1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <assert.h>
11 #include <limits.h>
12 #include "internal/cryptlib.h"
13 #include "bn_local.h"
14 #include <openssl/opensslconf.h>
15 #include "internal/constant_time.h"
16
17 /* This stuff appears to be completely unused, so is deprecated */
18 #if OPENSSL_API_COMPAT < 0x00908000L
19 /*-
20 * For a 32 bit machine
21 * 2 - 4 == 128
22 * 3 - 8 == 256
23 * 4 - 16 == 512
24 * 5 - 32 == 1024
25 * 6 - 64 == 2048
26 * 7 - 128 == 4096
27 * 8 - 256 == 8192
28 */
29 static int bn_limit_bits = 0;
30 static int bn_limit_num = 8; /* (1<<bn_limit_bits) */
31 static int bn_limit_bits_low = 0;
32 static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
33 static int bn_limit_bits_high = 0;
34 static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
35 static int bn_limit_bits_mont = 0;
36 static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
37
BN_set_params(int mult,int high,int low,int mont)38 void BN_set_params(int mult, int high, int low, int mont)
39 {
40 if (mult >= 0) {
41 if (mult > (int)(sizeof(int) * 8) - 1)
42 mult = sizeof(int) * 8 - 1;
43 bn_limit_bits = mult;
44 bn_limit_num = 1 << mult;
45 }
46 if (high >= 0) {
47 if (high > (int)(sizeof(int) * 8) - 1)
48 high = sizeof(int) * 8 - 1;
49 bn_limit_bits_high = high;
50 bn_limit_num_high = 1 << high;
51 }
52 if (low >= 0) {
53 if (low > (int)(sizeof(int) * 8) - 1)
54 low = sizeof(int) * 8 - 1;
55 bn_limit_bits_low = low;
56 bn_limit_num_low = 1 << low;
57 }
58 if (mont >= 0) {
59 if (mont > (int)(sizeof(int) * 8) - 1)
60 mont = sizeof(int) * 8 - 1;
61 bn_limit_bits_mont = mont;
62 bn_limit_num_mont = 1 << mont;
63 }
64 }
65
BN_get_params(int which)66 int BN_get_params(int which)
67 {
68 if (which == 0)
69 return bn_limit_bits;
70 else if (which == 1)
71 return bn_limit_bits_high;
72 else if (which == 2)
73 return bn_limit_bits_low;
74 else if (which == 3)
75 return bn_limit_bits_mont;
76 else
77 return 0;
78 }
79 #endif
80
BN_value_one(void)81 const BIGNUM *BN_value_one(void)
82 {
83 static const BN_ULONG data_one = 1L;
84 static const BIGNUM const_one =
85 { (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA };
86
87 return &const_one;
88 }
89
90 /*
91 * Old Visual Studio ARM compiler miscompiles BN_num_bits_word()
92 * https://mta.openssl.org/pipermail/openssl-users/2018-August/008465.html
93 */
94 #if defined(_MSC_VER) && defined(_ARM_) && defined(_WIN32_WCE) \
95 && _MSC_VER>=1400 && _MSC_VER<1501
96 # define MS_BROKEN_BN_num_bits_word
97 # pragma optimize("", off)
98 #endif
BN_num_bits_word(BN_ULONG l)99 int BN_num_bits_word(BN_ULONG l)
100 {
101 BN_ULONG x, mask;
102 int bits = (l != 0);
103
104 #if BN_BITS2 > 32
105 x = l >> 32;
106 mask = (0 - x) & BN_MASK2;
107 mask = (0 - (mask >> (BN_BITS2 - 1)));
108 bits += 32 & mask;
109 l ^= (x ^ l) & mask;
110 #endif
111
112 x = l >> 16;
113 mask = (0 - x) & BN_MASK2;
114 mask = (0 - (mask >> (BN_BITS2 - 1)));
115 bits += 16 & mask;
116 l ^= (x ^ l) & mask;
117
118 x = l >> 8;
119 mask = (0 - x) & BN_MASK2;
120 mask = (0 - (mask >> (BN_BITS2 - 1)));
121 bits += 8 & mask;
122 l ^= (x ^ l) & mask;
123
124 x = l >> 4;
125 mask = (0 - x) & BN_MASK2;
126 mask = (0 - (mask >> (BN_BITS2 - 1)));
127 bits += 4 & mask;
128 l ^= (x ^ l) & mask;
129
130 x = l >> 2;
131 mask = (0 - x) & BN_MASK2;
132 mask = (0 - (mask >> (BN_BITS2 - 1)));
133 bits += 2 & mask;
134 l ^= (x ^ l) & mask;
135
136 x = l >> 1;
137 mask = (0 - x) & BN_MASK2;
138 mask = (0 - (mask >> (BN_BITS2 - 1)));
139 bits += 1 & mask;
140
141 return bits;
142 }
143 #ifdef MS_BROKEN_BN_num_bits_word
144 # pragma optimize("", on)
145 #endif
146
147 /*
148 * This function still leaks `a->dmax`: it's caller's responsibility to
149 * expand the input `a` in advance to a public length.
150 */
151 static ossl_inline
bn_num_bits_consttime(const BIGNUM * a)152 int bn_num_bits_consttime(const BIGNUM *a)
153 {
154 int j, ret;
155 unsigned int mask, past_i;
156 int i = a->top - 1;
157 bn_check_top(a);
158
159 for (j = 0, past_i = 0, ret = 0; j < a->dmax; j++) {
160 mask = constant_time_eq_int(i, j); /* 0xff..ff if i==j, 0x0 otherwise */
161
162 ret += BN_BITS2 & (~mask & ~past_i);
163 ret += BN_num_bits_word(a->d[j]) & mask;
164
165 past_i |= mask; /* past_i will become 0xff..ff after i==j */
166 }
167
168 /*
169 * if BN_is_zero(a) => i is -1 and ret contains garbage, so we mask the
170 * final result.
171 */
172 mask = ~(constant_time_eq_int(i, ((int)-1)));
173
174 return ret & mask;
175 }
176
BN_num_bits(const BIGNUM * a)177 int BN_num_bits(const BIGNUM *a)
178 {
179 int i = a->top - 1;
180 bn_check_top(a);
181
182 if (a->flags & BN_FLG_CONSTTIME) {
183 /*
184 * We assume that BIGNUMs flagged as CONSTTIME have also been expanded
185 * so that a->dmax is not leaking secret information.
186 *
187 * In other words, it's the caller's responsibility to ensure `a` has
188 * been preallocated in advance to a public length if we hit this
189 * branch.
190 *
191 */
192 return bn_num_bits_consttime(a);
193 }
194
195 if (BN_is_zero(a))
196 return 0;
197
198 return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
199 }
200
bn_free_d(BIGNUM * a,int clear)201 static void bn_free_d(BIGNUM *a, int clear)
202 {
203 if (BN_get_flags(a, BN_FLG_SECURE))
204 OPENSSL_secure_clear_free(a->d, a->dmax * sizeof(a->d[0]));
205 else if (clear != 0)
206 OPENSSL_clear_free(a->d, a->dmax * sizeof(a->d[0]));
207 else
208 OPENSSL_free(a->d);
209 }
210
211
BN_clear_free(BIGNUM * a)212 void BN_clear_free(BIGNUM *a)
213 {
214 if (a == NULL)
215 return;
216 if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA))
217 bn_free_d(a, 1);
218 if (BN_get_flags(a, BN_FLG_MALLOCED)) {
219 OPENSSL_cleanse(a, sizeof(*a));
220 OPENSSL_free(a);
221 }
222 }
223
BN_free(BIGNUM * a)224 void BN_free(BIGNUM *a)
225 {
226 if (a == NULL)
227 return;
228 if (!BN_get_flags(a, BN_FLG_STATIC_DATA))
229 bn_free_d(a, 0);
230 if (a->flags & BN_FLG_MALLOCED)
231 OPENSSL_free(a);
232 }
233
bn_init(BIGNUM * a)234 void bn_init(BIGNUM *a)
235 {
236 static BIGNUM nilbn;
237
238 *a = nilbn;
239 bn_check_top(a);
240 }
241
BN_new(void)242 BIGNUM *BN_new(void)
243 {
244 BIGNUM *ret;
245
246 if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
247 BNerr(BN_F_BN_NEW, ERR_R_MALLOC_FAILURE);
248 return NULL;
249 }
250 ret->flags = BN_FLG_MALLOCED;
251 bn_check_top(ret);
252 return ret;
253 }
254
BN_secure_new(void)255 BIGNUM *BN_secure_new(void)
256 {
257 BIGNUM *ret = BN_new();
258 if (ret != NULL)
259 ret->flags |= BN_FLG_SECURE;
260 return ret;
261 }
262
263 /* This is used by bn_expand2() */
264 /* The caller MUST check that words > b->dmax before calling this */
bn_expand_internal(const BIGNUM * b,int words)265 static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
266 {
267 BN_ULONG *a = NULL;
268
269 if (words > (INT_MAX / (4 * BN_BITS2))) {
270 BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_BIGNUM_TOO_LONG);
271 return NULL;
272 }
273 if (BN_get_flags(b, BN_FLG_STATIC_DATA)) {
274 BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
275 return NULL;
276 }
277 if (BN_get_flags(b, BN_FLG_SECURE))
278 a = OPENSSL_secure_zalloc(words * sizeof(*a));
279 else
280 a = OPENSSL_zalloc(words * sizeof(*a));
281 if (a == NULL) {
282 BNerr(BN_F_BN_EXPAND_INTERNAL, ERR_R_MALLOC_FAILURE);
283 return NULL;
284 }
285
286 assert(b->top <= words);
287 if (b->top > 0)
288 memcpy(a, b->d, sizeof(*a) * b->top);
289
290 return a;
291 }
292
293 /*
294 * This is an internal function that should not be used in applications. It
295 * ensures that 'b' has enough room for a 'words' word number and initialises
296 * any unused part of b->d with leading zeros. It is mostly used by the
297 * various BIGNUM routines. If there is an error, NULL is returned. If not,
298 * 'b' is returned.
299 */
300
bn_expand2(BIGNUM * b,int words)301 BIGNUM *bn_expand2(BIGNUM *b, int words)
302 {
303 if (words > b->dmax) {
304 BN_ULONG *a = bn_expand_internal(b, words);
305 if (!a)
306 return NULL;
307 if (b->d != NULL)
308 bn_free_d(b, 1);
309 b->d = a;
310 b->dmax = words;
311 }
312
313 return b;
314 }
315
BN_dup(const BIGNUM * a)316 BIGNUM *BN_dup(const BIGNUM *a)
317 {
318 BIGNUM *t;
319
320 if (a == NULL)
321 return NULL;
322 bn_check_top(a);
323
324 t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new();
325 if (t == NULL)
326 return NULL;
327 if (!BN_copy(t, a)) {
328 BN_free(t);
329 return NULL;
330 }
331 bn_check_top(t);
332 return t;
333 }
334
BN_copy(BIGNUM * a,const BIGNUM * b)335 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
336 {
337 int bn_words;
338
339 bn_check_top(b);
340
341 bn_words = BN_get_flags(b, BN_FLG_CONSTTIME) ? b->dmax : b->top;
342
343 if (a == b)
344 return a;
345 if (bn_wexpand(a, bn_words) == NULL)
346 return NULL;
347
348 if (b->top > 0)
349 memcpy(a->d, b->d, sizeof(b->d[0]) * bn_words);
350
351 a->neg = b->neg;
352 a->top = b->top;
353 a->flags |= b->flags & BN_FLG_FIXED_TOP;
354 bn_check_top(a);
355 return a;
356 }
357
358 #define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \
359 | BN_FLG_CONSTTIME \
360 | BN_FLG_SECURE \
361 | BN_FLG_FIXED_TOP))
362 #define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED))
363
BN_swap(BIGNUM * a,BIGNUM * b)364 void BN_swap(BIGNUM *a, BIGNUM *b)
365 {
366 int flags_old_a, flags_old_b;
367 BN_ULONG *tmp_d;
368 int tmp_top, tmp_dmax, tmp_neg;
369
370 bn_check_top(a);
371 bn_check_top(b);
372
373 flags_old_a = a->flags;
374 flags_old_b = b->flags;
375
376 tmp_d = a->d;
377 tmp_top = a->top;
378 tmp_dmax = a->dmax;
379 tmp_neg = a->neg;
380
381 a->d = b->d;
382 a->top = b->top;
383 a->dmax = b->dmax;
384 a->neg = b->neg;
385
386 b->d = tmp_d;
387 b->top = tmp_top;
388 b->dmax = tmp_dmax;
389 b->neg = tmp_neg;
390
391 a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b);
392 b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a);
393 bn_check_top(a);
394 bn_check_top(b);
395 }
396
BN_clear(BIGNUM * a)397 void BN_clear(BIGNUM *a)
398 {
399 if (a == NULL)
400 return;
401 bn_check_top(a);
402 if (a->d != NULL)
403 OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax);
404 a->neg = 0;
405 a->top = 0;
406 a->flags &= ~BN_FLG_FIXED_TOP;
407 }
408
BN_get_word(const BIGNUM * a)409 BN_ULONG BN_get_word(const BIGNUM *a)
410 {
411 if (a->top > 1)
412 return BN_MASK2;
413 else if (a->top == 1)
414 return a->d[0];
415 /* a->top == 0 */
416 return 0;
417 }
418
BN_set_word(BIGNUM * a,BN_ULONG w)419 int BN_set_word(BIGNUM *a, BN_ULONG w)
420 {
421 bn_check_top(a);
422 if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
423 return 0;
424 a->neg = 0;
425 a->d[0] = w;
426 a->top = (w ? 1 : 0);
427 a->flags &= ~BN_FLG_FIXED_TOP;
428 bn_check_top(a);
429 return 1;
430 }
431
BN_bin2bn(const unsigned char * s,int len,BIGNUM * ret)432 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
433 {
434 unsigned int i, m;
435 unsigned int n;
436 BN_ULONG l;
437 BIGNUM *bn = NULL;
438
439 if (ret == NULL)
440 ret = bn = BN_new();
441 if (ret == NULL)
442 return NULL;
443 bn_check_top(ret);
444 /* Skip leading zero's. */
445 for ( ; len > 0 && *s == 0; s++, len--)
446 continue;
447 n = len;
448 if (n == 0) {
449 ret->top = 0;
450 return ret;
451 }
452 i = ((n - 1) / BN_BYTES) + 1;
453 m = ((n - 1) % (BN_BYTES));
454 if (bn_wexpand(ret, (int)i) == NULL) {
455 BN_free(bn);
456 return NULL;
457 }
458 ret->top = i;
459 ret->neg = 0;
460 l = 0;
461 while (n--) {
462 l = (l << 8L) | *(s++);
463 if (m-- == 0) {
464 ret->d[--i] = l;
465 l = 0;
466 m = BN_BYTES - 1;
467 }
468 }
469 /*
470 * need to call this due to clear byte at top if avoiding having the top
471 * bit set (-ve number)
472 */
473 bn_correct_top(ret);
474 return ret;
475 }
476
477 typedef enum {big, little} endianess_t;
478
479 /* ignore negative */
480 static
bn2binpad(const BIGNUM * a,unsigned char * to,int tolen,endianess_t endianess)481 int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen, endianess_t endianess)
482 {
483 int n;
484 size_t i, lasti, j, atop, mask;
485 BN_ULONG l;
486
487 /*
488 * In case |a| is fixed-top, BN_num_bytes can return bogus length,
489 * but it's assumed that fixed-top inputs ought to be "nominated"
490 * even for padded output, so it works out...
491 */
492 n = BN_num_bytes(a);
493 if (tolen == -1) {
494 tolen = n;
495 } else if (tolen < n) { /* uncommon/unlike case */
496 BIGNUM temp = *a;
497
498 bn_correct_top(&temp);
499 n = BN_num_bytes(&temp);
500 if (tolen < n)
501 return -1;
502 }
503
504 /* Swipe through whole available data and don't give away padded zero. */
505 atop = a->dmax * BN_BYTES;
506 if (atop == 0) {
507 OPENSSL_cleanse(to, tolen);
508 return tolen;
509 }
510
511 lasti = atop - 1;
512 atop = a->top * BN_BYTES;
513 if (endianess == big)
514 to += tolen; /* start from the end of the buffer */
515 for (i = 0, j = 0; j < (size_t)tolen; j++) {
516 unsigned char val;
517 l = a->d[i / BN_BYTES];
518 mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1));
519 val = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask);
520 if (endianess == big)
521 *--to = val;
522 else
523 *to++ = val;
524 i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */
525 }
526
527 return tolen;
528 }
529
BN_bn2binpad(const BIGNUM * a,unsigned char * to,int tolen)530 int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
531 {
532 if (tolen < 0)
533 return -1;
534 return bn2binpad(a, to, tolen, big);
535 }
536
BN_bn2bin(const BIGNUM * a,unsigned char * to)537 int BN_bn2bin(const BIGNUM *a, unsigned char *to)
538 {
539 return bn2binpad(a, to, -1, big);
540 }
541
BN_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)542 BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
543 {
544 unsigned int i, m;
545 unsigned int n;
546 BN_ULONG l;
547 BIGNUM *bn = NULL;
548
549 if (ret == NULL)
550 ret = bn = BN_new();
551 if (ret == NULL)
552 return NULL;
553 bn_check_top(ret);
554 s += len;
555 /* Skip trailing zeroes. */
556 for ( ; len > 0 && s[-1] == 0; s--, len--)
557 continue;
558 n = len;
559 if (n == 0) {
560 ret->top = 0;
561 return ret;
562 }
563 i = ((n - 1) / BN_BYTES) + 1;
564 m = ((n - 1) % (BN_BYTES));
565 if (bn_wexpand(ret, (int)i) == NULL) {
566 BN_free(bn);
567 return NULL;
568 }
569 ret->top = i;
570 ret->neg = 0;
571 l = 0;
572 while (n--) {
573 s--;
574 l = (l << 8L) | *s;
575 if (m-- == 0) {
576 ret->d[--i] = l;
577 l = 0;
578 m = BN_BYTES - 1;
579 }
580 }
581 /*
582 * need to call this due to clear byte at top if avoiding having the top
583 * bit set (-ve number)
584 */
585 bn_correct_top(ret);
586 return ret;
587 }
588
BN_bn2lebinpad(const BIGNUM * a,unsigned char * to,int tolen)589 int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen)
590 {
591 if (tolen < 0)
592 return -1;
593 return bn2binpad(a, to, tolen, little);
594 }
595
BN_ucmp(const BIGNUM * a,const BIGNUM * b)596 int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
597 {
598 int i;
599 BN_ULONG t1, t2, *ap, *bp;
600
601 bn_check_top(a);
602 bn_check_top(b);
603
604 i = a->top - b->top;
605 if (i != 0)
606 return i;
607 ap = a->d;
608 bp = b->d;
609 for (i = a->top - 1; i >= 0; i--) {
610 t1 = ap[i];
611 t2 = bp[i];
612 if (t1 != t2)
613 return ((t1 > t2) ? 1 : -1);
614 }
615 return 0;
616 }
617
BN_cmp(const BIGNUM * a,const BIGNUM * b)618 int BN_cmp(const BIGNUM *a, const BIGNUM *b)
619 {
620 int i;
621 int gt, lt;
622 BN_ULONG t1, t2;
623
624 if ((a == NULL) || (b == NULL)) {
625 if (a != NULL)
626 return -1;
627 else if (b != NULL)
628 return 1;
629 else
630 return 0;
631 }
632
633 bn_check_top(a);
634 bn_check_top(b);
635
636 if (a->neg != b->neg) {
637 if (a->neg)
638 return -1;
639 else
640 return 1;
641 }
642 if (a->neg == 0) {
643 gt = 1;
644 lt = -1;
645 } else {
646 gt = -1;
647 lt = 1;
648 }
649
650 if (a->top > b->top)
651 return gt;
652 if (a->top < b->top)
653 return lt;
654 for (i = a->top - 1; i >= 0; i--) {
655 t1 = a->d[i];
656 t2 = b->d[i];
657 if (t1 > t2)
658 return gt;
659 if (t1 < t2)
660 return lt;
661 }
662 return 0;
663 }
664
BN_set_bit(BIGNUM * a,int n)665 int BN_set_bit(BIGNUM *a, int n)
666 {
667 int i, j, k;
668
669 if (n < 0)
670 return 0;
671
672 i = n / BN_BITS2;
673 j = n % BN_BITS2;
674 if (a->top <= i) {
675 if (bn_wexpand(a, i + 1) == NULL)
676 return 0;
677 for (k = a->top; k < i + 1; k++)
678 a->d[k] = 0;
679 a->top = i + 1;
680 a->flags &= ~BN_FLG_FIXED_TOP;
681 }
682
683 a->d[i] |= (((BN_ULONG)1) << j);
684 bn_check_top(a);
685 return 1;
686 }
687
BN_clear_bit(BIGNUM * a,int n)688 int BN_clear_bit(BIGNUM *a, int n)
689 {
690 int i, j;
691
692 bn_check_top(a);
693 if (n < 0)
694 return 0;
695
696 i = n / BN_BITS2;
697 j = n % BN_BITS2;
698 if (a->top <= i)
699 return 0;
700
701 a->d[i] &= (~(((BN_ULONG)1) << j));
702 bn_correct_top(a);
703 return 1;
704 }
705
BN_is_bit_set(const BIGNUM * a,int n)706 int BN_is_bit_set(const BIGNUM *a, int n)
707 {
708 int i, j;
709
710 bn_check_top(a);
711 if (n < 0)
712 return 0;
713 i = n / BN_BITS2;
714 j = n % BN_BITS2;
715 if (a->top <= i)
716 return 0;
717 return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
718 }
719
BN_mask_bits(BIGNUM * a,int n)720 int BN_mask_bits(BIGNUM *a, int n)
721 {
722 int b, w;
723
724 bn_check_top(a);
725 if (n < 0)
726 return 0;
727
728 w = n / BN_BITS2;
729 b = n % BN_BITS2;
730 if (w >= a->top)
731 return 0;
732 if (b == 0)
733 a->top = w;
734 else {
735 a->top = w + 1;
736 a->d[w] &= ~(BN_MASK2 << b);
737 }
738 bn_correct_top(a);
739 return 1;
740 }
741
BN_set_negative(BIGNUM * a,int b)742 void BN_set_negative(BIGNUM *a, int b)
743 {
744 if (b && !BN_is_zero(a))
745 a->neg = 1;
746 else
747 a->neg = 0;
748 }
749
bn_cmp_words(const BN_ULONG * a,const BN_ULONG * b,int n)750 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
751 {
752 int i;
753 BN_ULONG aa, bb;
754
755 if (n == 0)
756 return 0;
757
758 aa = a[n - 1];
759 bb = b[n - 1];
760 if (aa != bb)
761 return ((aa > bb) ? 1 : -1);
762 for (i = n - 2; i >= 0; i--) {
763 aa = a[i];
764 bb = b[i];
765 if (aa != bb)
766 return ((aa > bb) ? 1 : -1);
767 }
768 return 0;
769 }
770
771 /*
772 * Here follows a specialised variants of bn_cmp_words(). It has the
773 * capability of performing the operation on arrays of different sizes. The
774 * sizes of those arrays is expressed through cl, which is the common length
775 * ( basically, min(len(a),len(b)) ), and dl, which is the delta between the
776 * two lengths, calculated as len(a)-len(b). All lengths are the number of
777 * BN_ULONGs...
778 */
779
bn_cmp_part_words(const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)780 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
781 {
782 int n, i;
783 n = cl - 1;
784
785 if (dl < 0) {
786 for (i = dl; i < 0; i++) {
787 if (b[n - i] != 0)
788 return -1; /* a < b */
789 }
790 }
791 if (dl > 0) {
792 for (i = dl; i > 0; i--) {
793 if (a[n + i] != 0)
794 return 1; /* a > b */
795 }
796 }
797 return bn_cmp_words(a, b, cl);
798 }
799
800 /*-
801 * Constant-time conditional swap of a and b.
802 * a and b are swapped if condition is not 0.
803 * nwords is the number of words to swap.
804 * Assumes that at least nwords are allocated in both a and b.
805 * Assumes that no more than nwords are used by either a or b.
806 */
BN_consttime_swap(BN_ULONG condition,BIGNUM * a,BIGNUM * b,int nwords)807 void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
808 {
809 BN_ULONG t;
810 int i;
811
812 if (a == b)
813 return;
814
815 bn_wcheck_size(a, nwords);
816 bn_wcheck_size(b, nwords);
817
818 condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1;
819
820 t = (a->top ^ b->top) & condition;
821 a->top ^= t;
822 b->top ^= t;
823
824 t = (a->neg ^ b->neg) & condition;
825 a->neg ^= t;
826 b->neg ^= t;
827
828 /*-
829 * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention
830 * is actually to treat it as it's read-only data, and some (if not most)
831 * of it does reside in read-only segment. In other words observation of
832 * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal
833 * condition. It would either cause SEGV or effectively cause data
834 * corruption.
835 *
836 * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be
837 * preserved.
838 *
839 * BN_FLG_SECURE: must be preserved, because it determines how x->d was
840 * allocated and hence how to free it.
841 *
842 * BN_FLG_CONSTTIME: sufficient to mask and swap
843 *
844 * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on
845 * the data, so the d array may be padded with additional 0 values (i.e.
846 * top could be greater than the minimal value that it could be). We should
847 * be swapping it
848 */
849
850 #define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP)
851
852 t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition;
853 a->flags ^= t;
854 b->flags ^= t;
855
856 /* conditionally swap the data */
857 for (i = 0; i < nwords; i++) {
858 t = (a->d[i] ^ b->d[i]) & condition;
859 a->d[i] ^= t;
860 b->d[i] ^= t;
861 }
862 }
863
864 #undef BN_CONSTTIME_SWAP_FLAGS
865
866 /* Bits of security, see SP800-57 */
867
BN_security_bits(int L,int N)868 int BN_security_bits(int L, int N)
869 {
870 int secbits, bits;
871 if (L >= 15360)
872 secbits = 256;
873 else if (L >= 7680)
874 secbits = 192;
875 else if (L >= 3072)
876 secbits = 128;
877 else if (L >= 2048)
878 secbits = 112;
879 else if (L >= 1024)
880 secbits = 80;
881 else
882 return 0;
883 if (N == -1)
884 return secbits;
885 bits = N / 2;
886 if (bits < 80)
887 return 0;
888 return bits >= secbits ? secbits : bits;
889 }
890
BN_zero_ex(BIGNUM * a)891 void BN_zero_ex(BIGNUM *a)
892 {
893 a->neg = 0;
894 a->top = 0;
895 a->flags &= ~BN_FLG_FIXED_TOP;
896 }
897
BN_abs_is_word(const BIGNUM * a,const BN_ULONG w)898 int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w)
899 {
900 return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0));
901 }
902
BN_is_zero(const BIGNUM * a)903 int BN_is_zero(const BIGNUM *a)
904 {
905 return a->top == 0;
906 }
907
BN_is_one(const BIGNUM * a)908 int BN_is_one(const BIGNUM *a)
909 {
910 return BN_abs_is_word(a, 1) && !a->neg;
911 }
912
BN_is_word(const BIGNUM * a,const BN_ULONG w)913 int BN_is_word(const BIGNUM *a, const BN_ULONG w)
914 {
915 return BN_abs_is_word(a, w) && (!w || !a->neg);
916 }
917
BN_is_odd(const BIGNUM * a)918 int BN_is_odd(const BIGNUM *a)
919 {
920 return (a->top > 0) && (a->d[0] & 1);
921 }
922
BN_is_negative(const BIGNUM * a)923 int BN_is_negative(const BIGNUM *a)
924 {
925 return (a->neg != 0);
926 }
927
BN_to_montgomery(BIGNUM * r,const BIGNUM * a,BN_MONT_CTX * mont,BN_CTX * ctx)928 int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
929 BN_CTX *ctx)
930 {
931 return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx);
932 }
933
BN_with_flags(BIGNUM * dest,const BIGNUM * b,int flags)934 void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags)
935 {
936 dest->d = b->d;
937 dest->top = b->top;
938 dest->dmax = b->dmax;
939 dest->neg = b->neg;
940 dest->flags = ((dest->flags & BN_FLG_MALLOCED)
941 | (b->flags & ~BN_FLG_MALLOCED)
942 | BN_FLG_STATIC_DATA | flags);
943 }
944
BN_GENCB_new(void)945 BN_GENCB *BN_GENCB_new(void)
946 {
947 BN_GENCB *ret;
948
949 if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
950 BNerr(BN_F_BN_GENCB_NEW, ERR_R_MALLOC_FAILURE);
951 return NULL;
952 }
953
954 return ret;
955 }
956
BN_GENCB_free(BN_GENCB * cb)957 void BN_GENCB_free(BN_GENCB *cb)
958 {
959 if (cb == NULL)
960 return;
961 OPENSSL_free(cb);
962 }
963
BN_set_flags(BIGNUM * b,int n)964 void BN_set_flags(BIGNUM *b, int n)
965 {
966 b->flags |= n;
967 }
968
BN_get_flags(const BIGNUM * b,int n)969 int BN_get_flags(const BIGNUM *b, int n)
970 {
971 return b->flags & n;
972 }
973
974 /* Populate a BN_GENCB structure with an "old"-style callback */
BN_GENCB_set_old(BN_GENCB * gencb,void (* callback)(int,int,void *),void * cb_arg)975 void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
976 void *cb_arg)
977 {
978 BN_GENCB *tmp_gencb = gencb;
979 tmp_gencb->ver = 1;
980 tmp_gencb->arg = cb_arg;
981 tmp_gencb->cb.cb_1 = callback;
982 }
983
984 /* Populate a BN_GENCB structure with a "new"-style callback */
BN_GENCB_set(BN_GENCB * gencb,int (* callback)(int,int,BN_GENCB *),void * cb_arg)985 void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
986 void *cb_arg)
987 {
988 BN_GENCB *tmp_gencb = gencb;
989 tmp_gencb->ver = 2;
990 tmp_gencb->arg = cb_arg;
991 tmp_gencb->cb.cb_2 = callback;
992 }
993
BN_GENCB_get_arg(BN_GENCB * cb)994 void *BN_GENCB_get_arg(BN_GENCB *cb)
995 {
996 return cb->arg;
997 }
998
bn_wexpand(BIGNUM * a,int words)999 BIGNUM *bn_wexpand(BIGNUM *a, int words)
1000 {
1001 return (words <= a->dmax) ? a : bn_expand2(a, words);
1002 }
1003
bn_correct_top(BIGNUM * a)1004 void bn_correct_top(BIGNUM *a)
1005 {
1006 BN_ULONG *ftl;
1007 int tmp_top = a->top;
1008
1009 if (tmp_top > 0) {
1010 for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) {
1011 ftl--;
1012 if (*ftl != 0)
1013 break;
1014 }
1015 a->top = tmp_top;
1016 }
1017 if (a->top == 0)
1018 a->neg = 0;
1019 a->flags &= ~BN_FLG_FIXED_TOP;
1020 bn_pollute(a);
1021 }
1022