1 /*
2 * Copyright © 2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_fs.h"
25 #include "brw_cfg.h"
26 #include "brw_fs_builder.h"
27
28 using namespace brw;
29
30 namespace {
31 /* From the SKL PRM Vol 2a, "Move":
32 *
33 * "A mov with the same source and destination type, no source modifier,
34 * and no saturation is a raw move. A packed byte destination region (B
35 * or UB type with HorzStride == 1 and ExecSize > 1) can only be written
36 * using raw move."
37 */
38 bool
is_byte_raw_mov(const fs_inst * inst)39 is_byte_raw_mov(const fs_inst *inst)
40 {
41 return type_sz(inst->dst.type) == 1 &&
42 inst->opcode == BRW_OPCODE_MOV &&
43 inst->src[0].type == inst->dst.type &&
44 !inst->saturate &&
45 !inst->src[0].negate &&
46 !inst->src[0].abs;
47 }
48
49 /*
50 * Return an acceptable byte stride for the destination of an instruction
51 * that requires it to have some particular alignment.
52 */
53 unsigned
required_dst_byte_stride(const fs_inst * inst)54 required_dst_byte_stride(const fs_inst *inst)
55 {
56 if (inst->dst.is_accumulator()) {
57 /* If the destination is an accumulator, insist that we leave the
58 * stride alone. We cannot "fix" accumulator destinations by writing
59 * to a temporary and emitting a MOV into the original destination.
60 * For multiply instructions (our one use of the accumulator), the
61 * MUL writes the full 66 bits of the accumulator whereas the MOV we
62 * would emit only writes 33 bits and leaves the top 33 bits
63 * undefined.
64 *
65 * It's safe to just require the original stride here because the
66 * lowering pass will detect the mismatch in has_invalid_src_region
67 * and fix the sources of the multiply instead of the destination.
68 */
69 return inst->dst.stride * type_sz(inst->dst.type);
70 } else if (type_sz(inst->dst.type) < get_exec_type_size(inst) &&
71 !is_byte_raw_mov(inst)) {
72 return get_exec_type_size(inst);
73 } else {
74 /* Calculate the maximum byte stride and the minimum/maximum type
75 * size across all source and destination operands we are required to
76 * lower.
77 */
78 unsigned max_stride = inst->dst.stride * type_sz(inst->dst.type);
79 unsigned min_size = type_sz(inst->dst.type);
80 unsigned max_size = type_sz(inst->dst.type);
81
82 for (unsigned i = 0; i < inst->sources; i++) {
83 if (!is_uniform(inst->src[i]) && !inst->is_control_source(i)) {
84 const unsigned size = type_sz(inst->src[i].type);
85 max_stride = MAX2(max_stride, inst->src[i].stride * size);
86 min_size = MIN2(min_size, size);
87 max_size = MAX2(max_size, size);
88 }
89 }
90
91 /* All operands involved in lowering need to fit in the calculated
92 * stride.
93 */
94 assert(max_size <= 4 * min_size);
95
96 /* Attempt to use the largest byte stride among all present operands,
97 * but never exceed a stride of 4 since that would lead to illegal
98 * destination regions during lowering.
99 */
100 return MIN2(max_stride, 4 * min_size);
101 }
102 }
103
104 /*
105 * Return an acceptable byte sub-register offset for the destination of an
106 * instruction that requires it to be aligned to the sub-register offset of
107 * the sources.
108 */
109 unsigned
required_dst_byte_offset(const fs_inst * inst)110 required_dst_byte_offset(const fs_inst *inst)
111 {
112 for (unsigned i = 0; i < inst->sources; i++) {
113 if (!is_uniform(inst->src[i]) && !inst->is_control_source(i))
114 if (reg_offset(inst->src[i]) % REG_SIZE !=
115 reg_offset(inst->dst) % REG_SIZE)
116 return 0;
117 }
118
119 return reg_offset(inst->dst) % REG_SIZE;
120 }
121
122 /*
123 * Return whether the instruction has an unsupported channel bit layout
124 * specified for the i-th source region.
125 */
126 bool
has_invalid_src_region(const intel_device_info * devinfo,const fs_inst * inst,unsigned i)127 has_invalid_src_region(const intel_device_info *devinfo, const fs_inst *inst,
128 unsigned i)
129 {
130 if (is_unordered(inst) || inst->is_control_source(i))
131 return false;
132
133 /* Empirical testing shows that Broadwell has a bug affecting half-float
134 * MAD instructions when any of its sources has a non-zero offset, such
135 * as:
136 *
137 * mad(8) g18<1>HF -g17<4,4,1>HF g14.8<4,4,1>HF g11<4,4,1>HF { align16 1Q };
138 *
139 * We used to generate code like this for SIMD8 executions where we
140 * used to pack components Y and W of a vector at offset 16B of a SIMD
141 * register. The problem doesn't occur if the stride of the source is 0.
142 */
143 if (devinfo->ver == 8 &&
144 inst->opcode == BRW_OPCODE_MAD &&
145 inst->src[i].type == BRW_REGISTER_TYPE_HF &&
146 reg_offset(inst->src[i]) % REG_SIZE > 0 &&
147 inst->src[i].stride != 0) {
148 return true;
149 }
150
151 const unsigned dst_byte_stride = inst->dst.stride * type_sz(inst->dst.type);
152 const unsigned src_byte_stride = inst->src[i].stride *
153 type_sz(inst->src[i].type);
154 const unsigned dst_byte_offset = reg_offset(inst->dst) % REG_SIZE;
155 const unsigned src_byte_offset = reg_offset(inst->src[i]) % REG_SIZE;
156
157 return has_dst_aligned_region_restriction(devinfo, inst) &&
158 !is_uniform(inst->src[i]) &&
159 (src_byte_stride != dst_byte_stride ||
160 src_byte_offset != dst_byte_offset);
161 }
162
163 /*
164 * Return whether the instruction has an unsupported channel bit layout
165 * specified for the destination region.
166 */
167 bool
has_invalid_dst_region(const intel_device_info * devinfo,const fs_inst * inst)168 has_invalid_dst_region(const intel_device_info *devinfo,
169 const fs_inst *inst)
170 {
171 if (is_unordered(inst)) {
172 return false;
173 } else {
174 const brw_reg_type exec_type = get_exec_type(inst);
175 const unsigned dst_byte_offset = reg_offset(inst->dst) % REG_SIZE;
176 const unsigned dst_byte_stride = inst->dst.stride * type_sz(inst->dst.type);
177 const bool is_narrowing_conversion = !is_byte_raw_mov(inst) &&
178 type_sz(inst->dst.type) < type_sz(exec_type);
179
180 return (has_dst_aligned_region_restriction(devinfo, inst) &&
181 (required_dst_byte_stride(inst) != dst_byte_stride ||
182 required_dst_byte_offset(inst) != dst_byte_offset)) ||
183 (is_narrowing_conversion &&
184 required_dst_byte_stride(inst) != dst_byte_stride);
185 }
186 }
187
188 /**
189 * Return a non-zero value if the execution type of the instruction is
190 * unsupported. The destination and sources matching the returned mask
191 * will be bit-cast to an integer type of appropriate size, lowering any
192 * source or destination modifiers into separate MOV instructions.
193 */
194 unsigned
has_invalid_exec_type(const intel_device_info * devinfo,const fs_inst * inst)195 has_invalid_exec_type(const intel_device_info *devinfo, const fs_inst *inst)
196 {
197 switch (inst->opcode) {
198 case SHADER_OPCODE_SHUFFLE:
199 case SHADER_OPCODE_QUAD_SWIZZLE:
200 return has_dst_aligned_region_restriction(devinfo, inst) ?
201 0x1 : 0;
202
203 case SHADER_OPCODE_BROADCAST:
204 case SHADER_OPCODE_MOV_INDIRECT:
205 return (((devinfo->verx10 == 70) ||
206 devinfo->is_cherryview || intel_device_info_is_9lp(devinfo) ||
207 devinfo->verx10 >= 125) && type_sz(inst->src[0].type) > 4) ||
208 (devinfo->verx10 >= 125 &&
209 brw_reg_type_is_floating_point(inst->src[0].type)) ?
210 0x1 : 0;
211
212 default:
213 return 0;
214 }
215 }
216
217 /*
218 * Return whether the instruction has unsupported source modifiers
219 * specified for the i-th source region.
220 */
221 bool
has_invalid_src_modifiers(const intel_device_info * devinfo,const fs_inst * inst,unsigned i)222 has_invalid_src_modifiers(const intel_device_info *devinfo,
223 const fs_inst *inst, unsigned i)
224 {
225 return (!inst->can_do_source_mods(devinfo) &&
226 (inst->src[i].negate || inst->src[i].abs)) ||
227 ((has_invalid_exec_type(devinfo, inst) & (1u << i)) &&
228 (inst->src[i].negate || inst->src[i].abs ||
229 inst->src[i].type != get_exec_type(inst)));
230 }
231
232 /*
233 * Return whether the instruction has an unsupported type conversion
234 * specified for the destination.
235 */
236 bool
has_invalid_conversion(const intel_device_info * devinfo,const fs_inst * inst)237 has_invalid_conversion(const intel_device_info *devinfo, const fs_inst *inst)
238 {
239 switch (inst->opcode) {
240 case BRW_OPCODE_MOV:
241 return false;
242 case BRW_OPCODE_SEL:
243 return inst->dst.type != get_exec_type(inst);
244 default:
245 /* FIXME: We assume the opcodes not explicitly mentioned before just
246 * work fine with arbitrary conversions, unless they need to be
247 * bit-cast.
248 */
249 return has_invalid_exec_type(devinfo, inst) &&
250 inst->dst.type != get_exec_type(inst);
251 }
252 }
253
254 /**
255 * Return whether the instruction has unsupported destination modifiers.
256 */
257 bool
has_invalid_dst_modifiers(const intel_device_info * devinfo,const fs_inst * inst)258 has_invalid_dst_modifiers(const intel_device_info *devinfo, const fs_inst *inst)
259 {
260 return (has_invalid_exec_type(devinfo, inst) &&
261 (inst->saturate || inst->conditional_mod)) ||
262 has_invalid_conversion(devinfo, inst);
263 }
264
265 /**
266 * Return whether the instruction has non-standard semantics for the
267 * conditional mod which don't cause the flag register to be updated with
268 * the comparison result.
269 */
270 bool
has_inconsistent_cmod(const fs_inst * inst)271 has_inconsistent_cmod(const fs_inst *inst)
272 {
273 return inst->opcode == BRW_OPCODE_SEL ||
274 inst->opcode == BRW_OPCODE_CSEL ||
275 inst->opcode == BRW_OPCODE_IF ||
276 inst->opcode == BRW_OPCODE_WHILE;
277 }
278
279 bool
280 lower_instruction(fs_visitor *v, bblock_t *block, fs_inst *inst);
281 }
282
283 namespace brw {
284 /**
285 * Remove any modifiers from the \p i-th source region of the instruction,
286 * including negate, abs and any implicit type conversion to the execution
287 * type. Instead any source modifiers will be implemented as a separate
288 * MOV instruction prior to the original instruction.
289 */
290 bool
lower_src_modifiers(fs_visitor * v,bblock_t * block,fs_inst * inst,unsigned i)291 lower_src_modifiers(fs_visitor *v, bblock_t *block, fs_inst *inst, unsigned i)
292 {
293 assert(inst->components_read(i) == 1);
294 assert(v->devinfo->has_integer_dword_mul ||
295 inst->opcode != BRW_OPCODE_MUL ||
296 brw_reg_type_is_floating_point(get_exec_type(inst)) ||
297 MIN2(type_sz(inst->src[0].type), type_sz(inst->src[1].type)) >= 4 ||
298 type_sz(inst->src[i].type) == get_exec_type_size(inst));
299
300 const fs_builder ibld(v, block, inst);
301 const fs_reg tmp = ibld.vgrf(get_exec_type(inst));
302
303 lower_instruction(v, block, ibld.MOV(tmp, inst->src[i]));
304 inst->src[i] = tmp;
305
306 return true;
307 }
308 }
309
310 namespace {
311 /**
312 * Remove any modifiers from the destination region of the instruction,
313 * including saturate, conditional mod and any implicit type conversion
314 * from the execution type. Instead any destination modifiers will be
315 * implemented as a separate MOV instruction after the original
316 * instruction.
317 */
318 bool
lower_dst_modifiers(fs_visitor * v,bblock_t * block,fs_inst * inst)319 lower_dst_modifiers(fs_visitor *v, bblock_t *block, fs_inst *inst)
320 {
321 const fs_builder ibld(v, block, inst);
322 const brw_reg_type type = get_exec_type(inst);
323 /* Not strictly necessary, but if possible use a temporary with the same
324 * channel alignment as the current destination in order to avoid
325 * violating the restrictions enforced later on by lower_src_region()
326 * and lower_dst_region(), which would introduce additional copy
327 * instructions into the program unnecessarily.
328 */
329 const unsigned stride =
330 type_sz(inst->dst.type) * inst->dst.stride <= type_sz(type) ? 1 :
331 type_sz(inst->dst.type) * inst->dst.stride / type_sz(type);
332 fs_reg tmp = ibld.vgrf(type, stride);
333 ibld.UNDEF(tmp);
334 tmp = horiz_stride(tmp, stride);
335
336 /* Emit a MOV taking care of all the destination modifiers. */
337 fs_inst *mov = ibld.at(block, inst->next).MOV(inst->dst, tmp);
338 mov->saturate = inst->saturate;
339 if (!has_inconsistent_cmod(inst))
340 mov->conditional_mod = inst->conditional_mod;
341 if (inst->opcode != BRW_OPCODE_SEL) {
342 mov->predicate = inst->predicate;
343 mov->predicate_inverse = inst->predicate_inverse;
344 }
345 mov->flag_subreg = inst->flag_subreg;
346 lower_instruction(v, block, mov);
347
348 /* Point the original instruction at the temporary, and clean up any
349 * destination modifiers.
350 */
351 assert(inst->size_written == inst->dst.component_size(inst->exec_size));
352 inst->dst = tmp;
353 inst->size_written = inst->dst.component_size(inst->exec_size);
354 inst->saturate = false;
355 if (!has_inconsistent_cmod(inst))
356 inst->conditional_mod = BRW_CONDITIONAL_NONE;
357
358 assert(!inst->flags_written(v->devinfo) || !mov->predicate);
359 return true;
360 }
361
362 /**
363 * Remove any non-trivial shuffling of data from the \p i-th source region
364 * of the instruction. Instead implement the region as a series of integer
365 * copies into a temporary with the same channel layout as the destination.
366 */
367 bool
lower_src_region(fs_visitor * v,bblock_t * block,fs_inst * inst,unsigned i)368 lower_src_region(fs_visitor *v, bblock_t *block, fs_inst *inst, unsigned i)
369 {
370 assert(inst->components_read(i) == 1);
371 const fs_builder ibld(v, block, inst);
372 const unsigned stride = type_sz(inst->dst.type) * inst->dst.stride /
373 type_sz(inst->src[i].type);
374 assert(stride > 0);
375 fs_reg tmp = ibld.vgrf(inst->src[i].type, stride);
376 ibld.UNDEF(tmp);
377 tmp = horiz_stride(tmp, stride);
378
379 /* Emit a series of 32-bit integer copies with any source modifiers
380 * cleaned up (because their semantics are dependent on the type).
381 */
382 const brw_reg_type raw_type = brw_int_type(MIN2(type_sz(tmp.type), 4),
383 false);
384 const unsigned n = type_sz(tmp.type) / type_sz(raw_type);
385 fs_reg raw_src = inst->src[i];
386 raw_src.negate = false;
387 raw_src.abs = false;
388
389 for (unsigned j = 0; j < n; j++)
390 ibld.MOV(subscript(tmp, raw_type, j), subscript(raw_src, raw_type, j));
391
392 /* Point the original instruction at the temporary, making sure to keep
393 * any source modifiers in the instruction.
394 */
395 fs_reg lower_src = tmp;
396 lower_src.negate = inst->src[i].negate;
397 lower_src.abs = inst->src[i].abs;
398 inst->src[i] = lower_src;
399
400 return true;
401 }
402
403 /**
404 * Remove any non-trivial shuffling of data from the destination region of
405 * the instruction. Instead implement the region as a series of integer
406 * copies from a temporary with a channel layout compatible with the
407 * sources.
408 */
409 bool
lower_dst_region(fs_visitor * v,bblock_t * block,fs_inst * inst)410 lower_dst_region(fs_visitor *v, bblock_t *block, fs_inst *inst)
411 {
412 /* We cannot replace the result of an integer multiply which writes the
413 * accumulator because MUL+MACH pairs act on the accumulator as a 66-bit
414 * value whereas the MOV will act on only 32 or 33 bits of the
415 * accumulator.
416 */
417 assert(inst->opcode != BRW_OPCODE_MUL || !inst->dst.is_accumulator() ||
418 brw_reg_type_is_floating_point(inst->dst.type));
419
420 const fs_builder ibld(v, block, inst);
421 const unsigned stride = required_dst_byte_stride(inst) /
422 type_sz(inst->dst.type);
423 assert(stride > 0);
424 fs_reg tmp = ibld.vgrf(inst->dst.type, stride);
425 ibld.UNDEF(tmp);
426 tmp = horiz_stride(tmp, stride);
427
428 /* Emit a series of 32-bit integer copies from the temporary into the
429 * original destination.
430 */
431 const brw_reg_type raw_type = brw_int_type(MIN2(type_sz(tmp.type), 4),
432 false);
433 const unsigned n = type_sz(tmp.type) / type_sz(raw_type);
434
435 if (inst->predicate && inst->opcode != BRW_OPCODE_SEL) {
436 /* Note that in general we cannot simply predicate the copies on the
437 * same flag register as the original instruction, since it may have
438 * been overwritten by the instruction itself. Instead initialize
439 * the temporary with the previous contents of the destination
440 * register.
441 */
442 for (unsigned j = 0; j < n; j++)
443 ibld.MOV(subscript(tmp, raw_type, j),
444 subscript(inst->dst, raw_type, j));
445 }
446
447 for (unsigned j = 0; j < n; j++)
448 ibld.at(block, inst->next).MOV(subscript(inst->dst, raw_type, j),
449 subscript(tmp, raw_type, j));
450
451 /* Point the original instruction at the temporary, making sure to keep
452 * any destination modifiers in the instruction.
453 */
454 assert(inst->size_written == inst->dst.component_size(inst->exec_size));
455 inst->dst = tmp;
456 inst->size_written = inst->dst.component_size(inst->exec_size);
457
458 return true;
459 }
460
461 /**
462 * Bit-cast sources and destination of the instruction to an appropriate
463 * integer type, to be used in cases where the instruction doesn't support
464 * some other execution type.
465 */
466 bool
lower_exec_type(fs_visitor * v,bblock_t * block,fs_inst * inst)467 lower_exec_type(fs_visitor *v, bblock_t *block, fs_inst *inst)
468 {
469 assert(inst->dst.type == get_exec_type(inst));
470 const unsigned mask = has_invalid_exec_type(v->devinfo, inst);
471 const brw_reg_type raw_type = brw_int_type(type_sz(inst->dst.type), false);
472
473 for (unsigned i = 0; i < inst->sources; i++) {
474 if (mask & (1u << i)) {
475 assert(inst->src[i].type == inst->dst.type);
476 inst->src[i].type = raw_type;
477 }
478 }
479
480 inst->dst.type = raw_type;
481
482 return true;
483 }
484
485 /**
486 * Legalize the source and destination regioning controls of the specified
487 * instruction.
488 */
489 bool
lower_instruction(fs_visitor * v,bblock_t * block,fs_inst * inst)490 lower_instruction(fs_visitor *v, bblock_t *block, fs_inst *inst)
491 {
492 const intel_device_info *devinfo = v->devinfo;
493 bool progress = false;
494
495 if (has_invalid_dst_modifiers(devinfo, inst))
496 progress |= lower_dst_modifiers(v, block, inst);
497
498 if (has_invalid_dst_region(devinfo, inst))
499 progress |= lower_dst_region(v, block, inst);
500
501 for (unsigned i = 0; i < inst->sources; i++) {
502 if (has_invalid_src_modifiers(devinfo, inst, i))
503 progress |= lower_src_modifiers(v, block, inst, i);
504
505 if (has_invalid_src_region(devinfo, inst, i))
506 progress |= lower_src_region(v, block, inst, i);
507 }
508
509 if (has_invalid_exec_type(devinfo, inst))
510 progress |= lower_exec_type(v, block, inst);
511
512 return progress;
513 }
514 }
515
516 bool
lower_regioning()517 fs_visitor::lower_regioning()
518 {
519 bool progress = false;
520
521 foreach_block_and_inst_safe(block, fs_inst, inst, cfg)
522 progress |= lower_instruction(this, block, inst);
523
524 if (progress)
525 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
526
527 return progress;
528 }
529