1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/BuildLibCalls.h"
40 #include "llvm/Transforms/Utils/SizeOpts.h"
41
42 using namespace llvm;
43 using namespace PatternMatch;
44
45 static cl::opt<bool>
46 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47 cl::init(false),
48 cl::desc("Enable unsafe double to float "
49 "shrinking for math lib calls"));
50
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54
ignoreCallingConv(LibFunc Func)55 static bool ignoreCallingConv(LibFunc Func) {
56 return Func == LibFunc_abs || Func == LibFunc_labs ||
57 Func == LibFunc_llabs || Func == LibFunc_strlen;
58 }
59
isCallingConvCCompatible(CallInst * CI)60 static bool isCallingConvCCompatible(CallInst *CI) {
61 switch(CI->getCallingConv()) {
62 default:
63 return false;
64 case llvm::CallingConv::C:
65 return true;
66 case llvm::CallingConv::ARM_APCS:
67 case llvm::CallingConv::ARM_AAPCS:
68 case llvm::CallingConv::ARM_AAPCS_VFP: {
69
70 // The iOS ABI diverges from the standard in some cases, so for now don't
71 // try to simplify those calls.
72 if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73 return false;
74
75 auto *FuncTy = CI->getFunctionType();
76
77 if (!FuncTy->getReturnType()->isPointerTy() &&
78 !FuncTy->getReturnType()->isIntegerTy() &&
79 !FuncTy->getReturnType()->isVoidTy())
80 return false;
81
82 for (auto Param : FuncTy->params()) {
83 if (!Param->isPointerTy() && !Param->isIntegerTy())
84 return false;
85 }
86 return true;
87 }
88 }
89 return false;
90 }
91
92 /// Return true if it is only used in equality comparisons with With.
isOnlyUsedInEqualityComparison(Value * V,Value * With)93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94 for (User *U : V->users()) {
95 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96 if (IC->isEquality() && IC->getOperand(1) == With)
97 continue;
98 // Unknown instruction.
99 return false;
100 }
101 return true;
102 }
103
callHasFloatingPointArgument(const CallInst * CI)104 static bool callHasFloatingPointArgument(const CallInst *CI) {
105 return any_of(CI->operands(), [](const Use &OI) {
106 return OI->getType()->isFloatingPointTy();
107 });
108 }
109
callHasFP128Argument(const CallInst * CI)110 static bool callHasFP128Argument(const CallInst *CI) {
111 return any_of(CI->operands(), [](const Use &OI) {
112 return OI->getType()->isFP128Ty();
113 });
114 }
115
convertStrToNumber(CallInst * CI,StringRef & Str,int64_t Base)116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117 if (Base < 2 || Base > 36)
118 // handle special zero base
119 if (Base != 0)
120 return nullptr;
121
122 char *End;
123 std::string nptr = Str.str();
124 errno = 0;
125 long long int Result = strtoll(nptr.c_str(), &End, Base);
126 if (errno)
127 return nullptr;
128
129 // if we assume all possible target locales are ASCII supersets,
130 // then if strtoll successfully parses a number on the host,
131 // it will also successfully parse the same way on the target
132 if (*End != '\0')
133 return nullptr;
134
135 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136 return nullptr;
137
138 return ConstantInt::get(CI->getType(), Result);
139 }
140
isLocallyOpenedFile(Value * File,CallInst * CI,IRBuilder<> & B,const TargetLibraryInfo * TLI)141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
142 const TargetLibraryInfo *TLI) {
143 CallInst *FOpen = dyn_cast<CallInst>(File);
144 if (!FOpen)
145 return false;
146
147 Function *InnerCallee = FOpen->getCalledFunction();
148 if (!InnerCallee)
149 return false;
150
151 LibFunc Func;
152 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
153 Func != LibFunc_fopen)
154 return false;
155
156 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
157 if (PointerMayBeCaptured(File, true, true))
158 return false;
159
160 return true;
161 }
162
isOnlyUsedInComparisonWithZero(Value * V)163 static bool isOnlyUsedInComparisonWithZero(Value *V) {
164 for (User *U : V->users()) {
165 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
166 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
167 if (C->isNullValue())
168 continue;
169 // Unknown instruction.
170 return false;
171 }
172 return true;
173 }
174
canTransformToMemCmp(CallInst * CI,Value * Str,uint64_t Len,const DataLayout & DL)175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
176 const DataLayout &DL) {
177 if (!isOnlyUsedInComparisonWithZero(CI))
178 return false;
179
180 if (!isDereferenceableAndAlignedPointer(Str, Align::None(), APInt(64, Len),
181 DL))
182 return false;
183
184 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
185 return false;
186
187 return true;
188 }
189
annotateDereferenceableBytes(CallInst * CI,ArrayRef<unsigned> ArgNos,uint64_t DereferenceableBytes)190 static void annotateDereferenceableBytes(CallInst *CI,
191 ArrayRef<unsigned> ArgNos,
192 uint64_t DereferenceableBytes) {
193 const Function *F = CI->getCaller();
194 if (!F)
195 return;
196 for (unsigned ArgNo : ArgNos) {
197 uint64_t DerefBytes = DereferenceableBytes;
198 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
199 if (!llvm::NullPointerIsDefined(F, AS) ||
200 CI->paramHasAttr(ArgNo, Attribute::NonNull))
201 DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
202 ArgNo + AttributeList::FirstArgIndex),
203 DereferenceableBytes);
204
205 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
206 DerefBytes) {
207 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
208 if (!llvm::NullPointerIsDefined(F, AS) ||
209 CI->paramHasAttr(ArgNo, Attribute::NonNull))
210 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
211 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
212 CI->getContext(), DerefBytes));
213 }
214 }
215 }
216
annotateNonNullBasedOnAccess(CallInst * CI,ArrayRef<unsigned> ArgNos)217 static void annotateNonNullBasedOnAccess(CallInst *CI,
218 ArrayRef<unsigned> ArgNos) {
219 Function *F = CI->getCaller();
220 if (!F)
221 return;
222
223 for (unsigned ArgNo : ArgNos) {
224 if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
225 continue;
226 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
227 if (llvm::NullPointerIsDefined(F, AS))
228 continue;
229
230 CI->addParamAttr(ArgNo, Attribute::NonNull);
231 annotateDereferenceableBytes(CI, ArgNo, 1);
232 }
233 }
234
annotateNonNullAndDereferenceable(CallInst * CI,ArrayRef<unsigned> ArgNos,Value * Size,const DataLayout & DL)235 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
236 Value *Size, const DataLayout &DL) {
237 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
238 annotateNonNullBasedOnAccess(CI, ArgNos);
239 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
240 } else if (isKnownNonZero(Size, DL)) {
241 annotateNonNullBasedOnAccess(CI, ArgNos);
242 const APInt *X, *Y;
243 uint64_t DerefMin = 1;
244 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
245 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
246 annotateDereferenceableBytes(CI, ArgNos, DerefMin);
247 }
248 }
249 }
250
251 //===----------------------------------------------------------------------===//
252 // String and Memory Library Call Optimizations
253 //===----------------------------------------------------------------------===//
254
optimizeStrCat(CallInst * CI,IRBuilder<> & B)255 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
256 // Extract some information from the instruction
257 Value *Dst = CI->getArgOperand(0);
258 Value *Src = CI->getArgOperand(1);
259 annotateNonNullBasedOnAccess(CI, {0, 1});
260
261 // See if we can get the length of the input string.
262 uint64_t Len = GetStringLength(Src);
263 if (Len)
264 annotateDereferenceableBytes(CI, 1, Len);
265 else
266 return nullptr;
267 --Len; // Unbias length.
268
269 // Handle the simple, do-nothing case: strcat(x, "") -> x
270 if (Len == 0)
271 return Dst;
272
273 return emitStrLenMemCpy(Src, Dst, Len, B);
274 }
275
emitStrLenMemCpy(Value * Src,Value * Dst,uint64_t Len,IRBuilder<> & B)276 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
277 IRBuilder<> &B) {
278 // We need to find the end of the destination string. That's where the
279 // memory is to be moved to. We just generate a call to strlen.
280 Value *DstLen = emitStrLen(Dst, B, DL, TLI);
281 if (!DstLen)
282 return nullptr;
283
284 // Now that we have the destination's length, we must index into the
285 // destination's pointer to get the actual memcpy destination (end of
286 // the string .. we're concatenating).
287 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
288
289 // We have enough information to now generate the memcpy call to do the
290 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
291 B.CreateMemCpy(
292 CpyDst, Align::None(), Src, Align::None(),
293 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
294 return Dst;
295 }
296
optimizeStrNCat(CallInst * CI,IRBuilder<> & B)297 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
298 // Extract some information from the instruction.
299 Value *Dst = CI->getArgOperand(0);
300 Value *Src = CI->getArgOperand(1);
301 Value *Size = CI->getArgOperand(2);
302 uint64_t Len;
303 annotateNonNullBasedOnAccess(CI, 0);
304 if (isKnownNonZero(Size, DL))
305 annotateNonNullBasedOnAccess(CI, 1);
306
307 // We don't do anything if length is not constant.
308 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
309 if (LengthArg) {
310 Len = LengthArg->getZExtValue();
311 // strncat(x, c, 0) -> x
312 if (!Len)
313 return Dst;
314 } else {
315 return nullptr;
316 }
317
318 // See if we can get the length of the input string.
319 uint64_t SrcLen = GetStringLength(Src);
320 if (SrcLen) {
321 annotateDereferenceableBytes(CI, 1, SrcLen);
322 --SrcLen; // Unbias length.
323 } else {
324 return nullptr;
325 }
326
327 // strncat(x, "", c) -> x
328 if (SrcLen == 0)
329 return Dst;
330
331 // We don't optimize this case.
332 if (Len < SrcLen)
333 return nullptr;
334
335 // strncat(x, s, c) -> strcat(x, s)
336 // s is constant so the strcat can be optimized further.
337 return emitStrLenMemCpy(Src, Dst, SrcLen, B);
338 }
339
optimizeStrChr(CallInst * CI,IRBuilder<> & B)340 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
341 Function *Callee = CI->getCalledFunction();
342 FunctionType *FT = Callee->getFunctionType();
343 Value *SrcStr = CI->getArgOperand(0);
344 annotateNonNullBasedOnAccess(CI, 0);
345
346 // If the second operand is non-constant, see if we can compute the length
347 // of the input string and turn this into memchr.
348 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
349 if (!CharC) {
350 uint64_t Len = GetStringLength(SrcStr);
351 if (Len)
352 annotateDereferenceableBytes(CI, 0, Len);
353 else
354 return nullptr;
355 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
356 return nullptr;
357
358 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
359 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
360 B, DL, TLI);
361 }
362
363 // Otherwise, the character is a constant, see if the first argument is
364 // a string literal. If so, we can constant fold.
365 StringRef Str;
366 if (!getConstantStringInfo(SrcStr, Str)) {
367 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
368 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
369 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
370 return nullptr;
371 }
372
373 // Compute the offset, make sure to handle the case when we're searching for
374 // zero (a weird way to spell strlen).
375 size_t I = (0xFF & CharC->getSExtValue()) == 0
376 ? Str.size()
377 : Str.find(CharC->getSExtValue());
378 if (I == StringRef::npos) // Didn't find the char. strchr returns null.
379 return Constant::getNullValue(CI->getType());
380
381 // strchr(s+n,c) -> gep(s+n+i,c)
382 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
383 }
384
optimizeStrRChr(CallInst * CI,IRBuilder<> & B)385 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
386 Value *SrcStr = CI->getArgOperand(0);
387 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
388 annotateNonNullBasedOnAccess(CI, 0);
389
390 // Cannot fold anything if we're not looking for a constant.
391 if (!CharC)
392 return nullptr;
393
394 StringRef Str;
395 if (!getConstantStringInfo(SrcStr, Str)) {
396 // strrchr(s, 0) -> strchr(s, 0)
397 if (CharC->isZero())
398 return emitStrChr(SrcStr, '\0', B, TLI);
399 return nullptr;
400 }
401
402 // Compute the offset.
403 size_t I = (0xFF & CharC->getSExtValue()) == 0
404 ? Str.size()
405 : Str.rfind(CharC->getSExtValue());
406 if (I == StringRef::npos) // Didn't find the char. Return null.
407 return Constant::getNullValue(CI->getType());
408
409 // strrchr(s+n,c) -> gep(s+n+i,c)
410 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
411 }
412
optimizeStrCmp(CallInst * CI,IRBuilder<> & B)413 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
414 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
415 if (Str1P == Str2P) // strcmp(x,x) -> 0
416 return ConstantInt::get(CI->getType(), 0);
417
418 StringRef Str1, Str2;
419 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
420 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
421
422 // strcmp(x, y) -> cnst (if both x and y are constant strings)
423 if (HasStr1 && HasStr2)
424 return ConstantInt::get(CI->getType(), Str1.compare(Str2));
425
426 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
427 return B.CreateNeg(B.CreateZExt(
428 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
429
430 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
431 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
432 CI->getType());
433
434 // strcmp(P, "x") -> memcmp(P, "x", 2)
435 uint64_t Len1 = GetStringLength(Str1P);
436 if (Len1)
437 annotateDereferenceableBytes(CI, 0, Len1);
438 uint64_t Len2 = GetStringLength(Str2P);
439 if (Len2)
440 annotateDereferenceableBytes(CI, 1, Len2);
441
442 if (Len1 && Len2) {
443 return emitMemCmp(Str1P, Str2P,
444 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
445 std::min(Len1, Len2)),
446 B, DL, TLI);
447 }
448
449 // strcmp to memcmp
450 if (!HasStr1 && HasStr2) {
451 if (canTransformToMemCmp(CI, Str1P, Len2, DL))
452 return emitMemCmp(
453 Str1P, Str2P,
454 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
455 TLI);
456 } else if (HasStr1 && !HasStr2) {
457 if (canTransformToMemCmp(CI, Str2P, Len1, DL))
458 return emitMemCmp(
459 Str1P, Str2P,
460 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
461 TLI);
462 }
463
464 annotateNonNullBasedOnAccess(CI, {0, 1});
465 return nullptr;
466 }
467
optimizeStrNCmp(CallInst * CI,IRBuilder<> & B)468 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
469 Value *Str1P = CI->getArgOperand(0);
470 Value *Str2P = CI->getArgOperand(1);
471 Value *Size = CI->getArgOperand(2);
472 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
473 return ConstantInt::get(CI->getType(), 0);
474
475 if (isKnownNonZero(Size, DL))
476 annotateNonNullBasedOnAccess(CI, {0, 1});
477 // Get the length argument if it is constant.
478 uint64_t Length;
479 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
480 Length = LengthArg->getZExtValue();
481 else
482 return nullptr;
483
484 if (Length == 0) // strncmp(x,y,0) -> 0
485 return ConstantInt::get(CI->getType(), 0);
486
487 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
488 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
489
490 StringRef Str1, Str2;
491 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
492 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
493
494 // strncmp(x, y) -> cnst (if both x and y are constant strings)
495 if (HasStr1 && HasStr2) {
496 StringRef SubStr1 = Str1.substr(0, Length);
497 StringRef SubStr2 = Str2.substr(0, Length);
498 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
499 }
500
501 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
502 return B.CreateNeg(B.CreateZExt(
503 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
504
505 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
506 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
507 CI->getType());
508
509 uint64_t Len1 = GetStringLength(Str1P);
510 if (Len1)
511 annotateDereferenceableBytes(CI, 0, Len1);
512 uint64_t Len2 = GetStringLength(Str2P);
513 if (Len2)
514 annotateDereferenceableBytes(CI, 1, Len2);
515
516 // strncmp to memcmp
517 if (!HasStr1 && HasStr2) {
518 Len2 = std::min(Len2, Length);
519 if (canTransformToMemCmp(CI, Str1P, Len2, DL))
520 return emitMemCmp(
521 Str1P, Str2P,
522 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
523 TLI);
524 } else if (HasStr1 && !HasStr2) {
525 Len1 = std::min(Len1, Length);
526 if (canTransformToMemCmp(CI, Str2P, Len1, DL))
527 return emitMemCmp(
528 Str1P, Str2P,
529 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
530 TLI);
531 }
532
533 return nullptr;
534 }
535
optimizeStrNDup(CallInst * CI,IRBuilder<> & B)536 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilder<> &B) {
537 Value *Src = CI->getArgOperand(0);
538 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
539 uint64_t SrcLen = GetStringLength(Src);
540 if (SrcLen && Size) {
541 annotateDereferenceableBytes(CI, 0, SrcLen);
542 if (SrcLen <= Size->getZExtValue() + 1)
543 return emitStrDup(Src, B, TLI);
544 }
545
546 return nullptr;
547 }
548
optimizeStrCpy(CallInst * CI,IRBuilder<> & B)549 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
550 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
551 if (Dst == Src) // strcpy(x,x) -> x
552 return Src;
553
554 annotateNonNullBasedOnAccess(CI, {0, 1});
555 // See if we can get the length of the input string.
556 uint64_t Len = GetStringLength(Src);
557 if (Len)
558 annotateDereferenceableBytes(CI, 1, Len);
559 else
560 return nullptr;
561
562 // We have enough information to now generate the memcpy call to do the
563 // copy for us. Make a memcpy to copy the nul byte with align = 1.
564 CallInst *NewCI =
565 B.CreateMemCpy(Dst, Align::None(), Src, Align::None(),
566 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
567 NewCI->setAttributes(CI->getAttributes());
568 return Dst;
569 }
570
optimizeStpCpy(CallInst * CI,IRBuilder<> & B)571 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
572 Function *Callee = CI->getCalledFunction();
573 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
574 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
575 Value *StrLen = emitStrLen(Src, B, DL, TLI);
576 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
577 }
578
579 // See if we can get the length of the input string.
580 uint64_t Len = GetStringLength(Src);
581 if (Len)
582 annotateDereferenceableBytes(CI, 1, Len);
583 else
584 return nullptr;
585
586 Type *PT = Callee->getFunctionType()->getParamType(0);
587 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
588 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
589 ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
590
591 // We have enough information to now generate the memcpy call to do the
592 // copy for us. Make a memcpy to copy the nul byte with align = 1.
593 CallInst *NewCI =
594 B.CreateMemCpy(Dst, Align::None(), Src, Align::None(), LenV);
595 NewCI->setAttributes(CI->getAttributes());
596 return DstEnd;
597 }
598
optimizeStrNCpy(CallInst * CI,IRBuilder<> & B)599 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
600 Function *Callee = CI->getCalledFunction();
601 Value *Dst = CI->getArgOperand(0);
602 Value *Src = CI->getArgOperand(1);
603 Value *Size = CI->getArgOperand(2);
604 annotateNonNullBasedOnAccess(CI, 0);
605 if (isKnownNonZero(Size, DL))
606 annotateNonNullBasedOnAccess(CI, 1);
607
608 uint64_t Len;
609 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
610 Len = LengthArg->getZExtValue();
611 else
612 return nullptr;
613
614 // strncpy(x, y, 0) -> x
615 if (Len == 0)
616 return Dst;
617
618 // See if we can get the length of the input string.
619 uint64_t SrcLen = GetStringLength(Src);
620 if (SrcLen) {
621 annotateDereferenceableBytes(CI, 1, SrcLen);
622 --SrcLen; // Unbias length.
623 } else {
624 return nullptr;
625 }
626
627 if (SrcLen == 0) {
628 // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
629 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align::None());
630 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
631 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
632 CI->getContext(), 0, ArgAttrs));
633 return Dst;
634 }
635
636 // Let strncpy handle the zero padding
637 if (Len > SrcLen + 1)
638 return nullptr;
639
640 Type *PT = Callee->getFunctionType()->getParamType(0);
641 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
642 CallInst *NewCI = B.CreateMemCpy(Dst, Align::None(), Src, Align::None(),
643 ConstantInt::get(DL.getIntPtrType(PT), Len));
644 NewCI->setAttributes(CI->getAttributes());
645 return Dst;
646 }
647
optimizeStringLength(CallInst * CI,IRBuilder<> & B,unsigned CharSize)648 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
649 unsigned CharSize) {
650 Value *Src = CI->getArgOperand(0);
651
652 // Constant folding: strlen("xyz") -> 3
653 if (uint64_t Len = GetStringLength(Src, CharSize))
654 return ConstantInt::get(CI->getType(), Len - 1);
655
656 // If s is a constant pointer pointing to a string literal, we can fold
657 // strlen(s + x) to strlen(s) - x, when x is known to be in the range
658 // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
659 // We only try to simplify strlen when the pointer s points to an array
660 // of i8. Otherwise, we would need to scale the offset x before doing the
661 // subtraction. This will make the optimization more complex, and it's not
662 // very useful because calling strlen for a pointer of other types is
663 // very uncommon.
664 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
665 if (!isGEPBasedOnPointerToString(GEP, CharSize))
666 return nullptr;
667
668 ConstantDataArraySlice Slice;
669 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
670 uint64_t NullTermIdx;
671 if (Slice.Array == nullptr) {
672 NullTermIdx = 0;
673 } else {
674 NullTermIdx = ~((uint64_t)0);
675 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
676 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
677 NullTermIdx = I;
678 break;
679 }
680 }
681 // If the string does not have '\0', leave it to strlen to compute
682 // its length.
683 if (NullTermIdx == ~((uint64_t)0))
684 return nullptr;
685 }
686
687 Value *Offset = GEP->getOperand(2);
688 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
689 Known.Zero.flipAllBits();
690 uint64_t ArrSize =
691 cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
692
693 // KnownZero's bits are flipped, so zeros in KnownZero now represent
694 // bits known to be zeros in Offset, and ones in KnowZero represent
695 // bits unknown in Offset. Therefore, Offset is known to be in range
696 // [0, NullTermIdx] when the flipped KnownZero is non-negative and
697 // unsigned-less-than NullTermIdx.
698 //
699 // If Offset is not provably in the range [0, NullTermIdx], we can still
700 // optimize if we can prove that the program has undefined behavior when
701 // Offset is outside that range. That is the case when GEP->getOperand(0)
702 // is a pointer to an object whose memory extent is NullTermIdx+1.
703 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
704 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
705 NullTermIdx == ArrSize - 1)) {
706 Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
707 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
708 Offset);
709 }
710 }
711
712 return nullptr;
713 }
714
715 // strlen(x?"foo":"bars") --> x ? 3 : 4
716 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
717 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
718 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
719 if (LenTrue && LenFalse) {
720 ORE.emit([&]() {
721 return OptimizationRemark("instcombine", "simplify-libcalls", CI)
722 << "folded strlen(select) to select of constants";
723 });
724 return B.CreateSelect(SI->getCondition(),
725 ConstantInt::get(CI->getType(), LenTrue - 1),
726 ConstantInt::get(CI->getType(), LenFalse - 1));
727 }
728 }
729
730 // strlen(x) != 0 --> *x != 0
731 // strlen(x) == 0 --> *x == 0
732 if (isOnlyUsedInZeroEqualityComparison(CI))
733 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
734 CI->getType());
735
736 return nullptr;
737 }
738
optimizeStrLen(CallInst * CI,IRBuilder<> & B)739 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
740 if (Value *V = optimizeStringLength(CI, B, 8))
741 return V;
742 annotateNonNullBasedOnAccess(CI, 0);
743 return nullptr;
744 }
745
optimizeWcslen(CallInst * CI,IRBuilder<> & B)746 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
747 Module &M = *CI->getModule();
748 unsigned WCharSize = TLI->getWCharSize(M) * 8;
749 // We cannot perform this optimization without wchar_size metadata.
750 if (WCharSize == 0)
751 return nullptr;
752
753 return optimizeStringLength(CI, B, WCharSize);
754 }
755
optimizeStrPBrk(CallInst * CI,IRBuilder<> & B)756 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
757 StringRef S1, S2;
758 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
759 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
760
761 // strpbrk(s, "") -> nullptr
762 // strpbrk("", s) -> nullptr
763 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
764 return Constant::getNullValue(CI->getType());
765
766 // Constant folding.
767 if (HasS1 && HasS2) {
768 size_t I = S1.find_first_of(S2);
769 if (I == StringRef::npos) // No match.
770 return Constant::getNullValue(CI->getType());
771
772 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
773 "strpbrk");
774 }
775
776 // strpbrk(s, "a") -> strchr(s, 'a')
777 if (HasS2 && S2.size() == 1)
778 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
779
780 return nullptr;
781 }
782
optimizeStrTo(CallInst * CI,IRBuilder<> & B)783 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
784 Value *EndPtr = CI->getArgOperand(1);
785 if (isa<ConstantPointerNull>(EndPtr)) {
786 // With a null EndPtr, this function won't capture the main argument.
787 // It would be readonly too, except that it still may write to errno.
788 CI->addParamAttr(0, Attribute::NoCapture);
789 }
790
791 return nullptr;
792 }
793
optimizeStrSpn(CallInst * CI,IRBuilder<> & B)794 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
795 StringRef S1, S2;
796 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
797 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
798
799 // strspn(s, "") -> 0
800 // strspn("", s) -> 0
801 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
802 return Constant::getNullValue(CI->getType());
803
804 // Constant folding.
805 if (HasS1 && HasS2) {
806 size_t Pos = S1.find_first_not_of(S2);
807 if (Pos == StringRef::npos)
808 Pos = S1.size();
809 return ConstantInt::get(CI->getType(), Pos);
810 }
811
812 return nullptr;
813 }
814
optimizeStrCSpn(CallInst * CI,IRBuilder<> & B)815 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
816 StringRef S1, S2;
817 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
818 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
819
820 // strcspn("", s) -> 0
821 if (HasS1 && S1.empty())
822 return Constant::getNullValue(CI->getType());
823
824 // Constant folding.
825 if (HasS1 && HasS2) {
826 size_t Pos = S1.find_first_of(S2);
827 if (Pos == StringRef::npos)
828 Pos = S1.size();
829 return ConstantInt::get(CI->getType(), Pos);
830 }
831
832 // strcspn(s, "") -> strlen(s)
833 if (HasS2 && S2.empty())
834 return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
835
836 return nullptr;
837 }
838
optimizeStrStr(CallInst * CI,IRBuilder<> & B)839 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
840 // fold strstr(x, x) -> x.
841 if (CI->getArgOperand(0) == CI->getArgOperand(1))
842 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
843
844 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
845 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
846 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
847 if (!StrLen)
848 return nullptr;
849 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
850 StrLen, B, DL, TLI);
851 if (!StrNCmp)
852 return nullptr;
853 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
854 ICmpInst *Old = cast<ICmpInst>(*UI++);
855 Value *Cmp =
856 B.CreateICmp(Old->getPredicate(), StrNCmp,
857 ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
858 replaceAllUsesWith(Old, Cmp);
859 }
860 return CI;
861 }
862
863 // See if either input string is a constant string.
864 StringRef SearchStr, ToFindStr;
865 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
866 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
867
868 // fold strstr(x, "") -> x.
869 if (HasStr2 && ToFindStr.empty())
870 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
871
872 // If both strings are known, constant fold it.
873 if (HasStr1 && HasStr2) {
874 size_t Offset = SearchStr.find(ToFindStr);
875
876 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
877 return Constant::getNullValue(CI->getType());
878
879 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
880 Value *Result = castToCStr(CI->getArgOperand(0), B);
881 Result =
882 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
883 return B.CreateBitCast(Result, CI->getType());
884 }
885
886 // fold strstr(x, "y") -> strchr(x, 'y').
887 if (HasStr2 && ToFindStr.size() == 1) {
888 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
889 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
890 }
891
892 annotateNonNullBasedOnAccess(CI, {0, 1});
893 return nullptr;
894 }
895
optimizeMemRChr(CallInst * CI,IRBuilder<> & B)896 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilder<> &B) {
897 if (isKnownNonZero(CI->getOperand(2), DL))
898 annotateNonNullBasedOnAccess(CI, 0);
899 return nullptr;
900 }
901
optimizeMemChr(CallInst * CI,IRBuilder<> & B)902 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
903 Value *SrcStr = CI->getArgOperand(0);
904 Value *Size = CI->getArgOperand(2);
905 annotateNonNullAndDereferenceable(CI, 0, Size, DL);
906 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
907 ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
908
909 // memchr(x, y, 0) -> null
910 if (LenC) {
911 if (LenC->isZero())
912 return Constant::getNullValue(CI->getType());
913 } else {
914 // From now on we need at least constant length and string.
915 return nullptr;
916 }
917
918 StringRef Str;
919 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
920 return nullptr;
921
922 // Truncate the string to LenC. If Str is smaller than LenC we will still only
923 // scan the string, as reading past the end of it is undefined and we can just
924 // return null if we don't find the char.
925 Str = Str.substr(0, LenC->getZExtValue());
926
927 // If the char is variable but the input str and length are not we can turn
928 // this memchr call into a simple bit field test. Of course this only works
929 // when the return value is only checked against null.
930 //
931 // It would be really nice to reuse switch lowering here but we can't change
932 // the CFG at this point.
933 //
934 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
935 // != 0
936 // after bounds check.
937 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
938 unsigned char Max =
939 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
940 reinterpret_cast<const unsigned char *>(Str.end()));
941
942 // Make sure the bit field we're about to create fits in a register on the
943 // target.
944 // FIXME: On a 64 bit architecture this prevents us from using the
945 // interesting range of alpha ascii chars. We could do better by emitting
946 // two bitfields or shifting the range by 64 if no lower chars are used.
947 if (!DL.fitsInLegalInteger(Max + 1))
948 return nullptr;
949
950 // For the bit field use a power-of-2 type with at least 8 bits to avoid
951 // creating unnecessary illegal types.
952 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
953
954 // Now build the bit field.
955 APInt Bitfield(Width, 0);
956 for (char C : Str)
957 Bitfield.setBit((unsigned char)C);
958 Value *BitfieldC = B.getInt(Bitfield);
959
960 // Adjust width of "C" to the bitfield width, then mask off the high bits.
961 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
962 C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
963
964 // First check that the bit field access is within bounds.
965 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
966 "memchr.bounds");
967
968 // Create code that checks if the given bit is set in the field.
969 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
970 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
971
972 // Finally merge both checks and cast to pointer type. The inttoptr
973 // implicitly zexts the i1 to intptr type.
974 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
975 }
976
977 // Check if all arguments are constants. If so, we can constant fold.
978 if (!CharC)
979 return nullptr;
980
981 // Compute the offset.
982 size_t I = Str.find(CharC->getSExtValue() & 0xFF);
983 if (I == StringRef::npos) // Didn't find the char. memchr returns null.
984 return Constant::getNullValue(CI->getType());
985
986 // memchr(s+n,c,l) -> gep(s+n+i,c)
987 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
988 }
989
optimizeMemCmpConstantSize(CallInst * CI,Value * LHS,Value * RHS,uint64_t Len,IRBuilder<> & B,const DataLayout & DL)990 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
991 uint64_t Len, IRBuilder<> &B,
992 const DataLayout &DL) {
993 if (Len == 0) // memcmp(s1,s2,0) -> 0
994 return Constant::getNullValue(CI->getType());
995
996 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
997 if (Len == 1) {
998 Value *LHSV =
999 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1000 CI->getType(), "lhsv");
1001 Value *RHSV =
1002 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1003 CI->getType(), "rhsv");
1004 return B.CreateSub(LHSV, RHSV, "chardiff");
1005 }
1006
1007 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1008 // TODO: The case where both inputs are constants does not need to be limited
1009 // to legal integers or equality comparison. See block below this.
1010 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1011 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1012 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1013
1014 // First, see if we can fold either argument to a constant.
1015 Value *LHSV = nullptr;
1016 if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1017 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1018 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1019 }
1020 Value *RHSV = nullptr;
1021 if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1022 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1023 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1024 }
1025
1026 // Don't generate unaligned loads. If either source is constant data,
1027 // alignment doesn't matter for that source because there is no load.
1028 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1029 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1030 if (!LHSV) {
1031 Type *LHSPtrTy =
1032 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1033 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1034 }
1035 if (!RHSV) {
1036 Type *RHSPtrTy =
1037 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1038 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1039 }
1040 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1041 }
1042 }
1043
1044 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1045 // TODO: This is limited to i8 arrays.
1046 StringRef LHSStr, RHSStr;
1047 if (getConstantStringInfo(LHS, LHSStr) &&
1048 getConstantStringInfo(RHS, RHSStr)) {
1049 // Make sure we're not reading out-of-bounds memory.
1050 if (Len > LHSStr.size() || Len > RHSStr.size())
1051 return nullptr;
1052 // Fold the memcmp and normalize the result. This way we get consistent
1053 // results across multiple platforms.
1054 uint64_t Ret = 0;
1055 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1056 if (Cmp < 0)
1057 Ret = -1;
1058 else if (Cmp > 0)
1059 Ret = 1;
1060 return ConstantInt::get(CI->getType(), Ret);
1061 }
1062
1063 return nullptr;
1064 }
1065
1066 // Most simplifications for memcmp also apply to bcmp.
optimizeMemCmpBCmpCommon(CallInst * CI,IRBuilder<> & B)1067 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1068 IRBuilder<> &B) {
1069 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1070 Value *Size = CI->getArgOperand(2);
1071
1072 if (LHS == RHS) // memcmp(s,s,x) -> 0
1073 return Constant::getNullValue(CI->getType());
1074
1075 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1076 // Handle constant lengths.
1077 ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1078 if (!LenC)
1079 return nullptr;
1080
1081 // memcmp(d,s,0) -> 0
1082 if (LenC->getZExtValue() == 0)
1083 return Constant::getNullValue(CI->getType());
1084
1085 if (Value *Res =
1086 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1087 return Res;
1088 return nullptr;
1089 }
1090
optimizeMemCmp(CallInst * CI,IRBuilder<> & B)1091 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
1092 if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1093 return V;
1094
1095 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1096 // bcmp can be more efficient than memcmp because it only has to know that
1097 // there is a difference, not how different one is to the other.
1098 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1099 Value *LHS = CI->getArgOperand(0);
1100 Value *RHS = CI->getArgOperand(1);
1101 Value *Size = CI->getArgOperand(2);
1102 return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1103 }
1104
1105 return nullptr;
1106 }
1107
optimizeBCmp(CallInst * CI,IRBuilder<> & B)1108 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) {
1109 return optimizeMemCmpBCmpCommon(CI, B);
1110 }
1111
optimizeMemCpy(CallInst * CI,IRBuilder<> & B)1112 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
1113 Value *Size = CI->getArgOperand(2);
1114 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1115 if (isa<IntrinsicInst>(CI))
1116 return nullptr;
1117
1118 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1119 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align::None(),
1120 CI->getArgOperand(1), Align::None(), Size);
1121 NewCI->setAttributes(CI->getAttributes());
1122 return CI->getArgOperand(0);
1123 }
1124
optimizeMemCCpy(CallInst * CI,IRBuilder<> & B)1125 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilder<> &B) {
1126 Value *Dst = CI->getArgOperand(0);
1127 Value *Src = CI->getArgOperand(1);
1128 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1129 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1130 StringRef SrcStr;
1131 if (CI->use_empty() && Dst == Src)
1132 return Dst;
1133 // memccpy(d, s, c, 0) -> nullptr
1134 if (N) {
1135 if (N->isNullValue())
1136 return Constant::getNullValue(CI->getType());
1137 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1138 /*TrimAtNul=*/false) ||
1139 !StopChar)
1140 return nullptr;
1141 } else {
1142 return nullptr;
1143 }
1144
1145 // Wrap arg 'c' of type int to char
1146 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1147 if (Pos == StringRef::npos) {
1148 if (N->getZExtValue() <= SrcStr.size()) {
1149 B.CreateMemCpy(Dst, Align::None(), Src, Align::None(),
1150 CI->getArgOperand(3));
1151 return Constant::getNullValue(CI->getType());
1152 }
1153 return nullptr;
1154 }
1155
1156 Value *NewN =
1157 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1158 // memccpy -> llvm.memcpy
1159 B.CreateMemCpy(Dst, Align::None(), Src, Align::None(), NewN);
1160 return Pos + 1 <= N->getZExtValue()
1161 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1162 : Constant::getNullValue(CI->getType());
1163 }
1164
optimizeMemPCpy(CallInst * CI,IRBuilder<> & B)1165 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilder<> &B) {
1166 Value *Dst = CI->getArgOperand(0);
1167 Value *N = CI->getArgOperand(2);
1168 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1169 CallInst *NewCI = B.CreateMemCpy(Dst, Align::None(), CI->getArgOperand(1),
1170 Align::None(), N);
1171 NewCI->setAttributes(CI->getAttributes());
1172 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1173 }
1174
optimizeMemMove(CallInst * CI,IRBuilder<> & B)1175 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
1176 Value *Size = CI->getArgOperand(2);
1177 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1178 if (isa<IntrinsicInst>(CI))
1179 return nullptr;
1180
1181 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1182 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align::None(),
1183 CI->getArgOperand(1), Align::None(), Size);
1184 NewCI->setAttributes(CI->getAttributes());
1185 return CI->getArgOperand(0);
1186 }
1187
1188 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
foldMallocMemset(CallInst * Memset,IRBuilder<> & B)1189 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
1190 // This has to be a memset of zeros (bzero).
1191 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1192 if (!FillValue || FillValue->getZExtValue() != 0)
1193 return nullptr;
1194
1195 // TODO: We should handle the case where the malloc has more than one use.
1196 // This is necessary to optimize common patterns such as when the result of
1197 // the malloc is checked against null or when a memset intrinsic is used in
1198 // place of a memset library call.
1199 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1200 if (!Malloc || !Malloc->hasOneUse())
1201 return nullptr;
1202
1203 // Is the inner call really malloc()?
1204 Function *InnerCallee = Malloc->getCalledFunction();
1205 if (!InnerCallee)
1206 return nullptr;
1207
1208 LibFunc Func;
1209 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1210 Func != LibFunc_malloc)
1211 return nullptr;
1212
1213 // The memset must cover the same number of bytes that are malloc'd.
1214 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1215 return nullptr;
1216
1217 // Replace the malloc with a calloc. We need the data layout to know what the
1218 // actual size of a 'size_t' parameter is.
1219 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1220 const DataLayout &DL = Malloc->getModule()->getDataLayout();
1221 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1222 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1223 Malloc->getArgOperand(0),
1224 Malloc->getAttributes(), B, *TLI)) {
1225 substituteInParent(Malloc, Calloc);
1226 return Calloc;
1227 }
1228
1229 return nullptr;
1230 }
1231
optimizeMemSet(CallInst * CI,IRBuilder<> & B)1232 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
1233 Value *Size = CI->getArgOperand(2);
1234 annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1235 if (isa<IntrinsicInst>(CI))
1236 return nullptr;
1237
1238 if (auto *Calloc = foldMallocMemset(CI, B))
1239 return Calloc;
1240
1241 // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1242 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1243 CallInst *NewCI =
1244 B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align::None());
1245 NewCI->setAttributes(CI->getAttributes());
1246 return CI->getArgOperand(0);
1247 }
1248
optimizeRealloc(CallInst * CI,IRBuilder<> & B)1249 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1250 if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1251 return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1252
1253 return nullptr;
1254 }
1255
1256 //===----------------------------------------------------------------------===//
1257 // Math Library Optimizations
1258 //===----------------------------------------------------------------------===//
1259
1260 // Replace a libcall \p CI with a call to intrinsic \p IID
replaceUnaryCall(CallInst * CI,IRBuilder<> & B,Intrinsic::ID IID)1261 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
1262 // Propagate fast-math flags from the existing call to the new call.
1263 IRBuilder<>::FastMathFlagGuard Guard(B);
1264 B.setFastMathFlags(CI->getFastMathFlags());
1265
1266 Module *M = CI->getModule();
1267 Value *V = CI->getArgOperand(0);
1268 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1269 CallInst *NewCall = B.CreateCall(F, V);
1270 NewCall->takeName(CI);
1271 return NewCall;
1272 }
1273
1274 /// Return a variant of Val with float type.
1275 /// Currently this works in two cases: If Val is an FPExtension of a float
1276 /// value to something bigger, simply return the operand.
1277 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1278 /// loss of precision do so.
valueHasFloatPrecision(Value * Val)1279 static Value *valueHasFloatPrecision(Value *Val) {
1280 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1281 Value *Op = Cast->getOperand(0);
1282 if (Op->getType()->isFloatTy())
1283 return Op;
1284 }
1285 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1286 APFloat F = Const->getValueAPF();
1287 bool losesInfo;
1288 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1289 &losesInfo);
1290 if (!losesInfo)
1291 return ConstantFP::get(Const->getContext(), F);
1292 }
1293 return nullptr;
1294 }
1295
1296 /// Shrink double -> float functions.
optimizeDoubleFP(CallInst * CI,IRBuilder<> & B,bool isBinary,bool isPrecise=false)1297 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1298 bool isBinary, bool isPrecise = false) {
1299 Function *CalleeFn = CI->getCalledFunction();
1300 if (!CI->getType()->isDoubleTy() || !CalleeFn)
1301 return nullptr;
1302
1303 // If not all the uses of the function are converted to float, then bail out.
1304 // This matters if the precision of the result is more important than the
1305 // precision of the arguments.
1306 if (isPrecise)
1307 for (User *U : CI->users()) {
1308 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1309 if (!Cast || !Cast->getType()->isFloatTy())
1310 return nullptr;
1311 }
1312
1313 // If this is something like 'g((double) float)', convert to 'gf(float)'.
1314 Value *V[2];
1315 V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1316 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1317 if (!V[0] || (isBinary && !V[1]))
1318 return nullptr;
1319
1320 // If call isn't an intrinsic, check that it isn't within a function with the
1321 // same name as the float version of this call, otherwise the result is an
1322 // infinite loop. For example, from MinGW-w64:
1323 //
1324 // float expf(float val) { return (float) exp((double) val); }
1325 StringRef CalleeName = CalleeFn->getName();
1326 bool IsIntrinsic = CalleeFn->isIntrinsic();
1327 if (!IsIntrinsic) {
1328 StringRef CallerName = CI->getFunction()->getName();
1329 if (!CallerName.empty() && CallerName.back() == 'f' &&
1330 CallerName.size() == (CalleeName.size() + 1) &&
1331 CallerName.startswith(CalleeName))
1332 return nullptr;
1333 }
1334
1335 // Propagate the math semantics from the current function to the new function.
1336 IRBuilder<>::FastMathFlagGuard Guard(B);
1337 B.setFastMathFlags(CI->getFastMathFlags());
1338
1339 // g((double) float) -> (double) gf(float)
1340 Value *R;
1341 if (IsIntrinsic) {
1342 Module *M = CI->getModule();
1343 Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1344 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1345 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1346 } else {
1347 AttributeList CalleeAttrs = CalleeFn->getAttributes();
1348 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1349 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1350 }
1351 return B.CreateFPExt(R, B.getDoubleTy());
1352 }
1353
1354 /// Shrink double -> float for unary functions.
optimizeUnaryDoubleFP(CallInst * CI,IRBuilder<> & B,bool isPrecise=false)1355 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1356 bool isPrecise = false) {
1357 return optimizeDoubleFP(CI, B, false, isPrecise);
1358 }
1359
1360 /// Shrink double -> float for binary functions.
optimizeBinaryDoubleFP(CallInst * CI,IRBuilder<> & B,bool isPrecise=false)1361 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1362 bool isPrecise = false) {
1363 return optimizeDoubleFP(CI, B, true, isPrecise);
1364 }
1365
1366 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
optimizeCAbs(CallInst * CI,IRBuilder<> & B)1367 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1368 if (!CI->isFast())
1369 return nullptr;
1370
1371 // Propagate fast-math flags from the existing call to new instructions.
1372 IRBuilder<>::FastMathFlagGuard Guard(B);
1373 B.setFastMathFlags(CI->getFastMathFlags());
1374
1375 Value *Real, *Imag;
1376 if (CI->getNumArgOperands() == 1) {
1377 Value *Op = CI->getArgOperand(0);
1378 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1379 Real = B.CreateExtractValue(Op, 0, "real");
1380 Imag = B.CreateExtractValue(Op, 1, "imag");
1381 } else {
1382 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1383 Real = CI->getArgOperand(0);
1384 Imag = CI->getArgOperand(1);
1385 }
1386
1387 Value *RealReal = B.CreateFMul(Real, Real);
1388 Value *ImagImag = B.CreateFMul(Imag, Imag);
1389
1390 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1391 CI->getType());
1392 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1393 }
1394
optimizeTrigReflections(CallInst * Call,LibFunc Func,IRBuilder<> & B)1395 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1396 IRBuilder<> &B) {
1397 if (!isa<FPMathOperator>(Call))
1398 return nullptr;
1399
1400 IRBuilder<>::FastMathFlagGuard Guard(B);
1401 B.setFastMathFlags(Call->getFastMathFlags());
1402
1403 // TODO: Can this be shared to also handle LLVM intrinsics?
1404 Value *X;
1405 switch (Func) {
1406 case LibFunc_sin:
1407 case LibFunc_sinf:
1408 case LibFunc_sinl:
1409 case LibFunc_tan:
1410 case LibFunc_tanf:
1411 case LibFunc_tanl:
1412 // sin(-X) --> -sin(X)
1413 // tan(-X) --> -tan(X)
1414 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1415 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1416 break;
1417 case LibFunc_cos:
1418 case LibFunc_cosf:
1419 case LibFunc_cosl:
1420 // cos(-X) --> cos(X)
1421 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1422 return B.CreateCall(Call->getCalledFunction(), X, "cos");
1423 break;
1424 default:
1425 break;
1426 }
1427 return nullptr;
1428 }
1429
getPow(Value * InnerChain[33],unsigned Exp,IRBuilder<> & B)1430 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1431 // Multiplications calculated using Addition Chains.
1432 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1433
1434 assert(Exp != 0 && "Incorrect exponent 0 not handled");
1435
1436 if (InnerChain[Exp])
1437 return InnerChain[Exp];
1438
1439 static const unsigned AddChain[33][2] = {
1440 {0, 0}, // Unused.
1441 {0, 0}, // Unused (base case = pow1).
1442 {1, 1}, // Unused (pre-computed).
1443 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
1444 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
1445 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
1446 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1447 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1448 };
1449
1450 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1451 getPow(InnerChain, AddChain[Exp][1], B));
1452 return InnerChain[Exp];
1453 }
1454
1455 // Return a properly extended 32-bit integer if the operation is an itofp.
getIntToFPVal(Value * I2F,IRBuilder<> & B)1456 static Value *getIntToFPVal(Value *I2F, IRBuilder<> &B) {
1457 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1458 Value *Op = cast<Instruction>(I2F)->getOperand(0);
1459 // Make sure that the exponent fits inside an int32_t,
1460 // thus avoiding any range issues that FP has not.
1461 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1462 if (BitWidth < 32 ||
1463 (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1464 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1465 : B.CreateZExt(Op, B.getInt32Ty());
1466 }
1467
1468 return nullptr;
1469 }
1470
1471 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1472 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1473 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
replacePowWithExp(CallInst * Pow,IRBuilder<> & B)1474 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1475 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1476 AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1477 Module *Mod = Pow->getModule();
1478 Type *Ty = Pow->getType();
1479 bool Ignored;
1480
1481 // Evaluate special cases related to a nested function as the base.
1482
1483 // pow(exp(x), y) -> exp(x * y)
1484 // pow(exp2(x), y) -> exp2(x * y)
1485 // If exp{,2}() is used only once, it is better to fold two transcendental
1486 // math functions into one. If used again, exp{,2}() would still have to be
1487 // called with the original argument, then keep both original transcendental
1488 // functions. However, this transformation is only safe with fully relaxed
1489 // math semantics, since, besides rounding differences, it changes overflow
1490 // and underflow behavior quite dramatically. For example:
1491 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1492 // Whereas:
1493 // exp(1000 * 0.001) = exp(1)
1494 // TODO: Loosen the requirement for fully relaxed math semantics.
1495 // TODO: Handle exp10() when more targets have it available.
1496 CallInst *BaseFn = dyn_cast<CallInst>(Base);
1497 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1498 LibFunc LibFn;
1499
1500 Function *CalleeFn = BaseFn->getCalledFunction();
1501 if (CalleeFn &&
1502 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1503 StringRef ExpName;
1504 Intrinsic::ID ID;
1505 Value *ExpFn;
1506 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1507
1508 switch (LibFn) {
1509 default:
1510 return nullptr;
1511 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl:
1512 ExpName = TLI->getName(LibFunc_exp);
1513 ID = Intrinsic::exp;
1514 LibFnFloat = LibFunc_expf;
1515 LibFnDouble = LibFunc_exp;
1516 LibFnLongDouble = LibFunc_expl;
1517 break;
1518 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1519 ExpName = TLI->getName(LibFunc_exp2);
1520 ID = Intrinsic::exp2;
1521 LibFnFloat = LibFunc_exp2f;
1522 LibFnDouble = LibFunc_exp2;
1523 LibFnLongDouble = LibFunc_exp2l;
1524 break;
1525 }
1526
1527 // Create new exp{,2}() with the product as its argument.
1528 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1529 ExpFn = BaseFn->doesNotAccessMemory()
1530 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1531 FMul, ExpName)
1532 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1533 LibFnLongDouble, B,
1534 BaseFn->getAttributes());
1535
1536 // Since the new exp{,2}() is different from the original one, dead code
1537 // elimination cannot be trusted to remove it, since it may have side
1538 // effects (e.g., errno). When the only consumer for the original
1539 // exp{,2}() is pow(), then it has to be explicitly erased.
1540 substituteInParent(BaseFn, ExpFn);
1541 return ExpFn;
1542 }
1543 }
1544
1545 // Evaluate special cases related to a constant base.
1546
1547 const APFloat *BaseF;
1548 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1549 return nullptr;
1550
1551 // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1552 if (match(Base, m_SpecificFP(2.0)) &&
1553 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1554 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1555 if (Value *ExpoI = getIntToFPVal(Expo, B))
1556 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1557 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1558 B, Attrs);
1559 }
1560
1561 // pow(2.0 ** n, x) -> exp2(n * x)
1562 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1563 APFloat BaseR = APFloat(1.0);
1564 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1565 BaseR = BaseR / *BaseF;
1566 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1567 const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1568 APSInt NI(64, false);
1569 if ((IsInteger || IsReciprocal) &&
1570 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1571 APFloat::opOK &&
1572 NI > 1 && NI.isPowerOf2()) {
1573 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1574 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1575 if (Pow->doesNotAccessMemory())
1576 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1577 FMul, "exp2");
1578 else
1579 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1580 LibFunc_exp2l, B, Attrs);
1581 }
1582 }
1583
1584 // pow(10.0, x) -> exp10(x)
1585 // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1586 if (match(Base, m_SpecificFP(10.0)) &&
1587 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1588 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1589 LibFunc_exp10l, B, Attrs);
1590
1591 // pow(n, x) -> exp2(log2(n) * x)
1592 if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() &&
1593 Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) {
1594 Value *Log = nullptr;
1595 if (Ty->isFloatTy())
1596 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1597 else if (Ty->isDoubleTy())
1598 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1599
1600 if (Log) {
1601 Value *FMul = B.CreateFMul(Log, Expo, "mul");
1602 if (Pow->doesNotAccessMemory())
1603 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1604 FMul, "exp2");
1605 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1606 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1607 LibFunc_exp2l, B, Attrs);
1608 }
1609 }
1610
1611 return nullptr;
1612 }
1613
getSqrtCall(Value * V,AttributeList Attrs,bool NoErrno,Module * M,IRBuilder<> & B,const TargetLibraryInfo * TLI)1614 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1615 Module *M, IRBuilder<> &B,
1616 const TargetLibraryInfo *TLI) {
1617 // If errno is never set, then use the intrinsic for sqrt().
1618 if (NoErrno) {
1619 Function *SqrtFn =
1620 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1621 return B.CreateCall(SqrtFn, V, "sqrt");
1622 }
1623
1624 // Otherwise, use the libcall for sqrt().
1625 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1626 // TODO: We also should check that the target can in fact lower the sqrt()
1627 // libcall. We currently have no way to ask this question, so we ask if
1628 // the target has a sqrt() libcall, which is not exactly the same.
1629 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1630 LibFunc_sqrtl, B, Attrs);
1631
1632 return nullptr;
1633 }
1634
1635 /// Use square root in place of pow(x, +/-0.5).
replacePowWithSqrt(CallInst * Pow,IRBuilder<> & B)1636 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1637 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1638 AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1639 Module *Mod = Pow->getModule();
1640 Type *Ty = Pow->getType();
1641
1642 const APFloat *ExpoF;
1643 if (!match(Expo, m_APFloat(ExpoF)) ||
1644 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1645 return nullptr;
1646
1647 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1648 // so that requires fast-math-flags (afn or reassoc).
1649 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1650 return nullptr;
1651
1652 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1653 if (!Sqrt)
1654 return nullptr;
1655
1656 // Handle signed zero base by expanding to fabs(sqrt(x)).
1657 if (!Pow->hasNoSignedZeros()) {
1658 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1659 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1660 }
1661
1662 // Handle non finite base by expanding to
1663 // (x == -infinity ? +infinity : sqrt(x)).
1664 if (!Pow->hasNoInfs()) {
1665 Value *PosInf = ConstantFP::getInfinity(Ty),
1666 *NegInf = ConstantFP::getInfinity(Ty, true);
1667 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1668 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1669 }
1670
1671 // If the exponent is negative, then get the reciprocal.
1672 if (ExpoF->isNegative())
1673 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1674
1675 return Sqrt;
1676 }
1677
createPowWithIntegerExponent(Value * Base,Value * Expo,Module * M,IRBuilder<> & B)1678 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1679 IRBuilder<> &B) {
1680 Value *Args[] = {Base, Expo};
1681 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1682 return B.CreateCall(F, Args);
1683 }
1684
optimizePow(CallInst * Pow,IRBuilder<> & B)1685 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1686 Value *Base = Pow->getArgOperand(0);
1687 Value *Expo = Pow->getArgOperand(1);
1688 Function *Callee = Pow->getCalledFunction();
1689 StringRef Name = Callee->getName();
1690 Type *Ty = Pow->getType();
1691 Module *M = Pow->getModule();
1692 Value *Shrunk = nullptr;
1693 bool AllowApprox = Pow->hasApproxFunc();
1694 bool Ignored;
1695
1696 // Bail out if simplifying libcalls to pow() is disabled.
1697 if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1698 return nullptr;
1699
1700 // Propagate the math semantics from the call to any created instructions.
1701 IRBuilder<>::FastMathFlagGuard Guard(B);
1702 B.setFastMathFlags(Pow->getFastMathFlags());
1703
1704 // Shrink pow() to powf() if the arguments are single precision,
1705 // unless the result is expected to be double precision.
1706 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1707 hasFloatVersion(Name))
1708 Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1709
1710 // Evaluate special cases related to the base.
1711
1712 // pow(1.0, x) -> 1.0
1713 if (match(Base, m_FPOne()))
1714 return Base;
1715
1716 if (Value *Exp = replacePowWithExp(Pow, B))
1717 return Exp;
1718
1719 // Evaluate special cases related to the exponent.
1720
1721 // pow(x, -1.0) -> 1.0 / x
1722 if (match(Expo, m_SpecificFP(-1.0)))
1723 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1724
1725 // pow(x, +/-0.0) -> 1.0
1726 if (match(Expo, m_AnyZeroFP()))
1727 return ConstantFP::get(Ty, 1.0);
1728
1729 // pow(x, 1.0) -> x
1730 if (match(Expo, m_FPOne()))
1731 return Base;
1732
1733 // pow(x, 2.0) -> x * x
1734 if (match(Expo, m_SpecificFP(2.0)))
1735 return B.CreateFMul(Base, Base, "square");
1736
1737 if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1738 return Sqrt;
1739
1740 // pow(x, n) -> x * x * x * ...
1741 const APFloat *ExpoF;
1742 if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1743 // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1744 // If the exponent is an integer+0.5 we generate a call to sqrt and an
1745 // additional fmul.
1746 // TODO: This whole transformation should be backend specific (e.g. some
1747 // backends might prefer libcalls or the limit for the exponent might
1748 // be different) and it should also consider optimizing for size.
1749 APFloat LimF(ExpoF->getSemantics(), 33),
1750 ExpoA(abs(*ExpoF));
1751 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1752 // This transformation applies to integer or integer+0.5 exponents only.
1753 // For integer+0.5, we create a sqrt(Base) call.
1754 Value *Sqrt = nullptr;
1755 if (!ExpoA.isInteger()) {
1756 APFloat Expo2 = ExpoA;
1757 // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1758 // is no floating point exception and the result is an integer, then
1759 // ExpoA == integer + 0.5
1760 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1761 return nullptr;
1762
1763 if (!Expo2.isInteger())
1764 return nullptr;
1765
1766 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1767 Pow->doesNotAccessMemory(), M, B, TLI);
1768 }
1769
1770 // We will memoize intermediate products of the Addition Chain.
1771 Value *InnerChain[33] = {nullptr};
1772 InnerChain[1] = Base;
1773 InnerChain[2] = B.CreateFMul(Base, Base, "square");
1774
1775 // We cannot readily convert a non-double type (like float) to a double.
1776 // So we first convert it to something which could be converted to double.
1777 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1778 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1779
1780 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1781 if (Sqrt)
1782 FMul = B.CreateFMul(FMul, Sqrt);
1783
1784 // If the exponent is negative, then get the reciprocal.
1785 if (ExpoF->isNegative())
1786 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1787
1788 return FMul;
1789 }
1790
1791 APSInt IntExpo(32, /*isUnsigned=*/false);
1792 // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1793 if (ExpoF->isInteger() &&
1794 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1795 APFloat::opOK) {
1796 return createPowWithIntegerExponent(
1797 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1798 }
1799 }
1800
1801 // powf(x, itofp(y)) -> powi(x, y)
1802 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1803 if (Value *ExpoI = getIntToFPVal(Expo, B))
1804 return createPowWithIntegerExponent(Base, ExpoI, M, B);
1805 }
1806
1807 return Shrunk;
1808 }
1809
optimizeExp2(CallInst * CI,IRBuilder<> & B)1810 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1811 Function *Callee = CI->getCalledFunction();
1812 StringRef Name = Callee->getName();
1813 Value *Ret = nullptr;
1814 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1815 hasFloatVersion(Name))
1816 Ret = optimizeUnaryDoubleFP(CI, B, true);
1817
1818 Type *Ty = CI->getType();
1819 Value *Op = CI->getArgOperand(0);
1820
1821 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1822 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1823 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1824 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1825 if (Value *Exp = getIntToFPVal(Op, B))
1826 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1827 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1828 B, CI->getCalledFunction()->getAttributes());
1829 }
1830
1831 return Ret;
1832 }
1833
optimizeFMinFMax(CallInst * CI,IRBuilder<> & B)1834 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1835 // If we can shrink the call to a float function rather than a double
1836 // function, do that first.
1837 Function *Callee = CI->getCalledFunction();
1838 StringRef Name = Callee->getName();
1839 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1840 if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1841 return Ret;
1842
1843 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1844 // the intrinsics for improved optimization (for example, vectorization).
1845 // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1846 // From the C standard draft WG14/N1256:
1847 // "Ideally, fmax would be sensitive to the sign of zero, for example
1848 // fmax(-0.0, +0.0) would return +0; however, implementation in software
1849 // might be impractical."
1850 IRBuilder<>::FastMathFlagGuard Guard(B);
1851 FastMathFlags FMF = CI->getFastMathFlags();
1852 FMF.setNoSignedZeros();
1853 B.setFastMathFlags(FMF);
1854
1855 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1856 : Intrinsic::maxnum;
1857 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1858 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1859 }
1860
optimizeLog(CallInst * Log,IRBuilder<> & B)1861 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilder<> &B) {
1862 Function *LogFn = Log->getCalledFunction();
1863 AttributeList Attrs = LogFn->getAttributes();
1864 StringRef LogNm = LogFn->getName();
1865 Intrinsic::ID LogID = LogFn->getIntrinsicID();
1866 Module *Mod = Log->getModule();
1867 Type *Ty = Log->getType();
1868 Value *Ret = nullptr;
1869
1870 if (UnsafeFPShrink && hasFloatVersion(LogNm))
1871 Ret = optimizeUnaryDoubleFP(Log, B, true);
1872
1873 // The earlier call must also be 'fast' in order to do these transforms.
1874 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1875 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1876 return Ret;
1877
1878 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1879
1880 // This is only applicable to log(), log2(), log10().
1881 if (TLI->getLibFunc(LogNm, LogLb))
1882 switch (LogLb) {
1883 case LibFunc_logf:
1884 LogID = Intrinsic::log;
1885 ExpLb = LibFunc_expf;
1886 Exp2Lb = LibFunc_exp2f;
1887 Exp10Lb = LibFunc_exp10f;
1888 PowLb = LibFunc_powf;
1889 break;
1890 case LibFunc_log:
1891 LogID = Intrinsic::log;
1892 ExpLb = LibFunc_exp;
1893 Exp2Lb = LibFunc_exp2;
1894 Exp10Lb = LibFunc_exp10;
1895 PowLb = LibFunc_pow;
1896 break;
1897 case LibFunc_logl:
1898 LogID = Intrinsic::log;
1899 ExpLb = LibFunc_expl;
1900 Exp2Lb = LibFunc_exp2l;
1901 Exp10Lb = LibFunc_exp10l;
1902 PowLb = LibFunc_powl;
1903 break;
1904 case LibFunc_log2f:
1905 LogID = Intrinsic::log2;
1906 ExpLb = LibFunc_expf;
1907 Exp2Lb = LibFunc_exp2f;
1908 Exp10Lb = LibFunc_exp10f;
1909 PowLb = LibFunc_powf;
1910 break;
1911 case LibFunc_log2:
1912 LogID = Intrinsic::log2;
1913 ExpLb = LibFunc_exp;
1914 Exp2Lb = LibFunc_exp2;
1915 Exp10Lb = LibFunc_exp10;
1916 PowLb = LibFunc_pow;
1917 break;
1918 case LibFunc_log2l:
1919 LogID = Intrinsic::log2;
1920 ExpLb = LibFunc_expl;
1921 Exp2Lb = LibFunc_exp2l;
1922 Exp10Lb = LibFunc_exp10l;
1923 PowLb = LibFunc_powl;
1924 break;
1925 case LibFunc_log10f:
1926 LogID = Intrinsic::log10;
1927 ExpLb = LibFunc_expf;
1928 Exp2Lb = LibFunc_exp2f;
1929 Exp10Lb = LibFunc_exp10f;
1930 PowLb = LibFunc_powf;
1931 break;
1932 case LibFunc_log10:
1933 LogID = Intrinsic::log10;
1934 ExpLb = LibFunc_exp;
1935 Exp2Lb = LibFunc_exp2;
1936 Exp10Lb = LibFunc_exp10;
1937 PowLb = LibFunc_pow;
1938 break;
1939 case LibFunc_log10l:
1940 LogID = Intrinsic::log10;
1941 ExpLb = LibFunc_expl;
1942 Exp2Lb = LibFunc_exp2l;
1943 Exp10Lb = LibFunc_exp10l;
1944 PowLb = LibFunc_powl;
1945 break;
1946 default:
1947 return Ret;
1948 }
1949 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1950 LogID == Intrinsic::log10) {
1951 if (Ty->getScalarType()->isFloatTy()) {
1952 ExpLb = LibFunc_expf;
1953 Exp2Lb = LibFunc_exp2f;
1954 Exp10Lb = LibFunc_exp10f;
1955 PowLb = LibFunc_powf;
1956 } else if (Ty->getScalarType()->isDoubleTy()) {
1957 ExpLb = LibFunc_exp;
1958 Exp2Lb = LibFunc_exp2;
1959 Exp10Lb = LibFunc_exp10;
1960 PowLb = LibFunc_pow;
1961 } else
1962 return Ret;
1963 } else
1964 return Ret;
1965
1966 IRBuilder<>::FastMathFlagGuard Guard(B);
1967 B.setFastMathFlags(FastMathFlags::getFast());
1968
1969 Intrinsic::ID ArgID = Arg->getIntrinsicID();
1970 LibFunc ArgLb = NotLibFunc;
1971 TLI->getLibFunc(Arg, ArgLb);
1972
1973 // log(pow(x,y)) -> y*log(x)
1974 if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1975 Value *LogX =
1976 Log->doesNotAccessMemory()
1977 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1978 Arg->getOperand(0), "log")
1979 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1980 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1981 // Since pow() may have side effects, e.g. errno,
1982 // dead code elimination may not be trusted to remove it.
1983 substituteInParent(Arg, MulY);
1984 return MulY;
1985 }
1986
1987 // log(exp{,2,10}(y)) -> y*log({e,2,10})
1988 // TODO: There is no exp10() intrinsic yet.
1989 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1990 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1991 Constant *Eul;
1992 if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1993 // FIXME: Add more precise value of e for long double.
1994 Eul = ConstantFP::get(Log->getType(), numbers::e);
1995 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1996 Eul = ConstantFP::get(Log->getType(), 2.0);
1997 else
1998 Eul = ConstantFP::get(Log->getType(), 10.0);
1999 Value *LogE = Log->doesNotAccessMemory()
2000 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2001 Eul, "log")
2002 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
2003 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2004 // Since exp() may have side effects, e.g. errno,
2005 // dead code elimination may not be trusted to remove it.
2006 substituteInParent(Arg, MulY);
2007 return MulY;
2008 }
2009
2010 return Ret;
2011 }
2012
optimizeSqrt(CallInst * CI,IRBuilder<> & B)2013 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
2014 Function *Callee = CI->getCalledFunction();
2015 Value *Ret = nullptr;
2016 // TODO: Once we have a way (other than checking for the existince of the
2017 // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2018 // condition below.
2019 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2020 Callee->getIntrinsicID() == Intrinsic::sqrt))
2021 Ret = optimizeUnaryDoubleFP(CI, B, true);
2022
2023 if (!CI->isFast())
2024 return Ret;
2025
2026 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2027 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2028 return Ret;
2029
2030 // We're looking for a repeated factor in a multiplication tree,
2031 // so we can do this fold: sqrt(x * x) -> fabs(x);
2032 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2033 Value *Op0 = I->getOperand(0);
2034 Value *Op1 = I->getOperand(1);
2035 Value *RepeatOp = nullptr;
2036 Value *OtherOp = nullptr;
2037 if (Op0 == Op1) {
2038 // Simple match: the operands of the multiply are identical.
2039 RepeatOp = Op0;
2040 } else {
2041 // Look for a more complicated pattern: one of the operands is itself
2042 // a multiply, so search for a common factor in that multiply.
2043 // Note: We don't bother looking any deeper than this first level or for
2044 // variations of this pattern because instcombine's visitFMUL and/or the
2045 // reassociation pass should give us this form.
2046 Value *OtherMul0, *OtherMul1;
2047 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2048 // Pattern: sqrt((x * y) * z)
2049 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2050 // Matched: sqrt((x * x) * z)
2051 RepeatOp = OtherMul0;
2052 OtherOp = Op1;
2053 }
2054 }
2055 }
2056 if (!RepeatOp)
2057 return Ret;
2058
2059 // Fast math flags for any created instructions should match the sqrt
2060 // and multiply.
2061 IRBuilder<>::FastMathFlagGuard Guard(B);
2062 B.setFastMathFlags(I->getFastMathFlags());
2063
2064 // If we found a repeated factor, hoist it out of the square root and
2065 // replace it with the fabs of that factor.
2066 Module *M = Callee->getParent();
2067 Type *ArgType = I->getType();
2068 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2069 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2070 if (OtherOp) {
2071 // If we found a non-repeated factor, we still need to get its square
2072 // root. We then multiply that by the value that was simplified out
2073 // of the square root calculation.
2074 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2075 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2076 return B.CreateFMul(FabsCall, SqrtCall);
2077 }
2078 return FabsCall;
2079 }
2080
2081 // TODO: Generalize to handle any trig function and its inverse.
optimizeTan(CallInst * CI,IRBuilder<> & B)2082 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
2083 Function *Callee = CI->getCalledFunction();
2084 Value *Ret = nullptr;
2085 StringRef Name = Callee->getName();
2086 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2087 Ret = optimizeUnaryDoubleFP(CI, B, true);
2088
2089 Value *Op1 = CI->getArgOperand(0);
2090 auto *OpC = dyn_cast<CallInst>(Op1);
2091 if (!OpC)
2092 return Ret;
2093
2094 // Both calls must be 'fast' in order to remove them.
2095 if (!CI->isFast() || !OpC->isFast())
2096 return Ret;
2097
2098 // tan(atan(x)) -> x
2099 // tanf(atanf(x)) -> x
2100 // tanl(atanl(x)) -> x
2101 LibFunc Func;
2102 Function *F = OpC->getCalledFunction();
2103 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2104 ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2105 (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2106 (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2107 Ret = OpC->getArgOperand(0);
2108 return Ret;
2109 }
2110
isTrigLibCall(CallInst * CI)2111 static bool isTrigLibCall(CallInst *CI) {
2112 // We can only hope to do anything useful if we can ignore things like errno
2113 // and floating-point exceptions.
2114 // We already checked the prototype.
2115 return CI->hasFnAttr(Attribute::NoUnwind) &&
2116 CI->hasFnAttr(Attribute::ReadNone);
2117 }
2118
insertSinCosCall(IRBuilder<> & B,Function * OrigCallee,Value * Arg,bool UseFloat,Value * & Sin,Value * & Cos,Value * & SinCos)2119 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
2120 bool UseFloat, Value *&Sin, Value *&Cos,
2121 Value *&SinCos) {
2122 Type *ArgTy = Arg->getType();
2123 Type *ResTy;
2124 StringRef Name;
2125
2126 Triple T(OrigCallee->getParent()->getTargetTriple());
2127 if (UseFloat) {
2128 Name = "__sincospif_stret";
2129
2130 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2131 // x86_64 can't use {float, float} since that would be returned in both
2132 // xmm0 and xmm1, which isn't what a real struct would do.
2133 ResTy = T.getArch() == Triple::x86_64
2134 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
2135 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2136 } else {
2137 Name = "__sincospi_stret";
2138 ResTy = StructType::get(ArgTy, ArgTy);
2139 }
2140
2141 Module *M = OrigCallee->getParent();
2142 FunctionCallee Callee =
2143 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2144
2145 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2146 // If the argument is an instruction, it must dominate all uses so put our
2147 // sincos call there.
2148 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2149 } else {
2150 // Otherwise (e.g. for a constant) the beginning of the function is as
2151 // good a place as any.
2152 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2153 B.SetInsertPoint(&EntryBB, EntryBB.begin());
2154 }
2155
2156 SinCos = B.CreateCall(Callee, Arg, "sincospi");
2157
2158 if (SinCos->getType()->isStructTy()) {
2159 Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2160 Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2161 } else {
2162 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2163 "sinpi");
2164 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2165 "cospi");
2166 }
2167 }
2168
optimizeSinCosPi(CallInst * CI,IRBuilder<> & B)2169 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
2170 // Make sure the prototype is as expected, otherwise the rest of the
2171 // function is probably invalid and likely to abort.
2172 if (!isTrigLibCall(CI))
2173 return nullptr;
2174
2175 Value *Arg = CI->getArgOperand(0);
2176 SmallVector<CallInst *, 1> SinCalls;
2177 SmallVector<CallInst *, 1> CosCalls;
2178 SmallVector<CallInst *, 1> SinCosCalls;
2179
2180 bool IsFloat = Arg->getType()->isFloatTy();
2181
2182 // Look for all compatible sinpi, cospi and sincospi calls with the same
2183 // argument. If there are enough (in some sense) we can make the
2184 // substitution.
2185 Function *F = CI->getFunction();
2186 for (User *U : Arg->users())
2187 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2188
2189 // It's only worthwhile if both sinpi and cospi are actually used.
2190 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2191 return nullptr;
2192
2193 Value *Sin, *Cos, *SinCos;
2194 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2195
2196 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2197 Value *Res) {
2198 for (CallInst *C : Calls)
2199 replaceAllUsesWith(C, Res);
2200 };
2201
2202 replaceTrigInsts(SinCalls, Sin);
2203 replaceTrigInsts(CosCalls, Cos);
2204 replaceTrigInsts(SinCosCalls, SinCos);
2205
2206 return nullptr;
2207 }
2208
classifyArgUse(Value * Val,Function * F,bool IsFloat,SmallVectorImpl<CallInst * > & SinCalls,SmallVectorImpl<CallInst * > & CosCalls,SmallVectorImpl<CallInst * > & SinCosCalls)2209 void LibCallSimplifier::classifyArgUse(
2210 Value *Val, Function *F, bool IsFloat,
2211 SmallVectorImpl<CallInst *> &SinCalls,
2212 SmallVectorImpl<CallInst *> &CosCalls,
2213 SmallVectorImpl<CallInst *> &SinCosCalls) {
2214 CallInst *CI = dyn_cast<CallInst>(Val);
2215
2216 if (!CI)
2217 return;
2218
2219 // Don't consider calls in other functions.
2220 if (CI->getFunction() != F)
2221 return;
2222
2223 Function *Callee = CI->getCalledFunction();
2224 LibFunc Func;
2225 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2226 !isTrigLibCall(CI))
2227 return;
2228
2229 if (IsFloat) {
2230 if (Func == LibFunc_sinpif)
2231 SinCalls.push_back(CI);
2232 else if (Func == LibFunc_cospif)
2233 CosCalls.push_back(CI);
2234 else if (Func == LibFunc_sincospif_stret)
2235 SinCosCalls.push_back(CI);
2236 } else {
2237 if (Func == LibFunc_sinpi)
2238 SinCalls.push_back(CI);
2239 else if (Func == LibFunc_cospi)
2240 CosCalls.push_back(CI);
2241 else if (Func == LibFunc_sincospi_stret)
2242 SinCosCalls.push_back(CI);
2243 }
2244 }
2245
2246 //===----------------------------------------------------------------------===//
2247 // Integer Library Call Optimizations
2248 //===----------------------------------------------------------------------===//
2249
optimizeFFS(CallInst * CI,IRBuilder<> & B)2250 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
2251 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2252 Value *Op = CI->getArgOperand(0);
2253 Type *ArgType = Op->getType();
2254 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2255 Intrinsic::cttz, ArgType);
2256 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2257 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2258 V = B.CreateIntCast(V, B.getInt32Ty(), false);
2259
2260 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2261 return B.CreateSelect(Cond, V, B.getInt32(0));
2262 }
2263
optimizeFls(CallInst * CI,IRBuilder<> & B)2264 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
2265 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2266 Value *Op = CI->getArgOperand(0);
2267 Type *ArgType = Op->getType();
2268 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2269 Intrinsic::ctlz, ArgType);
2270 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2271 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2272 V);
2273 return B.CreateIntCast(V, CI->getType(), false);
2274 }
2275
optimizeAbs(CallInst * CI,IRBuilder<> & B)2276 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
2277 // abs(x) -> x <s 0 ? -x : x
2278 // The negation has 'nsw' because abs of INT_MIN is undefined.
2279 Value *X = CI->getArgOperand(0);
2280 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2281 Value *NegX = B.CreateNSWNeg(X, "neg");
2282 return B.CreateSelect(IsNeg, NegX, X);
2283 }
2284
optimizeIsDigit(CallInst * CI,IRBuilder<> & B)2285 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
2286 // isdigit(c) -> (c-'0') <u 10
2287 Value *Op = CI->getArgOperand(0);
2288 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2289 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2290 return B.CreateZExt(Op, CI->getType());
2291 }
2292
optimizeIsAscii(CallInst * CI,IRBuilder<> & B)2293 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
2294 // isascii(c) -> c <u 128
2295 Value *Op = CI->getArgOperand(0);
2296 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2297 return B.CreateZExt(Op, CI->getType());
2298 }
2299
optimizeToAscii(CallInst * CI,IRBuilder<> & B)2300 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
2301 // toascii(c) -> c & 0x7f
2302 return B.CreateAnd(CI->getArgOperand(0),
2303 ConstantInt::get(CI->getType(), 0x7F));
2304 }
2305
optimizeAtoi(CallInst * CI,IRBuilder<> & B)2306 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
2307 StringRef Str;
2308 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2309 return nullptr;
2310
2311 return convertStrToNumber(CI, Str, 10);
2312 }
2313
optimizeStrtol(CallInst * CI,IRBuilder<> & B)2314 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
2315 StringRef Str;
2316 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2317 return nullptr;
2318
2319 if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2320 return nullptr;
2321
2322 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2323 return convertStrToNumber(CI, Str, CInt->getSExtValue());
2324 }
2325
2326 return nullptr;
2327 }
2328
2329 //===----------------------------------------------------------------------===//
2330 // Formatting and IO Library Call Optimizations
2331 //===----------------------------------------------------------------------===//
2332
2333 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2334
optimizeErrorReporting(CallInst * CI,IRBuilder<> & B,int StreamArg)2335 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
2336 int StreamArg) {
2337 Function *Callee = CI->getCalledFunction();
2338 // Error reporting calls should be cold, mark them as such.
2339 // This applies even to non-builtin calls: it is only a hint and applies to
2340 // functions that the frontend might not understand as builtins.
2341
2342 // This heuristic was suggested in:
2343 // Improving Static Branch Prediction in a Compiler
2344 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2345 // Proceedings of PACT'98, Oct. 1998, IEEE
2346 if (!CI->hasFnAttr(Attribute::Cold) &&
2347 isReportingError(Callee, CI, StreamArg)) {
2348 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2349 }
2350
2351 return nullptr;
2352 }
2353
isReportingError(Function * Callee,CallInst * CI,int StreamArg)2354 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2355 if (!Callee || !Callee->isDeclaration())
2356 return false;
2357
2358 if (StreamArg < 0)
2359 return true;
2360
2361 // These functions might be considered cold, but only if their stream
2362 // argument is stderr.
2363
2364 if (StreamArg >= (int)CI->getNumArgOperands())
2365 return false;
2366 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2367 if (!LI)
2368 return false;
2369 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2370 if (!GV || !GV->isDeclaration())
2371 return false;
2372 return GV->getName() == "stderr";
2373 }
2374
optimizePrintFString(CallInst * CI,IRBuilder<> & B)2375 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
2376 // Check for a fixed format string.
2377 StringRef FormatStr;
2378 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2379 return nullptr;
2380
2381 // Empty format string -> noop.
2382 if (FormatStr.empty()) // Tolerate printf's declared void.
2383 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2384
2385 // Do not do any of the following transformations if the printf return value
2386 // is used, in general the printf return value is not compatible with either
2387 // putchar() or puts().
2388 if (!CI->use_empty())
2389 return nullptr;
2390
2391 // printf("x") -> putchar('x'), even for "%" and "%%".
2392 if (FormatStr.size() == 1 || FormatStr == "%%")
2393 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2394
2395 // printf("%s", "a") --> putchar('a')
2396 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2397 StringRef ChrStr;
2398 if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2399 return nullptr;
2400 if (ChrStr.size() != 1)
2401 return nullptr;
2402 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2403 }
2404
2405 // printf("foo\n") --> puts("foo")
2406 if (FormatStr[FormatStr.size() - 1] == '\n' &&
2407 FormatStr.find('%') == StringRef::npos) { // No format characters.
2408 // Create a string literal with no \n on it. We expect the constant merge
2409 // pass to be run after this pass, to merge duplicate strings.
2410 FormatStr = FormatStr.drop_back();
2411 Value *GV = B.CreateGlobalString(FormatStr, "str");
2412 return emitPutS(GV, B, TLI);
2413 }
2414
2415 // Optimize specific format strings.
2416 // printf("%c", chr) --> putchar(chr)
2417 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2418 CI->getArgOperand(1)->getType()->isIntegerTy())
2419 return emitPutChar(CI->getArgOperand(1), B, TLI);
2420
2421 // printf("%s\n", str) --> puts(str)
2422 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2423 CI->getArgOperand(1)->getType()->isPointerTy())
2424 return emitPutS(CI->getArgOperand(1), B, TLI);
2425 return nullptr;
2426 }
2427
optimizePrintF(CallInst * CI,IRBuilder<> & B)2428 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2429
2430 Function *Callee = CI->getCalledFunction();
2431 FunctionType *FT = Callee->getFunctionType();
2432 if (Value *V = optimizePrintFString(CI, B)) {
2433 return V;
2434 }
2435
2436 // printf(format, ...) -> iprintf(format, ...) if no floating point
2437 // arguments.
2438 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2439 Module *M = B.GetInsertBlock()->getParent()->getParent();
2440 FunctionCallee IPrintFFn =
2441 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2442 CallInst *New = cast<CallInst>(CI->clone());
2443 New->setCalledFunction(IPrintFFn);
2444 B.Insert(New);
2445 return New;
2446 }
2447
2448 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2449 // arguments.
2450 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2451 Module *M = B.GetInsertBlock()->getParent()->getParent();
2452 auto SmallPrintFFn =
2453 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2454 FT, Callee->getAttributes());
2455 CallInst *New = cast<CallInst>(CI->clone());
2456 New->setCalledFunction(SmallPrintFFn);
2457 B.Insert(New);
2458 return New;
2459 }
2460
2461 annotateNonNullBasedOnAccess(CI, 0);
2462 return nullptr;
2463 }
2464
optimizeSPrintFString(CallInst * CI,IRBuilder<> & B)2465 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2466 // Check for a fixed format string.
2467 StringRef FormatStr;
2468 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2469 return nullptr;
2470
2471 // If we just have a format string (nothing else crazy) transform it.
2472 if (CI->getNumArgOperands() == 2) {
2473 // Make sure there's no % in the constant array. We could try to handle
2474 // %% -> % in the future if we cared.
2475 if (FormatStr.find('%') != StringRef::npos)
2476 return nullptr; // we found a format specifier, bail out.
2477
2478 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2479 B.CreateMemCpy(
2480 CI->getArgOperand(0), Align::None(), CI->getArgOperand(1),
2481 Align::None(),
2482 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2483 FormatStr.size() + 1)); // Copy the null byte.
2484 return ConstantInt::get(CI->getType(), FormatStr.size());
2485 }
2486
2487 // The remaining optimizations require the format string to be "%s" or "%c"
2488 // and have an extra operand.
2489 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2490 CI->getNumArgOperands() < 3)
2491 return nullptr;
2492
2493 // Decode the second character of the format string.
2494 if (FormatStr[1] == 'c') {
2495 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2496 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2497 return nullptr;
2498 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2499 Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2500 B.CreateStore(V, Ptr);
2501 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2502 B.CreateStore(B.getInt8(0), Ptr);
2503
2504 return ConstantInt::get(CI->getType(), 1);
2505 }
2506
2507 if (FormatStr[1] == 's') {
2508 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2509 // strlen(str)+1)
2510 if (!CI->getArgOperand(2)->getType()->isPointerTy())
2511 return nullptr;
2512
2513 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2514 if (!Len)
2515 return nullptr;
2516 Value *IncLen =
2517 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2518 B.CreateMemCpy(CI->getArgOperand(0), Align::None(), CI->getArgOperand(2),
2519 Align::None(), IncLen);
2520
2521 // The sprintf result is the unincremented number of bytes in the string.
2522 return B.CreateIntCast(Len, CI->getType(), false);
2523 }
2524 return nullptr;
2525 }
2526
optimizeSPrintF(CallInst * CI,IRBuilder<> & B)2527 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2528 Function *Callee = CI->getCalledFunction();
2529 FunctionType *FT = Callee->getFunctionType();
2530 if (Value *V = optimizeSPrintFString(CI, B)) {
2531 return V;
2532 }
2533
2534 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2535 // point arguments.
2536 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2537 Module *M = B.GetInsertBlock()->getParent()->getParent();
2538 FunctionCallee SIPrintFFn =
2539 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2540 CallInst *New = cast<CallInst>(CI->clone());
2541 New->setCalledFunction(SIPrintFFn);
2542 B.Insert(New);
2543 return New;
2544 }
2545
2546 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2547 // floating point arguments.
2548 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2549 Module *M = B.GetInsertBlock()->getParent()->getParent();
2550 auto SmallSPrintFFn =
2551 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2552 FT, Callee->getAttributes());
2553 CallInst *New = cast<CallInst>(CI->clone());
2554 New->setCalledFunction(SmallSPrintFFn);
2555 B.Insert(New);
2556 return New;
2557 }
2558
2559 annotateNonNullBasedOnAccess(CI, {0, 1});
2560 return nullptr;
2561 }
2562
optimizeSnPrintFString(CallInst * CI,IRBuilder<> & B)2563 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2564 // Check for size
2565 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2566 if (!Size)
2567 return nullptr;
2568
2569 uint64_t N = Size->getZExtValue();
2570 // Check for a fixed format string.
2571 StringRef FormatStr;
2572 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2573 return nullptr;
2574
2575 // If we just have a format string (nothing else crazy) transform it.
2576 if (CI->getNumArgOperands() == 3) {
2577 // Make sure there's no % in the constant array. We could try to handle
2578 // %% -> % in the future if we cared.
2579 if (FormatStr.find('%') != StringRef::npos)
2580 return nullptr; // we found a format specifier, bail out.
2581
2582 if (N == 0)
2583 return ConstantInt::get(CI->getType(), FormatStr.size());
2584 else if (N < FormatStr.size() + 1)
2585 return nullptr;
2586
2587 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2588 // strlen(fmt)+1)
2589 B.CreateMemCpy(
2590 CI->getArgOperand(0), Align::None(), CI->getArgOperand(2),
2591 Align::None(),
2592 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2593 FormatStr.size() + 1)); // Copy the null byte.
2594 return ConstantInt::get(CI->getType(), FormatStr.size());
2595 }
2596
2597 // The remaining optimizations require the format string to be "%s" or "%c"
2598 // and have an extra operand.
2599 if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2600 CI->getNumArgOperands() == 4) {
2601
2602 // Decode the second character of the format string.
2603 if (FormatStr[1] == 'c') {
2604 if (N == 0)
2605 return ConstantInt::get(CI->getType(), 1);
2606 else if (N == 1)
2607 return nullptr;
2608
2609 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2610 if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2611 return nullptr;
2612 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2613 Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2614 B.CreateStore(V, Ptr);
2615 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2616 B.CreateStore(B.getInt8(0), Ptr);
2617
2618 return ConstantInt::get(CI->getType(), 1);
2619 }
2620
2621 if (FormatStr[1] == 's') {
2622 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2623 StringRef Str;
2624 if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2625 return nullptr;
2626
2627 if (N == 0)
2628 return ConstantInt::get(CI->getType(), Str.size());
2629 else if (N < Str.size() + 1)
2630 return nullptr;
2631
2632 B.CreateMemCpy(CI->getArgOperand(0), Align::None(), CI->getArgOperand(3),
2633 Align::None(),
2634 ConstantInt::get(CI->getType(), Str.size() + 1));
2635
2636 // The snprintf result is the unincremented number of bytes in the string.
2637 return ConstantInt::get(CI->getType(), Str.size());
2638 }
2639 }
2640 return nullptr;
2641 }
2642
optimizeSnPrintF(CallInst * CI,IRBuilder<> & B)2643 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2644 if (Value *V = optimizeSnPrintFString(CI, B)) {
2645 return V;
2646 }
2647
2648 if (isKnownNonZero(CI->getOperand(1), DL))
2649 annotateNonNullBasedOnAccess(CI, 0);
2650 return nullptr;
2651 }
2652
optimizeFPrintFString(CallInst * CI,IRBuilder<> & B)2653 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2654 optimizeErrorReporting(CI, B, 0);
2655
2656 // All the optimizations depend on the format string.
2657 StringRef FormatStr;
2658 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2659 return nullptr;
2660
2661 // Do not do any of the following transformations if the fprintf return
2662 // value is used, in general the fprintf return value is not compatible
2663 // with fwrite(), fputc() or fputs().
2664 if (!CI->use_empty())
2665 return nullptr;
2666
2667 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2668 if (CI->getNumArgOperands() == 2) {
2669 // Could handle %% -> % if we cared.
2670 if (FormatStr.find('%') != StringRef::npos)
2671 return nullptr; // We found a format specifier.
2672
2673 return emitFWrite(
2674 CI->getArgOperand(1),
2675 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2676 CI->getArgOperand(0), B, DL, TLI);
2677 }
2678
2679 // The remaining optimizations require the format string to be "%s" or "%c"
2680 // and have an extra operand.
2681 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2682 CI->getNumArgOperands() < 3)
2683 return nullptr;
2684
2685 // Decode the second character of the format string.
2686 if (FormatStr[1] == 'c') {
2687 // fprintf(F, "%c", chr) --> fputc(chr, F)
2688 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2689 return nullptr;
2690 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2691 }
2692
2693 if (FormatStr[1] == 's') {
2694 // fprintf(F, "%s", str) --> fputs(str, F)
2695 if (!CI->getArgOperand(2)->getType()->isPointerTy())
2696 return nullptr;
2697 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2698 }
2699 return nullptr;
2700 }
2701
optimizeFPrintF(CallInst * CI,IRBuilder<> & B)2702 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2703 Function *Callee = CI->getCalledFunction();
2704 FunctionType *FT = Callee->getFunctionType();
2705 if (Value *V = optimizeFPrintFString(CI, B)) {
2706 return V;
2707 }
2708
2709 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2710 // floating point arguments.
2711 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2712 Module *M = B.GetInsertBlock()->getParent()->getParent();
2713 FunctionCallee FIPrintFFn =
2714 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2715 CallInst *New = cast<CallInst>(CI->clone());
2716 New->setCalledFunction(FIPrintFFn);
2717 B.Insert(New);
2718 return New;
2719 }
2720
2721 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2722 // 128-bit floating point arguments.
2723 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2724 Module *M = B.GetInsertBlock()->getParent()->getParent();
2725 auto SmallFPrintFFn =
2726 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2727 FT, Callee->getAttributes());
2728 CallInst *New = cast<CallInst>(CI->clone());
2729 New->setCalledFunction(SmallFPrintFFn);
2730 B.Insert(New);
2731 return New;
2732 }
2733
2734 return nullptr;
2735 }
2736
optimizeFWrite(CallInst * CI,IRBuilder<> & B)2737 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2738 optimizeErrorReporting(CI, B, 3);
2739
2740 // Get the element size and count.
2741 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2742 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2743 if (SizeC && CountC) {
2744 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2745
2746 // If this is writing zero records, remove the call (it's a noop).
2747 if (Bytes == 0)
2748 return ConstantInt::get(CI->getType(), 0);
2749
2750 // If this is writing one byte, turn it into fputc.
2751 // This optimisation is only valid, if the return value is unused.
2752 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2753 Value *Char = B.CreateLoad(B.getInt8Ty(),
2754 castToCStr(CI->getArgOperand(0), B), "char");
2755 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2756 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2757 }
2758 }
2759
2760 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2761 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2762 CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2763 TLI);
2764
2765 return nullptr;
2766 }
2767
optimizeFPuts(CallInst * CI,IRBuilder<> & B)2768 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2769 optimizeErrorReporting(CI, B, 1);
2770
2771 // Don't rewrite fputs to fwrite when optimising for size because fwrite
2772 // requires more arguments and thus extra MOVs are required.
2773 bool OptForSize = CI->getFunction()->hasOptSize() ||
2774 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2775 PGSOQueryType::IRPass);
2776 if (OptForSize)
2777 return nullptr;
2778
2779 // Check if has any use
2780 if (!CI->use_empty()) {
2781 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2782 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2783 TLI);
2784 else
2785 // We can't optimize if return value is used.
2786 return nullptr;
2787 }
2788
2789 // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2790 uint64_t Len = GetStringLength(CI->getArgOperand(0));
2791 if (!Len)
2792 return nullptr;
2793
2794 // Known to have no uses (see above).
2795 return emitFWrite(
2796 CI->getArgOperand(0),
2797 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2798 CI->getArgOperand(1), B, DL, TLI);
2799 }
2800
optimizeFPutc(CallInst * CI,IRBuilder<> & B)2801 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2802 optimizeErrorReporting(CI, B, 1);
2803
2804 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2805 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2806 TLI);
2807
2808 return nullptr;
2809 }
2810
optimizeFGetc(CallInst * CI,IRBuilder<> & B)2811 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2812 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2813 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2814
2815 return nullptr;
2816 }
2817
optimizeFGets(CallInst * CI,IRBuilder<> & B)2818 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2819 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2820 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2821 CI->getArgOperand(2), B, TLI);
2822
2823 return nullptr;
2824 }
2825
optimizeFRead(CallInst * CI,IRBuilder<> & B)2826 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2827 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2828 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2829 CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2830 TLI);
2831
2832 return nullptr;
2833 }
2834
optimizePuts(CallInst * CI,IRBuilder<> & B)2835 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2836 annotateNonNullBasedOnAccess(CI, 0);
2837 if (!CI->use_empty())
2838 return nullptr;
2839
2840 // Check for a constant string.
2841 // puts("") -> putchar('\n')
2842 StringRef Str;
2843 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2844 return emitPutChar(B.getInt32('\n'), B, TLI);
2845
2846 return nullptr;
2847 }
2848
optimizeBCopy(CallInst * CI,IRBuilder<> & B)2849 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilder<> &B) {
2850 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2851 return B.CreateMemMove(CI->getArgOperand(1), Align::None(),
2852 CI->getArgOperand(0), Align::None(),
2853 CI->getArgOperand(2));
2854 }
2855
hasFloatVersion(StringRef FuncName)2856 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2857 LibFunc Func;
2858 SmallString<20> FloatFuncName = FuncName;
2859 FloatFuncName += 'f';
2860 if (TLI->getLibFunc(FloatFuncName, Func))
2861 return TLI->has(Func);
2862 return false;
2863 }
2864
optimizeStringMemoryLibCall(CallInst * CI,IRBuilder<> & Builder)2865 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2866 IRBuilder<> &Builder) {
2867 LibFunc Func;
2868 Function *Callee = CI->getCalledFunction();
2869 // Check for string/memory library functions.
2870 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2871 // Make sure we never change the calling convention.
2872 assert((ignoreCallingConv(Func) ||
2873 isCallingConvCCompatible(CI)) &&
2874 "Optimizing string/memory libcall would change the calling convention");
2875 switch (Func) {
2876 case LibFunc_strcat:
2877 return optimizeStrCat(CI, Builder);
2878 case LibFunc_strncat:
2879 return optimizeStrNCat(CI, Builder);
2880 case LibFunc_strchr:
2881 return optimizeStrChr(CI, Builder);
2882 case LibFunc_strrchr:
2883 return optimizeStrRChr(CI, Builder);
2884 case LibFunc_strcmp:
2885 return optimizeStrCmp(CI, Builder);
2886 case LibFunc_strncmp:
2887 return optimizeStrNCmp(CI, Builder);
2888 case LibFunc_strcpy:
2889 return optimizeStrCpy(CI, Builder);
2890 case LibFunc_stpcpy:
2891 return optimizeStpCpy(CI, Builder);
2892 case LibFunc_strncpy:
2893 return optimizeStrNCpy(CI, Builder);
2894 case LibFunc_strlen:
2895 return optimizeStrLen(CI, Builder);
2896 case LibFunc_strpbrk:
2897 return optimizeStrPBrk(CI, Builder);
2898 case LibFunc_strndup:
2899 return optimizeStrNDup(CI, Builder);
2900 case LibFunc_strtol:
2901 case LibFunc_strtod:
2902 case LibFunc_strtof:
2903 case LibFunc_strtoul:
2904 case LibFunc_strtoll:
2905 case LibFunc_strtold:
2906 case LibFunc_strtoull:
2907 return optimizeStrTo(CI, Builder);
2908 case LibFunc_strspn:
2909 return optimizeStrSpn(CI, Builder);
2910 case LibFunc_strcspn:
2911 return optimizeStrCSpn(CI, Builder);
2912 case LibFunc_strstr:
2913 return optimizeStrStr(CI, Builder);
2914 case LibFunc_memchr:
2915 return optimizeMemChr(CI, Builder);
2916 case LibFunc_memrchr:
2917 return optimizeMemRChr(CI, Builder);
2918 case LibFunc_bcmp:
2919 return optimizeBCmp(CI, Builder);
2920 case LibFunc_memcmp:
2921 return optimizeMemCmp(CI, Builder);
2922 case LibFunc_memcpy:
2923 return optimizeMemCpy(CI, Builder);
2924 case LibFunc_memccpy:
2925 return optimizeMemCCpy(CI, Builder);
2926 case LibFunc_mempcpy:
2927 return optimizeMemPCpy(CI, Builder);
2928 case LibFunc_memmove:
2929 return optimizeMemMove(CI, Builder);
2930 case LibFunc_memset:
2931 return optimizeMemSet(CI, Builder);
2932 case LibFunc_realloc:
2933 return optimizeRealloc(CI, Builder);
2934 case LibFunc_wcslen:
2935 return optimizeWcslen(CI, Builder);
2936 case LibFunc_bcopy:
2937 return optimizeBCopy(CI, Builder);
2938 default:
2939 break;
2940 }
2941 }
2942 return nullptr;
2943 }
2944
optimizeFloatingPointLibCall(CallInst * CI,LibFunc Func,IRBuilder<> & Builder)2945 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2946 LibFunc Func,
2947 IRBuilder<> &Builder) {
2948 // Don't optimize calls that require strict floating point semantics.
2949 if (CI->isStrictFP())
2950 return nullptr;
2951
2952 if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2953 return V;
2954
2955 switch (Func) {
2956 case LibFunc_sinpif:
2957 case LibFunc_sinpi:
2958 case LibFunc_cospif:
2959 case LibFunc_cospi:
2960 return optimizeSinCosPi(CI, Builder);
2961 case LibFunc_powf:
2962 case LibFunc_pow:
2963 case LibFunc_powl:
2964 return optimizePow(CI, Builder);
2965 case LibFunc_exp2l:
2966 case LibFunc_exp2:
2967 case LibFunc_exp2f:
2968 return optimizeExp2(CI, Builder);
2969 case LibFunc_fabsf:
2970 case LibFunc_fabs:
2971 case LibFunc_fabsl:
2972 return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2973 case LibFunc_sqrtf:
2974 case LibFunc_sqrt:
2975 case LibFunc_sqrtl:
2976 return optimizeSqrt(CI, Builder);
2977 case LibFunc_logf:
2978 case LibFunc_log:
2979 case LibFunc_logl:
2980 case LibFunc_log10f:
2981 case LibFunc_log10:
2982 case LibFunc_log10l:
2983 case LibFunc_log1pf:
2984 case LibFunc_log1p:
2985 case LibFunc_log1pl:
2986 case LibFunc_log2f:
2987 case LibFunc_log2:
2988 case LibFunc_log2l:
2989 case LibFunc_logbf:
2990 case LibFunc_logb:
2991 case LibFunc_logbl:
2992 return optimizeLog(CI, Builder);
2993 case LibFunc_tan:
2994 case LibFunc_tanf:
2995 case LibFunc_tanl:
2996 return optimizeTan(CI, Builder);
2997 case LibFunc_ceil:
2998 return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2999 case LibFunc_floor:
3000 return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3001 case LibFunc_round:
3002 return replaceUnaryCall(CI, Builder, Intrinsic::round);
3003 case LibFunc_nearbyint:
3004 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3005 case LibFunc_rint:
3006 return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3007 case LibFunc_trunc:
3008 return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3009 case LibFunc_acos:
3010 case LibFunc_acosh:
3011 case LibFunc_asin:
3012 case LibFunc_asinh:
3013 case LibFunc_atan:
3014 case LibFunc_atanh:
3015 case LibFunc_cbrt:
3016 case LibFunc_cosh:
3017 case LibFunc_exp:
3018 case LibFunc_exp10:
3019 case LibFunc_expm1:
3020 case LibFunc_cos:
3021 case LibFunc_sin:
3022 case LibFunc_sinh:
3023 case LibFunc_tanh:
3024 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3025 return optimizeUnaryDoubleFP(CI, Builder, true);
3026 return nullptr;
3027 case LibFunc_copysign:
3028 if (hasFloatVersion(CI->getCalledFunction()->getName()))
3029 return optimizeBinaryDoubleFP(CI, Builder);
3030 return nullptr;
3031 case LibFunc_fminf:
3032 case LibFunc_fmin:
3033 case LibFunc_fminl:
3034 case LibFunc_fmaxf:
3035 case LibFunc_fmax:
3036 case LibFunc_fmaxl:
3037 return optimizeFMinFMax(CI, Builder);
3038 case LibFunc_cabs:
3039 case LibFunc_cabsf:
3040 case LibFunc_cabsl:
3041 return optimizeCAbs(CI, Builder);
3042 default:
3043 return nullptr;
3044 }
3045 }
3046
optimizeCall(CallInst * CI)3047 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
3048 // TODO: Split out the code below that operates on FP calls so that
3049 // we can all non-FP calls with the StrictFP attribute to be
3050 // optimized.
3051 if (CI->isNoBuiltin())
3052 return nullptr;
3053
3054 LibFunc Func;
3055 Function *Callee = CI->getCalledFunction();
3056
3057 SmallVector<OperandBundleDef, 2> OpBundles;
3058 CI->getOperandBundlesAsDefs(OpBundles);
3059 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3060 bool isCallingConvC = isCallingConvCCompatible(CI);
3061
3062 // Command-line parameter overrides instruction attribute.
3063 // This can't be moved to optimizeFloatingPointLibCall() because it may be
3064 // used by the intrinsic optimizations.
3065 if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3066 UnsafeFPShrink = EnableUnsafeFPShrink;
3067 else if (isa<FPMathOperator>(CI) && CI->isFast())
3068 UnsafeFPShrink = true;
3069
3070 // First, check for intrinsics.
3071 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3072 if (!isCallingConvC)
3073 return nullptr;
3074 // The FP intrinsics have corresponding constrained versions so we don't
3075 // need to check for the StrictFP attribute here.
3076 switch (II->getIntrinsicID()) {
3077 case Intrinsic::pow:
3078 return optimizePow(CI, Builder);
3079 case Intrinsic::exp2:
3080 return optimizeExp2(CI, Builder);
3081 case Intrinsic::log:
3082 case Intrinsic::log2:
3083 case Intrinsic::log10:
3084 return optimizeLog(CI, Builder);
3085 case Intrinsic::sqrt:
3086 return optimizeSqrt(CI, Builder);
3087 // TODO: Use foldMallocMemset() with memset intrinsic.
3088 case Intrinsic::memset:
3089 return optimizeMemSet(CI, Builder);
3090 case Intrinsic::memcpy:
3091 return optimizeMemCpy(CI, Builder);
3092 case Intrinsic::memmove:
3093 return optimizeMemMove(CI, Builder);
3094 default:
3095 return nullptr;
3096 }
3097 }
3098
3099 // Also try to simplify calls to fortified library functions.
3100 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
3101 // Try to further simplify the result.
3102 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3103 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3104 // Use an IR Builder from SimplifiedCI if available instead of CI
3105 // to guarantee we reach all uses we might replace later on.
3106 IRBuilder<> TmpBuilder(SimplifiedCI);
3107 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
3108 // If we were able to further simplify, remove the now redundant call.
3109 substituteInParent(SimplifiedCI, V);
3110 return V;
3111 }
3112 }
3113 return SimplifiedFortifiedCI;
3114 }
3115
3116 // Then check for known library functions.
3117 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3118 // We never change the calling convention.
3119 if (!ignoreCallingConv(Func) && !isCallingConvC)
3120 return nullptr;
3121 if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3122 return V;
3123 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3124 return V;
3125 switch (Func) {
3126 case LibFunc_ffs:
3127 case LibFunc_ffsl:
3128 case LibFunc_ffsll:
3129 return optimizeFFS(CI, Builder);
3130 case LibFunc_fls:
3131 case LibFunc_flsl:
3132 case LibFunc_flsll:
3133 return optimizeFls(CI, Builder);
3134 case LibFunc_abs:
3135 case LibFunc_labs:
3136 case LibFunc_llabs:
3137 return optimizeAbs(CI, Builder);
3138 case LibFunc_isdigit:
3139 return optimizeIsDigit(CI, Builder);
3140 case LibFunc_isascii:
3141 return optimizeIsAscii(CI, Builder);
3142 case LibFunc_toascii:
3143 return optimizeToAscii(CI, Builder);
3144 case LibFunc_atoi:
3145 case LibFunc_atol:
3146 case LibFunc_atoll:
3147 return optimizeAtoi(CI, Builder);
3148 case LibFunc_strtol:
3149 case LibFunc_strtoll:
3150 return optimizeStrtol(CI, Builder);
3151 case LibFunc_printf:
3152 return optimizePrintF(CI, Builder);
3153 case LibFunc_sprintf:
3154 return optimizeSPrintF(CI, Builder);
3155 case LibFunc_snprintf:
3156 return optimizeSnPrintF(CI, Builder);
3157 case LibFunc_fprintf:
3158 return optimizeFPrintF(CI, Builder);
3159 case LibFunc_fwrite:
3160 return optimizeFWrite(CI, Builder);
3161 case LibFunc_fread:
3162 return optimizeFRead(CI, Builder);
3163 case LibFunc_fputs:
3164 return optimizeFPuts(CI, Builder);
3165 case LibFunc_fgets:
3166 return optimizeFGets(CI, Builder);
3167 case LibFunc_fputc:
3168 return optimizeFPutc(CI, Builder);
3169 case LibFunc_fgetc:
3170 return optimizeFGetc(CI, Builder);
3171 case LibFunc_puts:
3172 return optimizePuts(CI, Builder);
3173 case LibFunc_perror:
3174 return optimizeErrorReporting(CI, Builder);
3175 case LibFunc_vfprintf:
3176 case LibFunc_fiprintf:
3177 return optimizeErrorReporting(CI, Builder, 0);
3178 default:
3179 return nullptr;
3180 }
3181 }
3182 return nullptr;
3183 }
3184
LibCallSimplifier(const DataLayout & DL,const TargetLibraryInfo * TLI,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,function_ref<void (Instruction *,Value *)> Replacer,function_ref<void (Instruction *)> Eraser)3185 LibCallSimplifier::LibCallSimplifier(
3186 const DataLayout &DL, const TargetLibraryInfo *TLI,
3187 OptimizationRemarkEmitter &ORE,
3188 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3189 function_ref<void(Instruction *, Value *)> Replacer,
3190 function_ref<void(Instruction *)> Eraser)
3191 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3192 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3193
replaceAllUsesWith(Instruction * I,Value * With)3194 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3195 // Indirect through the replacer used in this instance.
3196 Replacer(I, With);
3197 }
3198
eraseFromParent(Instruction * I)3199 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3200 Eraser(I);
3201 }
3202
3203 // TODO:
3204 // Additional cases that we need to add to this file:
3205 //
3206 // cbrt:
3207 // * cbrt(expN(X)) -> expN(x/3)
3208 // * cbrt(sqrt(x)) -> pow(x,1/6)
3209 // * cbrt(cbrt(x)) -> pow(x,1/9)
3210 //
3211 // exp, expf, expl:
3212 // * exp(log(x)) -> x
3213 //
3214 // log, logf, logl:
3215 // * log(exp(x)) -> x
3216 // * log(exp(y)) -> y*log(e)
3217 // * log(exp10(y)) -> y*log(10)
3218 // * log(sqrt(x)) -> 0.5*log(x)
3219 //
3220 // pow, powf, powl:
3221 // * pow(sqrt(x),y) -> pow(x,y*0.5)
3222 // * pow(pow(x,y),z)-> pow(x,y*z)
3223 //
3224 // signbit:
3225 // * signbit(cnst) -> cnst'
3226 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3227 //
3228 // sqrt, sqrtf, sqrtl:
3229 // * sqrt(expN(x)) -> expN(x*0.5)
3230 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3231 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3232 //
3233
3234 //===----------------------------------------------------------------------===//
3235 // Fortified Library Call Optimizations
3236 //===----------------------------------------------------------------------===//
3237
3238 bool
isFortifiedCallFoldable(CallInst * CI,unsigned ObjSizeOp,Optional<unsigned> SizeOp,Optional<unsigned> StrOp,Optional<unsigned> FlagOp)3239 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3240 unsigned ObjSizeOp,
3241 Optional<unsigned> SizeOp,
3242 Optional<unsigned> StrOp,
3243 Optional<unsigned> FlagOp) {
3244 // If this function takes a flag argument, the implementation may use it to
3245 // perform extra checks. Don't fold into the non-checking variant.
3246 if (FlagOp) {
3247 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3248 if (!Flag || !Flag->isZero())
3249 return false;
3250 }
3251
3252 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3253 return true;
3254
3255 if (ConstantInt *ObjSizeCI =
3256 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3257 if (ObjSizeCI->isMinusOne())
3258 return true;
3259 // If the object size wasn't -1 (unknown), bail out if we were asked to.
3260 if (OnlyLowerUnknownSize)
3261 return false;
3262 if (StrOp) {
3263 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3264 // If the length is 0 we don't know how long it is and so we can't
3265 // remove the check.
3266 if (Len)
3267 annotateDereferenceableBytes(CI, *StrOp, Len);
3268 else
3269 return false;
3270 return ObjSizeCI->getZExtValue() >= Len;
3271 }
3272
3273 if (SizeOp) {
3274 if (ConstantInt *SizeCI =
3275 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3276 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3277 }
3278 }
3279 return false;
3280 }
3281
optimizeMemCpyChk(CallInst * CI,IRBuilder<> & B)3282 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3283 IRBuilder<> &B) {
3284 if (isFortifiedCallFoldable(CI, 3, 2)) {
3285 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align::None(),
3286 CI->getArgOperand(1), Align::None(),
3287 CI->getArgOperand(2));
3288 NewCI->setAttributes(CI->getAttributes());
3289 return CI->getArgOperand(0);
3290 }
3291 return nullptr;
3292 }
3293
optimizeMemMoveChk(CallInst * CI,IRBuilder<> & B)3294 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3295 IRBuilder<> &B) {
3296 if (isFortifiedCallFoldable(CI, 3, 2)) {
3297 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align::None(),
3298 CI->getArgOperand(1), Align::None(),
3299 CI->getArgOperand(2));
3300 NewCI->setAttributes(CI->getAttributes());
3301 return CI->getArgOperand(0);
3302 }
3303 return nullptr;
3304 }
3305
optimizeMemSetChk(CallInst * CI,IRBuilder<> & B)3306 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3307 IRBuilder<> &B) {
3308 // TODO: Try foldMallocMemset() here.
3309
3310 if (isFortifiedCallFoldable(CI, 3, 2)) {
3311 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3312 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3313 CI->getArgOperand(2), Align::None());
3314 NewCI->setAttributes(CI->getAttributes());
3315 return CI->getArgOperand(0);
3316 }
3317 return nullptr;
3318 }
3319
optimizeStrpCpyChk(CallInst * CI,IRBuilder<> & B,LibFunc Func)3320 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3321 IRBuilder<> &B,
3322 LibFunc Func) {
3323 const DataLayout &DL = CI->getModule()->getDataLayout();
3324 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3325 *ObjSize = CI->getArgOperand(2);
3326
3327 // __stpcpy_chk(x,x,...) -> x+strlen(x)
3328 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3329 Value *StrLen = emitStrLen(Src, B, DL, TLI);
3330 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3331 }
3332
3333 // If a) we don't have any length information, or b) we know this will
3334 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3335 // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3336 // TODO: It might be nice to get a maximum length out of the possible
3337 // string lengths for varying.
3338 if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3339 if (Func == LibFunc_strcpy_chk)
3340 return emitStrCpy(Dst, Src, B, TLI);
3341 else
3342 return emitStpCpy(Dst, Src, B, TLI);
3343 }
3344
3345 if (OnlyLowerUnknownSize)
3346 return nullptr;
3347
3348 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3349 uint64_t Len = GetStringLength(Src);
3350 if (Len)
3351 annotateDereferenceableBytes(CI, 1, Len);
3352 else
3353 return nullptr;
3354
3355 Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3356 Value *LenV = ConstantInt::get(SizeTTy, Len);
3357 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3358 // If the function was an __stpcpy_chk, and we were able to fold it into
3359 // a __memcpy_chk, we still need to return the correct end pointer.
3360 if (Ret && Func == LibFunc_stpcpy_chk)
3361 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3362 return Ret;
3363 }
3364
optimizeStrpNCpyChk(CallInst * CI,IRBuilder<> & B,LibFunc Func)3365 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3366 IRBuilder<> &B,
3367 LibFunc Func) {
3368 if (isFortifiedCallFoldable(CI, 3, 2)) {
3369 if (Func == LibFunc_strncpy_chk)
3370 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3371 CI->getArgOperand(2), B, TLI);
3372 else
3373 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3374 CI->getArgOperand(2), B, TLI);
3375 }
3376
3377 return nullptr;
3378 }
3379
optimizeMemCCpyChk(CallInst * CI,IRBuilder<> & B)3380 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3381 IRBuilder<> &B) {
3382 if (isFortifiedCallFoldable(CI, 4, 3))
3383 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3384 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3385
3386 return nullptr;
3387 }
3388
optimizeSNPrintfChk(CallInst * CI,IRBuilder<> & B)3389 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3390 IRBuilder<> &B) {
3391 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3392 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3393 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3394 CI->getArgOperand(4), VariadicArgs, B, TLI);
3395 }
3396
3397 return nullptr;
3398 }
3399
optimizeSPrintfChk(CallInst * CI,IRBuilder<> & B)3400 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3401 IRBuilder<> &B) {
3402 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3403 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3404 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3405 B, TLI);
3406 }
3407
3408 return nullptr;
3409 }
3410
optimizeStrCatChk(CallInst * CI,IRBuilder<> & B)3411 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3412 IRBuilder<> &B) {
3413 if (isFortifiedCallFoldable(CI, 2))
3414 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3415
3416 return nullptr;
3417 }
3418
optimizeStrLCat(CallInst * CI,IRBuilder<> & B)3419 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3420 IRBuilder<> &B) {
3421 if (isFortifiedCallFoldable(CI, 3))
3422 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3423 CI->getArgOperand(2), B, TLI);
3424
3425 return nullptr;
3426 }
3427
optimizeStrNCatChk(CallInst * CI,IRBuilder<> & B)3428 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3429 IRBuilder<> &B) {
3430 if (isFortifiedCallFoldable(CI, 3))
3431 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3432 CI->getArgOperand(2), B, TLI);
3433
3434 return nullptr;
3435 }
3436
optimizeStrLCpyChk(CallInst * CI,IRBuilder<> & B)3437 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3438 IRBuilder<> &B) {
3439 if (isFortifiedCallFoldable(CI, 3))
3440 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3441 CI->getArgOperand(2), B, TLI);
3442
3443 return nullptr;
3444 }
3445
optimizeVSNPrintfChk(CallInst * CI,IRBuilder<> & B)3446 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3447 IRBuilder<> &B) {
3448 if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3449 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3450 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3451
3452 return nullptr;
3453 }
3454
optimizeVSPrintfChk(CallInst * CI,IRBuilder<> & B)3455 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3456 IRBuilder<> &B) {
3457 if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3458 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3459 CI->getArgOperand(4), B, TLI);
3460
3461 return nullptr;
3462 }
3463
optimizeCall(CallInst * CI)3464 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
3465 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3466 // Some clang users checked for _chk libcall availability using:
3467 // __has_builtin(__builtin___memcpy_chk)
3468 // When compiling with -fno-builtin, this is always true.
3469 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3470 // end up with fortified libcalls, which isn't acceptable in a freestanding
3471 // environment which only provides their non-fortified counterparts.
3472 //
3473 // Until we change clang and/or teach external users to check for availability
3474 // differently, disregard the "nobuiltin" attribute and TLI::has.
3475 //
3476 // PR23093.
3477
3478 LibFunc Func;
3479 Function *Callee = CI->getCalledFunction();
3480
3481 SmallVector<OperandBundleDef, 2> OpBundles;
3482 CI->getOperandBundlesAsDefs(OpBundles);
3483 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3484 bool isCallingConvC = isCallingConvCCompatible(CI);
3485
3486 // First, check that this is a known library functions and that the prototype
3487 // is correct.
3488 if (!TLI->getLibFunc(*Callee, Func))
3489 return nullptr;
3490
3491 // We never change the calling convention.
3492 if (!ignoreCallingConv(Func) && !isCallingConvC)
3493 return nullptr;
3494
3495 switch (Func) {
3496 case LibFunc_memcpy_chk:
3497 return optimizeMemCpyChk(CI, Builder);
3498 case LibFunc_memmove_chk:
3499 return optimizeMemMoveChk(CI, Builder);
3500 case LibFunc_memset_chk:
3501 return optimizeMemSetChk(CI, Builder);
3502 case LibFunc_stpcpy_chk:
3503 case LibFunc_strcpy_chk:
3504 return optimizeStrpCpyChk(CI, Builder, Func);
3505 case LibFunc_stpncpy_chk:
3506 case LibFunc_strncpy_chk:
3507 return optimizeStrpNCpyChk(CI, Builder, Func);
3508 case LibFunc_memccpy_chk:
3509 return optimizeMemCCpyChk(CI, Builder);
3510 case LibFunc_snprintf_chk:
3511 return optimizeSNPrintfChk(CI, Builder);
3512 case LibFunc_sprintf_chk:
3513 return optimizeSPrintfChk(CI, Builder);
3514 case LibFunc_strcat_chk:
3515 return optimizeStrCatChk(CI, Builder);
3516 case LibFunc_strlcat_chk:
3517 return optimizeStrLCat(CI, Builder);
3518 case LibFunc_strncat_chk:
3519 return optimizeStrNCatChk(CI, Builder);
3520 case LibFunc_strlcpy_chk:
3521 return optimizeStrLCpyChk(CI, Builder);
3522 case LibFunc_vsnprintf_chk:
3523 return optimizeVSNPrintfChk(CI, Builder);
3524 case LibFunc_vsprintf_chk:
3525 return optimizeVSPrintfChk(CI, Builder);
3526 default:
3527 break;
3528 }
3529 return nullptr;
3530 }
3531
FortifiedLibCallSimplifier(const TargetLibraryInfo * TLI,bool OnlyLowerUnknownSize)3532 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3533 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3534 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3535