• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2008 The RE2 Authors.  All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 // A DFA (deterministic finite automaton)-based regular expression search.
6 //
7 // The DFA search has two main parts: the construction of the automaton,
8 // which is represented by a graph of State structures, and the execution
9 // of the automaton over a given input string.
10 //
11 // The basic idea is that the State graph is constructed so that the
12 // execution can simply start with a state s, and then for each byte c in
13 // the input string, execute "s = s->next[c]", checking at each point whether
14 // the current s represents a matching state.
15 //
16 // The simple explanation just given does convey the essence of this code,
17 // but it omits the details of how the State graph gets constructed as well
18 // as some performance-driven optimizations to the execution of the automaton.
19 // All these details are explained in the comments for the code following
20 // the definition of class DFA.
21 //
22 // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
23 
24 #include <stddef.h>
25 #include <stdint.h>
26 #include <stdio.h>
27 #include <string.h>
28 #include <algorithm>
29 #include <atomic>
30 #include <deque>
31 #include <mutex>
32 #include <new>
33 #include <string>
34 #include <unordered_map>
35 #include <unordered_set>
36 #include <utility>
37 #include <vector>
38 
39 #include "util/logging.h"
40 #include "util/mix.h"
41 #include "util/mutex.h"
42 #include "util/strutil.h"
43 #include "re2/pod_array.h"
44 #include "re2/prog.h"
45 #include "re2/sparse_set.h"
46 #include "re2/stringpiece.h"
47 
48 // Silence "zero-sized array in struct/union" warning for DFA::State::next_.
49 #ifdef _MSC_VER
50 #pragma warning(disable: 4200)
51 #endif
52 
53 namespace re2 {
54 
55 #if !defined(__linux__)  /* only Linux seems to have memrchr */
memrchr(const void * s,int c,size_t n)56 static void* memrchr(const void* s, int c, size_t n) {
57   const unsigned char* p = (const unsigned char*)s;
58   for (p += n; n > 0; n--)
59     if (*--p == c)
60       return (void*)p;
61 
62   return NULL;
63 }
64 #endif
65 
66 // Controls whether the DFA should bail out early if the NFA would be faster.
67 static bool dfa_should_bail_when_slow = true;
68 
69 // Changing this to true compiles in prints that trace execution of the DFA.
70 // Generates a lot of output -- only useful for debugging.
71 static const bool ExtraDebug = false;
72 
73 // A DFA implementation of a regular expression program.
74 // Since this is entirely a forward declaration mandated by C++,
75 // some of the comments here are better understood after reading
76 // the comments in the sections that follow the DFA definition.
77 class DFA {
78  public:
79   DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem);
80   ~DFA();
ok() const81   bool ok() const { return !init_failed_; }
kind()82   Prog::MatchKind kind() { return kind_; }
83 
84   // Searches for the regular expression in text, which is considered
85   // as a subsection of context for the purposes of interpreting flags
86   // like ^ and $ and \A and \z.
87   // Returns whether a match was found.
88   // If a match is found, sets *ep to the end point of the best match in text.
89   // If "anchored", the match must begin at the start of text.
90   // If "want_earliest_match", the match that ends first is used, not
91   //   necessarily the best one.
92   // If "run_forward" is true, the DFA runs from text.begin() to text.end().
93   //   If it is false, the DFA runs from text.end() to text.begin(),
94   //   returning the leftmost end of the match instead of the rightmost one.
95   // If the DFA cannot complete the search (for example, if it is out of
96   //   memory), it sets *failed and returns false.
97   bool Search(const StringPiece& text, const StringPiece& context,
98               bool anchored, bool want_earliest_match, bool run_forward,
99               bool* failed, const char** ep, SparseSet* matches);
100 
101   // Builds out all states for the entire DFA.
102   // If cb is not empty, it receives one callback per state built.
103   // Returns the number of states built.
104   // FOR TESTING OR EXPERIMENTAL PURPOSES ONLY.
105   int BuildAllStates(const Prog::DFAStateCallback& cb);
106 
107   // Computes min and max for matching strings.  Won't return strings
108   // bigger than maxlen.
109   bool PossibleMatchRange(std::string* min, std::string* max, int maxlen);
110 
111   // These data structures are logically private, but C++ makes it too
112   // difficult to mark them as such.
113   class RWLocker;
114   class StateSaver;
115   class Workq;
116 
117   // A single DFA state.  The DFA is represented as a graph of these
118   // States, linked by the next_ pointers.  If in state s and reading
119   // byte c, the next state should be s->next_[c].
120   struct State {
IsMatchre2::DFA::State121     inline bool IsMatch() const { return (flag_ & kFlagMatch) != 0; }
122 
123     int* inst_;         // Instruction pointers in the state.
124     int ninst_;         // # of inst_ pointers.
125     uint32_t flag_;     // Empty string bitfield flags in effect on the way
126                         // into this state, along with kFlagMatch if this
127                         // is a matching state.
128 
129 // Work around the bug affecting flexible array members in GCC 6.x (for x >= 1).
130 // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70932)
131 #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && __GNUC_MINOR__ >= 1
132     std::atomic<State*> next_[0];   // Outgoing arrows from State,
133 #else
134     std::atomic<State*> next_[];    // Outgoing arrows from State,
135 #endif
136 
137                         // one per input byte class
138   };
139 
140   enum {
141     kByteEndText = 256,         // imaginary byte at end of text
142 
143     kFlagEmptyMask = 0xFF,      // State.flag_: bits holding kEmptyXXX flags
144     kFlagMatch = 0x0100,        // State.flag_: this is a matching state
145     kFlagLastWord = 0x0200,     // State.flag_: last byte was a word char
146     kFlagNeedShift = 16,        // needed kEmpty bits are or'ed in shifted left
147   };
148 
149   struct StateHash {
operator ()re2::DFA::StateHash150     size_t operator()(const State* a) const {
151       DCHECK(a != NULL);
152       HashMix mix(a->flag_);
153       for (int i = 0; i < a->ninst_; i++)
154         mix.Mix(a->inst_[i]);
155       mix.Mix(0);
156       return mix.get();
157     }
158   };
159 
160   struct StateEqual {
operator ()re2::DFA::StateEqual161     bool operator()(const State* a, const State* b) const {
162       DCHECK(a != NULL);
163       DCHECK(b != NULL);
164       if (a == b)
165         return true;
166       if (a->flag_ != b->flag_)
167         return false;
168       if (a->ninst_ != b->ninst_)
169         return false;
170       for (int i = 0; i < a->ninst_; i++)
171         if (a->inst_[i] != b->inst_[i])
172           return false;
173       return true;
174     }
175   };
176 
177   typedef std::unordered_set<State*, StateHash, StateEqual> StateSet;
178 
179  private:
180   // Special "first_byte" values for a state.  (Values >= 0 denote actual bytes.)
181   enum {
182     kFbUnknown = -1,   // No analysis has been performed.
183     kFbNone = -2,      // The first-byte trick cannot be used.
184   };
185 
186   enum {
187     // Indices into start_ for unanchored searches.
188     // Add kStartAnchored for anchored searches.
189     kStartBeginText = 0,          // text at beginning of context
190     kStartBeginLine = 2,          // text at beginning of line
191     kStartAfterWordChar = 4,      // text follows a word character
192     kStartAfterNonWordChar = 6,   // text follows non-word character
193     kMaxStart = 8,
194 
195     kStartAnchored = 1,
196   };
197 
198   // Resets the DFA State cache, flushing all saved State* information.
199   // Releases and reacquires cache_mutex_ via cache_lock, so any
200   // State* existing before the call are not valid after the call.
201   // Use a StateSaver to preserve important states across the call.
202   // cache_mutex_.r <= L < mutex_
203   // After: cache_mutex_.w <= L < mutex_
204   void ResetCache(RWLocker* cache_lock);
205 
206   // Looks up and returns the State corresponding to a Workq.
207   // L >= mutex_
208   State* WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag);
209 
210   // Looks up and returns a State matching the inst, ninst, and flag.
211   // L >= mutex_
212   State* CachedState(int* inst, int ninst, uint32_t flag);
213 
214   // Clear the cache entirely.
215   // Must hold cache_mutex_.w or be in destructor.
216   void ClearCache();
217 
218   // Converts a State into a Workq: the opposite of WorkqToCachedState.
219   // L >= mutex_
220   void StateToWorkq(State* s, Workq* q);
221 
222   // Runs a State on a given byte, returning the next state.
223   State* RunStateOnByteUnlocked(State*, int);  // cache_mutex_.r <= L < mutex_
224   State* RunStateOnByte(State*, int);          // L >= mutex_
225 
226   // Runs a Workq on a given byte followed by a set of empty-string flags,
227   // producing a new Workq in nq.  If a match instruction is encountered,
228   // sets *ismatch to true.
229   // L >= mutex_
230   void RunWorkqOnByte(Workq* q, Workq* nq,
231                       int c, uint32_t flag, bool* ismatch);
232 
233   // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
234   // L >= mutex_
235   void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint32_t flag);
236 
237   // Adds the instruction id to the Workq, following empty arrows
238   // according to flag.
239   // L >= mutex_
240   void AddToQueue(Workq* q, int id, uint32_t flag);
241 
242   // For debugging, returns a text representation of State.
243   static std::string DumpState(State* state);
244 
245   // For debugging, returns a text representation of a Workq.
246   static std::string DumpWorkq(Workq* q);
247 
248   // Search parameters
249   struct SearchParams {
SearchParamsre2::DFA::SearchParams250     SearchParams(const StringPiece& text, const StringPiece& context,
251                  RWLocker* cache_lock)
252       : text(text), context(context),
253         anchored(false),
254         want_earliest_match(false),
255         run_forward(false),
256         start(NULL),
257         first_byte(kFbUnknown),
258         cache_lock(cache_lock),
259         failed(false),
260         ep(NULL),
261         matches(NULL) { }
262 
263     StringPiece text;
264     StringPiece context;
265     bool anchored;
266     bool want_earliest_match;
267     bool run_forward;
268     State* start;
269     int first_byte;
270     RWLocker *cache_lock;
271     bool failed;     // "out" parameter: whether search gave up
272     const char* ep;  // "out" parameter: end pointer for match
273     SparseSet* matches;
274 
275    private:
276     SearchParams(const SearchParams&) = delete;
277     SearchParams& operator=(const SearchParams&) = delete;
278   };
279 
280   // Before each search, the parameters to Search are analyzed by
281   // AnalyzeSearch to determine the state in which to start and the
282   // "first_byte" for that state, if any.
283   struct StartInfo {
StartInfore2::DFA::StartInfo284     StartInfo() : start(NULL), first_byte(kFbUnknown) {}
285     State* start;
286     std::atomic<int> first_byte;
287   };
288 
289   // Fills in params->start and params->first_byte using
290   // the other search parameters.  Returns true on success,
291   // false on failure.
292   // cache_mutex_.r <= L < mutex_
293   bool AnalyzeSearch(SearchParams* params);
294   bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
295                            uint32_t flags);
296 
297   // The generic search loop, inlined to create specialized versions.
298   // cache_mutex_.r <= L < mutex_
299   // Might unlock and relock cache_mutex_ via params->cache_lock.
300   inline bool InlinedSearchLoop(SearchParams* params,
301                                 bool have_first_byte,
302                                 bool want_earliest_match,
303                                 bool run_forward);
304 
305   // The specialized versions of InlinedSearchLoop.  The three letters
306   // at the ends of the name denote the true/false values used as the
307   // last three parameters of InlinedSearchLoop.
308   // cache_mutex_.r <= L < mutex_
309   // Might unlock and relock cache_mutex_ via params->cache_lock.
310   bool SearchFFF(SearchParams* params);
311   bool SearchFFT(SearchParams* params);
312   bool SearchFTF(SearchParams* params);
313   bool SearchFTT(SearchParams* params);
314   bool SearchTFF(SearchParams* params);
315   bool SearchTFT(SearchParams* params);
316   bool SearchTTF(SearchParams* params);
317   bool SearchTTT(SearchParams* params);
318 
319   // The main search loop: calls an appropriate specialized version of
320   // InlinedSearchLoop.
321   // cache_mutex_.r <= L < mutex_
322   // Might unlock and relock cache_mutex_ via params->cache_lock.
323   bool FastSearchLoop(SearchParams* params);
324 
325   // For debugging, a slow search loop that calls InlinedSearchLoop
326   // directly -- because the booleans passed are not constants, the
327   // loop is not specialized like the SearchFFF etc. versions, so it
328   // runs much more slowly.  Useful only for debugging.
329   // cache_mutex_.r <= L < mutex_
330   // Might unlock and relock cache_mutex_ via params->cache_lock.
331   bool SlowSearchLoop(SearchParams* params);
332 
333   // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
ByteMap(int c)334   int ByteMap(int c) {
335     if (c == kByteEndText)
336       return prog_->bytemap_range();
337     return prog_->bytemap()[c];
338   }
339 
340   // Constant after initialization.
341   Prog* prog_;              // The regular expression program to run.
342   Prog::MatchKind kind_;    // The kind of DFA.
343   bool init_failed_;        // initialization failed (out of memory)
344 
345   Mutex mutex_;  // mutex_ >= cache_mutex_.r
346 
347   // Scratch areas, protected by mutex_.
348   Workq* q0_;             // Two pre-allocated work queues.
349   Workq* q1_;
350   PODArray<int> stack_;   // Pre-allocated stack for AddToQueue
351 
352   // State* cache.  Many threads use and add to the cache simultaneously,
353   // holding cache_mutex_ for reading and mutex_ (above) when adding.
354   // If the cache fills and needs to be discarded, the discarding is done
355   // while holding cache_mutex_ for writing, to avoid interrupting other
356   // readers.  Any State* pointers are only valid while cache_mutex_
357   // is held.
358   Mutex cache_mutex_;
359   int64_t mem_budget_;     // Total memory budget for all States.
360   int64_t state_budget_;   // Amount of memory remaining for new States.
361   StateSet state_cache_;   // All States computed so far.
362   StartInfo start_[kMaxStart];
363 };
364 
365 // Shorthand for casting to uint8_t*.
BytePtr(const void * v)366 static inline const uint8_t* BytePtr(const void* v) {
367   return reinterpret_cast<const uint8_t*>(v);
368 }
369 
370 // Work queues
371 
372 // Marks separate thread groups of different priority
373 // in the work queue when in leftmost-longest matching mode.
374 #define Mark (-1)
375 
376 // Separates the match IDs from the instructions in inst_.
377 // Used only for "many match" DFA states.
378 #define MatchSep (-2)
379 
380 // Internally, the DFA uses a sparse array of
381 // program instruction pointers as a work queue.
382 // In leftmost longest mode, marks separate sections
383 // of workq that started executing at different
384 // locations in the string (earlier locations first).
385 class DFA::Workq : public SparseSet {
386  public:
387   // Constructor: n is number of normal slots, maxmark number of mark slots.
Workq(int n,int maxmark)388   Workq(int n, int maxmark) :
389     SparseSet(n+maxmark),
390     n_(n),
391     maxmark_(maxmark),
392     nextmark_(n),
393     last_was_mark_(true) {
394   }
395 
is_mark(int i)396   bool is_mark(int i) { return i >= n_; }
397 
maxmark()398   int maxmark() { return maxmark_; }
399 
clear()400   void clear() {
401     SparseSet::clear();
402     nextmark_ = n_;
403   }
404 
mark()405   void mark() {
406     if (last_was_mark_)
407       return;
408     last_was_mark_ = false;
409     SparseSet::insert_new(nextmark_++);
410   }
411 
size()412   int size() {
413     return n_ + maxmark_;
414   }
415 
insert(int id)416   void insert(int id) {
417     if (contains(id))
418       return;
419     insert_new(id);
420   }
421 
insert_new(int id)422   void insert_new(int id) {
423     last_was_mark_ = false;
424     SparseSet::insert_new(id);
425   }
426 
427  private:
428   int n_;                // size excluding marks
429   int maxmark_;          // maximum number of marks
430   int nextmark_;         // id of next mark
431   bool last_was_mark_;   // last inserted was mark
432 
433   Workq(const Workq&) = delete;
434   Workq& operator=(const Workq&) = delete;
435 };
436 
DFA(Prog * prog,Prog::MatchKind kind,int64_t max_mem)437 DFA::DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem)
438   : prog_(prog),
439     kind_(kind),
440     init_failed_(false),
441     q0_(NULL),
442     q1_(NULL),
443     mem_budget_(max_mem) {
444   if (ExtraDebug)
445     fprintf(stderr, "\nkind %d\n%s\n", kind_, prog_->DumpUnanchored().c_str());
446   int nmark = 0;
447   if (kind_ == Prog::kLongestMatch)
448     nmark = prog_->size();
449   // See DFA::AddToQueue() for why this is so.
450   int nstack = prog_->inst_count(kInstCapture) +
451                prog_->inst_count(kInstEmptyWidth) +
452                prog_->inst_count(kInstNop) +
453                nmark + 1;  // + 1 for start inst
454 
455   // Account for space needed for DFA, q0, q1, stack.
456   mem_budget_ -= sizeof(DFA);
457   mem_budget_ -= (prog_->size() + nmark) *
458                  (sizeof(int)+sizeof(int)) * 2;  // q0, q1
459   mem_budget_ -= nstack * sizeof(int);  // stack
460   if (mem_budget_ < 0) {
461     init_failed_ = true;
462     return;
463   }
464 
465   state_budget_ = mem_budget_;
466 
467   // Make sure there is a reasonable amount of working room left.
468   // At minimum, the search requires room for two states in order
469   // to limp along, restarting frequently.  We'll get better performance
470   // if there is room for a larger number of states, say 20.
471   // Note that a state stores list heads only, so we use the program
472   // list count for the upper bound, not the program size.
473   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
474   int64_t one_state = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
475                       (prog_->list_count()+nmark)*sizeof(int);
476   if (state_budget_ < 20*one_state) {
477     init_failed_ = true;
478     return;
479   }
480 
481   q0_ = new Workq(prog_->size(), nmark);
482   q1_ = new Workq(prog_->size(), nmark);
483   stack_ = PODArray<int>(nstack);
484 }
485 
~DFA()486 DFA::~DFA() {
487   delete q0_;
488   delete q1_;
489   ClearCache();
490 }
491 
492 // In the DFA state graph, s->next[c] == NULL means that the
493 // state has not yet been computed and needs to be.  We need
494 // a different special value to signal that s->next[c] is a
495 // state that can never lead to a match (and thus the search
496 // can be called off).  Hence DeadState.
497 #define DeadState reinterpret_cast<State*>(1)
498 
499 // Signals that the rest of the string matches no matter what it is.
500 #define FullMatchState reinterpret_cast<State*>(2)
501 
502 #define SpecialStateMax FullMatchState
503 
504 // Debugging printouts
505 
506 // For debugging, returns a string representation of the work queue.
DumpWorkq(Workq * q)507 std::string DFA::DumpWorkq(Workq* q) {
508   std::string s;
509   const char* sep = "";
510   for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
511     if (q->is_mark(*it)) {
512       s += "|";
513       sep = "";
514     } else {
515       s += StringPrintf("%s%d", sep, *it);
516       sep = ",";
517     }
518   }
519   return s;
520 }
521 
522 // For debugging, returns a string representation of the state.
DumpState(State * state)523 std::string DFA::DumpState(State* state) {
524   if (state == NULL)
525     return "_";
526   if (state == DeadState)
527     return "X";
528   if (state == FullMatchState)
529     return "*";
530   std::string s;
531   const char* sep = "";
532   s += StringPrintf("(%p)", state);
533   for (int i = 0; i < state->ninst_; i++) {
534     if (state->inst_[i] == Mark) {
535       s += "|";
536       sep = "";
537     } else if (state->inst_[i] == MatchSep) {
538       s += "||";
539       sep = "";
540     } else {
541       s += StringPrintf("%s%d", sep, state->inst_[i]);
542       sep = ",";
543     }
544   }
545   s += StringPrintf(" flag=%#x", state->flag_);
546   return s;
547 }
548 
549 //////////////////////////////////////////////////////////////////////
550 //
551 // DFA state graph construction.
552 //
553 // The DFA state graph is a heavily-linked collection of State* structures.
554 // The state_cache_ is a set of all the State structures ever allocated,
555 // so that if the same state is reached by two different paths,
556 // the same State structure can be used.  This reduces allocation
557 // requirements and also avoids duplication of effort across the two
558 // identical states.
559 //
560 // A State is defined by an ordered list of instruction ids and a flag word.
561 //
562 // The choice of an ordered list of instructions differs from a typical
563 // textbook DFA implementation, which would use an unordered set.
564 // Textbook descriptions, however, only care about whether
565 // the DFA matches, not where it matches in the text.  To decide where the
566 // DFA matches, we need to mimic the behavior of the dominant backtracking
567 // implementations like PCRE, which try one possible regular expression
568 // execution, then another, then another, stopping when one of them succeeds.
569 // The DFA execution tries these many executions in parallel, representing
570 // each by an instruction id.  These pointers are ordered in the State.inst_
571 // list in the same order that the executions would happen in a backtracking
572 // search: if a match is found during execution of inst_[2], inst_[i] for i>=3
573 // can be discarded.
574 //
575 // Textbooks also typically do not consider context-aware empty string operators
576 // like ^ or $.  These are handled by the flag word, which specifies the set
577 // of empty-string operators that should be matched when executing at the
578 // current text position.  These flag bits are defined in prog.h.
579 // The flag word also contains two DFA-specific bits: kFlagMatch if the state
580 // is a matching state (one that reached a kInstMatch in the program)
581 // and kFlagLastWord if the last processed byte was a word character, for the
582 // implementation of \B and \b.
583 //
584 // The flag word also contains, shifted up 16 bits, the bits looked for by
585 // any kInstEmptyWidth instructions in the state.  These provide a useful
586 // summary indicating when new flags might be useful.
587 //
588 // The permanent representation of a State's instruction ids is just an array,
589 // but while a state is being analyzed, these instruction ids are represented
590 // as a Workq, which is an array that allows iteration in insertion order.
591 
592 // NOTE(rsc): The choice of State construction determines whether the DFA
593 // mimics backtracking implementations (so-called leftmost first matching) or
594 // traditional DFA implementations (so-called leftmost longest matching as
595 // prescribed by POSIX).  This implementation chooses to mimic the
596 // backtracking implementations, because we want to replace PCRE.  To get
597 // POSIX behavior, the states would need to be considered not as a simple
598 // ordered list of instruction ids, but as a list of unordered sets of instruction
599 // ids.  A match by a state in one set would inhibit the running of sets
600 // farther down the list but not other instruction ids in the same set.  Each
601 // set would correspond to matches beginning at a given point in the string.
602 // This is implemented by separating different sets with Mark pointers.
603 
604 // Looks in the State cache for a State matching q, flag.
605 // If one is found, returns it.  If one is not found, allocates one,
606 // inserts it in the cache, and returns it.
607 // If mq is not null, MatchSep and the match IDs in mq will be appended
608 // to the State.
WorkqToCachedState(Workq * q,Workq * mq,uint32_t flag)609 DFA::State* DFA::WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag) {
610   //mutex_.AssertHeld();
611 
612   // Construct array of instruction ids for the new state.
613   // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
614   // those are the only operators with any effect in
615   // RunWorkqOnEmptyString or RunWorkqOnByte.
616   int* inst = new int[q->size()];
617   int n = 0;
618   uint32_t needflags = 0;  // flags needed by kInstEmptyWidth instructions
619   bool sawmatch = false;   // whether queue contains guaranteed kInstMatch
620   bool sawmark = false;    // whether queue contains a Mark
621   if (ExtraDebug)
622     fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
623   for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
624     int id = *it;
625     if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
626       break;
627     if (q->is_mark(id)) {
628       if (n > 0 && inst[n-1] != Mark) {
629         sawmark = true;
630         inst[n++] = Mark;
631       }
632       continue;
633     }
634     Prog::Inst* ip = prog_->inst(id);
635     switch (ip->opcode()) {
636       case kInstAltMatch:
637         // This state will continue to a match no matter what
638         // the rest of the input is.  If it is the highest priority match
639         // being considered, return the special FullMatchState
640         // to indicate that it's all matches from here out.
641         if (kind_ != Prog::kManyMatch &&
642             (kind_ != Prog::kFirstMatch ||
643              (it == q->begin() && ip->greedy(prog_))) &&
644             (kind_ != Prog::kLongestMatch || !sawmark) &&
645             (flag & kFlagMatch)) {
646           delete[] inst;
647           if (ExtraDebug)
648             fprintf(stderr, " -> FullMatchState\n");
649           return FullMatchState;
650         }
651         FALLTHROUGH_INTENDED;
652       default:
653         // Record iff id is the head of its list, which must
654         // be the case if id-1 is the last of *its* list. :)
655         if (prog_->inst(id-1)->last())
656           inst[n++] = *it;
657         if (ip->opcode() == kInstEmptyWidth)
658           needflags |= ip->empty();
659         if (ip->opcode() == kInstMatch && !prog_->anchor_end())
660           sawmatch = true;
661         break;
662     }
663   }
664   DCHECK_LE(n, q->size());
665   if (n > 0 && inst[n-1] == Mark)
666     n--;
667 
668   // If there are no empty-width instructions waiting to execute,
669   // then the extra flag bits will not be used, so there is no
670   // point in saving them.  (Discarding them reduces the number
671   // of distinct states.)
672   if (needflags == 0)
673     flag &= kFlagMatch;
674 
675   // NOTE(rsc): The code above cannot do flag &= needflags,
676   // because if the right flags were present to pass the current
677   // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
678   // might be reached that in turn need different flags.
679   // The only sure thing is that if there are no kInstEmptyWidth
680   // instructions at all, no flags will be needed.
681   // We could do the extra work to figure out the full set of
682   // possibly needed flags by exploring past the kInstEmptyWidth
683   // instructions, but the check above -- are any flags needed
684   // at all? -- handles the most common case.  More fine-grained
685   // analysis can only be justified by measurements showing that
686   // too many redundant states are being allocated.
687 
688   // If there are no Insts in the list, it's a dead state,
689   // which is useful to signal with a special pointer so that
690   // the execution loop can stop early.  This is only okay
691   // if the state is *not* a matching state.
692   if (n == 0 && flag == 0) {
693     delete[] inst;
694     if (ExtraDebug)
695       fprintf(stderr, " -> DeadState\n");
696     return DeadState;
697   }
698 
699   // If we're in longest match mode, the state is a sequence of
700   // unordered state sets separated by Marks.  Sort each set
701   // to canonicalize, to reduce the number of distinct sets stored.
702   if (kind_ == Prog::kLongestMatch) {
703     int* ip = inst;
704     int* ep = ip + n;
705     while (ip < ep) {
706       int* markp = ip;
707       while (markp < ep && *markp != Mark)
708         markp++;
709       std::sort(ip, markp);
710       if (markp < ep)
711         markp++;
712       ip = markp;
713     }
714   }
715 
716   // If we're in many match mode, canonicalize for similar reasons:
717   // we have an unordered set of states (i.e. we don't have Marks)
718   // and sorting will reduce the number of distinct sets stored.
719   if (kind_ == Prog::kManyMatch) {
720     int* ip = inst;
721     int* ep = ip + n;
722     std::sort(ip, ep);
723   }
724 
725   // Append MatchSep and the match IDs in mq if necessary.
726   if (mq != NULL) {
727     inst[n++] = MatchSep;
728     for (Workq::iterator i = mq->begin(); i != mq->end(); ++i) {
729       int id = *i;
730       Prog::Inst* ip = prog_->inst(id);
731       if (ip->opcode() == kInstMatch)
732         inst[n++] = ip->match_id();
733     }
734   }
735 
736   // Save the needed empty-width flags in the top bits for use later.
737   flag |= needflags << kFlagNeedShift;
738 
739   State* state = CachedState(inst, n, flag);
740   delete[] inst;
741   return state;
742 }
743 
744 // Looks in the State cache for a State matching inst, ninst, flag.
745 // If one is found, returns it.  If one is not found, allocates one,
746 // inserts it in the cache, and returns it.
CachedState(int * inst,int ninst,uint32_t flag)747 DFA::State* DFA::CachedState(int* inst, int ninst, uint32_t flag) {
748   //mutex_.AssertHeld();
749 
750   // Look in the cache for a pre-existing state.
751   // We have to initialise the struct like this because otherwise
752   // MSVC will complain about the flexible array member. :(
753   State state;
754   state.inst_ = inst;
755   state.ninst_ = ninst;
756   state.flag_ = flag;
757   StateSet::iterator it = state_cache_.find(&state);
758   if (it != state_cache_.end()) {
759     if (ExtraDebug)
760       fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
761     return *it;
762   }
763 
764   // Must have enough memory for new state.
765   // In addition to what we're going to allocate,
766   // the state cache hash table seems to incur about 40 bytes per
767   // State*, empirically.
768   const int kStateCacheOverhead = 40;
769   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
770   int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
771             ninst*sizeof(int);
772   if (mem_budget_ < mem + kStateCacheOverhead) {
773     mem_budget_ = -1;
774     return NULL;
775   }
776   mem_budget_ -= mem + kStateCacheOverhead;
777 
778   // Allocate new state along with room for next_ and inst_.
779   char* space = std::allocator<char>().allocate(mem);
780   State* s = new (space) State;
781   (void) new (s->next_) std::atomic<State*>[nnext];
782   // Work around a unfortunate bug in older versions of libstdc++.
783   // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=64658)
784   for (int i = 0; i < nnext; i++)
785     (void) new (s->next_ + i) std::atomic<State*>(NULL);
786   s->inst_ = new (s->next_ + nnext) int[ninst];
787   memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
788   s->ninst_ = ninst;
789   s->flag_ = flag;
790   if (ExtraDebug)
791     fprintf(stderr, " -> %s\n", DumpState(s).c_str());
792 
793   // Put state in cache and return it.
794   state_cache_.insert(s);
795   return s;
796 }
797 
798 // Clear the cache.  Must hold cache_mutex_.w or be in destructor.
ClearCache()799 void DFA::ClearCache() {
800   StateSet::iterator begin = state_cache_.begin();
801   StateSet::iterator end = state_cache_.end();
802   while (begin != end) {
803     StateSet::iterator tmp = begin;
804     ++begin;
805     // Deallocate the blob of memory that we allocated in DFA::CachedState().
806     // We recompute mem in order to benefit from sized delete where possible.
807     int ninst = (*tmp)->ninst_;
808     int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
809     int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
810               ninst*sizeof(int);
811     std::allocator<char>().deallocate(reinterpret_cast<char*>(*tmp), mem);
812   }
813   state_cache_.clear();
814 }
815 
816 // Copies insts in state s to the work queue q.
StateToWorkq(State * s,Workq * q)817 void DFA::StateToWorkq(State* s, Workq* q) {
818   q->clear();
819   for (int i = 0; i < s->ninst_; i++) {
820     if (s->inst_[i] == Mark) {
821       q->mark();
822     } else if (s->inst_[i] == MatchSep) {
823       // Nothing after this is an instruction!
824       break;
825     } else {
826       // Explore from the head of the list.
827       AddToQueue(q, s->inst_[i], s->flag_ & kFlagEmptyMask);
828     }
829   }
830 }
831 
832 // Adds ip to the work queue, following empty arrows according to flag.
AddToQueue(Workq * q,int id,uint32_t flag)833 void DFA::AddToQueue(Workq* q, int id, uint32_t flag) {
834 
835   // Use stack_ to hold our stack of instructions yet to process.
836   // It was preallocated as follows:
837   //   one entry per Capture;
838   //   one entry per EmptyWidth; and
839   //   one entry per Nop.
840   // This reflects the maximum number of stack pushes that each can
841   // perform. (Each instruction can be processed at most once.)
842   // When using marks, we also added nmark == prog_->size().
843   // (Otherwise, nmark == 0.)
844   int* stk = stack_.data();
845   int nstk = 0;
846 
847   stk[nstk++] = id;
848   while (nstk > 0) {
849     DCHECK_LE(nstk, stack_.size());
850     id = stk[--nstk];
851 
852   Loop:
853     if (id == Mark) {
854       q->mark();
855       continue;
856     }
857 
858     if (id == 0)
859       continue;
860 
861     // If ip is already on the queue, nothing to do.
862     // Otherwise add it.  We don't actually keep all the
863     // ones that get added, but adding all of them here
864     // increases the likelihood of q->contains(id),
865     // reducing the amount of duplicated work.
866     if (q->contains(id))
867       continue;
868     q->insert_new(id);
869 
870     // Process instruction.
871     Prog::Inst* ip = prog_->inst(id);
872     switch (ip->opcode()) {
873       default:
874         LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
875         break;
876 
877       case kInstByteRange:  // just save these on the queue
878       case kInstMatch:
879         if (ip->last())
880           break;
881         id = id+1;
882         goto Loop;
883 
884       case kInstCapture:    // DFA treats captures as no-ops.
885       case kInstNop:
886         if (!ip->last())
887           stk[nstk++] = id+1;
888 
889         // If this instruction is the [00-FF]* loop at the beginning of
890         // a leftmost-longest unanchored search, separate with a Mark so
891         // that future threads (which will start farther to the right in
892         // the input string) are lower priority than current threads.
893         if (ip->opcode() == kInstNop && q->maxmark() > 0 &&
894             id == prog_->start_unanchored() && id != prog_->start())
895           stk[nstk++] = Mark;
896         id = ip->out();
897         goto Loop;
898 
899       case kInstAltMatch:
900         DCHECK(!ip->last());
901         id = id+1;
902         goto Loop;
903 
904       case kInstEmptyWidth:
905         if (!ip->last())
906           stk[nstk++] = id+1;
907 
908         // Continue on if we have all the right flag bits.
909         if (ip->empty() & ~flag)
910           break;
911         id = ip->out();
912         goto Loop;
913     }
914   }
915 }
916 
917 // Running of work queues.  In the work queue, order matters:
918 // the queue is sorted in priority order.  If instruction i comes before j,
919 // then the instructions that i produces during the run must come before
920 // the ones that j produces.  In order to keep this invariant, all the
921 // work queue runners have to take an old queue to process and then
922 // also a new queue to fill in.  It's not acceptable to add to the end of
923 // an existing queue, because new instructions will not end up in the
924 // correct position.
925 
926 // Runs the work queue, processing the empty strings indicated by flag.
927 // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
928 // both ^ and $.  It is important that callers pass all flags at once:
929 // processing both ^ and $ is not the same as first processing only ^
930 // and then processing only $.  Doing the two-step sequence won't match
931 // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
932 // exhibited by existing implementations).
RunWorkqOnEmptyString(Workq * oldq,Workq * newq,uint32_t flag)933 void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint32_t flag) {
934   newq->clear();
935   for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
936     if (oldq->is_mark(*i))
937       AddToQueue(newq, Mark, flag);
938     else
939       AddToQueue(newq, *i, flag);
940   }
941 }
942 
943 // Runs the work queue, processing the single byte c followed by any empty
944 // strings indicated by flag.  For example, c == 'a' and flag == kEmptyEndLine,
945 // means to match c$.  Sets the bool *ismatch to true if the end of the
946 // regular expression program has been reached (the regexp has matched).
RunWorkqOnByte(Workq * oldq,Workq * newq,int c,uint32_t flag,bool * ismatch)947 void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
948                          int c, uint32_t flag, bool* ismatch) {
949   //mutex_.AssertHeld();
950 
951   newq->clear();
952   for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
953     if (oldq->is_mark(*i)) {
954       if (*ismatch)
955         return;
956       newq->mark();
957       continue;
958     }
959     int id = *i;
960     Prog::Inst* ip = prog_->inst(id);
961     switch (ip->opcode()) {
962       default:
963         LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
964         break;
965 
966       case kInstFail:        // never succeeds
967       case kInstCapture:     // already followed
968       case kInstNop:         // already followed
969       case kInstAltMatch:    // already followed
970       case kInstEmptyWidth:  // already followed
971         break;
972 
973       case kInstByteRange:   // can follow if c is in range
974         if (ip->Matches(c))
975           AddToQueue(newq, ip->out(), flag);
976         break;
977 
978       case kInstMatch:
979         if (prog_->anchor_end() && c != kByteEndText &&
980             kind_ != Prog::kManyMatch)
981           break;
982         *ismatch = true;
983         if (kind_ == Prog::kFirstMatch) {
984           // Can stop processing work queue since we found a match.
985           return;
986         }
987         break;
988     }
989   }
990 
991   if (ExtraDebug)
992     fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n",
993             DumpWorkq(oldq).c_str(), c, flag, DumpWorkq(newq).c_str(), *ismatch);
994 }
995 
996 // Processes input byte c in state, returning new state.
997 // Caller does not hold mutex.
RunStateOnByteUnlocked(State * state,int c)998 DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
999   // Keep only one RunStateOnByte going
1000   // even if the DFA is being run by multiple threads.
1001   MutexLock l(&mutex_);
1002   return RunStateOnByte(state, c);
1003 }
1004 
1005 // Processes input byte c in state, returning new state.
RunStateOnByte(State * state,int c)1006 DFA::State* DFA::RunStateOnByte(State* state, int c) {
1007   //mutex_.AssertHeld();
1008 
1009   if (state <= SpecialStateMax) {
1010     if (state == FullMatchState) {
1011       // It is convenient for routines like PossibleMatchRange
1012       // if we implement RunStateOnByte for FullMatchState:
1013       // once you get into this state you never get out,
1014       // so it's pretty easy.
1015       return FullMatchState;
1016     }
1017     if (state == DeadState) {
1018       LOG(DFATAL) << "DeadState in RunStateOnByte";
1019       return NULL;
1020     }
1021     if (state == NULL) {
1022       LOG(DFATAL) << "NULL state in RunStateOnByte";
1023       return NULL;
1024     }
1025     LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
1026     return NULL;
1027   }
1028 
1029   // If someone else already computed this, return it.
1030   State* ns = state->next_[ByteMap(c)].load(std::memory_order_relaxed);
1031   if (ns != NULL)
1032     return ns;
1033 
1034   // Convert state into Workq.
1035   StateToWorkq(state, q0_);
1036 
1037   // Flags marking the kinds of empty-width things (^ $ etc)
1038   // around this byte.  Before the byte we have the flags recorded
1039   // in the State structure itself.  After the byte we have
1040   // nothing yet (but that will change: read on).
1041   uint32_t needflag = state->flag_ >> kFlagNeedShift;
1042   uint32_t beforeflag = state->flag_ & kFlagEmptyMask;
1043   uint32_t oldbeforeflag = beforeflag;
1044   uint32_t afterflag = 0;
1045 
1046   if (c == '\n') {
1047     // Insert implicit $ and ^ around \n
1048     beforeflag |= kEmptyEndLine;
1049     afterflag |= kEmptyBeginLine;
1050   }
1051 
1052   if (c == kByteEndText) {
1053     // Insert implicit $ and \z before the fake "end text" byte.
1054     beforeflag |= kEmptyEndLine | kEmptyEndText;
1055   }
1056 
1057   // The state flag kFlagLastWord says whether the last
1058   // byte processed was a word character.  Use that info to
1059   // insert empty-width (non-)word boundaries.
1060   bool islastword = (state->flag_ & kFlagLastWord) != 0;
1061   bool isword = c != kByteEndText && Prog::IsWordChar(static_cast<uint8_t>(c));
1062   if (isword == islastword)
1063     beforeflag |= kEmptyNonWordBoundary;
1064   else
1065     beforeflag |= kEmptyWordBoundary;
1066 
1067   // Okay, finally ready to run.
1068   // Only useful to rerun on empty string if there are new, useful flags.
1069   if (beforeflag & ~oldbeforeflag & needflag) {
1070     RunWorkqOnEmptyString(q0_, q1_, beforeflag);
1071     using std::swap;
1072     swap(q0_, q1_);
1073   }
1074   bool ismatch = false;
1075   RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch);
1076   using std::swap;
1077   swap(q0_, q1_);
1078 
1079   // Save afterflag along with ismatch and isword in new state.
1080   uint32_t flag = afterflag;
1081   if (ismatch)
1082     flag |= kFlagMatch;
1083   if (isword)
1084     flag |= kFlagLastWord;
1085 
1086   if (ismatch && kind_ == Prog::kManyMatch)
1087     ns = WorkqToCachedState(q0_, q1_, flag);
1088   else
1089     ns = WorkqToCachedState(q0_, NULL, flag);
1090 
1091   // Flush ns before linking to it.
1092   // Write barrier before updating state->next_ so that the
1093   // main search loop can proceed without any locking, for speed.
1094   // (Otherwise it would need one mutex operation per input byte.)
1095   state->next_[ByteMap(c)].store(ns, std::memory_order_release);
1096   return ns;
1097 }
1098 
1099 
1100 //////////////////////////////////////////////////////////////////////
1101 // DFA cache reset.
1102 
1103 // Reader-writer lock helper.
1104 //
1105 // The DFA uses a reader-writer mutex to protect the state graph itself.
1106 // Traversing the state graph requires holding the mutex for reading,
1107 // and discarding the state graph and starting over requires holding the
1108 // lock for writing.  If a search needs to expand the graph but is out
1109 // of memory, it will need to drop its read lock and then acquire the
1110 // write lock.  Since it cannot then atomically downgrade from write lock
1111 // to read lock, it runs the rest of the search holding the write lock.
1112 // (This probably helps avoid repeated contention, but really the decision
1113 // is forced by the Mutex interface.)  It's a bit complicated to keep
1114 // track of whether the lock is held for reading or writing and thread
1115 // that through the search, so instead we encapsulate it in the RWLocker
1116 // and pass that around.
1117 
1118 class DFA::RWLocker {
1119  public:
1120   explicit RWLocker(Mutex* mu);
1121   ~RWLocker();
1122 
1123   // If the lock is only held for reading right now,
1124   // drop the read lock and re-acquire for writing.
1125   // Subsequent calls to LockForWriting are no-ops.
1126   // Notice that the lock is *released* temporarily.
1127   void LockForWriting();
1128 
1129  private:
1130   Mutex* mu_;
1131   bool writing_;
1132 
1133   RWLocker(const RWLocker&) = delete;
1134   RWLocker& operator=(const RWLocker&) = delete;
1135 };
1136 
RWLocker(Mutex * mu)1137 DFA::RWLocker::RWLocker(Mutex* mu) : mu_(mu), writing_(false) {
1138   mu_->ReaderLock();
1139 }
1140 
1141 // This function is marked as NO_THREAD_SAFETY_ANALYSIS because
1142 // the annotations don't support lock upgrade.
LockForWriting()1143 void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
1144   if (!writing_) {
1145     mu_->ReaderUnlock();
1146     mu_->WriterLock();
1147     writing_ = true;
1148   }
1149 }
1150 
~RWLocker()1151 DFA::RWLocker::~RWLocker() {
1152   if (!writing_)
1153     mu_->ReaderUnlock();
1154   else
1155     mu_->WriterUnlock();
1156 }
1157 
1158 
1159 // When the DFA's State cache fills, we discard all the states in the
1160 // cache and start over.  Many threads can be using and adding to the
1161 // cache at the same time, so we synchronize using the cache_mutex_
1162 // to keep from stepping on other threads.  Specifically, all the
1163 // threads using the current cache hold cache_mutex_ for reading.
1164 // When a thread decides to flush the cache, it drops cache_mutex_
1165 // and then re-acquires it for writing.  That ensures there are no
1166 // other threads accessing the cache anymore.  The rest of the search
1167 // runs holding cache_mutex_ for writing, avoiding any contention
1168 // with or cache pollution caused by other threads.
1169 
ResetCache(RWLocker * cache_lock)1170 void DFA::ResetCache(RWLocker* cache_lock) {
1171   // Re-acquire the cache_mutex_ for writing (exclusive use).
1172   cache_lock->LockForWriting();
1173 
1174   // Clear the cache, reset the memory budget.
1175   for (int i = 0; i < kMaxStart; i++) {
1176     start_[i].start = NULL;
1177     start_[i].first_byte.store(kFbUnknown, std::memory_order_relaxed);
1178   }
1179   ClearCache();
1180   mem_budget_ = state_budget_;
1181 }
1182 
1183 // Typically, a couple States do need to be preserved across a cache
1184 // reset, like the State at the current point in the search.
1185 // The StateSaver class helps keep States across cache resets.
1186 // It makes a copy of the state's guts outside the cache (before the reset)
1187 // and then can be asked, after the reset, to recreate the State
1188 // in the new cache.  For example, in a DFA method ("this" is a DFA):
1189 //
1190 //   StateSaver saver(this, s);
1191 //   ResetCache(cache_lock);
1192 //   s = saver.Restore();
1193 //
1194 // The saver should always have room in the cache to re-create the state,
1195 // because resetting the cache locks out all other threads, and the cache
1196 // is known to have room for at least a couple states (otherwise the DFA
1197 // constructor fails).
1198 
1199 class DFA::StateSaver {
1200  public:
1201   explicit StateSaver(DFA* dfa, State* state);
1202   ~StateSaver();
1203 
1204   // Recreates and returns a state equivalent to the
1205   // original state passed to the constructor.
1206   // Returns NULL if the cache has filled, but
1207   // since the DFA guarantees to have room in the cache
1208   // for a couple states, should never return NULL
1209   // if used right after ResetCache.
1210   State* Restore();
1211 
1212  private:
1213   DFA* dfa_;         // the DFA to use
1214   int* inst_;        // saved info from State
1215   int ninst_;
1216   uint32_t flag_;
1217   bool is_special_;  // whether original state was special
1218   State* special_;   // if is_special_, the original state
1219 
1220   StateSaver(const StateSaver&) = delete;
1221   StateSaver& operator=(const StateSaver&) = delete;
1222 };
1223 
StateSaver(DFA * dfa,State * state)1224 DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
1225   dfa_ = dfa;
1226   if (state <= SpecialStateMax) {
1227     inst_ = NULL;
1228     ninst_ = 0;
1229     flag_ = 0;
1230     is_special_ = true;
1231     special_ = state;
1232     return;
1233   }
1234   is_special_ = false;
1235   special_ = NULL;
1236   flag_ = state->flag_;
1237   ninst_ = state->ninst_;
1238   inst_ = new int[ninst_];
1239   memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
1240 }
1241 
~StateSaver()1242 DFA::StateSaver::~StateSaver() {
1243   if (!is_special_)
1244     delete[] inst_;
1245 }
1246 
Restore()1247 DFA::State* DFA::StateSaver::Restore() {
1248   if (is_special_)
1249     return special_;
1250   MutexLock l(&dfa_->mutex_);
1251   State* s = dfa_->CachedState(inst_, ninst_, flag_);
1252   if (s == NULL)
1253     LOG(DFATAL) << "StateSaver failed to restore state.";
1254   return s;
1255 }
1256 
1257 
1258 //////////////////////////////////////////////////////////////////////
1259 //
1260 // DFA execution.
1261 //
1262 // The basic search loop is easy: start in a state s and then for each
1263 // byte c in the input, s = s->next[c].
1264 //
1265 // This simple description omits a few efficiency-driven complications.
1266 //
1267 // First, the State graph is constructed incrementally: it is possible
1268 // that s->next[c] is null, indicating that that state has not been
1269 // fully explored.  In this case, RunStateOnByte must be invoked to
1270 // determine the next state, which is cached in s->next[c] to save
1271 // future effort.  An alternative reason for s->next[c] to be null is
1272 // that the DFA has reached a so-called "dead state", in which any match
1273 // is no longer possible.  In this case RunStateOnByte will return NULL
1274 // and the processing of the string can stop early.
1275 //
1276 // Second, a 256-element pointer array for s->next_ makes each State
1277 // quite large (2kB on 64-bit machines).  Instead, dfa->bytemap_[]
1278 // maps from bytes to "byte classes" and then next_ only needs to have
1279 // as many pointers as there are byte classes.  A byte class is simply a
1280 // range of bytes that the regexp never distinguishes between.
1281 // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
1282 // 'a', 'b' to 'c', and 'c' to 0xFF.  The bytemap slows us a little bit
1283 // but in exchange we typically cut the size of a State (and thus our
1284 // memory footprint) by about 5-10x.  The comments still refer to
1285 // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
1286 //
1287 // Third, it is common for a DFA for an unanchored match to begin in a
1288 // state in which only one particular byte value can take the DFA to a
1289 // different state.  That is, s->next[c] != s for only one c.  In this
1290 // situation, the DFA can do better than executing the simple loop.
1291 // Instead, it can call memchr to search very quickly for the byte c.
1292 // Whether the start state has this property is determined during a
1293 // pre-compilation pass, and if so, the byte b is passed to the search
1294 // loop as the "first_byte" argument, along with a boolean "have_first_byte".
1295 //
1296 // Fourth, the desired behavior is to search for the leftmost-best match
1297 // (approximately, the same one that Perl would find), which is not
1298 // necessarily the match ending earliest in the string.  Each time a
1299 // match is found, it must be noted, but the DFA must continue on in
1300 // hope of finding a higher-priority match.  In some cases, the caller only
1301 // cares whether there is any match at all, not which one is found.
1302 // The "want_earliest_match" flag causes the search to stop at the first
1303 // match found.
1304 //
1305 // Fifth, one algorithm that uses the DFA needs it to run over the
1306 // input string backward, beginning at the end and ending at the beginning.
1307 // Passing false for the "run_forward" flag causes the DFA to run backward.
1308 //
1309 // The checks for these last three cases, which in a naive implementation
1310 // would be performed once per input byte, slow the general loop enough
1311 // to merit specialized versions of the search loop for each of the
1312 // eight possible settings of the three booleans.  Rather than write
1313 // eight different functions, we write one general implementation and then
1314 // inline it to create the specialized ones.
1315 //
1316 // Note that matches are delayed by one byte, to make it easier to
1317 // accomodate match conditions depending on the next input byte (like $ and \b).
1318 // When s->next[c]->IsMatch(), it means that there is a match ending just
1319 // *before* byte c.
1320 
1321 // The generic search loop.  Searches text for a match, returning
1322 // the pointer to the end of the chosen match, or NULL if no match.
1323 // The bools are equal to the same-named variables in params, but
1324 // making them function arguments lets the inliner specialize
1325 // this function to each combination (see two paragraphs above).
InlinedSearchLoop(SearchParams * params,bool have_first_byte,bool want_earliest_match,bool run_forward)1326 inline bool DFA::InlinedSearchLoop(SearchParams* params,
1327                                    bool have_first_byte,
1328                                    bool want_earliest_match,
1329                                    bool run_forward) {
1330   State* start = params->start;
1331   const uint8_t* bp = BytePtr(params->text.data());  // start of text
1332   const uint8_t* p = bp;                             // text scanning point
1333   const uint8_t* ep = BytePtr(params->text.data() +
1334                               params->text.size());  // end of text
1335   const uint8_t* resetp = NULL;                      // p at last cache reset
1336   if (!run_forward) {
1337     using std::swap;
1338     swap(p, ep);
1339   }
1340 
1341   const uint8_t* bytemap = prog_->bytemap();
1342   const uint8_t* lastmatch = NULL;   // most recent matching position in text
1343   bool matched = false;
1344 
1345   State* s = start;
1346   if (ExtraDebug)
1347     fprintf(stderr, "@stx: %s\n", DumpState(s).c_str());
1348 
1349   if (s->IsMatch()) {
1350     matched = true;
1351     lastmatch = p;
1352     if (ExtraDebug)
1353       fprintf(stderr, "match @stx! [%s]\n", DumpState(s).c_str());
1354     if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1355       for (int i = s->ninst_ - 1; i >= 0; i--) {
1356         int id = s->inst_[i];
1357         if (id == MatchSep)
1358           break;
1359         params->matches->insert(id);
1360       }
1361     }
1362     if (want_earliest_match) {
1363       params->ep = reinterpret_cast<const char*>(lastmatch);
1364       return true;
1365     }
1366   }
1367 
1368   while (p != ep) {
1369     if (ExtraDebug)
1370       fprintf(stderr, "@%td: %s\n", p - bp, DumpState(s).c_str());
1371 
1372     if (have_first_byte && s == start) {
1373       // In start state, only way out is to find first_byte,
1374       // so use optimized assembly in memchr to skip ahead.
1375       // If first_byte isn't found, we can skip to the end
1376       // of the string.
1377       if (run_forward) {
1378         if ((p = BytePtr(memchr(p, params->first_byte, ep - p))) == NULL) {
1379           p = ep;
1380           break;
1381         }
1382       } else {
1383         if ((p = BytePtr(memrchr(ep, params->first_byte, p - ep))) == NULL) {
1384           p = ep;
1385           break;
1386         }
1387         p++;
1388       }
1389     }
1390 
1391     int c;
1392     if (run_forward)
1393       c = *p++;
1394     else
1395       c = *--p;
1396 
1397     // Note that multiple threads might be consulting
1398     // s->next_[bytemap[c]] simultaneously.
1399     // RunStateOnByte takes care of the appropriate locking,
1400     // including a memory barrier so that the unlocked access
1401     // (sometimes known as "double-checked locking") is safe.
1402     // The alternative would be either one DFA per thread
1403     // or one mutex operation per input byte.
1404     //
1405     // ns == DeadState means the state is known to be dead
1406     // (no more matches are possible).
1407     // ns == NULL means the state has not yet been computed
1408     // (need to call RunStateOnByteUnlocked).
1409     // RunStateOnByte returns ns == NULL if it is out of memory.
1410     // ns == FullMatchState means the rest of the string matches.
1411     //
1412     // Okay to use bytemap[] not ByteMap() here, because
1413     // c is known to be an actual byte and not kByteEndText.
1414 
1415     State* ns = s->next_[bytemap[c]].load(std::memory_order_acquire);
1416     if (ns == NULL) {
1417       ns = RunStateOnByteUnlocked(s, c);
1418       if (ns == NULL) {
1419         // After we reset the cache, we hold cache_mutex exclusively,
1420         // so if resetp != NULL, it means we filled the DFA state
1421         // cache with this search alone (without any other threads).
1422         // Benchmarks show that doing a state computation on every
1423         // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
1424         // same at about 2 MB/s.  Unless we're processing an average
1425         // of 10 bytes per state computation, fail so that RE2 can
1426         // fall back to the NFA.  However, RE2::Set cannot fall back,
1427         // so we just have to keep on keeping on in that case.
1428         if (dfa_should_bail_when_slow && resetp != NULL &&
1429             static_cast<size_t>(p - resetp) < 10*state_cache_.size() &&
1430             kind_ != Prog::kManyMatch) {
1431           params->failed = true;
1432           return false;
1433         }
1434         resetp = p;
1435 
1436         // Prepare to save start and s across the reset.
1437         StateSaver save_start(this, start);
1438         StateSaver save_s(this, s);
1439 
1440         // Discard all the States in the cache.
1441         ResetCache(params->cache_lock);
1442 
1443         // Restore start and s so we can continue.
1444         if ((start = save_start.Restore()) == NULL ||
1445             (s = save_s.Restore()) == NULL) {
1446           // Restore already did LOG(DFATAL).
1447           params->failed = true;
1448           return false;
1449         }
1450         ns = RunStateOnByteUnlocked(s, c);
1451         if (ns == NULL) {
1452           LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
1453           params->failed = true;
1454           return false;
1455         }
1456       }
1457     }
1458     if (ns <= SpecialStateMax) {
1459       if (ns == DeadState) {
1460         params->ep = reinterpret_cast<const char*>(lastmatch);
1461         return matched;
1462       }
1463       // FullMatchState
1464       params->ep = reinterpret_cast<const char*>(ep);
1465       return true;
1466     }
1467 
1468     s = ns;
1469     if (s->IsMatch()) {
1470       matched = true;
1471       // The DFA notices the match one byte late,
1472       // so adjust p before using it in the match.
1473       if (run_forward)
1474         lastmatch = p - 1;
1475       else
1476         lastmatch = p + 1;
1477       if (ExtraDebug)
1478         fprintf(stderr, "match @%td! [%s]\n", lastmatch - bp, DumpState(s).c_str());
1479       if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1480         for (int i = s->ninst_ - 1; i >= 0; i--) {
1481           int id = s->inst_[i];
1482           if (id == MatchSep)
1483             break;
1484           params->matches->insert(id);
1485         }
1486       }
1487       if (want_earliest_match) {
1488         params->ep = reinterpret_cast<const char*>(lastmatch);
1489         return true;
1490       }
1491     }
1492   }
1493 
1494   // Process one more byte to see if it triggers a match.
1495   // (Remember, matches are delayed one byte.)
1496   if (ExtraDebug)
1497     fprintf(stderr, "@etx: %s\n", DumpState(s).c_str());
1498 
1499   int lastbyte;
1500   if (run_forward) {
1501     if (params->text.end() == params->context.end())
1502       lastbyte = kByteEndText;
1503     else
1504       lastbyte = params->text.end()[0] & 0xFF;
1505   } else {
1506     if (params->text.begin() == params->context.begin())
1507       lastbyte = kByteEndText;
1508     else
1509       lastbyte = params->text.begin()[-1] & 0xFF;
1510   }
1511 
1512   State* ns = s->next_[ByteMap(lastbyte)].load(std::memory_order_acquire);
1513   if (ns == NULL) {
1514     ns = RunStateOnByteUnlocked(s, lastbyte);
1515     if (ns == NULL) {
1516       StateSaver save_s(this, s);
1517       ResetCache(params->cache_lock);
1518       if ((s = save_s.Restore()) == NULL) {
1519         params->failed = true;
1520         return false;
1521       }
1522       ns = RunStateOnByteUnlocked(s, lastbyte);
1523       if (ns == NULL) {
1524         LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
1525         params->failed = true;
1526         return false;
1527       }
1528     }
1529   }
1530   if (ns <= SpecialStateMax) {
1531     if (ns == DeadState) {
1532       params->ep = reinterpret_cast<const char*>(lastmatch);
1533       return matched;
1534     }
1535     // FullMatchState
1536     params->ep = reinterpret_cast<const char*>(ep);
1537     return true;
1538   }
1539 
1540   s = ns;
1541   if (s->IsMatch()) {
1542     matched = true;
1543     lastmatch = p;
1544     if (ExtraDebug)
1545       fprintf(stderr, "match @etx! [%s]\n", DumpState(s).c_str());
1546     if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1547       for (int i = s->ninst_ - 1; i >= 0; i--) {
1548         int id = s->inst_[i];
1549         if (id == MatchSep)
1550           break;
1551         params->matches->insert(id);
1552       }
1553     }
1554   }
1555 
1556   params->ep = reinterpret_cast<const char*>(lastmatch);
1557   return matched;
1558 }
1559 
1560 // Inline specializations of the general loop.
SearchFFF(SearchParams * params)1561 bool DFA::SearchFFF(SearchParams* params) {
1562   return InlinedSearchLoop(params, 0, 0, 0);
1563 }
SearchFFT(SearchParams * params)1564 bool DFA::SearchFFT(SearchParams* params) {
1565   return InlinedSearchLoop(params, 0, 0, 1);
1566 }
SearchFTF(SearchParams * params)1567 bool DFA::SearchFTF(SearchParams* params) {
1568   return InlinedSearchLoop(params, 0, 1, 0);
1569 }
SearchFTT(SearchParams * params)1570 bool DFA::SearchFTT(SearchParams* params) {
1571   return InlinedSearchLoop(params, 0, 1, 1);
1572 }
SearchTFF(SearchParams * params)1573 bool DFA::SearchTFF(SearchParams* params) {
1574   return InlinedSearchLoop(params, 1, 0, 0);
1575 }
SearchTFT(SearchParams * params)1576 bool DFA::SearchTFT(SearchParams* params) {
1577   return InlinedSearchLoop(params, 1, 0, 1);
1578 }
SearchTTF(SearchParams * params)1579 bool DFA::SearchTTF(SearchParams* params) {
1580   return InlinedSearchLoop(params, 1, 1, 0);
1581 }
SearchTTT(SearchParams * params)1582 bool DFA::SearchTTT(SearchParams* params) {
1583   return InlinedSearchLoop(params, 1, 1, 1);
1584 }
1585 
1586 // For debugging, calls the general code directly.
SlowSearchLoop(SearchParams * params)1587 bool DFA::SlowSearchLoop(SearchParams* params) {
1588   return InlinedSearchLoop(params,
1589                            params->first_byte >= 0,
1590                            params->want_earliest_match,
1591                            params->run_forward);
1592 }
1593 
1594 // For performance, calls the appropriate specialized version
1595 // of InlinedSearchLoop.
FastSearchLoop(SearchParams * params)1596 bool DFA::FastSearchLoop(SearchParams* params) {
1597   // Because the methods are private, the Searches array
1598   // cannot be declared at top level.
1599   static bool (DFA::*Searches[])(SearchParams*) = {
1600     &DFA::SearchFFF,
1601     &DFA::SearchFFT,
1602     &DFA::SearchFTF,
1603     &DFA::SearchFTT,
1604     &DFA::SearchTFF,
1605     &DFA::SearchTFT,
1606     &DFA::SearchTTF,
1607     &DFA::SearchTTT,
1608   };
1609 
1610   bool have_first_byte = params->first_byte >= 0;
1611   int index = 4 * have_first_byte +
1612               2 * params->want_earliest_match +
1613               1 * params->run_forward;
1614   return (this->*Searches[index])(params);
1615 }
1616 
1617 
1618 // The discussion of DFA execution above ignored the question of how
1619 // to determine the initial state for the search loop.  There are two
1620 // factors that influence the choice of start state.
1621 //
1622 // The first factor is whether the search is anchored or not.
1623 // The regexp program (Prog*) itself has
1624 // two different entry points: one for anchored searches and one for
1625 // unanchored searches.  (The unanchored version starts with a leading ".*?"
1626 // and then jumps to the anchored one.)
1627 //
1628 // The second factor is where text appears in the larger context, which
1629 // determines which empty-string operators can be matched at the beginning
1630 // of execution.  If text is at the very beginning of context, \A and ^ match.
1631 // Otherwise if text is at the beginning of a line, then ^ matches.
1632 // Otherwise it matters whether the character before text is a word character
1633 // or a non-word character.
1634 //
1635 // The two cases (unanchored vs not) and four cases (empty-string flags)
1636 // combine to make the eight cases recorded in the DFA's begin_text_[2],
1637 // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
1638 // StartInfos.  The start state for each is filled in the first time it
1639 // is used for an actual search.
1640 
1641 // Examines text, context, and anchored to determine the right start
1642 // state for the DFA search loop.  Fills in params and returns true on success.
1643 // Returns false on failure.
AnalyzeSearch(SearchParams * params)1644 bool DFA::AnalyzeSearch(SearchParams* params) {
1645   const StringPiece& text = params->text;
1646   const StringPiece& context = params->context;
1647 
1648   // Sanity check: make sure that text lies within context.
1649   if (text.begin() < context.begin() || text.end() > context.end()) {
1650     LOG(DFATAL) << "context does not contain text";
1651     params->start = DeadState;
1652     return true;
1653   }
1654 
1655   // Determine correct search type.
1656   int start;
1657   uint32_t flags;
1658   if (params->run_forward) {
1659     if (text.begin() == context.begin()) {
1660       start = kStartBeginText;
1661       flags = kEmptyBeginText|kEmptyBeginLine;
1662     } else if (text.begin()[-1] == '\n') {
1663       start = kStartBeginLine;
1664       flags = kEmptyBeginLine;
1665     } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
1666       start = kStartAfterWordChar;
1667       flags = kFlagLastWord;
1668     } else {
1669       start = kStartAfterNonWordChar;
1670       flags = 0;
1671     }
1672   } else {
1673     if (text.end() == context.end()) {
1674       start = kStartBeginText;
1675       flags = kEmptyBeginText|kEmptyBeginLine;
1676     } else if (text.end()[0] == '\n') {
1677       start = kStartBeginLine;
1678       flags = kEmptyBeginLine;
1679     } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
1680       start = kStartAfterWordChar;
1681       flags = kFlagLastWord;
1682     } else {
1683       start = kStartAfterNonWordChar;
1684       flags = 0;
1685     }
1686   }
1687   if (params->anchored)
1688     start |= kStartAnchored;
1689   StartInfo* info = &start_[start];
1690 
1691   // Try once without cache_lock for writing.
1692   // Try again after resetting the cache
1693   // (ResetCache will relock cache_lock for writing).
1694   if (!AnalyzeSearchHelper(params, info, flags)) {
1695     ResetCache(params->cache_lock);
1696     if (!AnalyzeSearchHelper(params, info, flags)) {
1697       LOG(DFATAL) << "Failed to analyze start state.";
1698       params->failed = true;
1699       return false;
1700     }
1701   }
1702 
1703   if (ExtraDebug)
1704     fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s first_byte=%d\n",
1705             params->anchored, params->run_forward, flags,
1706             DumpState(info->start).c_str(), info->first_byte.load());
1707 
1708   params->start = info->start;
1709   params->first_byte = info->first_byte.load(std::memory_order_acquire);
1710 
1711   return true;
1712 }
1713 
1714 // Fills in info if needed.  Returns true on success, false on failure.
AnalyzeSearchHelper(SearchParams * params,StartInfo * info,uint32_t flags)1715 bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
1716                               uint32_t flags) {
1717   // Quick check.
1718   int fb = info->first_byte.load(std::memory_order_acquire);
1719   if (fb != kFbUnknown)
1720     return true;
1721 
1722   MutexLock l(&mutex_);
1723   fb = info->first_byte.load(std::memory_order_relaxed);
1724   if (fb != kFbUnknown)
1725     return true;
1726 
1727   q0_->clear();
1728   AddToQueue(q0_,
1729              params->anchored ? prog_->start() : prog_->start_unanchored(),
1730              flags);
1731   info->start = WorkqToCachedState(q0_, NULL, flags);
1732   if (info->start == NULL)
1733     return false;
1734 
1735   if (info->start == DeadState) {
1736     // Synchronize with "quick check" above.
1737     info->first_byte.store(kFbNone, std::memory_order_release);
1738     return true;
1739   }
1740 
1741   if (info->start == FullMatchState) {
1742     // Synchronize with "quick check" above.
1743     info->first_byte.store(kFbNone, std::memory_order_release);  // will be ignored
1744     return true;
1745   }
1746 
1747   // Even if we have a first_byte, we cannot use it when anchored and,
1748   // less obviously, we cannot use it when we are going to need flags.
1749   // This trick works only when there is a single byte that leads to a
1750   // different state!
1751   int first_byte = prog_->first_byte();
1752   if (first_byte == -1 ||
1753       params->anchored ||
1754       info->start->flag_ >> kFlagNeedShift != 0)
1755     first_byte = kFbNone;
1756 
1757   // Synchronize with "quick check" above.
1758   info->first_byte.store(first_byte, std::memory_order_release);
1759   return true;
1760 }
1761 
1762 // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
Search(const StringPiece & text,const StringPiece & context,bool anchored,bool want_earliest_match,bool run_forward,bool * failed,const char ** epp,SparseSet * matches)1763 bool DFA::Search(const StringPiece& text,
1764                  const StringPiece& context,
1765                  bool anchored,
1766                  bool want_earliest_match,
1767                  bool run_forward,
1768                  bool* failed,
1769                  const char** epp,
1770                  SparseSet* matches) {
1771   *epp = NULL;
1772   if (!ok()) {
1773     *failed = true;
1774     return false;
1775   }
1776   *failed = false;
1777 
1778   if (ExtraDebug) {
1779     fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
1780     fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
1781             std::string(text).c_str(), anchored, want_earliest_match, run_forward, kind_);
1782   }
1783 
1784   RWLocker l(&cache_mutex_);
1785   SearchParams params(text, context, &l);
1786   params.anchored = anchored;
1787   params.want_earliest_match = want_earliest_match;
1788   params.run_forward = run_forward;
1789   params.matches = matches;
1790 
1791   if (!AnalyzeSearch(&params)) {
1792     *failed = true;
1793     return false;
1794   }
1795   if (params.start == DeadState)
1796     return false;
1797   if (params.start == FullMatchState) {
1798     if (run_forward == want_earliest_match)
1799       *epp = text.data();
1800     else
1801       *epp = text.data() + text.size();
1802     return true;
1803   }
1804   if (ExtraDebug)
1805     fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
1806   bool ret = FastSearchLoop(&params);
1807   if (params.failed) {
1808     *failed = true;
1809     return false;
1810   }
1811   *epp = params.ep;
1812   return ret;
1813 }
1814 
GetDFA(MatchKind kind)1815 DFA* Prog::GetDFA(MatchKind kind) {
1816   // For a forward DFA, half the memory goes to each DFA.
1817   // However, if it is a "many match" DFA, then there is
1818   // no counterpart with which the memory must be shared.
1819   //
1820   // For a reverse DFA, all the memory goes to the
1821   // "longest match" DFA, because RE2 never does reverse
1822   // "first match" searches.
1823   if (kind == kFirstMatch) {
1824     std::call_once(dfa_first_once_, [](Prog* prog) {
1825       prog->dfa_first_ = new DFA(prog, kFirstMatch, prog->dfa_mem_ / 2);
1826     }, this);
1827     return dfa_first_;
1828   } else if (kind == kManyMatch) {
1829     std::call_once(dfa_first_once_, [](Prog* prog) {
1830       prog->dfa_first_ = new DFA(prog, kManyMatch, prog->dfa_mem_);
1831     }, this);
1832     return dfa_first_;
1833   } else {
1834     std::call_once(dfa_longest_once_, [](Prog* prog) {
1835       if (!prog->reversed_)
1836         prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_ / 2);
1837       else
1838         prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_);
1839     }, this);
1840     return dfa_longest_;
1841   }
1842 }
1843 
DeleteDFA(DFA * dfa)1844 void Prog::DeleteDFA(DFA* dfa) {
1845   delete dfa;
1846 }
1847 
1848 // Executes the regexp program to search in text,
1849 // which itself is inside the larger context.  (As a convenience,
1850 // passing a NULL context is equivalent to passing text.)
1851 // Returns true if a match is found, false if not.
1852 // If a match is found, fills in match0->end() to point at the end of the match
1853 // and sets match0->begin() to text.begin(), since the DFA can't track
1854 // where the match actually began.
1855 //
1856 // This is the only external interface (class DFA only exists in this file).
1857 //
SearchDFA(const StringPiece & text,const StringPiece & const_context,Anchor anchor,MatchKind kind,StringPiece * match0,bool * failed,SparseSet * matches)1858 bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
1859                      Anchor anchor, MatchKind kind, StringPiece* match0,
1860                      bool* failed, SparseSet* matches) {
1861   *failed = false;
1862 
1863   StringPiece context = const_context;
1864   if (context.data() == NULL)
1865     context = text;
1866   bool carat = anchor_start();
1867   bool dollar = anchor_end();
1868   if (reversed_) {
1869     using std::swap;
1870     swap(carat, dollar);
1871   }
1872   if (carat && context.begin() != text.begin())
1873     return false;
1874   if (dollar && context.end() != text.end())
1875     return false;
1876 
1877   // Handle full match by running an anchored longest match
1878   // and then checking if it covers all of text.
1879   bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
1880   bool endmatch = false;
1881   if (kind == kManyMatch) {
1882     // This is split out in order to avoid clobbering kind.
1883   } else if (kind == kFullMatch || anchor_end()) {
1884     endmatch = true;
1885     kind = kLongestMatch;
1886   }
1887 
1888   // If the caller doesn't care where the match is (just whether one exists),
1889   // then we can stop at the very first match we find, the so-called
1890   // "earliest match".
1891   bool want_earliest_match = false;
1892   if (kind == kManyMatch) {
1893     // This is split out in order to avoid clobbering kind.
1894     if (matches == NULL) {
1895       want_earliest_match = true;
1896     }
1897   } else if (match0 == NULL && !endmatch) {
1898     want_earliest_match = true;
1899     kind = kLongestMatch;
1900   }
1901 
1902   DFA* dfa = GetDFA(kind);
1903   const char* ep;
1904   bool matched = dfa->Search(text, context, anchored,
1905                              want_earliest_match, !reversed_,
1906                              failed, &ep, matches);
1907   if (*failed)
1908     return false;
1909   if (!matched)
1910     return false;
1911   if (endmatch && ep != (reversed_ ? text.data() : text.data() + text.size()))
1912     return false;
1913 
1914   // If caller cares, record the boundary of the match.
1915   // We only know where it ends, so use the boundary of text
1916   // as the beginning.
1917   if (match0) {
1918     if (reversed_)
1919       *match0 =
1920           StringPiece(ep, static_cast<size_t>(text.data() + text.size() - ep));
1921     else
1922       *match0 =
1923           StringPiece(text.data(), static_cast<size_t>(ep - text.data()));
1924   }
1925   return true;
1926 }
1927 
1928 // Build out all states in DFA.  Returns number of states.
BuildAllStates(const Prog::DFAStateCallback & cb)1929 int DFA::BuildAllStates(const Prog::DFAStateCallback& cb) {
1930   if (!ok())
1931     return 0;
1932 
1933   // Pick out start state for unanchored search
1934   // at beginning of text.
1935   RWLocker l(&cache_mutex_);
1936   SearchParams params(StringPiece(), StringPiece(), &l);
1937   params.anchored = false;
1938   if (!AnalyzeSearch(&params) ||
1939       params.start == NULL ||
1940       params.start == DeadState)
1941     return 0;
1942 
1943   // Add start state to work queue.
1944   // Note that any State* that we handle here must point into the cache,
1945   // so we can simply depend on pointer-as-a-number hashing and equality.
1946   std::unordered_map<State*, int> m;
1947   std::deque<State*> q;
1948   m.emplace(params.start, static_cast<int>(m.size()));
1949   q.push_back(params.start);
1950 
1951   // Compute the input bytes needed to cover all of the next pointers.
1952   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
1953   std::vector<int> input(nnext);
1954   for (int c = 0; c < 256; c++) {
1955     int b = prog_->bytemap()[c];
1956     while (c < 256-1 && prog_->bytemap()[c+1] == b)
1957       c++;
1958     input[b] = c;
1959   }
1960   input[prog_->bytemap_range()] = kByteEndText;
1961 
1962   // Scratch space for the output.
1963   std::vector<int> output(nnext);
1964 
1965   // Flood to expand every state.
1966   bool oom = false;
1967   while (!q.empty()) {
1968     State* s = q.front();
1969     q.pop_front();
1970     for (int c : input) {
1971       State* ns = RunStateOnByteUnlocked(s, c);
1972       if (ns == NULL) {
1973         oom = true;
1974         break;
1975       }
1976       if (ns == DeadState) {
1977         output[ByteMap(c)] = -1;
1978         continue;
1979       }
1980       if (m.find(ns) == m.end()) {
1981         m.emplace(ns, static_cast<int>(m.size()));
1982         q.push_back(ns);
1983       }
1984       output[ByteMap(c)] = m[ns];
1985     }
1986     if (cb)
1987       cb(oom ? NULL : output.data(),
1988          s == FullMatchState || s->IsMatch());
1989     if (oom)
1990       break;
1991   }
1992 
1993   return static_cast<int>(m.size());
1994 }
1995 
1996 // Build out all states in DFA for kind.  Returns number of states.
BuildEntireDFA(MatchKind kind,const DFAStateCallback & cb)1997 int Prog::BuildEntireDFA(MatchKind kind, const DFAStateCallback& cb) {
1998   return GetDFA(kind)->BuildAllStates(cb);
1999 }
2000 
TEST_dfa_should_bail_when_slow(bool b)2001 void Prog::TEST_dfa_should_bail_when_slow(bool b) {
2002   dfa_should_bail_when_slow = b;
2003 }
2004 
2005 // Computes min and max for matching string.
2006 // Won't return strings bigger than maxlen.
PossibleMatchRange(std::string * min,std::string * max,int maxlen)2007 bool DFA::PossibleMatchRange(std::string* min, std::string* max, int maxlen) {
2008   if (!ok())
2009     return false;
2010 
2011   // NOTE: if future users of PossibleMatchRange want more precision when
2012   // presented with infinitely repeated elements, consider making this a
2013   // parameter to PossibleMatchRange.
2014   static int kMaxEltRepetitions = 0;
2015 
2016   // Keep track of the number of times we've visited states previously. We only
2017   // revisit a given state if it's part of a repeated group, so if the value
2018   // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
2019   // |*max| to |PrefixSuccessor(*max)|.
2020   //
2021   // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
2022   // tradition, implicitly insert a '0' value at first use. We take advantage
2023   // of that property below.
2024   std::unordered_map<State*, int> previously_visited_states;
2025 
2026   // Pick out start state for anchored search at beginning of text.
2027   RWLocker l(&cache_mutex_);
2028   SearchParams params(StringPiece(), StringPiece(), &l);
2029   params.anchored = true;
2030   if (!AnalyzeSearch(&params))
2031     return false;
2032   if (params.start == DeadState) {  // No matching strings
2033     *min = "";
2034     *max = "";
2035     return true;
2036   }
2037   if (params.start == FullMatchState)  // Every string matches: no max
2038     return false;
2039 
2040   // The DFA is essentially a big graph rooted at params.start,
2041   // and paths in the graph correspond to accepted strings.
2042   // Each node in the graph has potentially 256+1 arrows
2043   // coming out, one for each byte plus the magic end of
2044   // text character kByteEndText.
2045 
2046   // To find the smallest possible prefix of an accepted
2047   // string, we just walk the graph preferring to follow
2048   // arrows with the lowest bytes possible.  To find the
2049   // largest possible prefix, we follow the largest bytes
2050   // possible.
2051 
2052   // The test for whether there is an arrow from s on byte j is
2053   //    ns = RunStateOnByteUnlocked(s, j);
2054   //    if (ns == NULL)
2055   //      return false;
2056   //    if (ns != DeadState && ns->ninst > 0)
2057   // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
2058   // It returns NULL only if the DFA has run out of memory,
2059   // in which case we can't be sure of anything.
2060   // The second check sees whether there was graph built
2061   // and whether it is interesting graph.  Nodes might have
2062   // ns->ninst == 0 if they exist only to represent the fact
2063   // that a match was found on the previous byte.
2064 
2065   // Build minimum prefix.
2066   State* s = params.start;
2067   min->clear();
2068   MutexLock lock(&mutex_);
2069   for (int i = 0; i < maxlen; i++) {
2070     if (previously_visited_states[s] > kMaxEltRepetitions)
2071       break;
2072     previously_visited_states[s]++;
2073 
2074     // Stop if min is a match.
2075     State* ns = RunStateOnByte(s, kByteEndText);
2076     if (ns == NULL)  // DFA out of memory
2077       return false;
2078     if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
2079       break;
2080 
2081     // Try to extend the string with low bytes.
2082     bool extended = false;
2083     for (int j = 0; j < 256; j++) {
2084       ns = RunStateOnByte(s, j);
2085       if (ns == NULL)  // DFA out of memory
2086         return false;
2087       if (ns == FullMatchState ||
2088           (ns > SpecialStateMax && ns->ninst_ > 0)) {
2089         extended = true;
2090         min->append(1, static_cast<char>(j));
2091         s = ns;
2092         break;
2093       }
2094     }
2095     if (!extended)
2096       break;
2097   }
2098 
2099   // Build maximum prefix.
2100   previously_visited_states.clear();
2101   s = params.start;
2102   max->clear();
2103   for (int i = 0; i < maxlen; i++) {
2104     if (previously_visited_states[s] > kMaxEltRepetitions)
2105       break;
2106     previously_visited_states[s] += 1;
2107 
2108     // Try to extend the string with high bytes.
2109     bool extended = false;
2110     for (int j = 255; j >= 0; j--) {
2111       State* ns = RunStateOnByte(s, j);
2112       if (ns == NULL)
2113         return false;
2114       if (ns == FullMatchState ||
2115           (ns > SpecialStateMax && ns->ninst_ > 0)) {
2116         extended = true;
2117         max->append(1, static_cast<char>(j));
2118         s = ns;
2119         break;
2120       }
2121     }
2122     if (!extended) {
2123       // Done, no need for PrefixSuccessor.
2124       return true;
2125     }
2126   }
2127 
2128   // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
2129   PrefixSuccessor(max);
2130 
2131   // If there are no bytes left, we have no way to say "there is no maximum
2132   // string".  We could make the interface more complicated and be able to
2133   // return "there is no maximum but here is a minimum", but that seems like
2134   // overkill -- the most common no-max case is all possible strings, so not
2135   // telling the caller that the empty string is the minimum match isn't a
2136   // great loss.
2137   if (max->empty())
2138     return false;
2139 
2140   return true;
2141 }
2142 
2143 // PossibleMatchRange for a Prog.
PossibleMatchRange(std::string * min,std::string * max,int maxlen)2144 bool Prog::PossibleMatchRange(std::string* min, std::string* max, int maxlen) {
2145   // Have to use dfa_longest_ to get all strings for full matches.
2146   // For example, (a|aa) never matches aa in first-match mode.
2147   return GetDFA(kLongestMatch)->PossibleMatchRange(min, max, maxlen);
2148 }
2149 
2150 }  // namespace re2
2151