• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <cmath>
29 
30 #include "fixed-dtoa.h"
31 #include "ieee.h"
32 
33 namespace double_conversion {
34 
35 // Represents a 128bit type. This class should be replaced by a native type on
36 // platforms that support 128bit integers.
37 class UInt128 {
38  public:
UInt128()39   UInt128() : high_bits_(0), low_bits_(0) { }
UInt128(uint64_t high,uint64_t low)40   UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
41 
Multiply(uint32_t multiplicand)42   void Multiply(uint32_t multiplicand) {
43     uint64_t accumulator;
44 
45     accumulator = (low_bits_ & kMask32) * multiplicand;
46     uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
47     accumulator >>= 32;
48     accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
49     low_bits_ = (accumulator << 32) + part;
50     accumulator >>= 32;
51     accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
52     part = static_cast<uint32_t>(accumulator & kMask32);
53     accumulator >>= 32;
54     accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
55     high_bits_ = (accumulator << 32) + part;
56     DOUBLE_CONVERSION_ASSERT((accumulator >> 32) == 0);
57   }
58 
Shift(int shift_amount)59   void Shift(int shift_amount) {
60     DOUBLE_CONVERSION_ASSERT(-64 <= shift_amount && shift_amount <= 64);
61     if (shift_amount == 0) {
62       return;
63     } else if (shift_amount == -64) {
64       high_bits_ = low_bits_;
65       low_bits_ = 0;
66     } else if (shift_amount == 64) {
67       low_bits_ = high_bits_;
68       high_bits_ = 0;
69     } else if (shift_amount <= 0) {
70       high_bits_ <<= -shift_amount;
71       high_bits_ += low_bits_ >> (64 + shift_amount);
72       low_bits_ <<= -shift_amount;
73     } else {
74       low_bits_ >>= shift_amount;
75       low_bits_ += high_bits_ << (64 - shift_amount);
76       high_bits_ >>= shift_amount;
77     }
78   }
79 
80   // Modifies *this to *this MOD (2^power).
81   // Returns *this DIV (2^power).
DivModPowerOf2(int power)82   int DivModPowerOf2(int power) {
83     if (power >= 64) {
84       int result = static_cast<int>(high_bits_ >> (power - 64));
85       high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
86       return result;
87     } else {
88       uint64_t part_low = low_bits_ >> power;
89       uint64_t part_high = high_bits_ << (64 - power);
90       int result = static_cast<int>(part_low + part_high);
91       high_bits_ = 0;
92       low_bits_ -= part_low << power;
93       return result;
94     }
95   }
96 
IsZero() const97   bool IsZero() const {
98     return high_bits_ == 0 && low_bits_ == 0;
99   }
100 
BitAt(int position) const101   int BitAt(int position) const {
102     if (position >= 64) {
103       return static_cast<int>(high_bits_ >> (position - 64)) & 1;
104     } else {
105       return static_cast<int>(low_bits_ >> position) & 1;
106     }
107   }
108 
109  private:
110   static const uint64_t kMask32 = 0xFFFFFFFF;
111   // Value == (high_bits_ << 64) + low_bits_
112   uint64_t high_bits_;
113   uint64_t low_bits_;
114 };
115 
116 
117 static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
118 
119 
FillDigits32FixedLength(uint32_t number,int requested_length,Vector<char> buffer,int * length)120 static void FillDigits32FixedLength(uint32_t number, int requested_length,
121                                     Vector<char> buffer, int* length) {
122   for (int i = requested_length - 1; i >= 0; --i) {
123     buffer[(*length) + i] = '0' + number % 10;
124     number /= 10;
125   }
126   *length += requested_length;
127 }
128 
129 
FillDigits32(uint32_t number,Vector<char> buffer,int * length)130 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
131   int number_length = 0;
132   // We fill the digits in reverse order and exchange them afterwards.
133   while (number != 0) {
134     int digit = number % 10;
135     number /= 10;
136     buffer[(*length) + number_length] = static_cast<char>('0' + digit);
137     number_length++;
138   }
139   // Exchange the digits.
140   int i = *length;
141   int j = *length + number_length - 1;
142   while (i < j) {
143     char tmp = buffer[i];
144     buffer[i] = buffer[j];
145     buffer[j] = tmp;
146     i++;
147     j--;
148   }
149   *length += number_length;
150 }
151 
152 
FillDigits64FixedLength(uint64_t number,Vector<char> buffer,int * length)153 static void FillDigits64FixedLength(uint64_t number,
154                                     Vector<char> buffer, int* length) {
155   const uint32_t kTen7 = 10000000;
156   // For efficiency cut the number into 3 uint32_t parts, and print those.
157   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
158   number /= kTen7;
159   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
160   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
161 
162   FillDigits32FixedLength(part0, 3, buffer, length);
163   FillDigits32FixedLength(part1, 7, buffer, length);
164   FillDigits32FixedLength(part2, 7, buffer, length);
165 }
166 
167 
FillDigits64(uint64_t number,Vector<char> buffer,int * length)168 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
169   const uint32_t kTen7 = 10000000;
170   // For efficiency cut the number into 3 uint32_t parts, and print those.
171   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
172   number /= kTen7;
173   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
174   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
175 
176   if (part0 != 0) {
177     FillDigits32(part0, buffer, length);
178     FillDigits32FixedLength(part1, 7, buffer, length);
179     FillDigits32FixedLength(part2, 7, buffer, length);
180   } else if (part1 != 0) {
181     FillDigits32(part1, buffer, length);
182     FillDigits32FixedLength(part2, 7, buffer, length);
183   } else {
184     FillDigits32(part2, buffer, length);
185   }
186 }
187 
188 
RoundUp(Vector<char> buffer,int * length,int * decimal_point)189 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
190   // An empty buffer represents 0.
191   if (*length == 0) {
192     buffer[0] = '1';
193     *decimal_point = 1;
194     *length = 1;
195     return;
196   }
197   // Round the last digit until we either have a digit that was not '9' or until
198   // we reached the first digit.
199   buffer[(*length) - 1]++;
200   for (int i = (*length) - 1; i > 0; --i) {
201     if (buffer[i] != '0' + 10) {
202       return;
203     }
204     buffer[i] = '0';
205     buffer[i - 1]++;
206   }
207   // If the first digit is now '0' + 10, we would need to set it to '0' and add
208   // a '1' in front. However we reach the first digit only if all following
209   // digits had been '9' before rounding up. Now all trailing digits are '0' and
210   // we simply switch the first digit to '1' and update the decimal-point
211   // (indicating that the point is now one digit to the right).
212   if (buffer[0] == '0' + 10) {
213     buffer[0] = '1';
214     (*decimal_point)++;
215   }
216 }
217 
218 
219 // The given fractionals number represents a fixed-point number with binary
220 // point at bit (-exponent).
221 // Preconditions:
222 //   -128 <= exponent <= 0.
223 //   0 <= fractionals * 2^exponent < 1
224 //   The buffer holds the result.
225 // The function will round its result. During the rounding-process digits not
226 // generated by this function might be updated, and the decimal-point variable
227 // might be updated. If this function generates the digits 99 and the buffer
228 // already contained "199" (thus yielding a buffer of "19999") then a
229 // rounding-up will change the contents of the buffer to "20000".
FillFractionals(uint64_t fractionals,int exponent,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)230 static void FillFractionals(uint64_t fractionals, int exponent,
231                             int fractional_count, Vector<char> buffer,
232                             int* length, int* decimal_point) {
233   DOUBLE_CONVERSION_ASSERT(-128 <= exponent && exponent <= 0);
234   // 'fractionals' is a fixed-point number, with binary point at bit
235   // (-exponent). Inside the function the non-converted remainder of fractionals
236   // is a fixed-point number, with binary point at bit 'point'.
237   if (-exponent <= 64) {
238     // One 64 bit number is sufficient.
239     DOUBLE_CONVERSION_ASSERT(fractionals >> 56 == 0);
240     int point = -exponent;
241     for (int i = 0; i < fractional_count; ++i) {
242       if (fractionals == 0) break;
243       // Instead of multiplying by 10 we multiply by 5 and adjust the point
244       // location. This way the fractionals variable will not overflow.
245       // Invariant at the beginning of the loop: fractionals < 2^point.
246       // Initially we have: point <= 64 and fractionals < 2^56
247       // After each iteration the point is decremented by one.
248       // Note that 5^3 = 125 < 128 = 2^7.
249       // Therefore three iterations of this loop will not overflow fractionals
250       // (even without the subtraction at the end of the loop body). At this
251       // time point will satisfy point <= 61 and therefore fractionals < 2^point
252       // and any further multiplication of fractionals by 5 will not overflow.
253       fractionals *= 5;
254       point--;
255       int digit = static_cast<int>(fractionals >> point);
256       DOUBLE_CONVERSION_ASSERT(digit <= 9);
257       buffer[*length] = static_cast<char>('0' + digit);
258       (*length)++;
259       fractionals -= static_cast<uint64_t>(digit) << point;
260     }
261     // If the first bit after the point is set we have to round up.
262     DOUBLE_CONVERSION_ASSERT(fractionals == 0 || point - 1 >= 0);
263     if ((fractionals != 0) && ((fractionals >> (point - 1)) & 1) == 1) {
264       RoundUp(buffer, length, decimal_point);
265     }
266   } else {  // We need 128 bits.
267     DOUBLE_CONVERSION_ASSERT(64 < -exponent && -exponent <= 128);
268     UInt128 fractionals128 = UInt128(fractionals, 0);
269     fractionals128.Shift(-exponent - 64);
270     int point = 128;
271     for (int i = 0; i < fractional_count; ++i) {
272       if (fractionals128.IsZero()) break;
273       // As before: instead of multiplying by 10 we multiply by 5 and adjust the
274       // point location.
275       // This multiplication will not overflow for the same reasons as before.
276       fractionals128.Multiply(5);
277       point--;
278       int digit = fractionals128.DivModPowerOf2(point);
279       DOUBLE_CONVERSION_ASSERT(digit <= 9);
280       buffer[*length] = static_cast<char>('0' + digit);
281       (*length)++;
282     }
283     if (fractionals128.BitAt(point - 1) == 1) {
284       RoundUp(buffer, length, decimal_point);
285     }
286   }
287 }
288 
289 
290 // Removes leading and trailing zeros.
291 // If leading zeros are removed then the decimal point position is adjusted.
TrimZeros(Vector<char> buffer,int * length,int * decimal_point)292 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
293   while (*length > 0 && buffer[(*length) - 1] == '0') {
294     (*length)--;
295   }
296   int first_non_zero = 0;
297   while (first_non_zero < *length && buffer[first_non_zero] == '0') {
298     first_non_zero++;
299   }
300   if (first_non_zero != 0) {
301     for (int i = first_non_zero; i < *length; ++i) {
302       buffer[i - first_non_zero] = buffer[i];
303     }
304     *length -= first_non_zero;
305     *decimal_point -= first_non_zero;
306   }
307 }
308 
309 
FastFixedDtoa(double v,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)310 bool FastFixedDtoa(double v,
311                    int fractional_count,
312                    Vector<char> buffer,
313                    int* length,
314                    int* decimal_point) {
315   const uint32_t kMaxUInt32 = 0xFFFFFFFF;
316   uint64_t significand = Double(v).Significand();
317   int exponent = Double(v).Exponent();
318   // v = significand * 2^exponent (with significand a 53bit integer).
319   // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
320   // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
321   // If necessary this limit could probably be increased, but we don't need
322   // more.
323   if (exponent > 20) return false;
324   if (fractional_count > 20) return false;
325   *length = 0;
326   // At most kDoubleSignificandSize bits of the significand are non-zero.
327   // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
328   // bits:  0..11*..0xxx..53*..xx
329   if (exponent + kDoubleSignificandSize > 64) {
330     // The exponent must be > 11.
331     //
332     // We know that v = significand * 2^exponent.
333     // And the exponent > 11.
334     // We simplify the task by dividing v by 10^17.
335     // The quotient delivers the first digits, and the remainder fits into a 64
336     // bit number.
337     // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
338     const uint64_t kFive17 = DOUBLE_CONVERSION_UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17
339     uint64_t divisor = kFive17;
340     int divisor_power = 17;
341     uint64_t dividend = significand;
342     uint32_t quotient;
343     uint64_t remainder;
344     // Let v = f * 2^e with f == significand and e == exponent.
345     // Then need q (quotient) and r (remainder) as follows:
346     //   v            = q * 10^17       + r
347     //   f * 2^e      = q * 10^17       + r
348     //   f * 2^e      = q * 5^17 * 2^17 + r
349     // If e > 17 then
350     //   f * 2^(e-17) = q * 5^17        + r/2^17
351     // else
352     //   f  = q * 5^17 * 2^(17-e) + r/2^e
353     if (exponent > divisor_power) {
354       // We only allow exponents of up to 20 and therefore (17 - e) <= 3
355       dividend <<= exponent - divisor_power;
356       quotient = static_cast<uint32_t>(dividend / divisor);
357       remainder = (dividend % divisor) << divisor_power;
358     } else {
359       divisor <<= divisor_power - exponent;
360       quotient = static_cast<uint32_t>(dividend / divisor);
361       remainder = (dividend % divisor) << exponent;
362     }
363     FillDigits32(quotient, buffer, length);
364     FillDigits64FixedLength(remainder, buffer, length);
365     *decimal_point = *length;
366   } else if (exponent >= 0) {
367     // 0 <= exponent <= 11
368     significand <<= exponent;
369     FillDigits64(significand, buffer, length);
370     *decimal_point = *length;
371   } else if (exponent > -kDoubleSignificandSize) {
372     // We have to cut the number.
373     uint64_t integrals = significand >> -exponent;
374     uint64_t fractionals = significand - (integrals << -exponent);
375     if (integrals > kMaxUInt32) {
376       FillDigits64(integrals, buffer, length);
377     } else {
378       FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
379     }
380     *decimal_point = *length;
381     FillFractionals(fractionals, exponent, fractional_count,
382                     buffer, length, decimal_point);
383   } else if (exponent < -128) {
384     // This configuration (with at most 20 digits) means that all digits must be
385     // 0.
386     DOUBLE_CONVERSION_ASSERT(fractional_count <= 20);
387     buffer[0] = '\0';
388     *length = 0;
389     *decimal_point = -fractional_count;
390   } else {
391     *decimal_point = 0;
392     FillFractionals(significand, exponent, fractional_count,
393                     buffer, length, decimal_point);
394   }
395   TrimZeros(buffer, length, decimal_point);
396   buffer[*length] = '\0';
397   if ((*length) == 0) {
398     // The string is empty and the decimal_point thus has no importance. Mimick
399     // Gay's dtoa and and set it to -fractional_count.
400     *decimal_point = -fractional_count;
401   }
402   return true;
403 }
404 
405 }  // namespace double_conversion
406