/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2016 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file vktSparseResourcesBufferSparseBinding.cpp * \brief Buffer Sparse Binding tests *//*--------------------------------------------------------------------*/ #include "vktSparseResourcesBufferSparseBinding.hpp" #include "vktSparseResourcesTestsUtil.hpp" #include "vktSparseResourcesBase.hpp" #include "vktTestCaseUtil.hpp" #include "vkDefs.hpp" #include "vkRef.hpp" #include "vkRefUtil.hpp" #include "vkPlatform.hpp" #include "vkPrograms.hpp" #include "vkMemUtil.hpp" #include "vkBarrierUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkImageUtil.hpp" #include "vkQueryUtil.hpp" #include "vkTypeUtil.hpp" #include "vkCmdUtil.hpp" #include "deUniquePtr.hpp" #include "deStringUtil.hpp" #include #include using namespace vk; namespace vkt { namespace sparse { namespace { class BufferSparseBindingCase : public TestCase { public: BufferSparseBindingCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const deUint32 bufferSize, const bool useDeviceGroups); TestInstance* createInstance (Context& context) const; virtual void checkSupport (Context& context) const; private: const deUint32 m_bufferSize; const bool m_useDeviceGroups; }; BufferSparseBindingCase::BufferSparseBindingCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const deUint32 bufferSize, const bool useDeviceGroups) : TestCase (testCtx, name, description) , m_bufferSize (bufferSize) , m_useDeviceGroups (useDeviceGroups) { } void BufferSparseBindingCase::checkSupport (Context& context) const { context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING); } class BufferSparseBindingInstance : public SparseResourcesBaseInstance { public: BufferSparseBindingInstance (Context& context, const deUint32 bufferSize, const bool useDeviceGroups); tcu::TestStatus iterate (void); private: const deUint32 m_bufferSize; const deUint32 m_useDeviceGroups; }; BufferSparseBindingInstance::BufferSparseBindingInstance (Context& context, const deUint32 bufferSize, const bool useDeviceGroups) : SparseResourcesBaseInstance (context, useDeviceGroups) , m_bufferSize (bufferSize) , m_useDeviceGroups (useDeviceGroups) { } tcu::TestStatus BufferSparseBindingInstance::iterate (void) { const InstanceInterface& instance = m_context.getInstanceInterface(); { // Create logical device supporting both sparse and compute operations QueueRequirementsVec queueRequirements; queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u)); queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u)); createDeviceSupportingQueues(queueRequirements); } const vk::VkPhysicalDevice& physicalDevice = getPhysicalDevice(); const DeviceInterface& deviceInterface = getDeviceInterface(); const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0); const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0); // Go through all physical devices for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++) { const deUint32 firstDeviceID = physDevID; const deUint32 secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices; VkBufferCreateInfo bufferCreateInfo; bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; // VkStructureType sType; bufferCreateInfo.pNext = DE_NULL; // const void* pNext; bufferCreateInfo.flags = VK_BUFFER_CREATE_SPARSE_BINDING_BIT; // VkBufferCreateFlags flags; bufferCreateInfo.size = m_bufferSize; // VkDeviceSize size; bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // VkBufferUsageFlags usage; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; // VkSharingMode sharingMode; bufferCreateInfo.queueFamilyIndexCount = 0u; // deUint32 queueFamilyIndexCount; bufferCreateInfo.pQueueFamilyIndices = DE_NULL; // const deUint32* pQueueFamilyIndices; const deUint32 queueFamilyIndices[] = { sparseQueue.queueFamilyIndex, computeQueue.queueFamilyIndex }; if (sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex) { bufferCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT; // VkSharingMode sharingMode; bufferCreateInfo.queueFamilyIndexCount = 2u; // deUint32 queueFamilyIndexCount; bufferCreateInfo.pQueueFamilyIndices = queueFamilyIndices; // const deUint32* pQueueFamilyIndices; } // Create sparse buffer const Unique sparseBuffer(createBuffer(deviceInterface, getDevice(), &bufferCreateInfo)); // Create sparse buffer memory bind semaphore const Unique bufferMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice())); const VkMemoryRequirements bufferMemRequirement = getBufferMemoryRequirements(deviceInterface, getDevice(), *sparseBuffer); if (bufferMemRequirement.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize) TCU_THROW(NotSupportedError, "Required memory size for sparse resources exceeds device limits"); DE_ASSERT((bufferMemRequirement.size % bufferMemRequirement.alignment) == 0); Move sparseMemoryAllocation; { std::vector sparseMemoryBinds; const deUint32 numSparseBinds = static_cast(bufferMemRequirement.size / bufferMemRequirement.alignment); const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), bufferMemRequirement, MemoryRequirement::Any); if (memoryType == NO_MATCH_FOUND) return tcu::TestStatus::fail("No matching memory type found"); if (firstDeviceID != secondDeviceID) { VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0; const deUint32 heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType); deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags); if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) || ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0)) { TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST"); } } { const VkMemoryAllocateInfo allocateInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType; DE_NULL, // const void* pNext; bufferMemRequirement.size, // VkDeviceSize allocationSize; memoryType, // uint32_t memoryTypeIndex; }; sparseMemoryAllocation = allocateMemory(deviceInterface, getDevice(), &allocateInfo); } for (deUint32 sparseBindNdx = 0; sparseBindNdx < numSparseBinds; ++sparseBindNdx) { const VkSparseMemoryBind sparseMemoryBind = { bufferMemRequirement.alignment * sparseBindNdx, // VkDeviceSize resourceOffset; bufferMemRequirement.alignment, // VkDeviceSize size; *sparseMemoryAllocation, // VkDeviceMemory memory; bufferMemRequirement.alignment * sparseBindNdx, // VkDeviceSize memoryOffset; (VkSparseMemoryBindFlags)0, // VkSparseMemoryBindFlags flags; }; sparseMemoryBinds.push_back(sparseMemoryBind); } const VkSparseBufferMemoryBindInfo sparseBufferBindInfo = makeSparseBufferMemoryBindInfo(*sparseBuffer, numSparseBinds, &sparseMemoryBinds[0]); const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo = { VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHR, //VkStructureType sType; DE_NULL, //const void* pNext; firstDeviceID, //deUint32 resourceDeviceIndex; secondDeviceID, //deUint32 memoryDeviceIndex; }; const VkBindSparseInfo bindSparseInfo = { VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType; m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext; 0u, //deUint32 waitSemaphoreCount; DE_NULL, //const VkSemaphore* pWaitSemaphores; 1u, //deUint32 bufferBindCount; &sparseBufferBindInfo, //const VkSparseBufferMemoryBindInfo* pBufferBinds; 0u, //deUint32 imageOpaqueBindCount; DE_NULL, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds; 0u, //deUint32 imageBindCount; DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds; 1u, //deUint32 signalSemaphoreCount; &bufferMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores; }; // Submit sparse bind commands for execution VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL)); } // Create command buffer for transfer operations const Unique commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex)); const Unique commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY)); // Start recording transfer commands beginCommandBuffer(deviceInterface, *commandBuffer); const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(m_bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT); const Unique inputBuffer(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo)); const de::UniquePtr inputBufferAlloc(bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible)); std::vector referenceData; referenceData.resize(m_bufferSize); for (deUint32 valueNdx = 0; valueNdx < m_bufferSize; ++valueNdx) { referenceData[valueNdx] = static_cast((valueNdx % bufferMemRequirement.alignment) + 1u); } deMemcpy(inputBufferAlloc->getHostPtr(), &referenceData[0], m_bufferSize); flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc); { const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier(VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, *inputBuffer, 0u, m_bufferSize); deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL); } { const VkBufferCopy bufferCopy = makeBufferCopy(0u, 0u, m_bufferSize); deviceInterface.cmdCopyBuffer(*commandBuffer, *inputBuffer, *sparseBuffer, 1u, &bufferCopy); } { const VkBufferMemoryBarrier sparseBufferBarrier = makeBufferMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, *sparseBuffer, 0u, m_bufferSize); deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &sparseBufferBarrier, 0u, DE_NULL); } const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(m_bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT); const Unique outputBuffer(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo)); const de::UniquePtr outputBufferAlloc(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible)); { const VkBufferCopy bufferCopy = makeBufferCopy(0u, 0u, m_bufferSize); deviceInterface.cmdCopyBuffer(*commandBuffer, *sparseBuffer, *outputBuffer, 1u, &bufferCopy); } { const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT, *outputBuffer, 0u, m_bufferSize); deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL); } // End recording transfer commands endCommandBuffer(deviceInterface, *commandBuffer); const VkPipelineStageFlags waitStageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT }; // Submit transfer commands for execution and wait for completion // In case of device groups, submit on the physical device with the resource submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &bufferMemoryBindSemaphore.get(), waitStageBits, 0, DE_NULL, m_useDeviceGroups, firstDeviceID); // Retrieve data from output buffer to host memory invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc); const deUint8* outputData = static_cast(outputBufferAlloc->getHostPtr()); // Wait for sparse queue to become idle deviceInterface.queueWaitIdle(sparseQueue.queueHandle); // Compare output data with reference data if (deMemCmp(&referenceData[0], outputData, m_bufferSize) != 0) return tcu::TestStatus::fail("Failed"); } return tcu::TestStatus::pass("Passed"); } TestInstance* BufferSparseBindingCase::createInstance (Context& context) const { return new BufferSparseBindingInstance(context, m_bufferSize, m_useDeviceGroups); } } // anonymous ns void addBufferSparseBindingTests (tcu::TestCaseGroup* group, const bool useDeviceGroups) { group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_10", "", 1 << 10, useDeviceGroups)); group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_12", "", 1 << 12, useDeviceGroups)); group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_16", "", 1 << 16, useDeviceGroups)); group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_17", "", 1 << 17, useDeviceGroups)); group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_20", "", 1 << 20, useDeviceGroups)); group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_24", "", 1 << 24, useDeviceGroups)); } } // sparse } // vkt