.getInstanceInterface(), context.getPhysicalDevice()); return (ycbcrFeatures.samplerYcbcrConversion == VK_TRUE); } VkFormatFeatureFlags getRequiredYcbcrFormatFeatures (Context& context, VkFormat format) { bool req = isYcbcrConversionSupported(context) && ( format == VK_FORMAT_G8_B8R8_2PLANE_420_UNORM || format == VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM); const VkFormatFeatureFlags required = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_TRANSFER_DST_BIT | VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT; return req ? required : (VkFormatFeatureFlags)0; } VkFormatFeatureFlags getRequiredOptimalTilingFeatures (Context& context, VkFormat format) { if (isYCbCrFormat(format)) return getRequiredYcbcrFormatFeatures(context, format); else { VkFormatFeatureFlags ret = getBaseRequiredOptimalTilingFeatures(format); // \todo [2017-05-16 pyry] This should be extended to cover for example COLOR_ATTACHMENT for depth formats etc. // \todo [2017-05-18 pyry] Any other color conversion related features that can't be supported by regular formats? ret |= getRequiredOptimalExtendedTilingFeatures(context, format, ret); // Compressed formats have optional support for some features // TODO: Is this really correct? It looks like it should be checking the different compressed features if (isCompressedFormat(format) && (ret & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT)) ret |= VK_FORMAT_FEATURE_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_TRANSFER_DST_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_BLIT_SRC_BIT; return ret; } } bool requiresYCbCrConversion(Context& context, VkFormat format) { if (format == VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16) { VkPhysicalDeviceFeatures2 coreFeatures; VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT rgba10x6features; deMemset(&coreFeatures, 0, sizeof(coreFeatures)); deMemset(&rgba10x6features, 0, sizeof(rgba10x6features)); coreFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; coreFeatures.pNext = &rgba10x6features; rgba10x6features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RGBA10X6_FORMATS_FEATURES_EXT; const InstanceInterface &vk = context.getInstanceInterface(); vk.getPhysicalDeviceFeatures2(context.getPhysicalDevice(), &coreFeatures); return !rgba10x6features.formatRgba10x6WithoutYCbCrSampler; } return isYCbCrFormat(format) && format != VK_FORMAT_R10X6_UNORM_PACK16 && format != VK_FORMAT_R10X6G10X6_UNORM_2PACK16 && format != VK_FORMAT_R12X4_UNORM_PACK16 && format != VK_FORMAT_R12X4G12X4_UNORM_2PACK16; } VkFormatFeatureFlags getAllowedOptimalTilingFeatures (Context &context, VkFormat format) { // YCbCr formats only support a subset of format feature flags const VkFormatFeatureFlags ycbcrAllows = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG | VK_FORMAT_FEATURE_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_TRANSFER_DST_BIT | VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT | VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT | VK_FORMAT_FEATURE_DISJOINT_BIT; // By default everything is allowed. VkFormatFeatureFlags allow = (VkFormatFeatureFlags)~0u; // Formats for which SamplerYCbCrConversion is required may not support certain features. if (requiresYCbCrConversion(context, format)) allow &= ycbcrAllows; // single-plane formats *may not* support DISJOINT_BIT if (!isYCbCrFormat(format) || getPlaneCount(format) == 1) allow &= ~VK_FORMAT_FEATURE_DISJOINT_BIT; return allow; } VkFormatFeatureFlags getAllowedBufferFeatures (Context &context, VkFormat format) { // TODO: Do we allow non-buffer flags in the bufferFeatures? return requiresYCbCrConversion(context, format) ? (VkFormatFeatureFlags)0 : (VkFormatFeatureFlags)(~VK_FORMAT_FEATURE_DISJOINT_BIT); } tcu::TestStatus formatProperties (Context& context, VkFormat format) { // check if Ycbcr format enums are valid given the version and extensions if (isYCbCrFormat(format)) checkYcbcrApiSupport(context); TestLog& log = context.getTestContext().getLog(); const VkFormatProperties properties = getPhysicalDeviceFormatProperties(context.getInstanceInterface(), context.getPhysicalDevice(), format); bool allOk = true; const VkFormatFeatureFlags reqImg = getRequiredOptimalTilingFeatures(context, format); const VkFormatFeatureFlags reqBuf = getRequiredBufferFeatures(format); const VkFormatFeatureFlags allowImg = getAllowedOptimalTilingFeatures(context, format); const VkFormatFeatureFlags allowBuf = getAllowedBufferFeatures(context, format); const struct feature_req { const char* fieldName; VkFormatFeatureFlags supportedFeatures; VkFormatFeatureFlags requiredFeatures; VkFormatFeatureFlags allowedFeatures; } fields[] = { { "linearTilingFeatures", properties.linearTilingFeatures, (VkFormatFeatureFlags)0, allowImg }, { "optimalTilingFeatures", properties.optimalTilingFeatures, reqImg, allowImg }, { "bufferFeatures", properties.bufferFeatures, reqBuf, allowBuf } }; log << TestLog::Message << properties << TestLog::EndMessage; for (int fieldNdx = 0; fieldNdx < DE_LENGTH_OF_ARRAY(fields); fieldNdx++) { const char* const fieldName = fields[fieldNdx].fieldName; const VkFormatFeatureFlags supported = fields[fieldNdx].supportedFeatures; const VkFormatFeatureFlags required = fields[fieldNdx].requiredFeatures; const VkFormatFeatureFlags allowed = fields[fieldNdx].allowedFeatures; if ((supported & required) != required) { log << TestLog::Message << "ERROR in " << fieldName << ":\n" << " required: " << getFormatFeatureFlagsStr(required) << "\n " << " missing: " << getFormatFeatureFlagsStr(~supported & required) << TestLog::EndMessage; allOk = false; } if ((supported & ~allowed) != 0) { log << TestLog::Message << "ERROR in " << fieldName << ":\n" << " has: " << getFormatFeatureFlagsStr(supported & ~allowed) << TestLog::EndMessage; allOk = false; } if (((supported & VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT) != 0) && ((supported & VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT) == 0)) { log << TestLog::Message << "ERROR in " << fieldName << ":\n" << " supports VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT" << " but not VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT" << TestLog::EndMessage; allOk = false; } } if (allOk) return tcu::TestStatus::pass("Query and validation passed"); else return tcu::TestStatus::fail("Required features not supported"); } bool optimalTilingFeaturesSupported (Context& context, VkFormat format, VkFormatFeatureFlags features) { const VkFormatProperties properties = getPhysicalDeviceFormatProperties(context.getInstanceInterface(), context.getPhysicalDevice(), format); return (properties.optimalTilingFeatures & features) == features; } bool optimalTilingFeaturesSupportedForAll (Context& context, const VkFormat* begin, const VkFormat* end, VkFormatFeatureFlags features) { for (const VkFormat* cur = begin; cur != end; ++cur) { if (!optimalTilingFeaturesSupported(context, *cur, features)) return false; } return true; } tcu::TestStatus testDepthStencilSupported (Context& context) { if (!optimalTilingFeaturesSupported(context, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) && !optimalTilingFeaturesSupported(context, VK_FORMAT_D32_SFLOAT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)) return tcu::TestStatus::fail("Doesn't support one of VK_FORMAT_X8_D24_UNORM_PACK32 or VK_FORMAT_D32_SFLOAT"); if (!optimalTilingFeaturesSupported(context, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) && !optimalTilingFeaturesSupported(context, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)) return tcu::TestStatus::fail("Doesn't support one of VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT"); return tcu::TestStatus::pass("Required depth/stencil formats supported"); } tcu::TestStatus testCompressedFormatsSupported (Context& context) { static const VkFormat s_allBcFormats[] = { VK_FORMAT_BC1_RGB_UNORM_BLOCK, VK_FORMAT_BC1_RGB_SRGB_BLOCK, VK_FORMAT_BC1_RGBA_UNORM_BLOCK, VK_FORMAT_BC1_RGBA_SRGB_BLOCK, VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_BC2_SRGB_BLOCK, VK_FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_BC3_SRGB_BLOCK, VK_FORMAT_BC4_UNORM_BLOCK, VK_FORMAT_BC4_SNORM_BLOCK, VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_BC5_SNORM_BLOCK, VK_FORMAT_BC6H_UFLOAT_BLOCK, VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_BC7_UNORM_BLOCK, VK_FORMAT_BC7_SRGB_BLOCK, }; static const VkFormat s_allEtc2Formats[] = { VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK, VK_FORMAT_EAC_R11_UNORM_BLOCK, VK_FORMAT_EAC_R11_SNORM_BLOCK, VK_FORMAT_EAC_R11G11_UNORM_BLOCK, VK_FORMAT_EAC_R11G11_SNORM_BLOCK, }; static const VkFormat s_allAstcLdrFormats[] = { VK_FORMAT_ASTC_4x4_UNORM_BLOCK, VK_FORMAT_ASTC_4x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x4_UNORM_BLOCK, VK_FORMAT_ASTC_5x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x5_UNORM_BLOCK, VK_FORMAT_ASTC_5x5_SRGB_BLOCK, VK_FORMAT_ASTC_6x5_UNORM_BLOCK, VK_FORMAT_ASTC_6x5_SRGB_BLOCK, VK_FORMAT_ASTC_6x6_UNORM_BLOCK, VK_FORMAT_ASTC_6x6_SRGB_BLOCK, VK_FORMAT_ASTC_8x5_UNORM_BLOCK, VK_FORMAT_ASTC_8x5_SRGB_BLOCK, VK_FORMAT_ASTC_8x6_UNORM_BLOCK, VK_FORMAT_ASTC_8x6_SRGB_BLOCK, VK_FORMAT_ASTC_8x8_UNORM_BLOCK, VK_FORMAT_ASTC_8x8_SRGB_BLOCK, VK_FORMAT_ASTC_10x5_UNORM_BLOCK, VK_FORMAT_ASTC_10x5_SRGB_BLOCK, VK_FORMAT_ASTC_10x6_UNORM_BLOCK, VK_FORMAT_ASTC_10x6_SRGB_BLOCK, VK_FORMAT_ASTC_10x8_UNORM_BLOCK, VK_FORMAT_ASTC_10x8_SRGB_BLOCK, VK_FORMAT_ASTC_10x10_UNORM_BLOCK, VK_FORMAT_ASTC_10x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x10_UNORM_BLOCK, VK_FORMAT_ASTC_12x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x12_UNORM_BLOCK, VK_FORMAT_ASTC_12x12_SRGB_BLOCK, }; static const struct { const char* setName; const char* featureName; const VkBool32 VkPhysicalDeviceFeatures::* feature; const VkFormat* formatsBegin; const VkFormat* formatsEnd; } s_compressedFormatSets[] = { { "BC", "textureCompressionBC", &VkPhysicalDeviceFeatures::textureCompressionBC, DE_ARRAY_BEGIN(s_allBcFormats), DE_ARRAY_END(s_allBcFormats) }, { "ETC2", "textureCompressionETC2", &VkPhysicalDeviceFeatures::textureCompressionETC2, DE_ARRAY_BEGIN(s_allEtc2Formats), DE_ARRAY_END(s_allEtc2Formats) }, { "ASTC LDR", "textureCompressionASTC_LDR", &VkPhysicalDeviceFeatures::textureCompressionASTC_LDR, DE_ARRAY_BEGIN(s_allAstcLdrFormats), DE_ARRAY_END(s_allAstcLdrFormats) }, }; TestLog& log = context.getTestContext().getLog(); const VkPhysicalDeviceFeatures& features = context.getDeviceFeatures(); int numSupportedSets = 0; int numErrors = 0; int numWarnings = 0; for (int setNdx = 0; setNdx < DE_LENGTH_OF_ARRAY(s_compressedFormatSets); ++setNdx) { const char* const setName = s_compressedFormatSets[setNdx].setName; const char* const featureName = s_compressedFormatSets[setNdx].featureName; const bool featureBitSet = features.*s_compressedFormatSets[setNdx].feature == VK_TRUE; const VkFormatFeatureFlags requiredFeatures = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_BLIT_SRC_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT | VK_FORMAT_FEATURE_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_TRANSFER_DST_BIT; const bool allSupported = optimalTilingFeaturesSupportedForAll(context, s_compressedFormatSets[setNdx].formatsBegin, s_compressedFormatSets[setNdx].formatsEnd, requiredFeatures); if (featureBitSet && !allSupported) { log << TestLog::Message << "ERROR: " << featureName << " = VK_TRUE but " << setName << " formats not supported" << TestLog::EndMessage; numErrors += 1; } else if (allSupported && !featureBitSet) { log << TestLog::Message << "WARNING: " << setName << " formats supported but " << featureName << " = VK_FALSE" << TestLog::EndMessage; numWarnings += 1; } if (featureBitSet) { log << TestLog::Message << "All " << setName << " formats are supported" << TestLog::EndMessage; numSupportedSets += 1; } else log << TestLog::Message << setName << " formats are not supported" << TestLog::EndMessage; } if (numSupportedSets == 0) { log << TestLog::Message << "No compressed format sets supported" << TestLog::EndMessage; numErrors += 1; } if (numErrors > 0) return tcu::TestStatus::fail("Compressed format support not valid"); else if (numWarnings > 0) return tcu::TestStatus(QP_TEST_RESULT_QUALITY_WARNING, "Found inconsistencies in compressed format support"); else return tcu::TestStatus::pass("Compressed texture format support is valid"); } void createFormatTests (tcu::TestCaseGroup* testGroup) { DE_STATIC_ASSERT(VK_FORMAT_UNDEFINED == 0); static const struct { VkFormat begin; VkFormat end; } s_formatRanges[] = { // core formats { (VkFormat)(VK_FORMAT_UNDEFINED+1), VK_CORE_FORMAT_LAST }, // YCbCr formats { VK_FORMAT_G8B8G8R8_422_UNORM, (VkFormat)(VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM+1) }, // YCbCr extended formats { VK_FORMAT_G8_B8R8_2PLANE_444_UNORM_EXT, (VkFormat)(VK_FORMAT_G16_B16R16_2PLANE_444_UNORM_EXT+1) }, }; for (int rangeNdx = 0; rangeNdx < DE_LENGTH_OF_ARRAY(s_formatRanges); ++rangeNdx) { const VkFormat rangeBegin = s_formatRanges[rangeNdx].begin; const VkFormat rangeEnd = s_formatRanges[rangeNdx].end; for (VkFormat format = rangeBegin; format != rangeEnd; format = (VkFormat)(format+1)) { const char* const enumName = getFormatName(format); const string caseName = de::toLower(string(enumName).substr(10)); addFunctionCase(testGroup, caseName, enumName, formatProperties, format); } } addFunctionCase(testGroup, "depth_stencil", "", testDepthStencilSupported); addFunctionCase(testGroup, "compressed_formats", "", testCompressedFormatsSupported); } VkImageUsageFlags getValidImageUsageFlags (const VkFormatFeatureFlags supportedFeatures, const bool useKhrMaintenance1Semantics) { VkImageUsageFlags flags = (VkImageUsageFlags)0; if (useKhrMaintenance1Semantics) { if ((supportedFeatures & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT) != 0) flags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; if ((supportedFeatures & VK_FORMAT_FEATURE_TRANSFER_DST_BIT) != 0) flags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT; } else { // If format is supported at all, it must be valid transfer src+dst if (supportedFeatures != 0) flags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT|VK_IMAGE_USAGE_TRANSFER_DST_BIT; } if ((supportedFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) != 0) flags |= VK_IMAGE_USAGE_SAMPLED_BIT; if ((supportedFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) != 0) flags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT|VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; if ((supportedFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) != 0) flags |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; if ((supportedFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT) != 0) flags |= VK_IMAGE_USAGE_STORAGE_BIT; return flags; } bool isValidImageUsageFlagCombination (VkImageUsageFlags usage) { if ((usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT) != 0) { const VkImageUsageFlags allowedFlags = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; // Only *_ATTACHMENT_BIT flags can be combined with TRANSIENT_ATTACHMENT_BIT if ((usage & ~allowedFlags) != 0) return false; // TRANSIENT_ATTACHMENT_BIT is not valid without COLOR_ or DEPTH_STENCIL_ATTACHMENT_BIT if ((usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) == 0) return false; } return usage != 0; } VkImageCreateFlags getValidImageCreateFlags (const VkPhysicalDeviceFeatures& deviceFeatures, VkFormat format, VkFormatFeatureFlags formatFeatures, VkImageType type, VkImageUsageFlags usage) { VkImageCreateFlags flags = (VkImageCreateFlags)0; if ((usage & VK_IMAGE_USAGE_SAMPLED_BIT) != 0) { flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT; if (type == VK_IMAGE_TYPE_2D && !isYCbCrFormat(format)) { flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; } } if (isYCbCrFormat(format) && getPlaneCount(format) > 1) { if (formatFeatures & VK_FORMAT_FEATURE_DISJOINT_BIT_KHR) flags |= VK_IMAGE_CREATE_DISJOINT_BIT_KHR; } if ((usage & (VK_IMAGE_USAGE_SAMPLED_BIT|VK_IMAGE_USAGE_STORAGE_BIT)) != 0 && (usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT) == 0) { if (deviceFeatures.sparseBinding) flags |= VK_IMAGE_CREATE_SPARSE_BINDING_BIT|VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT; if (deviceFeatures.sparseResidencyAliased) flags |= VK_IMAGE_CREATE_SPARSE_ALIASED_BIT; } return flags; } bool isValidImageCreateFlagCombination (VkImageCreateFlags) { return true; } bool isRequiredImageParameterCombination (const VkPhysicalDeviceFeatures& deviceFeatures, const VkFormat format, const VkFormatProperties& formatProperties, const VkImageType imageType, const VkImageTiling imageTiling, const VkImageUsageFlags usageFlags, const VkImageCreateFlags createFlags) { DE_UNREF(deviceFeatures); DE_UNREF(formatProperties); DE_UNREF(createFlags); // Linear images can have arbitrary limitations if (imageTiling == VK_IMAGE_TILING_LINEAR) return false; // Support for other usages for compressed formats is optional if (isCompressedFormat(format) && (usageFlags & ~(VK_IMAGE_USAGE_SAMPLED_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT|VK_IMAGE_USAGE_TRANSFER_DST_BIT)) != 0) return false; // Support for 1D, and sliced 3D compressed formats is optional if (isCompressedFormat(format) && (imageType == VK_IMAGE_TYPE_1D || imageType == VK_IMAGE_TYPE_3D)) return false; // Support for 1D and 3D depth/stencil textures is optional if (isDepthStencilFormat(format) && (imageType == VK_IMAGE_TYPE_1D || imageType == VK_IMAGE_TYPE_3D)) return false; DE_ASSERT(deviceFeatures.sparseBinding || (createFlags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT|VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT)) == 0); DE_ASSERT(deviceFeatures.sparseResidencyAliased || (createFlags & VK_IMAGE_CREATE_SPARSE_ALIASED_BIT) == 0); if (isYCbCrFormat(format) && (createFlags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_ALIASED_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT))) return false; if (createFlags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) { if (isCompressedFormat(format)) return false; if (isDepthStencilFormat(format)) return false; if (!deIsPowerOfTwo32(mapVkFormat(format).getPixelSize())) return false; switch (imageType) { case VK_IMAGE_TYPE_2D: return (deviceFeatures.sparseResidencyImage2D == VK_TRUE); case VK_IMAGE_TYPE_3D: return (deviceFeatures.sparseResidencyImage3D == VK_TRUE); default: return false; } } return true; } VkSampleCountFlags getRequiredOptimalTilingSampleCounts (const VkPhysicalDeviceLimits& deviceLimits, const VkFormat format, const VkImageUsageFlags usageFlags) { if (isCompressedFormat(format)) return VK_SAMPLE_COUNT_1_BIT; bool hasDepthComp = false; bool hasStencilComp = false; const bool isYCbCr = isYCbCrFormat(format); if (!isYCbCr) { const tcu::TextureFormat tcuFormat = mapVkFormat(format); hasDepthComp = (tcuFormat.order == tcu::TextureFormat::D || tcuFormat.order == tcu::TextureFormat::DS); hasStencilComp = (tcuFormat.order == tcu::TextureFormat::S || tcuFormat.order == tcu::TextureFormat::DS); } const bool isColorFormat = !hasDepthComp && !hasStencilComp; VkSampleCountFlags sampleCounts = ~(VkSampleCountFlags)0; DE_ASSERT((hasDepthComp || hasStencilComp) != isColorFormat); if ((usageFlags & VK_IMAGE_USAGE_STORAGE_BIT) != 0) sampleCounts &= deviceLimits.storageImageSampleCounts; if ((usageFlags & VK_IMAGE_USAGE_SAMPLED_BIT) != 0) { if (hasDepthComp) sampleCounts &= deviceLimits.sampledImageDepthSampleCounts; if (hasStencilComp) sampleCounts &= deviceLimits.sampledImageStencilSampleCounts; if (isColorFormat) { if (isYCbCr) sampleCounts &= deviceLimits.sampledImageColorSampleCounts; else { const tcu::TextureFormat tcuFormat = mapVkFormat(format); const tcu::TextureChannelClass chnClass = tcu::getTextureChannelClass(tcuFormat.type); if (chnClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER || chnClass == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER) sampleCounts &= deviceLimits.sampledImageIntegerSampleCounts; else sampleCounts &= deviceLimits.sampledImageColorSampleCounts; } } } if ((usageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) != 0) sampleCounts &= deviceLimits.framebufferColorSampleCounts; if ((usageFlags & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) != 0) { if (hasDepthComp) sampleCounts &= deviceLimits.framebufferDepthSampleCounts; if (hasStencilComp) sampleCounts &= deviceLimits.framebufferStencilSampleCounts; } // If there is no usage flag set that would have corresponding device limit, // only VK_SAMPLE_COUNT_1_BIT is required. if (sampleCounts == ~(VkSampleCountFlags)0) sampleCounts &= VK_SAMPLE_COUNT_1_BIT; return sampleCounts; } struct ImageFormatPropertyCase { typedef tcu::TestStatus (*Function) (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling); Function testFunction; VkFormat format; VkImageType imageType; VkImageTiling tiling; ImageFormatPropertyCase (Function testFunction_, VkFormat format_, VkImageType imageType_, VkImageTiling tiling_) : testFunction (testFunction_) , format (format_) , imageType (imageType_) , tiling (tiling_) {} ImageFormatPropertyCase (void) : testFunction ((Function)DE_NULL) , format (VK_FORMAT_UNDEFINED) , imageType (VK_CORE_IMAGE_TYPE_LAST) , tiling (VK_CORE_IMAGE_TILING_LAST) {} }; tcu::TestStatus imageFormatProperties (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling) { if (isYCbCrFormat(format)) // check if Ycbcr format enums are valid given the version and extensions checkYcbcrApiSupport(context); TestLog& log = context.getTestContext().getLog(); const VkPhysicalDeviceFeatures& deviceFeatures = context.getDeviceFeatures(); const VkPhysicalDeviceLimits& deviceLimits = context.getDeviceProperties().limits; const VkFormatProperties formatProperties = getPhysicalDeviceFormatProperties(context.getInstanceInterface(), context.getPhysicalDevice(), format); const bool hasKhrMaintenance1 = context.isDeviceFunctionalitySupported("VK_KHR_maintenance1"); const VkFormatFeatureFlags supportedFeatures = tiling == VK_IMAGE_TILING_LINEAR ? formatProperties.linearTilingFeatures : formatProperties.optimalTilingFeatures; const VkImageUsageFlags usageFlagSet = getValidImageUsageFlags(supportedFeatures, hasKhrMaintenance1); tcu::ResultCollector results (log, "ERROR: "); if (hasKhrMaintenance1 && (supportedFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) != 0) { results.check((supportedFeatures & (VK_FORMAT_FEATURE_TRANSFER_SRC_BIT|VK_FORMAT_FEATURE_TRANSFER_DST_BIT)) != 0, "A sampled image format must have VK_FORMAT_FEATURE_TRANSFER_SRC_BIT and VK_FORMAT_FEATURE_TRANSFER_DST_BIT format feature flags set"); } if (isYcbcrConversionSupported(context) && (format == VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR || format == VK_FORMAT_G8_B8R8_2PLANE_420_UNORM_KHR)) { VkFormatFeatureFlags requiredFeatures = VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR; if (tiling == VK_IMAGE_TILING_OPTIMAL) requiredFeatures |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT_KHR; results.check((supportedFeatures & requiredFeatures) == requiredFeatures, getFormatName(format) + string(" must support ") + de::toString(getFormatFeatureFlagsStr(requiredFeatures))); } for (VkImageUsageFlags curUsageFlags = 0; curUsageFlags <= usageFlagSet; curUsageFlags++) { if ((curUsageFlags & ~usageFlagSet) != 0 || !isValidImageUsageFlagCombination(curUsageFlags)) continue; const VkImageCreateFlags createFlagSet = getValidImageCreateFlags(deviceFeatures, format, supportedFeatures, imageType, curUsageFlags); for (VkImageCreateFlags curCreateFlags = 0; curCreateFlags <= createFlagSet; curCreateFlags++) { if ((curCreateFlags & ~createFlagSet) != 0 || !isValidImageCreateFlagCombination(curCreateFlags)) continue; const bool isRequiredCombination = isRequiredImageParameterCombination(deviceFeatures, format, formatProperties, imageType, tiling, curUsageFlags, curCreateFlags); VkImageFormatProperties properties; VkResult queryResult; log << TestLog::Message << "Testing " << getImageTypeStr(imageType) << ", " << getImageTilingStr(tiling) << ", " << getImageUsageFlagsStr(curUsageFlags) << ", " << getImageCreateFlagsStr(curCreateFlags) << TestLog::EndMessage; // Set return value to known garbage deMemset(&properties, 0xcd, sizeof(properties)); queryResult = context.getInstanceInterface().getPhysicalDeviceImageFormatProperties(context.getPhysicalDevice(), format, imageType, tiling, curUsageFlags, curCreateFlags, &properties); if (queryResult == VK_SUCCESS) { const deUint32 fullMipPyramidSize = de::max(de::max(deLog2Floor32(properties.maxExtent.width), deLog2Floor32(properties.maxExtent.height)), deLog2Floor32(properties.maxExtent.depth)) + 1; log << TestLog::Message << properties << "\n" << TestLog::EndMessage; results.check(imageType != VK_IMAGE_TYPE_1D || (properties.maxExtent.width >= 1 && properties.maxExtent.height == 1 && properties.maxExtent.depth == 1), "Invalid dimensions for 1D image"); results.check(imageType != VK_IMAGE_TYPE_2D || (properties.maxExtent.width >= 1 && properties.maxExtent.height >= 1 && properties.maxExtent.depth == 1), "Invalid dimensions for 2D image"); results.check(imageType != VK_IMAGE_TYPE_3D || (properties.maxExtent.width >= 1 && properties.maxExtent.height >= 1 && properties.maxExtent.depth >= 1), "Invalid dimensions for 3D image"); results.check(imageType != VK_IMAGE_TYPE_3D || properties.maxArrayLayers == 1, "Invalid maxArrayLayers for 3D image"); if (tiling == VK_IMAGE_TILING_OPTIMAL && imageType == VK_IMAGE_TYPE_2D && !(curCreateFlags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) && (supportedFeatures & (VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT))) { const VkSampleCountFlags requiredSampleCounts = getRequiredOptimalTilingSampleCounts(deviceLimits, format, curUsageFlags); results.check((properties.sampleCounts & requiredSampleCounts) == requiredSampleCounts, "Required sample counts not supported"); } else results.check(properties.sampleCounts == VK_SAMPLE_COUNT_1_BIT, "sampleCounts != VK_SAMPLE_COUNT_1_BIT"); if (isRequiredCombination) { results.check(imageType != VK_IMAGE_TYPE_1D || (properties.maxExtent.width >= deviceLimits.maxImageDimension1D), "Reported dimensions smaller than device limits"); results.check(imageType != VK_IMAGE_TYPE_2D || (properties.maxExtent.width >= deviceLimits.maxImageDimension2D && properties.maxExtent.height >= deviceLimits.maxImageDimension2D), "Reported dimensions smaller than device limits"); results.check(imageType != VK_IMAGE_TYPE_3D || (properties.maxExtent.width >= deviceLimits.maxImageDimension3D && properties.maxExtent.height >= deviceLimits.maxImageDimension3D && properties.maxExtent.depth >= deviceLimits.maxImageDimension3D), "Reported dimensions smaller than device limits"); results.check((isYCbCrFormat(format) && (properties.maxMipLevels == 1)) || properties.maxMipLevels == fullMipPyramidSize, "Invalid mip pyramid size"); results.check((isYCbCrFormat(format) && (properties.maxArrayLayers == 1)) || imageType == VK_IMAGE_TYPE_3D || properties.maxArrayLayers >= deviceLimits.maxImageArrayLayers, "Invalid maxArrayLayers"); } else { results.check(properties.maxMipLevels == 1 || properties.maxMipLevels == fullMipPyramidSize, "Invalid mip pyramid size"); results.check(properties.maxArrayLayers >= 1, "Invalid maxArrayLayers"); } results.check(properties.maxResourceSize >= (VkDeviceSize)MINIMUM_REQUIRED_IMAGE_RESOURCE_SIZE, "maxResourceSize smaller than minimum required size"); } else if (queryResult == VK_ERROR_FORMAT_NOT_SUPPORTED) { log << TestLog::Message << "Got VK_ERROR_FORMAT_NOT_SUPPORTED" << TestLog::EndMessage; if (isRequiredCombination) results.fail("VK_ERROR_FORMAT_NOT_SUPPORTED returned for required image parameter combination"); // Specification requires that all fields are set to 0 results.check(properties.maxExtent.width == 0, "maxExtent.width != 0"); results.check(properties.maxExtent.height == 0, "maxExtent.height != 0"); results.check(properties.maxExtent.depth == 0, "maxExtent.depth != 0"); results.check(properties.maxMipLevels == 0, "maxMipLevels != 0"); results.check(properties.maxArrayLayers == 0, "maxArrayLayers != 0"); results.check(properties.sampleCounts == 0, "sampleCounts != 0"); results.check(properties.maxResourceSize == 0, "maxResourceSize != 0"); } else { results.fail("Got unexpected error" + de::toString(queryResult)); } } } return tcu::TestStatus(results.getResult(), results.getMessage()); } // VK_KHR_get_physical_device_properties2 string toString(const VkPhysicalDevicePCIBusInfoPropertiesEXT& value) { std::ostringstream s; s << "VkPhysicalDevicePCIBusInfoPropertiesEXT = {\n"; s << "\tsType = " << value.sType << '\n'; s << "\tpciDomain = " << value.pciDomain << '\n'; s << "\tpciBus = " << value.pciBus << '\n'; s << "\tpciDevice = " << value.pciDevice << '\n'; s << "\tpciFunction = " << value.pciFunction << '\n'; s << '}'; return s.str(); } bool checkExtension (vector& properties, const char* extension) { for (size_t ndx = 0; ndx < properties.size(); ++ndx) { if (strncmp(properties[ndx].extensionName, extension, VK_MAX_EXTENSION_NAME_SIZE) == 0) return true; } return false; } tcu::TestStatus deviceFeatures2 (Context& context) { const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_get_physical_device_properties2")); const InstanceDriver& vki (instance.getDriver()); const int count = 2u; TestLog& log = context.getTestContext().getLog(); VkPhysicalDeviceFeatures coreFeatures; VkPhysicalDeviceFeatures2 extFeatures; deMemset(&coreFeatures, 0xcd, sizeof(coreFeatures)); deMemset(&extFeatures.features, 0xcd, sizeof(extFeatures.features)); std::vector instExtensions = context.getInstanceExtensions(); extFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; extFeatures.pNext = DE_NULL; vki.getPhysicalDeviceFeatures(physicalDevice, &coreFeatures); vki.getPhysicalDeviceFeatures2(physicalDevice, &extFeatures); TCU_CHECK(extFeatures.sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2); TCU_CHECK(extFeatures.pNext == DE_NULL); if (deMemCmp(&coreFeatures, &extFeatures.features, sizeof(VkPhysicalDeviceFeatures)) != 0) TCU_FAIL("Mismatch between features reported by vkGetPhysicalDeviceFeatures and vkGetPhysicalDeviceFeatures2"); log << TestLog::Message << extFeatures << TestLog::EndMessage; vector properties = enumerateDeviceExtensionProperties(vki, physicalDevice, DE_NULL); #include "vkDeviceFeatures2.inl" return tcu::TestStatus::pass("Querying device features succeeded"); } tcu::TestStatus deviceProperties2 (Context& context) { const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_get_physical_device_properties2")); const InstanceDriver& vki (instance.getDriver()); TestLog& log = context.getTestContext().getLog(); VkPhysicalDeviceProperties coreProperties; VkPhysicalDeviceProperties2 extProperties; extProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; extProperties.pNext = DE_NULL; vki.getPhysicalDeviceProperties(physicalDevice, &coreProperties); vki.getPhysicalDeviceProperties2(physicalDevice, &extProperties); TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2); TCU_CHECK(extProperties.pNext == DE_NULL); // We can't use memcmp() here because the structs may contain padding bytes that drivers may or may not // have written while writing the data and memcmp will compare them anyway, so we iterate through the // valid bytes for each field in the struct and compare only the valid bytes for each one. for (int propNdx = 0; propNdx < DE_LENGTH_OF_ARRAY(s_physicalDevicePropertiesOffsetTable); propNdx++) { const size_t offset = s_physicalDevicePropertiesOffsetTable[propNdx].offset; const size_t size = s_physicalDevicePropertiesOffsetTable[propNdx].size; const deUint8* corePropertyBytes = reinterpret_cast(&coreProperties) + offset; const deUint8* extPropertyBytes = reinterpret_cast(&extProperties.properties) + offset; if (deMemCmp(corePropertyBytes, extPropertyBytes, size) != 0) TCU_FAIL("Mismatch between properties reported by vkGetPhysicalDeviceProperties and vkGetPhysicalDeviceProperties2"); } log << TestLog::Message << extProperties.properties << TestLog::EndMessage; const int count = 2u; vector properties = enumerateDeviceExtensionProperties(vki, physicalDevice, DE_NULL); const bool khr_external_fence_capabilities = checkExtension(properties, "VK_KHR_external_fence_capabilities") || context.contextSupports(vk::ApiVersion(1, 1, 0)); const bool khr_external_memory_capabilities = checkExtension(properties, "VK_KHR_external_memory_capabilities") || context.contextSupports(vk::ApiVersion(1, 1, 0)); const bool khr_external_semaphore_capabilities = checkExtension(properties, "VK_KHR_external_semaphore_capabilities") || context.contextSupports(vk::ApiVersion(1, 1, 0)); const bool khr_multiview = checkExtension(properties, "VK_KHR_multiview") || context.contextSupports(vk::ApiVersion(1, 1, 0)); const bool khr_device_protected_memory = context.contextSupports(vk::ApiVersion(1, 1, 0)); const bool khr_device_subgroup = context.contextSupports(vk::ApiVersion(1, 1, 0)); const bool khr_maintenance2 = checkExtension(properties, "VK_KHR_maintenance2") || context.contextSupports(vk::ApiVersion(1, 1, 0)); const bool khr_maintenance3 = checkExtension(properties, "VK_KHR_maintenance3") || context.contextSupports(vk::ApiVersion(1, 1, 0)); const bool khr_depth_stencil_resolve = checkExtension(properties, "VK_KHR_depth_stencil_resolve") || context.contextSupports(vk::ApiVersion(1, 2, 0)); const bool khr_driver_properties = checkExtension(properties, "VK_KHR_driver_properties") || context.contextSupports(vk::ApiVersion(1, 2, 0)); const bool khr_shader_float_controls = checkExtension(properties, "VK_KHR_shader_float_controls") || context.contextSupports(vk::ApiVersion(1, 2, 0)); const bool khr_descriptor_indexing = checkExtension(properties, "VK_EXT_descriptor_indexing") || context.contextSupports(vk::ApiVersion(1, 2, 0)); const bool khr_sampler_filter_minmax = checkExtension(properties, "VK_EXT_sampler_filter_minmax") || context.contextSupports(vk::ApiVersion(1, 2, 0)); const bool khr_integer_dot_product = checkExtension(properties, "VK_KHR_shader_integer_dot_product"); VkPhysicalDeviceIDProperties idProperties[count]; VkPhysicalDeviceMultiviewProperties multiviewProperties[count]; VkPhysicalDeviceProtectedMemoryProperties protectedMemoryPropertiesKHR[count]; VkPhysicalDeviceSubgroupProperties subgroupProperties[count]; VkPhysicalDevicePointClippingProperties pointClippingProperties[count]; VkPhysicalDeviceMaintenance3Properties maintenance3Properties[count]; VkPhysicalDeviceDepthStencilResolveProperties depthStencilResolveProperties[count]; VkPhysicalDeviceDriverProperties driverProperties[count]; VkPhysicalDeviceFloatControlsProperties floatControlsProperties[count]; VkPhysicalDeviceDescriptorIndexingProperties descriptorIndexingProperties[count]; VkPhysicalDeviceSamplerFilterMinmaxProperties samplerFilterMinmaxProperties[count]; VkPhysicalDeviceShaderIntegerDotProductPropertiesKHR integerDotProductProperties[count]; for (int ndx = 0; ndx < count; ++ndx) { deMemset(&idProperties[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceIDProperties )); deMemset(&multiviewProperties[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceMultiviewProperties )); deMemset(&protectedMemoryPropertiesKHR[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceProtectedMemoryProperties )); deMemset(&subgroupProperties[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceSubgroupProperties )); deMemset(&pointClippingProperties[ndx], 0xFF*ndx, sizeof(VkPhysicalDevicePointClippingProperties )); deMemset(&maintenance3Properties[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceMaintenance3Properties )); deMemset(&depthStencilResolveProperties[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceDepthStencilResolveProperties )); deMemset(&driverProperties[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceDriverProperties )); deMemset(&floatControlsProperties[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceFloatControlsProperties )); deMemset(&descriptorIndexingProperties[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceDescriptorIndexingProperties )); deMemset(&samplerFilterMinmaxProperties[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceSamplerFilterMinmaxProperties )); deMemset(&integerDotProductProperties[ndx], 0xFF*ndx, sizeof(VkPhysicalDeviceShaderIntegerDotProductPropertiesKHR )); idProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES; idProperties[ndx].pNext = &multiviewProperties[ndx]; multiviewProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES; multiviewProperties[ndx].pNext = &protectedMemoryPropertiesKHR[ndx]; protectedMemoryPropertiesKHR[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES; protectedMemoryPropertiesKHR[ndx].pNext = &subgroupProperties[ndx]; subgroupProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES; subgroupProperties[ndx].pNext = &pointClippingProperties[ndx]; pointClippingProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES; pointClippingProperties[ndx].pNext = &maintenance3Properties[ndx]; maintenance3Properties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES; maintenance3Properties[ndx].pNext = &depthStencilResolveProperties[ndx]; depthStencilResolveProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES; depthStencilResolveProperties[ndx].pNext = &driverProperties[ndx]; driverProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES; driverProperties[ndx].pNext = &floatControlsProperties[ndx]; floatControlsProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR; floatControlsProperties[ndx].pNext = &descriptorIndexingProperties[ndx]; descriptorIndexingProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES; descriptorIndexingProperties[ndx].pNext = &samplerFilterMinmaxProperties[ndx]; samplerFilterMinmaxProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES; samplerFilterMinmaxProperties[ndx].pNext = &integerDotProductProperties[ndx]; integerDotProductProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES_KHR; integerDotProductProperties[ndx].pNext = DE_NULL; extProperties.pNext = &idProperties[ndx]; vki.getPhysicalDeviceProperties2(physicalDevice, &extProperties); } if ( khr_external_fence_capabilities || khr_external_memory_capabilities || khr_external_semaphore_capabilities ) log << TestLog::Message << idProperties[0] << TestLog::EndMessage; if (khr_multiview) log << TestLog::Message << multiviewProperties[0] << TestLog::EndMessage; if (khr_device_protected_memory) log << TestLog::Message << protectedMemoryPropertiesKHR[0] << TestLog::EndMessage; if (khr_device_subgroup) log << TestLog::Message << subgroupProperties[0] << TestLog::EndMessage; if (khr_maintenance2) log << TestLog::Message << pointClippingProperties[0] << TestLog::EndMessage; if (khr_maintenance3) log << TestLog::Message << maintenance3Properties[0] << TestLog::EndMessage; if (khr_depth_stencil_resolve) log << TestLog::Message << depthStencilResolveProperties[0] << TestLog::EndMessage; if (khr_driver_properties) log << TestLog::Message << driverProperties[0] << TestLog::EndMessage; if (khr_shader_float_controls) log << TestLog::Message << floatControlsProperties[0] << TestLog::EndMessage; if (khr_descriptor_indexing) log << TestLog::Message << descriptorIndexingProperties[0] << TestLog::EndMessage; if (khr_sampler_filter_minmax) log << TestLog::Message << samplerFilterMinmaxProperties[0] << TestLog::EndMessage; if (khr_integer_dot_product) log << TestLog::Message << integerDotProductProperties[0] << TestLog::EndMessage; if ( khr_external_fence_capabilities || khr_external_memory_capabilities || khr_external_semaphore_capabilities ) { if ((deMemCmp(idProperties[0].deviceUUID, idProperties[1].deviceUUID, VK_UUID_SIZE) != 0) || (deMemCmp(idProperties[0].driverUUID, idProperties[1].driverUUID, VK_UUID_SIZE) != 0) || (idProperties[0].deviceLUIDValid != idProperties[1].deviceLUIDValid)) { TCU_FAIL("Mismatch between VkPhysicalDeviceIDProperties"); } else if (idProperties[0].deviceLUIDValid) { // If deviceLUIDValid is VK_FALSE, the contents of deviceLUID and deviceNodeMask are undefined // so thay can only be compared when deviceLUIDValid is VK_TRUE. if ((deMemCmp(idProperties[0].deviceLUID, idProperties[1].deviceLUID, VK_LUID_SIZE) != 0) || (idProperties[0].deviceNodeMask != idProperties[1].deviceNodeMask)) { TCU_FAIL("Mismatch between VkPhysicalDeviceIDProperties"); } } } if (khr_multiview && (multiviewProperties[0].maxMultiviewViewCount != multiviewProperties[1].maxMultiviewViewCount || multiviewProperties[0].maxMultiviewInstanceIndex != multiviewProperties[1].maxMultiviewInstanceIndex)) { TCU_FAIL("Mismatch between VkPhysicalDeviceMultiviewProperties"); } if (khr_device_protected_memory && (protectedMemoryPropertiesKHR[0].protectedNoFault != protectedMemoryPropertiesKHR[1].protectedNoFault)) { TCU_FAIL("Mismatch between VkPhysicalDeviceProtectedMemoryProperties"); } if (khr_device_subgroup && (subgroupProperties[0].subgroupSize != subgroupProperties[1].subgroupSize || subgroupProperties[0].supportedStages != subgroupProperties[1].supportedStages || subgroupProperties[0].supportedOperations != subgroupProperties[1].supportedOperations || subgroupProperties[0].quadOperationsInAllStages != subgroupProperties[1].quadOperationsInAllStages )) { TCU_FAIL("Mismatch between VkPhysicalDeviceSubgroupProperties"); } if (khr_maintenance2 && (pointClippingProperties[0].pointClippingBehavior != pointClippingProperties[1].pointClippingBehavior)) { TCU_FAIL("Mismatch between VkPhysicalDevicePointClippingProperties"); } if (khr_maintenance3 && (maintenance3Properties[0].maxPerSetDescriptors != maintenance3Properties[1].maxPerSetDescriptors || maintenance3Properties[0].maxMemoryAllocationSize != maintenance3Properties[1].maxMemoryAllocationSize)) { if (protectedMemoryPropertiesKHR[0].protectedNoFault != protectedMemoryPropertiesKHR[1].protectedNoFault) { TCU_FAIL("Mismatch between VkPhysicalDeviceProtectedMemoryProperties"); } if ((subgroupProperties[0].subgroupSize != subgroupProperties[1].subgroupSize) || (subgroupProperties[0].supportedStages != subgroupProperties[1].supportedStages) || (subgroupProperties[0].supportedOperations != subgroupProperties[1].supportedOperations) || (subgroupProperties[0].quadOperationsInAllStages != subgroupProperties[1].quadOperationsInAllStages)) { TCU_FAIL("Mismatch between VkPhysicalDeviceSubgroupProperties"); } TCU_FAIL("Mismatch between VkPhysicalDeviceMaintenance3Properties"); } if (khr_depth_stencil_resolve && (depthStencilResolveProperties[0].supportedDepthResolveModes != depthStencilResolveProperties[1].supportedDepthResolveModes || depthStencilResolveProperties[0].supportedStencilResolveModes != depthStencilResolveProperties[1].supportedStencilResolveModes || depthStencilResolveProperties[0].independentResolveNone != depthStencilResolveProperties[1].independentResolveNone || depthStencilResolveProperties[0].independentResolve != depthStencilResolveProperties[1].independentResolve)) { TCU_FAIL("Mismatch between VkPhysicalDeviceDepthStencilResolveProperties"); } if (khr_driver_properties && (driverProperties[0].driverID != driverProperties[1].driverID || strncmp(driverProperties[0].driverName, driverProperties[1].driverName, VK_MAX_DRIVER_NAME_SIZE) != 0 || strncmp(driverProperties[0].driverInfo, driverProperties[1].driverInfo, VK_MAX_DRIVER_INFO_SIZE) != 0 || driverProperties[0].conformanceVersion.major != driverProperties[1].conformanceVersion.major || driverProperties[0].conformanceVersion.minor != driverProperties[1].conformanceVersion.minor || driverProperties[0].conformanceVersion.subminor != driverProperties[1].conformanceVersion.subminor || driverProperties[0].conformanceVersion.patch != driverProperties[1].conformanceVersion.patch)) { TCU_FAIL("Mismatch between VkPhysicalDeviceDriverProperties"); } if (khr_shader_float_controls && (floatControlsProperties[0].denormBehaviorIndependence != floatControlsProperties[1].denormBehaviorIndependence || floatControlsProperties[0].roundingModeIndependence != floatControlsProperties[1].roundingModeIndependence || floatControlsProperties[0].shaderSignedZeroInfNanPreserveFloat16 != floatControlsProperties[1].shaderSignedZeroInfNanPreserveFloat16 || floatControlsProperties[0].shaderSignedZeroInfNanPreserveFloat32 != floatControlsProperties[1].shaderSignedZeroInfNanPreserveFloat32 || floatControlsProperties[0].shaderSignedZeroInfNanPreserveFloat64 != floatControlsProperties[1].shaderSignedZeroInfNanPreserveFloat64 || floatControlsProperties[0].shaderDenormPreserveFloat16 != floatControlsProperties[1].shaderDenormPreserveFloat16 || floatControlsProperties[0].shaderDenormPreserveFloat32 != floatControlsProperties[1].shaderDenormPreserveFloat32 || floatControlsProperties[0].shaderDenormPreserveFloat64 != floatControlsProperties[1].shaderDenormPreserveFloat64 || floatControlsProperties[0].shaderDenormFlushToZeroFloat16 != floatControlsProperties[1].shaderDenormFlushToZeroFloat16 || floatControlsProperties[0].shaderDenormFlushToZeroFloat32 != floatControlsProperties[1].shaderDenormFlushToZeroFloat32 || floatControlsProperties[0].shaderDenormFlushToZeroFloat64 != floatControlsProperties[1].shaderDenormFlushToZeroFloat64 || floatControlsProperties[0].shaderRoundingModeRTEFloat16 != floatControlsProperties[1].shaderRoundingModeRTEFloat16 || floatControlsProperties[0].shaderRoundingModeRTEFloat32 != floatControlsProperties[1].shaderRoundingModeRTEFloat32 || floatControlsProperties[0].shaderRoundingModeRTEFloat64 != floatControlsProperties[1].shaderRoundingModeRTEFloat64 || floatControlsProperties[0].shaderRoundingModeRTZFloat16 != floatControlsProperties[1].shaderRoundingModeRTZFloat16 || floatControlsProperties[0].shaderRoundingModeRTZFloat32 != floatControlsProperties[1].shaderRoundingModeRTZFloat32 || floatControlsProperties[0].shaderRoundingModeRTZFloat64 != floatControlsProperties[1].shaderRoundingModeRTZFloat64 )) { TCU_FAIL("Mismatch between VkPhysicalDeviceFloatControlsProperties"); } if (khr_descriptor_indexing && (descriptorIndexingProperties[0].maxUpdateAfterBindDescriptorsInAllPools != descriptorIndexingProperties[1].maxUpdateAfterBindDescriptorsInAllPools || descriptorIndexingProperties[0].shaderUniformBufferArrayNonUniformIndexingNative != descriptorIndexingProperties[1].shaderUniformBufferArrayNonUniformIndexingNative || descriptorIndexingProperties[0].shaderSampledImageArrayNonUniformIndexingNative != descriptorIndexingProperties[1].shaderSampledImageArrayNonUniformIndexingNative || descriptorIndexingProperties[0].shaderStorageBufferArrayNonUniformIndexingNative != descriptorIndexingProperties[1].shaderStorageBufferArrayNonUniformIndexingNative || descriptorIndexingProperties[0].shaderStorageImageArrayNonUniformIndexingNative != descriptorIndexingProperties[1].shaderStorageImageArrayNonUniformIndexingNative || descriptorIndexingProperties[0].shaderInputAttachmentArrayNonUniformIndexingNative != descriptorIndexingProperties[1].shaderInputAttachmentArrayNonUniformIndexingNative || descriptorIndexingProperties[0].robustBufferAccessUpdateAfterBind != descriptorIndexingProperties[1].robustBufferAccessUpdateAfterBind || descriptorIndexingProperties[0].quadDivergentImplicitLod != descriptorIndexingProperties[1].quadDivergentImplicitLod || descriptorIndexingProperties[0].maxPerStageDescriptorUpdateAfterBindSamplers != descriptorIndexingProperties[1].maxPerStageDescriptorUpdateAfterBindSamplers || descriptorIndexingProperties[0].maxPerStageDescriptorUpdateAfterBindUniformBuffers != descriptorIndexingProperties[1].maxPerStageDescriptorUpdateAfterBindUniformBuffers || descriptorIndexingProperties[0].maxPerStageDescriptorUpdateAfterBindStorageBuffers != descriptorIndexingProperties[1].maxPerStageDescriptorUpdateAfterBindStorageBuffers || descriptorIndexingProperties[0].maxPerStageDescriptorUpdateAfterBindSampledImages != descriptorIndexingProperties[1].maxPerStageDescriptorUpdateAfterBindSampledImages || descriptorIndexingProperties[0].maxPerStageDescriptorUpdateAfterBindStorageImages != descriptorIndexingProperties[1].maxPerStageDescriptorUpdateAfterBindStorageImages || descriptorIndexingProperties[0].maxPerStageDescriptorUpdateAfterBindInputAttachments != descriptorIndexingProperties[1].maxPerStageDescriptorUpdateAfterBindInputAttachments || descriptorIndexingProperties[0].maxPerStageUpdateAfterBindResources != descriptorIndexingProperties[1].maxPerStageUpdateAfterBindResources || descriptorIndexingProperties[0].maxDescriptorSetUpdateAfterBindSamplers != descriptorIndexingProperties[1].maxDescriptorSetUpdateAfterBindSamplers || descriptorIndexingProperties[0].maxDescriptorSetUpdateAfterBindUniformBuffers != descriptorIndexingProperties[1].maxDescriptorSetUpdateAfterBindUniformBuffers || descriptorIndexingProperties[0].maxDescriptorSetUpdateAfterBindUniformBuffersDynamic != descriptorIndexingProperties[1].maxDescriptorSetUpdateAfterBindUniformBuffersDynamic || descriptorIndexingProperties[0].maxDescriptorSetUpdateAfterBindStorageBuffers != descriptorIndexingProperties[1].maxDescriptorSetUpdateAfterBindStorageBuffers || descriptorIndexingProperties[0].maxDescriptorSetUpdateAfterBindStorageBuffersDynamic != descriptorIndexingProperties[1].maxDescriptorSetUpdateAfterBindStorageBuffersDynamic || descriptorIndexingProperties[0].maxDescriptorSetUpdateAfterBindSampledImages != descriptorIndexingProperties[1].maxDescriptorSetUpdateAfterBindSampledImages || descriptorIndexingProperties[0].maxDescriptorSetUpdateAfterBindStorageImages != descriptorIndexingProperties[1].maxDescriptorSetUpdateAfterBindStorageImages || descriptorIndexingProperties[0].maxDescriptorSetUpdateAfterBindInputAttachments != descriptorIndexingProperties[1].maxDescriptorSetUpdateAfterBindInputAttachments )) { TCU_FAIL("Mismatch between VkPhysicalDeviceDescriptorIndexingProperties"); } if (khr_sampler_filter_minmax && (samplerFilterMinmaxProperties[0].filterMinmaxSingleComponentFormats != samplerFilterMinmaxProperties[1].filterMinmaxSingleComponentFormats || samplerFilterMinmaxProperties[0].filterMinmaxImageComponentMapping != samplerFilterMinmaxProperties[1].filterMinmaxImageComponentMapping)) { TCU_FAIL("Mismatch between VkPhysicalDeviceSamplerFilterMinmaxProperties"); } if (khr_integer_dot_product && (integerDotProductProperties[0].integerDotProduct8BitUnsignedAccelerated != integerDotProductProperties[1].integerDotProduct8BitUnsignedAccelerated || integerDotProductProperties[0].integerDotProduct8BitSignedAccelerated != integerDotProductProperties[1].integerDotProduct8BitSignedAccelerated || integerDotProductProperties[0].integerDotProduct8BitMixedSignednessAccelerated != integerDotProductProperties[1].integerDotProduct8BitMixedSignednessAccelerated || integerDotProductProperties[0].integerDotProduct4x8BitPackedUnsignedAccelerated != integerDotProductProperties[1].integerDotProduct4x8BitPackedUnsignedAccelerated || integerDotProductProperties[0].integerDotProduct4x8BitPackedSignedAccelerated != integerDotProductProperties[1].integerDotProduct4x8BitPackedSignedAccelerated || integerDotProductProperties[0].integerDotProduct4x8BitPackedMixedSignednessAccelerated != integerDotProductProperties[1].integerDotProduct4x8BitPackedMixedSignednessAccelerated || integerDotProductProperties[0].integerDotProduct16BitUnsignedAccelerated != integerDotProductProperties[1].integerDotProduct16BitUnsignedAccelerated || integerDotProductProperties[0].integerDotProduct16BitSignedAccelerated != integerDotProductProperties[1].integerDotProduct16BitSignedAccelerated || integerDotProductProperties[0].integerDotProduct16BitMixedSignednessAccelerated != integerDotProductProperties[1].integerDotProduct16BitMixedSignednessAccelerated || integerDotProductProperties[0].integerDotProduct32BitUnsignedAccelerated != integerDotProductProperties[1].integerDotProduct32BitUnsignedAccelerated || integerDotProductProperties[0].integerDotProduct32BitSignedAccelerated != integerDotProductProperties[1].integerDotProduct32BitSignedAccelerated || integerDotProductProperties[0].integerDotProduct32BitMixedSignednessAccelerated != integerDotProductProperties[1].integerDotProduct32BitMixedSignednessAccelerated || integerDotProductProperties[0].integerDotProduct64BitUnsignedAccelerated != integerDotProductProperties[1].integerDotProduct64BitUnsignedAccelerated || integerDotProductProperties[0].integerDotProduct64BitSignedAccelerated != integerDotProductProperties[1].integerDotProduct64BitSignedAccelerated || integerDotProductProperties[0].integerDotProduct64BitMixedSignednessAccelerated != integerDotProductProperties[1].integerDotProduct64BitMixedSignednessAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating8BitUnsignedAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating8BitUnsignedAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating8BitSignedAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating8BitSignedAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating16BitUnsignedAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating16BitUnsignedAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating16BitSignedAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating16BitSignedAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating32BitUnsignedAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating32BitUnsignedAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating32BitSignedAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating32BitSignedAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating64BitUnsignedAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating64BitUnsignedAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating64BitSignedAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating64BitSignedAccelerated || integerDotProductProperties[0].integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated != integerDotProductProperties[1].integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated)) { TCU_FAIL("Mismatch between VkPhysicalDeviceShaderIntegerDotProductPropertiesKHR"); } if (isExtensionSupported(properties, RequiredExtension("VK_KHR_push_descriptor"))) { VkPhysicalDevicePushDescriptorPropertiesKHR pushDescriptorProperties[count]; for (int ndx = 0; ndx < count; ++ndx) { deMemset(&pushDescriptorProperties[ndx], 0xFF * ndx, sizeof(VkPhysicalDevicePushDescriptorPropertiesKHR)); pushDescriptorProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR; pushDescriptorProperties[ndx].pNext = DE_NULL; extProperties.pNext = &pushDescriptorProperties[ndx]; vki.getPhysicalDeviceProperties2(physicalDevice, &extProperties); pushDescriptorProperties[ndx].pNext = DE_NULL; } log << TestLog::Message << pushDescriptorProperties[0] << TestLog::EndMessage; if ( pushDescriptorProperties[0].maxPushDescriptors != pushDescriptorProperties[1].maxPushDescriptors ) { TCU_FAIL("Mismatch between VkPhysicalDevicePushDescriptorPropertiesKHR "); } if (pushDescriptorProperties[0].maxPushDescriptors < 32) { TCU_FAIL("VkPhysicalDevicePushDescriptorPropertiesKHR.maxPushDescriptors must be at least 32"); } } if (isExtensionSupported(properties, RequiredExtension("VK_KHR_performance_query"))) { VkPhysicalDevicePerformanceQueryPropertiesKHR performanceQueryProperties[count]; for (int ndx = 0; ndx < count; ++ndx) { deMemset(&performanceQueryProperties[ndx], 0xFF * ndx, sizeof(VkPhysicalDevicePerformanceQueryPropertiesKHR)); performanceQueryProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR; performanceQueryProperties[ndx].pNext = DE_NULL; extProperties.pNext = &performanceQueryProperties[ndx]; vki.getPhysicalDeviceProperties2(physicalDevice, &extProperties); } log << TestLog::Message << performanceQueryProperties[0] << TestLog::EndMessage; if (performanceQueryProperties[0].allowCommandBufferQueryCopies != performanceQueryProperties[1].allowCommandBufferQueryCopies) { TCU_FAIL("Mismatch between VkPhysicalDevicePerformanceQueryPropertiesKHR"); } } if (isExtensionSupported(properties, RequiredExtension("VK_EXT_pci_bus_info", 2, 2))) { VkPhysicalDevicePCIBusInfoPropertiesEXT pciBusInfoProperties[count]; for (int ndx = 0; ndx < count; ++ndx) { // Each PCI device is identified by an 8-bit domain number, 5-bit // device number and 3-bit function number[1][2]. // // In addition, because PCI systems can be interconnected and // divided in segments, Linux assigns a 16-bit number to the device // as the "domain". In Windows, the segment or domain is stored in // the higher 24-bit section of the bus number. // // This means the maximum unsigned 32-bit integer for these members // are invalid values and should change after querying properties. // // [1] https://en.wikipedia.org/wiki/PCI_configuration_space // [2] PCI Express Base Specification Revision 3.0, section 2.2.4.2. deMemset(pciBusInfoProperties + ndx, 0xFF * ndx, sizeof(pciBusInfoProperties[ndx])); pciBusInfoProperties[ndx].pciDomain = DEUINT32_MAX; pciBusInfoProperties[ndx].pciBus = DEUINT32_MAX; pciBusInfoProperties[ndx].pciDevice = DEUINT32_MAX; pciBusInfoProperties[ndx].pciFunction = DEUINT32_MAX; pciBusInfoProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT; pciBusInfoProperties[ndx].pNext = DE_NULL; extProperties.pNext = pciBusInfoProperties + ndx; vki.getPhysicalDeviceProperties2(physicalDevice, &extProperties); } log << TestLog::Message << toString(pciBusInfoProperties[0]) << TestLog::EndMessage; if (pciBusInfoProperties[0].pciDomain != pciBusInfoProperties[1].pciDomain || pciBusInfoProperties[0].pciBus != pciBusInfoProperties[1].pciBus || pciBusInfoProperties[0].pciDevice != pciBusInfoProperties[1].pciDevice || pciBusInfoProperties[0].pciFunction != pciBusInfoProperties[1].pciFunction) { TCU_FAIL("Mismatch between VkPhysicalDevicePCIBusInfoPropertiesEXT"); } if (pciBusInfoProperties[0].pciDomain == DEUINT32_MAX || pciBusInfoProperties[0].pciBus == DEUINT32_MAX || pciBusInfoProperties[0].pciDevice == DEUINT32_MAX || pciBusInfoProperties[0].pciFunction == DEUINT32_MAX) { TCU_FAIL("Invalid information in VkPhysicalDevicePCIBusInfoPropertiesEXT"); } } if (isExtensionSupported(properties, RequiredExtension("VK_KHR_portability_subset"))) { VkPhysicalDevicePortabilitySubsetPropertiesKHR portabilitySubsetProperties[count]; for (int ndx = 0; ndx < count; ++ndx) { deMemset(&portabilitySubsetProperties[ndx], 0xFF * ndx, sizeof(VkPhysicalDevicePortabilitySubsetPropertiesKHR)); portabilitySubsetProperties[ndx].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PORTABILITY_SUBSET_PROPERTIES_KHR; portabilitySubsetProperties[ndx].pNext = DE_NULL; extProperties.pNext = &portabilitySubsetProperties[ndx]; vki.getPhysicalDeviceProperties2(physicalDevice, &extProperties); } log << TestLog::Message << portabilitySubsetProperties[0] << TestLog::EndMessage; if (portabilitySubsetProperties[0].minVertexInputBindingStrideAlignment != portabilitySubsetProperties[1].minVertexInputBindingStrideAlignment) { TCU_FAIL("Mismatch between VkPhysicalDevicePortabilitySubsetPropertiesKHR"); } } return tcu::TestStatus::pass("Querying device properties succeeded"); } string toString (const VkFormatProperties2& value) { std::ostringstream s; s << "VkFormatProperties2 = {\n"; s << "\tsType = " << value.sType << '\n'; s << "\tformatProperties = {\n"; s << "\tlinearTilingFeatures = " << getFormatFeatureFlagsStr(value.formatProperties.linearTilingFeatures) << '\n'; s << "\toptimalTilingFeatures = " << getFormatFeatureFlagsStr(value.formatProperties.optimalTilingFeatures) << '\n'; s << "\tbufferFeatures = " << getFormatFeatureFlagsStr(value.formatProperties.bufferFeatures) << '\n'; s << "\t}"; s << "}"; return s.str(); } tcu::TestStatus deviceFormatProperties2 (Context& context) { const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_get_physical_device_properties2")); const InstanceDriver& vki (instance.getDriver()); TestLog& log = context.getTestContext().getLog(); for (int formatNdx = 0; formatNdx < VK_CORE_FORMAT_LAST; ++formatNdx) { const VkFormat format = (VkFormat)formatNdx; VkFormatProperties coreProperties; VkFormatProperties2 extProperties; deMemset(&coreProperties, 0xcd, sizeof(VkFormatProperties)); deMemset(&extProperties, 0xcd, sizeof(VkFormatProperties2)); extProperties.sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2; extProperties.pNext = DE_NULL; vki.getPhysicalDeviceFormatProperties(physicalDevice, format, &coreProperties); vki.getPhysicalDeviceFormatProperties2(physicalDevice, format, &extProperties); TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2); TCU_CHECK(extProperties.pNext == DE_NULL); if (deMemCmp(&coreProperties, &extProperties.formatProperties, sizeof(VkFormatProperties)) != 0) TCU_FAIL("Mismatch between format properties reported by vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceFormatProperties2"); log << TestLog::Message << toString (extProperties) << TestLog::EndMessage; } return tcu::TestStatus::pass("Querying device format properties succeeded"); } tcu::TestStatus deviceQueueFamilyProperties2 (Context& context) { const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_get_physical_device_properties2")); const InstanceDriver& vki (instance.getDriver()); TestLog& log = context.getTestContext().getLog(); deUint32 numCoreQueueFamilies = ~0u; deUint32 numExtQueueFamilies = ~0u; vki.getPhysicalDeviceQueueFamilyProperties(physicalDevice, &numCoreQueueFamilies, DE_NULL); vki.getPhysicalDeviceQueueFamilyProperties2(physicalDevice, &numExtQueueFamilies, DE_NULL); TCU_CHECK_MSG(numCoreQueueFamilies == numExtQueueFamilies, "Different number of queue family properties reported"); TCU_CHECK(numCoreQueueFamilies > 0); { std::vector coreProperties (numCoreQueueFamilies); std::vector extProperties (numExtQueueFamilies); deMemset(&coreProperties[0], 0xcd, sizeof(VkQueueFamilyProperties)*numCoreQueueFamilies); deMemset(&extProperties[0], 0xcd, sizeof(VkQueueFamilyProperties2)*numExtQueueFamilies); for (size_t ndx = 0; ndx < extProperties.size(); ++ndx) { extProperties[ndx].sType = VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2; extProperties[ndx].pNext = DE_NULL; } vki.getPhysicalDeviceQueueFamilyProperties(physicalDevice, &numCoreQueueFamilies, &coreProperties[0]); vki.getPhysicalDeviceQueueFamilyProperties2(physicalDevice, &numExtQueueFamilies, &extProperties[0]); TCU_CHECK((size_t)numCoreQueueFamilies == coreProperties.size()); TCU_CHECK((size_t)numExtQueueFamilies == extProperties.size()); DE_ASSERT(numCoreQueueFamilies == numExtQueueFamilies); for (size_t ndx = 0; ndx < extProperties.size(); ++ndx) { TCU_CHECK(extProperties[ndx].sType == VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2); TCU_CHECK(extProperties[ndx].pNext == DE_NULL); if (deMemCmp(&coreProperties[ndx], &extProperties[ndx].queueFamilyProperties, sizeof(VkQueueFamilyProperties)) != 0) TCU_FAIL("Mismatch between format properties reported by vkGetPhysicalDeviceQueueFamilyProperties and vkGetPhysicalDeviceQueueFamilyProperties2"); log << TestLog::Message << " queueFamilyNdx = " << ndx <sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES; vulkan11Features[ndx]->pNext = vulkan12Features[ndx]; deMemset(vulkan12Features[ndx], 0xFF * ndx, sizeof(VkPhysicalDeviceVulkan12Features)); vulkan12Features[ndx]->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES; vulkan12Features[ndx]->pNext = DE_NULL; vki.getPhysicalDeviceFeatures2(physicalDevice, &extFeatures); } log << TestLog::Message << *vulkan11Features[0] << TestLog::EndMessage; log << TestLog::Message << *vulkan12Features[0] << TestLog::EndMessage; if (!validateStructsWithGuard(feature11OffsetTable, vulkan11Features, GUARD_VALUE, GUARD_SIZE)) { log << TestLog::Message << "deviceFeatures - VkPhysicalDeviceVulkan11Features initialization failure" << TestLog::EndMessage; return tcu::TestStatus::fail("VkPhysicalDeviceVulkan11Features initialization failure"); } if (!validateStructsWithGuard(feature12OffsetTable, vulkan12Features, GUARD_VALUE, GUARD_SIZE)) { log << TestLog::Message << "deviceFeatures - VkPhysicalDeviceVulkan12Features initialization failure" << TestLog::EndMessage; return tcu::TestStatus::fail("VkPhysicalDeviceVulkan12Features initialization failure"); } return tcu::TestStatus::pass("Querying Vulkan 1.2 device features succeeded"); } tcu::TestStatus devicePropertiesVulkan12 (Context& context) { using namespace ValidateQueryBits; const QueryMemberTableEntry properties11OffsetTable[] = { // VkPhysicalDeviceIDProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, deviceUUID), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, driverUUID), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, deviceLUID), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, deviceNodeMask), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, deviceLUIDValid), // VkPhysicalDeviceSubgroupProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, subgroupSize), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, subgroupSupportedStages), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, subgroupSupportedOperations), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, subgroupQuadOperationsInAllStages), // VkPhysicalDevicePointClippingProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, pointClippingBehavior), // VkPhysicalDeviceMultiviewProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, maxMultiviewViewCount), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, maxMultiviewInstanceIndex), // VkPhysicalDeviceProtectedMemoryProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, protectedNoFault), // VkPhysicalDeviceMaintenance3Properties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, maxPerSetDescriptors), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan11Properties, maxMemoryAllocationSize), { 0, 0 } }; const QueryMemberTableEntry properties12OffsetTable[] = { // VkPhysicalDeviceDriverProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, driverID), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, conformanceVersion), // VkPhysicalDeviceFloatControlsProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, denormBehaviorIndependence), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, roundingModeIndependence), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderSignedZeroInfNanPreserveFloat16), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderSignedZeroInfNanPreserveFloat32), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderSignedZeroInfNanPreserveFloat64), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderDenormPreserveFloat16), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderDenormPreserveFloat32), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderDenormPreserveFloat64), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderDenormFlushToZeroFloat16), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderDenormFlushToZeroFloat32), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderDenormFlushToZeroFloat64), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderRoundingModeRTEFloat16), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderRoundingModeRTEFloat32), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderRoundingModeRTEFloat64), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderRoundingModeRTZFloat16), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderRoundingModeRTZFloat32), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderRoundingModeRTZFloat64), // VkPhysicalDeviceDescriptorIndexingProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxUpdateAfterBindDescriptorsInAllPools), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderUniformBufferArrayNonUniformIndexingNative), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderSampledImageArrayNonUniformIndexingNative), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderStorageBufferArrayNonUniformIndexingNative), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderStorageImageArrayNonUniformIndexingNative), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, shaderInputAttachmentArrayNonUniformIndexingNative), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, robustBufferAccessUpdateAfterBind), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, quadDivergentImplicitLod), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxPerStageDescriptorUpdateAfterBindSamplers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxPerStageDescriptorUpdateAfterBindUniformBuffers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxPerStageDescriptorUpdateAfterBindStorageBuffers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxPerStageDescriptorUpdateAfterBindSampledImages), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxPerStageDescriptorUpdateAfterBindStorageImages), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxPerStageDescriptorUpdateAfterBindInputAttachments), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxPerStageUpdateAfterBindResources), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxDescriptorSetUpdateAfterBindSamplers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxDescriptorSetUpdateAfterBindUniformBuffers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxDescriptorSetUpdateAfterBindStorageBuffers), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxDescriptorSetUpdateAfterBindSampledImages), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxDescriptorSetUpdateAfterBindStorageImages), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxDescriptorSetUpdateAfterBindInputAttachments), // VkPhysicalDeviceDepthStencilResolveProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, supportedDepthResolveModes), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, supportedStencilResolveModes), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, independentResolveNone), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, independentResolve), // VkPhysicalDeviceSamplerFilterMinmaxProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, filterMinmaxSingleComponentFormats), OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, filterMinmaxImageComponentMapping), // VkPhysicalDeviceTimelineSemaphoreProperties OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, maxTimelineSemaphoreValueDifference), // None OFFSET_TABLE_ENTRY(VkPhysicalDeviceVulkan12Properties, framebufferIntegerColorSampleCounts), { 0, 0 } }; TestLog& log = context.getTestContext().getLog(); const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_get_physical_device_properties2")); const InstanceDriver& vki = instance.getDriver(); const deUint32 vulkan11PropertiesBufferSize = sizeof(VkPhysicalDeviceVulkan11Properties) + GUARD_SIZE; const deUint32 vulkan12PropertiesBufferSize = sizeof(VkPhysicalDeviceVulkan12Properties) + GUARD_SIZE; VkPhysicalDeviceProperties2 extProperties; deUint8 buffer11a[vulkan11PropertiesBufferSize]; deUint8 buffer11b[vulkan11PropertiesBufferSize]; deUint8 buffer12a[vulkan12PropertiesBufferSize]; deUint8 buffer12b[vulkan12PropertiesBufferSize]; const int count = 2u; VkPhysicalDeviceVulkan11Properties* vulkan11Properties[count] = { (VkPhysicalDeviceVulkan11Properties*)(buffer11a), (VkPhysicalDeviceVulkan11Properties*)(buffer11b)}; VkPhysicalDeviceVulkan12Properties* vulkan12Properties[count] = { (VkPhysicalDeviceVulkan12Properties*)(buffer12a), (VkPhysicalDeviceVulkan12Properties*)(buffer12b)}; if (!context.contextSupports(vk::ApiVersion(1, 2, 0))) TCU_THROW(NotSupportedError, "At least Vulkan 1.2 required to run test"); deMemset(buffer11a, GUARD_VALUE, sizeof(buffer11a)); deMemset(buffer11b, GUARD_VALUE, sizeof(buffer11b)); deMemset(buffer12a, GUARD_VALUE, sizeof(buffer12a)); deMemset(buffer12b, GUARD_VALUE, sizeof(buffer12b)); for (int ndx = 0; ndx < count; ++ndx) { deMemset(&extProperties.properties, 0x00, sizeof(extProperties.properties)); extProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; extProperties.pNext = vulkan11Properties[ndx]; deMemset(vulkan11Properties[ndx], 0xFF * ndx, sizeof(VkPhysicalDeviceVulkan11Properties)); vulkan11Properties[ndx]->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES; vulkan11Properties[ndx]->pNext = vulkan12Properties[ndx]; deMemset(vulkan12Properties[ndx], 0xFF * ndx, sizeof(VkPhysicalDeviceVulkan12Properties)); vulkan12Properties[ndx]->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES; vulkan12Properties[ndx]->pNext = DE_NULL; vki.getPhysicalDeviceProperties2(physicalDevice, &extProperties); } log << TestLog::Message << *vulkan11Properties[0] << TestLog::EndMessage; log << TestLog::Message << *vulkan12Properties[0] << TestLog::EndMessage; if (!validateStructsWithGuard(properties11OffsetTable, vulkan11Properties, GUARD_VALUE, GUARD_SIZE)) { log << TestLog::Message << "deviceProperties - VkPhysicalDeviceVulkan11Properties initialization failure" << TestLog::EndMessage; return tcu::TestStatus::fail("VkPhysicalDeviceVulkan11Properties initialization failure"); } if (!validateStructsWithGuard(properties12OffsetTable, vulkan12Properties, GUARD_VALUE, GUARD_SIZE) || strncmp(vulkan12Properties[0]->driverName, vulkan12Properties[1]->driverName, VK_MAX_DRIVER_NAME_SIZE) != 0 || strncmp(vulkan12Properties[0]->driverInfo, vulkan12Properties[1]->driverInfo, VK_MAX_DRIVER_INFO_SIZE) != 0 ) { log << TestLog::Message << "deviceProperties - VkPhysicalDeviceVulkan12Properties initialization failure" << TestLog::EndMessage; return tcu::TestStatus::fail("VkPhysicalDeviceVulkan12Properties initialization failure"); } return tcu::TestStatus::pass("Querying Vulkan 1.2 device properties succeeded"); } tcu::TestStatus deviceFeatureExtensionsConsistencyVulkan12(Context& context) { TestLog& log = context.getTestContext().getLog(); const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_get_physical_device_properties2")); const InstanceDriver& vki = instance.getDriver(); if (!context.contextSupports(vk::ApiVersion(1, 2, 0))) TCU_THROW(NotSupportedError, "At least Vulkan 1.2 required to run test"); VkPhysicalDeviceVulkan12Features vulkan12Features = initVulkanStructure(); VkPhysicalDeviceVulkan11Features vulkan11Features = initVulkanStructure(&vulkan12Features); VkPhysicalDeviceFeatures2 extFeatures = initVulkanStructure(&vulkan11Features); vki.getPhysicalDeviceFeatures2(physicalDevice, &extFeatures); log << TestLog::Message << vulkan11Features << TestLog::EndMessage; log << TestLog::Message << vulkan12Features << TestLog::EndMessage; // Validate if proper VkPhysicalDeviceVulkanXXFeatures fields are set when corresponding extensions are present std::pair, VkBool32> extensions2validate[] = { { { "VK_KHR_sampler_mirror_clamp_to_edge", "VkPhysicalDeviceVulkan12Features.samplerMirrorClampToEdge" }, vulkan12Features.samplerMirrorClampToEdge }, { { "VK_KHR_draw_indirect_count", "VkPhysicalDeviceVulkan12Features.drawIndirectCount" }, vulkan12Features.drawIndirectCount }, { { "VK_EXT_descriptor_indexing", "VkPhysicalDeviceVulkan12Features.descriptorIndexing" }, vulkan12Features.descriptorIndexing }, { { "VK_EXT_sampler_filter_minmax", "VkPhysicalDeviceVulkan12Features.samplerFilterMinmax" }, vulkan12Features.samplerFilterMinmax }, { { "VK_EXT_shader_viewport_index_layer", "VkPhysicalDeviceVulkan12Features.shaderOutputViewportIndex" }, vulkan12Features.shaderOutputViewportIndex }, { { "VK_EXT_shader_viewport_index_layer", "VkPhysicalDeviceVulkan12Features.shaderOutputLayer" }, vulkan12Features.shaderOutputLayer } }; vector extensionProperties = enumerateDeviceExtensionProperties(vki, physicalDevice, DE_NULL); for (const auto& ext : extensions2validate) if (checkExtension(extensionProperties, ext.first.first) && !ext.second) TCU_FAIL(string("Mismatch between extension ") + ext.first.first + " and " + ext.first.second); // collect all extension features { VkPhysicalDevice16BitStorageFeatures device16BitStorageFeatures = initVulkanStructure(); VkPhysicalDeviceMultiviewFeatures deviceMultiviewFeatures = initVulkanStructure(&device16BitStorageFeatures); VkPhysicalDeviceProtectedMemoryFeatures protectedMemoryFeatures = initVulkanStructure(&deviceMultiviewFeatures); VkPhysicalDeviceSamplerYcbcrConversionFeatures samplerYcbcrConversionFeatures = initVulkanStructure(&protectedMemoryFeatures); VkPhysicalDeviceShaderDrawParametersFeatures shaderDrawParametersFeatures = initVulkanStructure(&samplerYcbcrConversionFeatures); VkPhysicalDeviceVariablePointersFeatures variablePointerFeatures = initVulkanStructure(&shaderDrawParametersFeatures); VkPhysicalDevice8BitStorageFeatures device8BitStorageFeatures = initVulkanStructure(&variablePointerFeatures); VkPhysicalDeviceShaderAtomicInt64Features shaderAtomicInt64Features = initVulkanStructure(&device8BitStorageFeatures); VkPhysicalDeviceShaderFloat16Int8Features shaderFloat16Int8Features = initVulkanStructure(&shaderAtomicInt64Features); VkPhysicalDeviceDescriptorIndexingFeatures descriptorIndexingFeatures = initVulkanStructure(&shaderFloat16Int8Features); VkPhysicalDeviceScalarBlockLayoutFeatures scalarBlockLayoutFeatures = initVulkanStructure(&descriptorIndexingFeatures); VkPhysicalDeviceImagelessFramebufferFeatures imagelessFramebufferFeatures = initVulkanStructure(&scalarBlockLayoutFeatures); VkPhysicalDeviceUniformBufferStandardLayoutFeatures uniformBufferStandardLayoutFeatures = initVulkanStructure(&imagelessFramebufferFeatures); VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures shaderSubgroupExtendedTypesFeatures = initVulkanStructure(&uniformBufferStandardLayoutFeatures); VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures separateDepthStencilLayoutsFeatures = initVulkanStructure(&shaderSubgroupExtendedTypesFeatures); VkPhysicalDeviceHostQueryResetFeatures hostQueryResetFeatures = initVulkanStructure(&separateDepthStencilLayoutsFeatures); VkPhysicalDeviceTimelineSemaphoreFeatures timelineSemaphoreFeatures = initVulkanStructure(&hostQueryResetFeatures); VkPhysicalDeviceBufferDeviceAddressFeatures bufferDeviceAddressFeatures = initVulkanStructure(&timelineSemaphoreFeatures); VkPhysicalDeviceVulkanMemoryModelFeatures vulkanMemoryModelFeatures = initVulkanStructure(&bufferDeviceAddressFeatures); extFeatures = initVulkanStructure(&vulkanMemoryModelFeatures); vki.getPhysicalDeviceFeatures2(physicalDevice, &extFeatures); log << TestLog::Message << extFeatures << TestLog::EndMessage; log << TestLog::Message << device16BitStorageFeatures << TestLog::EndMessage; log << TestLog::Message << deviceMultiviewFeatures << TestLog::EndMessage; log << TestLog::Message << protectedMemoryFeatures << TestLog::EndMessage; log << TestLog::Message << samplerYcbcrConversionFeatures << TestLog::EndMessage; log << TestLog::Message << shaderDrawParametersFeatures << TestLog::EndMessage; log << TestLog::Message << variablePointerFeatures << TestLog::EndMessage; log << TestLog::Message << device8BitStorageFeatures << TestLog::EndMessage; log << TestLog::Message << shaderAtomicInt64Features << TestLog::EndMessage; log << TestLog::Message << shaderFloat16Int8Features << TestLog::EndMessage; log << TestLog::Message << descriptorIndexingFeatures << TestLog::EndMessage; log << TestLog::Message << scalarBlockLayoutFeatures << TestLog::EndMessage; log << TestLog::Message << imagelessFramebufferFeatures << TestLog::EndMessage; log << TestLog::Message << uniformBufferStandardLayoutFeatures << TestLog::EndMessage; log << TestLog::Message << shaderSubgroupExtendedTypesFeatures << TestLog::EndMessage; log << TestLog::Message << separateDepthStencilLayoutsFeatures << TestLog::EndMessage; log << TestLog::Message << hostQueryResetFeatures << TestLog::EndMessage; log << TestLog::Message << timelineSemaphoreFeatures << TestLog::EndMessage; log << TestLog::Message << bufferDeviceAddressFeatures << TestLog::EndMessage; log << TestLog::Message << vulkanMemoryModelFeatures << TestLog::EndMessage; if (( device16BitStorageFeatures.storageBuffer16BitAccess != vulkan11Features.storageBuffer16BitAccess || device16BitStorageFeatures.uniformAndStorageBuffer16BitAccess != vulkan11Features.uniformAndStorageBuffer16BitAccess || device16BitStorageFeatures.storagePushConstant16 != vulkan11Features.storagePushConstant16 || device16BitStorageFeatures.storageInputOutput16 != vulkan11Features.storageInputOutput16 )) { TCU_FAIL("Mismatch between VkPhysicalDevice16BitStorageFeatures and VkPhysicalDeviceVulkan11Features"); } if (( deviceMultiviewFeatures.multiview != vulkan11Features.multiview || deviceMultiviewFeatures.multiviewGeometryShader != vulkan11Features.multiviewGeometryShader || deviceMultiviewFeatures.multiviewTessellationShader != vulkan11Features.multiviewTessellationShader )) { TCU_FAIL("Mismatch between VkPhysicalDeviceMultiviewFeatures and VkPhysicalDeviceVulkan11Features"); } if ( (protectedMemoryFeatures.protectedMemory != vulkan11Features.protectedMemory )) { TCU_FAIL("Mismatch between VkPhysicalDeviceProtectedMemoryFeatures and VkPhysicalDeviceVulkan11Features"); } if ( (samplerYcbcrConversionFeatures.samplerYcbcrConversion != vulkan11Features.samplerYcbcrConversion )) { TCU_FAIL("Mismatch between VkPhysicalDeviceSamplerYcbcrConversionFeatures and VkPhysicalDeviceVulkan11Features"); } if ( (shaderDrawParametersFeatures.shaderDrawParameters != vulkan11Features.shaderDrawParameters )) { TCU_FAIL("Mismatch between VkPhysicalDeviceShaderDrawParametersFeatures and VkPhysicalDeviceVulkan11Features"); } if (( variablePointerFeatures.variablePointersStorageBuffer != vulkan11Features.variablePointersStorageBuffer || variablePointerFeatures.variablePointers != vulkan11Features.variablePointers)) { TCU_FAIL("Mismatch between VkPhysicalDeviceVariablePointersFeatures and VkPhysicalDeviceVulkan11Features"); } if (( device8BitStorageFeatures.storageBuffer8BitAccess != vulkan12Features.storageBuffer8BitAccess || device8BitStorageFeatures.uniformAndStorageBuffer8BitAccess != vulkan12Features.uniformAndStorageBuffer8BitAccess || device8BitStorageFeatures.storagePushConstant8 != vulkan12Features.storagePushConstant8 )) { TCU_FAIL("Mismatch between VkPhysicalDevice8BitStorageFeatures and VkPhysicalDeviceVulkan12Features"); } if (( shaderAtomicInt64Features.shaderBufferInt64Atomics != vulkan12Features.shaderBufferInt64Atomics || shaderAtomicInt64Features.shaderSharedInt64Atomics != vulkan12Features.shaderSharedInt64Atomics )) { TCU_FAIL("Mismatch between VkPhysicalDeviceShaderAtomicInt64Features and VkPhysicalDeviceVulkan12Features"); } if (( shaderFloat16Int8Features.shaderFloat16 != vulkan12Features.shaderFloat16 || shaderFloat16Int8Features.shaderInt8 != vulkan12Features.shaderInt8 )) { TCU_FAIL("Mismatch between VkPhysicalDeviceShaderFloat16Int8Features and VkPhysicalDeviceVulkan12Features"); } if ((vulkan12Features.descriptorIndexing) && ( descriptorIndexingFeatures.shaderInputAttachmentArrayDynamicIndexing != vulkan12Features.shaderInputAttachmentArrayDynamicIndexing || descriptorIndexingFeatures.shaderUniformTexelBufferArrayDynamicIndexing != vulkan12Features.shaderUniformTexelBufferArrayDynamicIndexing || descriptorIndexingFeatures.shaderStorageTexelBufferArrayDynamicIndexing != vulkan12Features.shaderStorageTexelBufferArrayDynamicIndexing || descriptorIndexingFeatures.shaderUniformBufferArrayNonUniformIndexing != vulkan12Features.shaderUniformBufferArrayNonUniformIndexing || descriptorIndexingFeatures.shaderSampledImageArrayNonUniformIndexing != vulkan12Features.shaderSampledImageArrayNonUniformIndexing || descriptorIndexingFeatures.shaderStorageBufferArrayNonUniformIndexing != vulkan12Features.shaderStorageBufferArrayNonUniformIndexing || descriptorIndexingFeatures.shaderStorageImageArrayNonUniformIndexing != vulkan12Features.shaderStorageImageArrayNonUniformIndexing || descriptorIndexingFeatures.shaderInputAttachmentArrayNonUniformIndexing != vulkan12Features.shaderInputAttachmentArrayNonUniformIndexing || descriptorIndexingFeatures.shaderUniformTexelBufferArrayNonUniformIndexing != vulkan12Features.shaderUniformTexelBufferArrayNonUniformIndexing || descriptorIndexingFeatures.shaderStorageTexelBufferArrayNonUniformIndexing != vulkan12Features.shaderStorageTexelBufferArrayNonUniformIndexing || descriptorIndexingFeatures.descriptorBindingUniformBufferUpdateAfterBind != vulkan12Features.descriptorBindingUniformBufferUpdateAfterBind || descriptorIndexingFeatures.descriptorBindingSampledImageUpdateAfterBind != vulkan12Features.descriptorBindingSampledImageUpdateAfterBind || descriptorIndexingFeatures.descriptorBindingStorageImageUpdateAfterBind != vulkan12Features.descriptorBindingStorageImageUpdateAfterBind || descriptorIndexingFeatures.descriptorBindingStorageBufferUpdateAfterBind != vulkan12Features.descriptorBindingStorageBufferUpdateAfterBind || descriptorIndexingFeatures.descriptorBindingUniformTexelBufferUpdateAfterBind != vulkan12Features.descriptorBindingUniformTexelBufferUpdateAfterBind || descriptorIndexingFeatures.descriptorBindingStorageTexelBufferUpdateAfterBind != vulkan12Features.descriptorBindingStorageTexelBufferUpdateAfterBind || descriptorIndexingFeatures.descriptorBindingUpdateUnusedWhilePending != vulkan12Features.descriptorBindingUpdateUnusedWhilePending || descriptorIndexingFeatures.descriptorBindingPartiallyBound != vulkan12Features.descriptorBindingPartiallyBound || descriptorIndexingFeatures.descriptorBindingVariableDescriptorCount != vulkan12Features.descriptorBindingVariableDescriptorCount || descriptorIndexingFeatures.runtimeDescriptorArray != vulkan12Features.runtimeDescriptorArray )) { TCU_FAIL("Mismatch between VkPhysicalDeviceDescriptorIndexingFeatures and VkPhysicalDeviceVulkan12Features"); } if (( scalarBlockLayoutFeatures.scalarBlockLayout != vulkan12Features.scalarBlockLayout )) { TCU_FAIL("Mismatch between VkPhysicalDeviceScalarBlockLayoutFeatures and VkPhysicalDeviceVulkan12Features"); } if (( imagelessFramebufferFeatures.imagelessFramebuffer != vulkan12Features.imagelessFramebuffer )) { TCU_FAIL("Mismatch between VkPhysicalDeviceImagelessFramebufferFeatures and VkPhysicalDeviceVulkan12Features"); } if (( uniformBufferStandardLayoutFeatures.uniformBufferStandardLayout != vulkan12Features.uniformBufferStandardLayout )) { TCU_FAIL("Mismatch between VkPhysicalDeviceUniformBufferStandardLayoutFeatures and VkPhysicalDeviceVulkan12Features"); } if (( shaderSubgroupExtendedTypesFeatures.shaderSubgroupExtendedTypes != vulkan12Features.shaderSubgroupExtendedTypes )) { TCU_FAIL("Mismatch between VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures and VkPhysicalDeviceVulkan12Features"); } if (( separateDepthStencilLayoutsFeatures.separateDepthStencilLayouts != vulkan12Features.separateDepthStencilLayouts )) { TCU_FAIL("Mismatch between VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures and VkPhysicalDeviceVulkan12Features"); } if (( hostQueryResetFeatures.hostQueryReset != vulkan12Features.hostQueryReset )) { TCU_FAIL("Mismatch between VkPhysicalDeviceHostQueryResetFeatures and VkPhysicalDeviceVulkan12Features"); } if (( timelineSemaphoreFeatures.timelineSemaphore != vulkan12Features.timelineSemaphore )) { TCU_FAIL("Mismatch between VkPhysicalDeviceTimelineSemaphoreFeatures and VkPhysicalDeviceVulkan12Features"); } if (( bufferDeviceAddressFeatures.bufferDeviceAddress != vulkan12Features.bufferDeviceAddress || bufferDeviceAddressFeatures.bufferDeviceAddressCaptureReplay != vulkan12Features.bufferDeviceAddressCaptureReplay || bufferDeviceAddressFeatures.bufferDeviceAddressMultiDevice != vulkan12Features.bufferDeviceAddressMultiDevice )) { TCU_FAIL("Mismatch between VkPhysicalDeviceBufferDeviceAddressFeatures and VkPhysicalDeviceVulkan12Features"); } if (( vulkanMemoryModelFeatures.vulkanMemoryModel != vulkan12Features.vulkanMemoryModel || vulkanMemoryModelFeatures.vulkanMemoryModelDeviceScope != vulkan12Features.vulkanMemoryModelDeviceScope || vulkanMemoryModelFeatures.vulkanMemoryModelAvailabilityVisibilityChains != vulkan12Features.vulkanMemoryModelAvailabilityVisibilityChains )) { TCU_FAIL("Mismatch between VkPhysicalDeviceVulkanMemoryModelFeatures and VkPhysicalDeviceVulkan12Features"); } } return tcu::TestStatus::pass("Vulkan 1.2 device features are consistent with extensions"); } tcu::TestStatus devicePropertyExtensionsConsistencyVulkan12(Context& context) { TestLog& log = context.getTestContext().getLog(); const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_get_physical_device_properties2")); const InstanceDriver& vki = instance.getDriver(); if (!context.contextSupports(vk::ApiVersion(1, 2, 0))) TCU_THROW(NotSupportedError, "At least Vulkan 1.2 required to run test"); VkPhysicalDeviceVulkan12Properties vulkan12Properties = initVulkanStructure(); VkPhysicalDeviceVulkan11Properties vulkan11Properties = initVulkanStructure(&vulkan12Properties); VkPhysicalDeviceProperties2 extProperties = initVulkanStructure(&vulkan11Properties); vki.getPhysicalDeviceProperties2(physicalDevice, &extProperties); log << TestLog::Message << vulkan11Properties << TestLog::EndMessage; log << TestLog::Message << vulkan12Properties << TestLog::EndMessage; // Validate all fields initialized matching to extension structures { VkPhysicalDeviceIDProperties idProperties = initVulkanStructure(); VkPhysicalDeviceSubgroupProperties subgroupProperties = initVulkanStructure(&idProperties); VkPhysicalDevicePointClippingProperties pointClippingProperties = initVulkanStructure(&subgroupProperties); VkPhysicalDeviceMultiviewProperties multiviewProperties = initVulkanStructure(&pointClippingProperties); VkPhysicalDeviceProtectedMemoryProperties protectedMemoryPropertiesKHR = initVulkanStructure(&multiviewProperties); VkPhysicalDeviceMaintenance3Properties maintenance3Properties = initVulkanStructure(&protectedMemoryPropertiesKHR); VkPhysicalDeviceDriverProperties driverProperties = initVulkanStructure(&maintenance3Properties); VkPhysicalDeviceFloatControlsProperties floatControlsProperties = initVulkanStructure(&driverProperties); VkPhysicalDeviceDescriptorIndexingProperties descriptorIndexingProperties = initVulkanStructure(&floatControlsProperties); VkPhysicalDeviceDepthStencilResolveProperties depthStencilResolveProperties = initVulkanStructure(&descriptorIndexingProperties); VkPhysicalDeviceSamplerFilterMinmaxProperties samplerFilterMinmaxProperties = initVulkanStructure(&depthStencilResolveProperties); VkPhysicalDeviceTimelineSemaphoreProperties timelineSemaphoreProperties = initVulkanStructure(&samplerFilterMinmaxProperties); extProperties = initVulkanStructure(&timelineSemaphoreProperties); vki.getPhysicalDeviceProperties2(physicalDevice, &extProperties); if ((deMemCmp(idProperties.deviceUUID, vulkan11Properties.deviceUUID, VK_UUID_SIZE) != 0) || (deMemCmp(idProperties.driverUUID, vulkan11Properties.driverUUID, VK_UUID_SIZE) != 0) || (idProperties.deviceLUIDValid != vulkan11Properties.deviceLUIDValid)) { TCU_FAIL("Mismatch between VkPhysicalDeviceIDProperties and VkPhysicalDeviceVulkan11Properties"); } else if (idProperties.deviceLUIDValid) { // If deviceLUIDValid is VK_FALSE, the contents of deviceLUID and deviceNodeMask are undefined // so thay can only be compared when deviceLUIDValid is VK_TRUE. if ((deMemCmp(idProperties.deviceLUID, vulkan11Properties.deviceLUID, VK_LUID_SIZE) != 0) || (idProperties.deviceNodeMask != vulkan11Properties.deviceNodeMask)) { TCU_FAIL("Mismatch between VkPhysicalDeviceIDProperties and VkPhysicalDeviceVulkan11Properties"); } } if ((subgroupProperties.subgroupSize != vulkan11Properties.subgroupSize || subgroupProperties.supportedStages != vulkan11Properties.subgroupSupportedStages || subgroupProperties.supportedOperations != vulkan11Properties.subgroupSupportedOperations || subgroupProperties.quadOperationsInAllStages != vulkan11Properties.subgroupQuadOperationsInAllStages)) { TCU_FAIL("Mismatch between VkPhysicalDeviceSubgroupProperties and VkPhysicalDeviceVulkan11Properties"); } if ((pointClippingProperties.pointClippingBehavior != vulkan11Properties.pointClippingBehavior)) { TCU_FAIL("Mismatch between VkPhysicalDevicePointClippingProperties and VkPhysicalDeviceVulkan11Properties"); } if ((multiviewProperties.maxMultiviewViewCount != vulkan11Properties.maxMultiviewViewCount || multiviewProperties.maxMultiviewInstanceIndex != vulkan11Properties.maxMultiviewInstanceIndex)) { TCU_FAIL("Mismatch between VkPhysicalDeviceMultiviewProperties and VkPhysicalDeviceVulkan11Properties"); } if ((protectedMemoryPropertiesKHR.protectedNoFault != vulkan11Properties.protectedNoFault)) { TCU_FAIL("Mismatch between VkPhysicalDeviceProtectedMemoryProperties and VkPhysicalDeviceVulkan11Properties"); } if ((maintenance3Properties.maxPerSetDescriptors != vulkan11Properties.maxPerSetDescriptors || maintenance3Properties.maxMemoryAllocationSize != vulkan11Properties.maxMemoryAllocationSize)) { TCU_FAIL("Mismatch between VkPhysicalDeviceMaintenance3Properties and VkPhysicalDeviceVulkan11Properties"); } if ((driverProperties.driverID != vulkan12Properties.driverID || strncmp(driverProperties.driverName, vulkan12Properties.driverName, VK_MAX_DRIVER_NAME_SIZE) != 0 || strncmp(driverProperties.driverInfo, vulkan12Properties.driverInfo, VK_MAX_DRIVER_INFO_SIZE) != 0 || driverProperties.conformanceVersion.major != vulkan12Properties.conformanceVersion.major || driverProperties.conformanceVersion.minor != vulkan12Properties.conformanceVersion.minor || driverProperties.conformanceVersion.subminor != vulkan12Properties.conformanceVersion.subminor || driverProperties.conformanceVersion.patch != vulkan12Properties.conformanceVersion.patch)) { TCU_FAIL("Mismatch between VkPhysicalDeviceDriverProperties and VkPhysicalDeviceVulkan12Properties"); } if ((floatControlsProperties.denormBehaviorIndependence != vulkan12Properties.denormBehaviorIndependence || floatControlsProperties.roundingModeIndependence != vulkan12Properties.roundingModeIndependence || floatControlsProperties.shaderSignedZeroInfNanPreserveFloat16 != vulkan12Properties.shaderSignedZeroInfNanPreserveFloat16 || floatControlsProperties.shaderSignedZeroInfNanPreserveFloat32 != vulkan12Properties.shaderSignedZeroInfNanPreserveFloat32 || floatControlsProperties.shaderSignedZeroInfNanPreserveFloat64 != vulkan12Properties.shaderSignedZeroInfNanPreserveFloat64 || floatControlsProperties.shaderDenormPreserveFloat16 != vulkan12Properties.shaderDenormPreserveFloat16 || floatControlsProperties.shaderDenormPreserveFloat32 != vulkan12Properties.shaderDenormPreserveFloat32 || floatControlsProperties.shaderDenormPreserveFloat64 != vulkan12Properties.shaderDenormPreserveFloat64 || floatControlsProperties.shaderDenormFlushToZeroFloat16 != vulkan12Properties.shaderDenormFlushToZeroFloat16 || floatControlsProperties.shaderDenormFlushToZeroFloat32 != vulkan12Properties.shaderDenormFlushToZeroFloat32 || floatControlsProperties.shaderDenormFlushToZeroFloat64 != vulkan12Properties.shaderDenormFlushToZeroFloat64 || floatControlsProperties.shaderRoundingModeRTEFloat16 != vulkan12Properties.shaderRoundingModeRTEFloat16 || floatControlsProperties.shaderRoundingModeRTEFloat32 != vulkan12Properties.shaderRoundingModeRTEFloat32 || floatControlsProperties.shaderRoundingModeRTEFloat64 != vulkan12Properties.shaderRoundingModeRTEFloat64 || floatControlsProperties.shaderRoundingModeRTZFloat16 != vulkan12Properties.shaderRoundingModeRTZFloat16 || floatControlsProperties.shaderRoundingModeRTZFloat32 != vulkan12Properties.shaderRoundingModeRTZFloat32 || floatControlsProperties.shaderRoundingModeRTZFloat64 != vulkan12Properties.shaderRoundingModeRTZFloat64 )) { TCU_FAIL("Mismatch between VkPhysicalDeviceFloatControlsProperties and VkPhysicalDeviceVulkan12Properties"); } if ((descriptorIndexingProperties.maxUpdateAfterBindDescriptorsInAllPools != vulkan12Properties.maxUpdateAfterBindDescriptorsInAllPools || descriptorIndexingProperties.shaderUniformBufferArrayNonUniformIndexingNative != vulkan12Properties.shaderUniformBufferArrayNonUniformIndexingNative || descriptorIndexingProperties.shaderSampledImageArrayNonUniformIndexingNative != vulkan12Properties.shaderSampledImageArrayNonUniformIndexingNative || descriptorIndexingProperties.shaderStorageBufferArrayNonUniformIndexingNative != vulkan12Properties.shaderStorageBufferArrayNonUniformIndexingNative || descriptorIndexingProperties.shaderStorageImageArrayNonUniformIndexingNative != vulkan12Properties.shaderStorageImageArrayNonUniformIndexingNative || descriptorIndexingProperties.shaderInputAttachmentArrayNonUniformIndexingNative != vulkan12Properties.shaderInputAttachmentArrayNonUniformIndexingNative || descriptorIndexingProperties.robustBufferAccessUpdateAfterBind != vulkan12Properties.robustBufferAccessUpdateAfterBind || descriptorIndexingProperties.quadDivergentImplicitLod != vulkan12Properties.quadDivergentImplicitLod || descriptorIndexingProperties.maxPerStageDescriptorUpdateAfterBindSamplers != vulkan12Properties.maxPerStageDescriptorUpdateAfterBindSamplers || descriptorIndexingProperties.maxPerStageDescriptorUpdateAfterBindUniformBuffers != vulkan12Properties.maxPerStageDescriptorUpdateAfterBindUniformBuffers || descriptorIndexingProperties.maxPerStageDescriptorUpdateAfterBindStorageBuffers != vulkan12Properties.maxPerStageDescriptorUpdateAfterBindStorageBuffers || descriptorIndexingProperties.maxPerStageDescriptorUpdateAfterBindSampledImages != vulkan12Properties.maxPerStageDescriptorUpdateAfterBindSampledImages || descriptorIndexingProperties.maxPerStageDescriptorUpdateAfterBindStorageImages != vulkan12Properties.maxPerStageDescriptorUpdateAfterBindStorageImages || descriptorIndexingProperties.maxPerStageDescriptorUpdateAfterBindInputAttachments != vulkan12Properties.maxPerStageDescriptorUpdateAfterBindInputAttachments || descriptorIndexingProperties.maxPerStageUpdateAfterBindResources != vulkan12Properties.maxPerStageUpdateAfterBindResources || descriptorIndexingProperties.maxDescriptorSetUpdateAfterBindSamplers != vulkan12Properties.maxDescriptorSetUpdateAfterBindSamplers || descriptorIndexingProperties.maxDescriptorSetUpdateAfterBindUniformBuffers != vulkan12Properties.maxDescriptorSetUpdateAfterBindUniformBuffers || descriptorIndexingProperties.maxDescriptorSetUpdateAfterBindUniformBuffersDynamic != vulkan12Properties.maxDescriptorSetUpdateAfterBindUniformBuffersDynamic || descriptorIndexingProperties.maxDescriptorSetUpdateAfterBindStorageBuffers != vulkan12Properties.maxDescriptorSetUpdateAfterBindStorageBuffers || descriptorIndexingProperties.maxDescriptorSetUpdateAfterBindStorageBuffersDynamic != vulkan12Properties.maxDescriptorSetUpdateAfterBindStorageBuffersDynamic || descriptorIndexingProperties.maxDescriptorSetUpdateAfterBindSampledImages != vulkan12Properties.maxDescriptorSetUpdateAfterBindSampledImages || descriptorIndexingProperties.maxDescriptorSetUpdateAfterBindStorageImages != vulkan12Properties.maxDescriptorSetUpdateAfterBindStorageImages || descriptorIndexingProperties.maxDescriptorSetUpdateAfterBindInputAttachments != vulkan12Properties.maxDescriptorSetUpdateAfterBindInputAttachments )) { TCU_FAIL("Mismatch between VkPhysicalDeviceDescriptorIndexingProperties and VkPhysicalDeviceVulkan12Properties"); } if ((depthStencilResolveProperties.supportedDepthResolveModes != vulkan12Properties.supportedDepthResolveModes || depthStencilResolveProperties.supportedStencilResolveModes != vulkan12Properties.supportedStencilResolveModes || depthStencilResolveProperties.independentResolveNone != vulkan12Properties.independentResolveNone || depthStencilResolveProperties.independentResolve != vulkan12Properties.independentResolve)) { TCU_FAIL("Mismatch between VkPhysicalDeviceDepthStencilResolveProperties and VkPhysicalDeviceVulkan12Properties"); } if ((samplerFilterMinmaxProperties.filterMinmaxSingleComponentFormats != vulkan12Properties.filterMinmaxSingleComponentFormats || samplerFilterMinmaxProperties.filterMinmaxImageComponentMapping != vulkan12Properties.filterMinmaxImageComponentMapping)) { TCU_FAIL("Mismatch between VkPhysicalDeviceSamplerFilterMinmaxProperties and VkPhysicalDeviceVulkan12Properties"); } if ((timelineSemaphoreProperties.maxTimelineSemaphoreValueDifference != vulkan12Properties.maxTimelineSemaphoreValueDifference)) { TCU_FAIL("Mismatch between VkPhysicalDeviceTimelineSemaphoreProperties and VkPhysicalDeviceVulkan12Properties"); } } return tcu::TestStatus::pass("Vulkan 1.2 device properties are consistent with extension properties"); } tcu::TestStatus imageFormatProperties2 (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling) { if (isYCbCrFormat(format)) // check if Ycbcr format enums are valid given the version and extensions checkYcbcrApiSupport(context); TestLog& log = context.getTestContext().getLog(); const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_get_physical_device_properties2")); const InstanceDriver& vki (instance.getDriver()); const VkImageCreateFlags ycbcrFlags = isYCbCrFormat(format) ? (VkImageCreateFlags)VK_IMAGE_CREATE_DISJOINT_BIT_KHR : (VkImageCreateFlags)0u; const VkImageUsageFlags allUsageFlags = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; const VkImageCreateFlags allCreateFlags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_ALIASED_BIT | VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT | VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT | ycbcrFlags; for (VkImageUsageFlags curUsageFlags = (VkImageUsageFlags)1; curUsageFlags <= allUsageFlags; curUsageFlags++) { if (!isValidImageUsageFlagCombination(curUsageFlags)) continue; for (VkImageCreateFlags curCreateFlags = 0; curCreateFlags <= allCreateFlags; curCreateFlags++) { const VkPhysicalDeviceImageFormatInfo2 imageFormatInfo = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, DE_NULL, format, imageType, tiling, curUsageFlags, curCreateFlags }; VkImageFormatProperties coreProperties; VkImageFormatProperties2 extProperties; VkResult coreResult; VkResult extResult; deMemset(&coreProperties, 0xcd, sizeof(VkImageFormatProperties)); deMemset(&extProperties, 0xcd, sizeof(VkImageFormatProperties2)); extProperties.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2; extProperties.pNext = DE_NULL; coreResult = vki.getPhysicalDeviceImageFormatProperties(physicalDevice, imageFormatInfo.format, imageFormatInfo.type, imageFormatInfo.tiling, imageFormatInfo.usage, imageFormatInfo.flags, &coreProperties); extResult = vki.getPhysicalDeviceImageFormatProperties2(physicalDevice, &imageFormatInfo, &extProperties); TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2); TCU_CHECK(extProperties.pNext == DE_NULL); if ((coreResult != extResult) || (deMemCmp(&coreProperties, &extProperties.imageFormatProperties, sizeof(VkImageFormatProperties)) != 0)) { log << TestLog::Message << "ERROR: device mismatch with query " << imageFormatInfo << TestLog::EndMessage << TestLog::Message << "vkGetPhysicalDeviceImageFormatProperties() returned " << coreResult << ", " << coreProperties << TestLog::EndMessage << TestLog::Message << "vkGetPhysicalDeviceImageFormatProperties2() returned " << extResult << ", " << extProperties << TestLog::EndMessage; TCU_FAIL("Mismatch between image format properties reported by vkGetPhysicalDeviceImageFormatProperties and vkGetPhysicalDeviceImageFormatProperties2"); } } } return tcu::TestStatus::pass("Querying image format properties succeeded"); } tcu::TestStatus sparseImageFormatProperties2 (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling) { TestLog& log = context.getTestContext().getLog(); const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); const CustomInstance instance (createCustomInstanceWithExtension(context, "VK_KHR_get_physical_device_properties2")); const InstanceDriver& vki (instance.getDriver()); const VkImageUsageFlags allUsageFlags = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; for (deUint32 sampleCountBit = VK_SAMPLE_COUNT_1_BIT; sampleCountBit <= VK_SAMPLE_COUNT_64_BIT; sampleCountBit = (sampleCountBit << 1u)) { for (VkImageUsageFlags curUsageFlags = (VkImageUsageFlags)1; curUsageFlags <= allUsageFlags; curUsageFlags++) { if (!isValidImageUsageFlagCombination(curUsageFlags)) continue; const VkPhysicalDeviceSparseImageFormatInfo2 imageFormatInfo = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2, DE_NULL, format, imageType, (VkSampleCountFlagBits)sampleCountBit, curUsageFlags, tiling, }; deUint32 numCoreProperties = 0u; deUint32 numExtProperties = 0u; // Query count vki.getPhysicalDeviceSparseImageFormatProperties(physicalDevice, imageFormatInfo.format, imageFormatInfo.type, imageFormatInfo.samples, imageFormatInfo.usage, imageFormatInfo.tiling, &numCoreProperties, DE_NULL); vki.getPhysicalDeviceSparseImageFormatProperties2(physicalDevice, &imageFormatInfo, &numExtProperties, DE_NULL); if (numCoreProperties != numExtProperties) { log << TestLog::Message << "ERROR: different number of properties reported for " << imageFormatInfo << TestLog::EndMessage; TCU_FAIL("Mismatch in reported property count"); } if (!context.getDeviceFeatures().sparseBinding) { // There is no support for sparse binding, getPhysicalDeviceSparseImageFormatProperties* MUST report no properties // Only have to check one of the entrypoints as a mismatch in count is already caught. if (numCoreProperties > 0) { log << TestLog::Message << "ERROR: device does not support sparse binding but claims support for " << numCoreProperties << " properties in vkGetPhysicalDeviceSparseImageFormatProperties with parameters " << imageFormatInfo << TestLog::EndMessage; TCU_FAIL("Claimed format properties inconsistent with overall sparseBinding feature"); } } if (numCoreProperties > 0) { std::vector coreProperties (numCoreProperties); std::vector extProperties (numExtProperties); deMemset(&coreProperties[0], 0xcd, sizeof(VkSparseImageFormatProperties)*numCoreProperties); deMemset(&extProperties[0], 0xcd, sizeof(VkSparseImageFormatProperties2)*numExtProperties); for (deUint32 ndx = 0; ndx < numExtProperties; ++ndx) { extProperties[ndx].sType = VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2; extProperties[ndx].pNext = DE_NULL; } vki.getPhysicalDeviceSparseImageFormatProperties(physicalDevice, imageFormatInfo.format, imageFormatInfo.type, imageFormatInfo.samples, imageFormatInfo.usage, imageFormatInfo.tiling, &numCoreProperties, &coreProperties[0]); vki.getPhysicalDeviceSparseImageFormatProperties2(physicalDevice, &imageFormatInfo, &numExtProperties, &extProperties[0]); TCU_CHECK((size_t)numCoreProperties == coreProperties.size()); TCU_CHECK((size_t)numExtProperties == extProperties.size()); for (deUint32 ndx = 0; ndx < numCoreProperties; ++ndx) { TCU_CHECK(extProperties[ndx].sType == VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2); TCU_CHECK(extProperties[ndx].pNext == DE_NULL); if ((deMemCmp(&coreProperties[ndx], &extProperties[ndx].properties, sizeof(VkSparseImageFormatProperties)) != 0)) { log << TestLog::Message << "ERROR: device mismatch with query " << imageFormatInfo << " property " << ndx << TestLog::EndMessage << TestLog::Message << "vkGetPhysicalDeviceSparseImageFormatProperties() returned " << coreProperties[ndx] << TestLog::EndMessage << TestLog::Message << "vkGetPhysicalDeviceSparseImageFormatProperties2() returned " << extProperties[ndx] << TestLog::EndMessage; TCU_FAIL("Mismatch between image format properties reported by vkGetPhysicalDeviceSparseImageFormatProperties and vkGetPhysicalDeviceSparseImageFormatProperties2"); } } } } } return tcu::TestStatus::pass("Querying sparse image format properties succeeded"); } tcu::TestStatus execImageFormatTest (Context& context, ImageFormatPropertyCase testCase) { return testCase.testFunction(context, testCase.format, testCase.imageType, testCase.tiling); } void createImageFormatTypeTilingTests (tcu::TestCaseGroup* testGroup, ImageFormatPropertyCase params) { DE_ASSERT(params.format == VK_FORMAT_UNDEFINED); static const struct { VkFormat begin; VkFormat end; ImageFormatPropertyCase params; } s_formatRanges[] = { // core formats { (VkFormat)(VK_FORMAT_UNDEFINED + 1), VK_CORE_FORMAT_LAST, params }, // YCbCr formats { VK_FORMAT_G8B8G8R8_422_UNORM_KHR, (VkFormat)(VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM_KHR + 1), params }, // YCbCr extended formats { VK_FORMAT_G8_B8R8_2PLANE_444_UNORM_EXT, (VkFormat)(VK_FORMAT_G16_B16R16_2PLANE_444_UNORM_EXT+1), params }, }; for (int rangeNdx = 0; rangeNdx < DE_LENGTH_OF_ARRAY(s_formatRanges); ++rangeNdx) { const VkFormat rangeBegin = s_formatRanges[rangeNdx].begin; const VkFormat rangeEnd = s_formatRanges[rangeNdx].end; for (VkFormat format = rangeBegin; format != rangeEnd; format = (VkFormat)(format+1)) { const bool isYCbCr = isYCbCrFormat(format); const bool isSparse = (params.testFunction == sparseImageFormatProperties2); if (isYCbCr && isSparse) continue; if (isYCbCr && params.imageType != VK_IMAGE_TYPE_2D) continue; const char* const enumName = getFormatName(format); const string caseName = de::toLower(string(enumName).substr(10)); params.format = format; addFunctionCase(testGroup, caseName, enumName, execImageFormatTest, params); } } } void createImageFormatTypeTests (tcu::TestCaseGroup* testGroup, ImageFormatPropertyCase params) { DE_ASSERT(params.tiling == VK_CORE_IMAGE_TILING_LAST); testGroup->addChild(createTestGroup(testGroup->getTestContext(), "optimal", "", createImageFormatTypeTilingTests, ImageFormatPropertyCase(params.testFunction, VK_FORMAT_UNDEFINED, params.imageType, VK_IMAGE_TILING_OPTIMAL))); testGroup->addChild(createTestGroup(testGroup->getTestContext(), "linear", "", createImageFormatTypeTilingTests, ImageFormatPropertyCase(params.testFunction, VK_FORMAT_UNDEFINED, params.imageType, VK_IMAGE_TILING_LINEAR))); } void createImageFormatTests (tcu::TestCaseGroup* testGroup, ImageFormatPropertyCase::Function testFunction) { testGroup->addChild(createTestGroup(testGroup->getTestContext(), "1d", "", createImageFormatTypeTests, ImageFormatPropertyCase(testFunction, VK_FORMAT_UNDEFINED, VK_IMAGE_TYPE_1D, VK_CORE_IMAGE_TILING_LAST))); testGroup->addChild(createTestGroup(testGroup->getTestContext(), "2d", "", createImageFormatTypeTests, ImageFormatPropertyCase(testFunction, VK_FORMAT_UNDEFINED, VK_IMAGE_TYPE_2D, VK_CORE_IMAGE_TILING_LAST))); testGroup->addChild(createTestGroup(testGroup->getTestContext(), "3d", "", createImageFormatTypeTests, ImageFormatPropertyCase(testFunction, VK_FORMAT_UNDEFINED, VK_IMAGE_TYPE_3D, VK_CORE_IMAGE_TILING_LAST))); } // Android CTS -specific tests namespace android { void checkExtensions (tcu::ResultCollector& results, const set& allowedExtensions, const vector& reportedExtensions) { for (vector::const_iterator extension = reportedExtensions.begin(); extension != reportedExtensions.end(); ++extension) { const string extensionName (extension->extensionName); const bool mustBeKnown = de::beginsWith(extensionName, "VK_GOOGLE_") || de::beginsWith(extensionName, "VK_ANDROID_"); if (mustBeKnown && !de::contains(allowedExtensions, extensionName)) results.fail("Unknown extension: " + extensionName); } } tcu::TestStatus testNoUnknownExtensions (Context& context) { TestLog& log = context.getTestContext().getLog(); tcu::ResultCollector results (log); set allowedInstanceExtensions; set allowedDeviceExtensions; // All known extensions should be added to allowedExtensions: // allowedExtensions.insert("VK_GOOGLE_extension1"); allowedDeviceExtensions.insert("VK_ANDROID_external_memory_android_hardware_buffer"); allowedDeviceExtensions.insert("VK_GOOGLE_display_timing"); allowedDeviceExtensions.insert("VK_GOOGLE_decorate_string"); allowedDeviceExtensions.insert("VK_GOOGLE_hlsl_functionality1"); // Instance extensions checkExtensions(results, allowedInstanceExtensions, enumerateInstanceExtensionProperties(context.getPlatformInterface(), DE_NULL)); // Extensions exposed by instance layers { const vector layers = enumerateInstanceLayerProperties(context.getPlatformInterface()); for (vector::const_iterator layer = layers.begin(); layer != layers.end(); ++layer) { checkExtensions(results, allowedInstanceExtensions, enumerateInstanceExtensionProperties(context.getPlatformInterface(), layer->layerName)); } } // Device extensions checkExtensions(results, allowedDeviceExtensions, enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), DE_NULL)); // Extensions exposed by device layers { const vector layers = enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice()); for (vector::const_iterator layer = layers.begin(); layer != layers.end(); ++layer) { checkExtensions(results, allowedDeviceExtensions, enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), layer->layerName)); } } return tcu::TestStatus(results.getResult(), results.getMessage()); } tcu::TestStatus testNoLayers (Context& context) { TestLog& log = context.getTestContext().getLog(); tcu::ResultCollector results (log); { const vector layers = enumerateInstanceLayerProperties(context.getPlatformInterface()); for (vector::const_iterator layer = layers.begin(); layer != layers.end(); ++layer) results.fail(string("Instance layer enumerated: ") + layer->layerName); } { const vector layers = enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice()); for (vector::const_iterator layer = layers.begin(); layer != layers.end(); ++layer) results.fail(string("Device layer enumerated: ") + layer->layerName); } return tcu::TestStatus(results.getResult(), results.getMessage()); } tcu::TestStatus testMandatoryExtensions (Context& context) { TestLog& log = context.getTestContext().getLog(); tcu::ResultCollector results (log); // Instance extensions { static const string mandatoryExtensions[] = { "VK_KHR_get_physical_device_properties2", }; for (const auto &ext : mandatoryExtensions) { if (!context.isInstanceFunctionalitySupported(ext)) results.fail(ext + " is not supported"); } } // Device extensions { static const string mandatoryExtensions[] = { "VK_KHR_maintenance1", }; for (const auto &ext : mandatoryExtensions) { if (!context.isDeviceFunctionalitySupported(ext)) results.fail(ext + " is not supported"); } } return tcu::TestStatus(results.getResult(), results.getMessage()); } } // android } // anonymous tcu::TestCaseGroup* createFeatureInfoTests (tcu::TestContext& testCtx) { de::MovePtr infoTests (new tcu::TestCaseGroup(testCtx, "info", "Platform Information Tests")); infoTests->addChild(createTestGroup(testCtx, "format_properties", "VkGetPhysicalDeviceFormatProperties() Tests", createFormatTests)); infoTests->addChild(createTestGroup(testCtx, "image_format_properties", "VkGetPhysicalDeviceImageFormatProperties() Tests", createImageFormatTests, imageFormatProperties)); { de::MovePtr extCoreVersionGrp (new tcu::TestCaseGroup(testCtx, "extension_core_versions", "Tests checking extension required core versions")); addFunctionCase(extCoreVersionGrp.get(), "extension_core_versions", "", extensionCoreVersions); infoTests->addChild(extCoreVersionGrp.release()); } { de::MovePtr extendedPropertiesTests (new tcu::TestCaseGroup(testCtx, "get_physical_device_properties2", "VK_KHR_get_physical_device_properties2")); addFunctionCase(extendedPropertiesTests.get(), "features", "Extended Device Features", deviceFeatures2); addFunctionCase(extendedPropertiesTests.get(), "properties", "Extended Device Properties", deviceProperties2); addFunctionCase(extendedPropertiesTests.get(), "format_properties", "Extended Device Format Properties", deviceFormatProperties2); addFunctionCase(extendedPropertiesTests.get(), "queue_family_properties", "Extended Device Queue Family Properties", deviceQueueFamilyProperties2); addFunctionCase(extendedPropertiesTests.get(), "memory_properties", "Extended Device Memory Properties", deviceMemoryProperties2); infoTests->addChild(extendedPropertiesTests.release()); } { de::MovePtr extendedPropertiesTests (new tcu::TestCaseGroup(testCtx, "vulkan1p2", "Vulkan 1.2 related tests")); addFunctionCase(extendedPropertiesTests.get(), "features", "Extended Vulkan 1.2 Device Features", deviceFeaturesVulkan12); addFunctionCase(extendedPropertiesTests.get(), "properties", "Extended Vulkan 1.2 Device Properties", devicePropertiesVulkan12); addFunctionCase(extendedPropertiesTests.get(), "feature_extensions_consistency", "Vulkan 1.2 consistency between Features and Extensions", deviceFeatureExtensionsConsistencyVulkan12); addFunctionCase(extendedPropertiesTests.get(), "property_extensions_consistency", "Vulkan 1.2 consistency between Properties and Extensions", devicePropertyExtensionsConsistencyVulkan12); addFunctionCase(extendedPropertiesTests.get(), "feature_bits_influence", "Validate feature bits influence on feature activation", checkSupportFeatureBitInfluence, featureBitInfluenceOnDeviceCreate); infoTests->addChild(extendedPropertiesTests.release()); } { de::MovePtr limitsValidationTests (new tcu::TestCaseGroup(testCtx, "vulkan1p2_limits_validation", "Vulkan 1.2 and core extensions limits validation")); addFunctionCase(limitsValidationTests.get(), "general", "Vulkan 1.2 Limit validation", validateLimitsCheckSupport, validateLimits12); addFunctionCase(limitsValidationTests.get(), "khr_push_descriptor", "VK_KHR_push_descriptor limit validation", checkSupportKhrPushDescriptor, validateLimitsKhrPushDescriptor); addFunctionCase(limitsValidationTests.get(), "khr_multiview", "VK_KHR_multiview limit validation", checkSupportKhrMultiview, validateLimitsKhrMultiview); addFunctionCase(limitsValidationTests.get(), "ext_discard_rectangles", "VK_EXT_discard_rectangles limit validation", checkSupportExtDiscardRectangles, validateLimitsExtDiscardRectangles); addFunctionCase(limitsValidationTests.get(), "ext_sample_locations", "VK_EXT_sample_locations limit validation", checkSupportExtSampleLocations, validateLimitsExtSampleLocations); addFunctionCase(limitsValidationTests.get(), "ext_external_memory_host", "VK_EXT_external_memory_host limit validation", checkSupportExtExternalMemoryHost, validateLimitsExtExternalMemoryHost); addFunctionCase(limitsValidationTests.get(), "ext_blend_operation_advanced", "VK_EXT_blend_operation_advanced limit validation", checkSupportExtBlendOperationAdvanced, validateLimitsExtBlendOperationAdvanced); addFunctionCase(limitsValidationTests.get(), "khr_maintenance_3", "VK_KHR_maintenance3 limit validation", checkSupportKhrMaintenance3, validateLimitsKhrMaintenance3); addFunctionCase(limitsValidationTests.get(), "ext_conservative_rasterization", "VK_EXT_conservative_rasterization limit validation", checkSupportExtConservativeRasterization, validateLimitsExtConservativeRasterization); addFunctionCase(limitsValidationTests.get(), "ext_descriptor_indexing", "VK_EXT_descriptor_indexing limit validation", checkSupportExtDescriptorIndexing, validateLimitsExtDescriptorIndexing); addFunctionCase(limitsValidationTests.get(), "ext_inline_uniform_block", "VK_EXT_inline_uniform_block limit validation", checkSupportExtInlineUniformBlock, validateLimitsExtInlineUniformBlock); addFunctionCase(limitsValidationTests.get(), "ext_vertex_attribute_divisor", "VK_EXT_vertex_attribute_divisor limit validation", checkSupportExtVertexAttributeDivisor, validateLimitsExtVertexAttributeDivisor); addFunctionCase(limitsValidationTests.get(), "nv_mesh_shader", "VK_NV_mesh_shader limit validation", checkSupportNvMeshShader, validateLimitsNvMeshShader); addFunctionCase(limitsValidationTests.get(), "ext_transform_feedback", "VK_EXT_transform_feedback limit validation", checkSupportExtTransformFeedback, validateLimitsExtTransformFeedback); addFunctionCase(limitsValidationTests.get(), "fragment_density_map", "VK_EXT_fragment_density_map limit validation", checkSupportExtFragmentDensityMap, validateLimitsExtFragmentDensityMap); addFunctionCase(limitsValidationTests.get(), "nv_ray_tracing", "VK_NV_ray_tracing limit validation", checkSupportNvRayTracing, validateLimitsNvRayTracing); addFunctionCase(limitsValidationTests.get(), "timeline_semaphore", "VK_KHR_timeline_semaphore limit validation", checkSupportKhrTimelineSemaphore, validateLimitsKhrTimelineSemaphore); addFunctionCase(limitsValidationTests.get(), "ext_line_rasterization", "VK_EXT_line_rasterization limit validation", checkSupportExtLineRasterization, validateLimitsExtLineRasterization); infoTests->addChild(limitsValidationTests.release()); } infoTests->addChild(createTestGroup(testCtx, "image_format_properties2", "VkGetPhysicalDeviceImageFormatProperties2() Tests", createImageFormatTests, imageFormatProperties2)); infoTests->addChild(createTestGroup(testCtx, "sparse_image_format_properties2", "VkGetPhysicalDeviceSparseImageFormatProperties2() Tests", createImageFormatTests, sparseImageFormatProperties2)); { de::MovePtr androidTests (new tcu::TestCaseGroup(testCtx, "android", "Android CTS Tests")); addFunctionCase(androidTests.get(), "mandatory_extensions", "Test that all mandatory extensions are supported", android::testMandatoryExtensions); addFunctionCase(androidTests.get(), "no_unknown_extensions", "Test for unknown device or instance extensions", android::testNoUnknownExtensions); addFunctionCase(androidTests.get(), "no_layers", "Test that no layers are enumerated", android::testNoLayers); infoTests->addChild(androidTests.release()); } return infoTests.release(); } void createFeatureInfoInstanceTests(tcu::TestCaseGroup* testGroup) { addFunctionCase(testGroup, "physical_devices", "Physical devices", enumeratePhysicalDevices); addFunctionCase(testGroup, "physical_device_groups", "Physical devices Groups", enumeratePhysicalDeviceGroups); addFunctionCase(testGroup, "instance_layers", "Layers", enumerateInstanceLayers); addFunctionCase(testGroup, "instance_extensions", "Extensions", enumerateInstanceExtensions); } void createFeatureInfoDeviceTests(tcu::TestCaseGroup* testGroup) { addFunctionCase(testGroup, "device_features", "Device Features", deviceFeatures); addFunctionCase(testGroup, "device_properties", "Device Properties", deviceProperties); addFunctionCase(testGroup, "device_queue_family_properties", "Queue family properties", deviceQueueFamilyProperties); addFunctionCase(testGroup, "device_memory_properties", "Memory properties", deviceMemoryProperties); addFunctionCase(testGroup, "device_layers", "Layers", enumerateDeviceLayers); addFunctionCase(testGroup, "device_extensions", "Extensions", enumerateDeviceExtensions); addFunctionCase(testGroup, "device_no_khx_extensions", "KHX extensions", testNoKhxExtensions); addFunctionCase(testGroup, "device_memory_budget", "Memory budget", deviceMemoryBudgetProperties); addFunctionCase(testGroup, "device_mandatory_features", "Mandatory features", deviceMandatoryFeatures); } void createFeatureInfoDeviceGroupTests(tcu::TestCaseGroup* testGroup) { addFunctionCase(testGroup, "device_group_peer_memory_features", "Device Group peer memory features", deviceGroupPeerMemoryFeatures); } } // api } // vkt