• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns explicit null checks of the form
10 //
11 //   test %r10, %r10
12 //   je throw_npe
13 //   movl (%r10), %esi
14 //   ...
15 //
16 // to
17 //
18 //   faulting_load_op("movl (%r10), %esi", throw_npe)
19 //   ...
20 //
21 // With the help of a runtime that understands the .fault_maps section,
22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
23 // a page fault.
24 // Store and LoadStore are also supported.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/CodeGen/FaultMaps.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/PseudoSourceValue.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/CommandLine.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 
62 using namespace llvm;
63 
64 static cl::opt<int> PageSize("imp-null-check-page-size",
65                              cl::desc("The page size of the target in bytes"),
66                              cl::init(4096), cl::Hidden);
67 
68 static cl::opt<unsigned> MaxInstsToConsider(
69     "imp-null-max-insts-to-consider",
70     cl::desc("The max number of instructions to consider hoisting loads over "
71              "(the algorithm is quadratic over this number)"),
72     cl::Hidden, cl::init(8));
73 
74 #define DEBUG_TYPE "implicit-null-checks"
75 
76 STATISTIC(NumImplicitNullChecks,
77           "Number of explicit null checks made implicit");
78 
79 namespace {
80 
81 class ImplicitNullChecks : public MachineFunctionPass {
82   /// Return true if \c computeDependence can process \p MI.
83   static bool canHandle(const MachineInstr *MI);
84 
85   /// Helper function for \c computeDependence.  Return true if \p A
86   /// and \p B do not have any dependences between them, and can be
87   /// re-ordered without changing program semantics.
88   bool canReorder(const MachineInstr *A, const MachineInstr *B);
89 
90   /// A data type for representing the result computed by \c
91   /// computeDependence.  States whether it is okay to reorder the
92   /// instruction passed to \c computeDependence with at most one
93   /// dependency.
94   struct DependenceResult {
95     /// Can we actually re-order \p MI with \p Insts (see \c
96     /// computeDependence).
97     bool CanReorder;
98 
99     /// If non-None, then an instruction in \p Insts that also must be
100     /// hoisted.
101     Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
102 
DependenceResult__anonba0fc7a50111::ImplicitNullChecks::DependenceResult103     /*implicit*/ DependenceResult(
104         bool CanReorder,
105         Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
106         : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
107       assert((!PotentialDependence || CanReorder) &&
108              "!CanReorder && PotentialDependence.hasValue() not allowed!");
109     }
110   };
111 
112   /// Compute a result for the following question: can \p MI be
113   /// re-ordered from after \p Insts to before it.
114   ///
115   /// \c canHandle should return true for all instructions in \p
116   /// Insts.
117   DependenceResult computeDependence(const MachineInstr *MI,
118                                      ArrayRef<MachineInstr *> Block);
119 
120   /// Represents one null check that can be made implicit.
121   class NullCheck {
122     // The memory operation the null check can be folded into.
123     MachineInstr *MemOperation;
124 
125     // The instruction actually doing the null check (Ptr != 0).
126     MachineInstr *CheckOperation;
127 
128     // The block the check resides in.
129     MachineBasicBlock *CheckBlock;
130 
131     // The block branched to if the pointer is non-null.
132     MachineBasicBlock *NotNullSucc;
133 
134     // The block branched to if the pointer is null.
135     MachineBasicBlock *NullSucc;
136 
137     // If this is non-null, then MemOperation has a dependency on this
138     // instruction; and it needs to be hoisted to execute before MemOperation.
139     MachineInstr *OnlyDependency;
140 
141   public:
NullCheck(MachineInstr * memOperation,MachineInstr * checkOperation,MachineBasicBlock * checkBlock,MachineBasicBlock * notNullSucc,MachineBasicBlock * nullSucc,MachineInstr * onlyDependency)142     explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
143                        MachineBasicBlock *checkBlock,
144                        MachineBasicBlock *notNullSucc,
145                        MachineBasicBlock *nullSucc,
146                        MachineInstr *onlyDependency)
147         : MemOperation(memOperation), CheckOperation(checkOperation),
148           CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
149           OnlyDependency(onlyDependency) {}
150 
getMemOperation() const151     MachineInstr *getMemOperation() const { return MemOperation; }
152 
getCheckOperation() const153     MachineInstr *getCheckOperation() const { return CheckOperation; }
154 
getCheckBlock() const155     MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
156 
getNotNullSucc() const157     MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
158 
getNullSucc() const159     MachineBasicBlock *getNullSucc() const { return NullSucc; }
160 
getOnlyDependency() const161     MachineInstr *getOnlyDependency() const { return OnlyDependency; }
162   };
163 
164   const TargetInstrInfo *TII = nullptr;
165   const TargetRegisterInfo *TRI = nullptr;
166   AliasAnalysis *AA = nullptr;
167   MachineFrameInfo *MFI = nullptr;
168 
169   bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
170                                  SmallVectorImpl<NullCheck> &NullCheckList);
171   MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
172                                     MachineBasicBlock *HandlerMBB);
173   void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
174 
175   enum AliasResult {
176     AR_NoAlias,
177     AR_MayAlias,
178     AR_WillAliasEverything
179   };
180 
181   /// Returns AR_NoAlias if \p MI memory operation does not alias with
182   /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
183   /// they may alias and any further memory operation may alias with \p PrevMI.
184   AliasResult areMemoryOpsAliased(const MachineInstr &MI,
185                                   const MachineInstr *PrevMI) const;
186 
187   enum SuitabilityResult {
188     SR_Suitable,
189     SR_Unsuitable,
190     SR_Impossible
191   };
192 
193   /// Return SR_Suitable if \p MI a memory operation that can be used to
194   /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
195   /// \p MI cannot be used to null check and SR_Impossible if there is
196   /// no sense to continue lookup due to any other instruction will not be able
197   /// to be used. \p PrevInsts is the set of instruction seen since
198   /// the explicit null check on \p PointerReg.
199   SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
200                                        unsigned PointerReg,
201                                        ArrayRef<MachineInstr *> PrevInsts);
202 
203   /// Return true if \p FaultingMI can be hoisted from after the
204   /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
205   /// non-null value if we also need to (and legally can) hoist a depedency.
206   bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
207                     ArrayRef<MachineInstr *> InstsSeenSoFar,
208                     MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
209 
210 public:
211   static char ID;
212 
ImplicitNullChecks()213   ImplicitNullChecks() : MachineFunctionPass(ID) {
214     initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
215   }
216 
217   bool runOnMachineFunction(MachineFunction &MF) override;
218 
getAnalysisUsage(AnalysisUsage & AU) const219   void getAnalysisUsage(AnalysisUsage &AU) const override {
220     AU.addRequired<AAResultsWrapperPass>();
221     MachineFunctionPass::getAnalysisUsage(AU);
222   }
223 
getRequiredProperties() const224   MachineFunctionProperties getRequiredProperties() const override {
225     return MachineFunctionProperties().set(
226         MachineFunctionProperties::Property::NoVRegs);
227   }
228 };
229 
230 } // end anonymous namespace
231 
canHandle(const MachineInstr * MI)232 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
233   if (MI->isCall() || MI->mayRaiseFPException() ||
234       MI->hasUnmodeledSideEffects())
235     return false;
236   auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
237   (void)IsRegMask;
238 
239   assert(!llvm::any_of(MI->operands(), IsRegMask) &&
240          "Calls were filtered out above!");
241 
242   auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
243   return llvm::all_of(MI->memoperands(), IsUnordered);
244 }
245 
246 ImplicitNullChecks::DependenceResult
computeDependence(const MachineInstr * MI,ArrayRef<MachineInstr * > Block)247 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
248                                       ArrayRef<MachineInstr *> Block) {
249   assert(llvm::all_of(Block, canHandle) && "Check this first!");
250   assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
251 
252   Optional<ArrayRef<MachineInstr *>::iterator> Dep;
253 
254   for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
255     if (canReorder(*I, MI))
256       continue;
257 
258     if (Dep == None) {
259       // Found one possible dependency, keep track of it.
260       Dep = I;
261     } else {
262       // We found two dependencies, so bail out.
263       return {false, None};
264     }
265   }
266 
267   return {true, Dep};
268 }
269 
canReorder(const MachineInstr * A,const MachineInstr * B)270 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
271                                     const MachineInstr *B) {
272   assert(canHandle(A) && canHandle(B) && "Precondition!");
273 
274   // canHandle makes sure that we _can_ correctly analyze the dependencies
275   // between A and B here -- for instance, we should not be dealing with heap
276   // load-store dependencies here.
277 
278   for (auto MOA : A->operands()) {
279     if (!(MOA.isReg() && MOA.getReg()))
280       continue;
281 
282     Register RegA = MOA.getReg();
283     for (auto MOB : B->operands()) {
284       if (!(MOB.isReg() && MOB.getReg()))
285         continue;
286 
287       Register RegB = MOB.getReg();
288 
289       if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
290         return false;
291     }
292   }
293 
294   return true;
295 }
296 
runOnMachineFunction(MachineFunction & MF)297 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
298   TII = MF.getSubtarget().getInstrInfo();
299   TRI = MF.getRegInfo().getTargetRegisterInfo();
300   MFI = &MF.getFrameInfo();
301   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
302 
303   SmallVector<NullCheck, 16> NullCheckList;
304 
305   for (auto &MBB : MF)
306     analyzeBlockForNullChecks(MBB, NullCheckList);
307 
308   if (!NullCheckList.empty())
309     rewriteNullChecks(NullCheckList);
310 
311   return !NullCheckList.empty();
312 }
313 
314 // Return true if any register aliasing \p Reg is live-in into \p MBB.
AnyAliasLiveIn(const TargetRegisterInfo * TRI,MachineBasicBlock * MBB,unsigned Reg)315 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
316                            MachineBasicBlock *MBB, unsigned Reg) {
317   for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
318        ++AR)
319     if (MBB->isLiveIn(*AR))
320       return true;
321   return false;
322 }
323 
324 ImplicitNullChecks::AliasResult
areMemoryOpsAliased(const MachineInstr & MI,const MachineInstr * PrevMI) const325 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
326                                         const MachineInstr *PrevMI) const {
327   // If it is not memory access, skip the check.
328   if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
329     return AR_NoAlias;
330   // Load-Load may alias
331   if (!(MI.mayStore() || PrevMI->mayStore()))
332     return AR_NoAlias;
333   // We lost info, conservatively alias. If it was store then no sense to
334   // continue because we won't be able to check against it further.
335   if (MI.memoperands_empty())
336     return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
337   if (PrevMI->memoperands_empty())
338     return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
339 
340   for (MachineMemOperand *MMO1 : MI.memoperands()) {
341     // MMO1 should have a value due it comes from operation we'd like to use
342     // as implicit null check.
343     assert(MMO1->getValue() && "MMO1 should have a Value!");
344     for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
345       if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
346         if (PSV->mayAlias(MFI))
347           return AR_MayAlias;
348         continue;
349       }
350       llvm::AliasResult AAResult =
351           AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
352                                    MMO1->getAAInfo()),
353                     MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
354                                    MMO2->getAAInfo()));
355       if (AAResult != NoAlias)
356         return AR_MayAlias;
357     }
358   }
359   return AR_NoAlias;
360 }
361 
362 ImplicitNullChecks::SuitabilityResult
isSuitableMemoryOp(const MachineInstr & MI,unsigned PointerReg,ArrayRef<MachineInstr * > PrevInsts)363 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
364                                        unsigned PointerReg,
365                                        ArrayRef<MachineInstr *> PrevInsts) {
366   int64_t Offset;
367   const MachineOperand *BaseOp;
368 
369   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI) ||
370       !BaseOp->isReg() || BaseOp->getReg() != PointerReg)
371     return SR_Unsuitable;
372 
373   // We want the mem access to be issued at a sane offset from PointerReg,
374   // so that if PointerReg is null then the access reliably page faults.
375   if (!(MI.mayLoadOrStore() && !MI.isPredicable() &&
376         -PageSize < Offset && Offset < PageSize))
377     return SR_Unsuitable;
378 
379   // Finally, check whether the current memory access aliases with previous one.
380   for (auto *PrevMI : PrevInsts) {
381     AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
382     if (AR == AR_WillAliasEverything)
383       return SR_Impossible;
384     if (AR == AR_MayAlias)
385       return SR_Unsuitable;
386   }
387   return SR_Suitable;
388 }
389 
canHoistInst(MachineInstr * FaultingMI,unsigned PointerReg,ArrayRef<MachineInstr * > InstsSeenSoFar,MachineBasicBlock * NullSucc,MachineInstr * & Dependence)390 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
391                                       unsigned PointerReg,
392                                       ArrayRef<MachineInstr *> InstsSeenSoFar,
393                                       MachineBasicBlock *NullSucc,
394                                       MachineInstr *&Dependence) {
395   auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
396   if (!DepResult.CanReorder)
397     return false;
398 
399   if (!DepResult.PotentialDependence) {
400     Dependence = nullptr;
401     return true;
402   }
403 
404   auto DependenceItr = *DepResult.PotentialDependence;
405   auto *DependenceMI = *DependenceItr;
406 
407   // We don't want to reason about speculating loads.  Note -- at this point
408   // we should have already filtered out all of the other non-speculatable
409   // things, like calls and stores.
410   // We also do not want to hoist stores because it might change the memory
411   // while the FaultingMI may result in faulting.
412   assert(canHandle(DependenceMI) && "Should never have reached here!");
413   if (DependenceMI->mayLoadOrStore())
414     return false;
415 
416   for (auto &DependenceMO : DependenceMI->operands()) {
417     if (!(DependenceMO.isReg() && DependenceMO.getReg()))
418       continue;
419 
420     // Make sure that we won't clobber any live ins to the sibling block by
421     // hoisting Dependency.  For instance, we can't hoist INST to before the
422     // null check (even if it safe, and does not violate any dependencies in
423     // the non_null_block) if %rdx is live in to _null_block.
424     //
425     //    test %rcx, %rcx
426     //    je _null_block
427     //  _non_null_block:
428     //    %rdx = INST
429     //    ...
430     //
431     // This restriction does not apply to the faulting load inst because in
432     // case the pointer loaded from is in the null page, the load will not
433     // semantically execute, and affect machine state.  That is, if the load
434     // was loading into %rax and it faults, the value of %rax should stay the
435     // same as it would have been had the load not have executed and we'd have
436     // branched to NullSucc directly.
437     if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
438       return false;
439 
440     // The Dependency can't be re-defining the base register -- then we won't
441     // get the memory operation on the address we want.  This is already
442     // checked in \c IsSuitableMemoryOp.
443     assert(!(DependenceMO.isDef() &&
444              TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
445            "Should have been checked before!");
446   }
447 
448   auto DepDepResult =
449       computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
450 
451   if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
452     return false;
453 
454   Dependence = DependenceMI;
455   return true;
456 }
457 
458 /// Analyze MBB to check if its terminating branch can be turned into an
459 /// implicit null check.  If yes, append a description of the said null check to
460 /// NullCheckList and return true, else return false.
analyzeBlockForNullChecks(MachineBasicBlock & MBB,SmallVectorImpl<NullCheck> & NullCheckList)461 bool ImplicitNullChecks::analyzeBlockForNullChecks(
462     MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
463   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
464 
465   MDNode *BranchMD = nullptr;
466   if (auto *BB = MBB.getBasicBlock())
467     BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
468 
469   if (!BranchMD)
470     return false;
471 
472   MachineBranchPredicate MBP;
473 
474   if (TII->analyzeBranchPredicate(MBB, MBP, true))
475     return false;
476 
477   // Is the predicate comparing an integer to zero?
478   if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
479         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
480          MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
481     return false;
482 
483   // If we cannot erase the test instruction itself, then making the null check
484   // implicit does not buy us much.
485   if (!MBP.SingleUseCondition)
486     return false;
487 
488   MachineBasicBlock *NotNullSucc, *NullSucc;
489 
490   if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
491     NotNullSucc = MBP.TrueDest;
492     NullSucc = MBP.FalseDest;
493   } else {
494     NotNullSucc = MBP.FalseDest;
495     NullSucc = MBP.TrueDest;
496   }
497 
498   // We handle the simplest case for now.  We can potentially do better by using
499   // the machine dominator tree.
500   if (NotNullSucc->pred_size() != 1)
501     return false;
502 
503   // To prevent the invalid transformation of the following code:
504   //
505   //   mov %rax, %rcx
506   //   test %rax, %rax
507   //   %rax = ...
508   //   je throw_npe
509   //   mov(%rcx), %r9
510   //   mov(%rax), %r10
511   //
512   // into:
513   //
514   //   mov %rax, %rcx
515   //   %rax = ....
516   //   faulting_load_op("movl (%rax), %r10", throw_npe)
517   //   mov(%rcx), %r9
518   //
519   // we must ensure that there are no instructions between the 'test' and
520   // conditional jump that modify %rax.
521   const Register PointerReg = MBP.LHS.getReg();
522 
523   assert(MBP.ConditionDef->getParent() ==  &MBB && "Should be in basic block");
524 
525   for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
526     if (I->modifiesRegister(PointerReg, TRI))
527       return false;
528 
529   // Starting with a code fragment like:
530   //
531   //   test %rax, %rax
532   //   jne LblNotNull
533   //
534   //  LblNull:
535   //   callq throw_NullPointerException
536   //
537   //  LblNotNull:
538   //   Inst0
539   //   Inst1
540   //   ...
541   //   Def = Load (%rax + <offset>)
542   //   ...
543   //
544   //
545   // we want to end up with
546   //
547   //   Def = FaultingLoad (%rax + <offset>), LblNull
548   //   jmp LblNotNull ;; explicit or fallthrough
549   //
550   //  LblNotNull:
551   //   Inst0
552   //   Inst1
553   //   ...
554   //
555   //  LblNull:
556   //   callq throw_NullPointerException
557   //
558   //
559   // To see why this is legal, consider the two possibilities:
560   //
561   //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
562   //     load instruction dereferences the null page, causing a segmentation
563   //     fault.
564   //
565   //  2. %rax is not null: in this case we know that the load cannot fault, as
566   //     otherwise the load would've faulted in the original program too and the
567   //     original program would've been undefined.
568   //
569   // This reasoning cannot be extended to justify hoisting through arbitrary
570   // control flow.  For instance, in the example below (in pseudo-C)
571   //
572   //    if (ptr == null) { throw_npe(); unreachable; }
573   //    if (some_cond) { return 42; }
574   //    v = ptr->field;  // LD
575   //    ...
576   //
577   // we cannot (without code duplication) use the load marked "LD" to null check
578   // ptr -- clause (2) above does not apply in this case.  In the above program
579   // the safety of ptr->field can be dependent on some_cond; and, for instance,
580   // ptr could be some non-null invalid reference that never gets loaded from
581   // because some_cond is always true.
582 
583   SmallVector<MachineInstr *, 8> InstsSeenSoFar;
584 
585   for (auto &MI : *NotNullSucc) {
586     if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
587       return false;
588 
589     MachineInstr *Dependence;
590     SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
591     if (SR == SR_Impossible)
592       return false;
593     if (SR == SR_Suitable &&
594         canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
595       NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
596                                  NullSucc, Dependence);
597       return true;
598     }
599 
600     // If MI re-defines the PointerReg then we cannot move further.
601     if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
602           return MO.isReg() && MO.getReg() && MO.isDef() &&
603                  TRI->regsOverlap(MO.getReg(), PointerReg);
604         }))
605       return false;
606     InstsSeenSoFar.push_back(&MI);
607   }
608 
609   return false;
610 }
611 
612 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
613 /// The FAULTING instruction does the same load/store as MI
614 /// (defining the same register), and branches to HandlerMBB if the mem access
615 /// faults.  The FAULTING instruction is inserted at the end of MBB.
insertFaultingInstr(MachineInstr * MI,MachineBasicBlock * MBB,MachineBasicBlock * HandlerMBB)616 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
617     MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
618   const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
619                                  // all targets.
620 
621   DebugLoc DL;
622   unsigned NumDefs = MI->getDesc().getNumDefs();
623   assert(NumDefs <= 1 && "other cases unhandled!");
624 
625   unsigned DefReg = NoRegister;
626   if (NumDefs != 0) {
627     DefReg = MI->getOperand(0).getReg();
628     assert(NumDefs == 1 && "expected exactly one def!");
629   }
630 
631   FaultMaps::FaultKind FK;
632   if (MI->mayLoad())
633     FK =
634         MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
635   else
636     FK = FaultMaps::FaultingStore;
637 
638   auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
639                  .addImm(FK)
640                  .addMBB(HandlerMBB)
641                  .addImm(MI->getOpcode());
642 
643   for (auto &MO : MI->uses()) {
644     if (MO.isReg()) {
645       MachineOperand NewMO = MO;
646       if (MO.isUse()) {
647         NewMO.setIsKill(false);
648       } else {
649         assert(MO.isDef() && "Expected def or use");
650         NewMO.setIsDead(false);
651       }
652       MIB.add(NewMO);
653     } else {
654       MIB.add(MO);
655     }
656   }
657 
658   MIB.setMemRefs(MI->memoperands());
659 
660   return MIB;
661 }
662 
663 /// Rewrite the null checks in NullCheckList into implicit null checks.
rewriteNullChecks(ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList)664 void ImplicitNullChecks::rewriteNullChecks(
665     ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
666   DebugLoc DL;
667 
668   for (auto &NC : NullCheckList) {
669     // Remove the conditional branch dependent on the null check.
670     unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
671     (void)BranchesRemoved;
672     assert(BranchesRemoved > 0 && "expected at least one branch!");
673 
674     if (auto *DepMI = NC.getOnlyDependency()) {
675       DepMI->removeFromParent();
676       NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
677     }
678 
679     // Insert a faulting instruction where the conditional branch was
680     // originally. We check earlier ensures that this bit of code motion
681     // is legal.  We do not touch the successors list for any basic block
682     // since we haven't changed control flow, we've just made it implicit.
683     MachineInstr *FaultingInstr = insertFaultingInstr(
684         NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
685     // Now the values defined by MemOperation, if any, are live-in of
686     // the block of MemOperation.
687     // The original operation may define implicit-defs alongside
688     // the value.
689     MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
690     for (const MachineOperand &MO : FaultingInstr->operands()) {
691       if (!MO.isReg() || !MO.isDef())
692         continue;
693       Register Reg = MO.getReg();
694       if (!Reg || MBB->isLiveIn(Reg))
695         continue;
696       MBB->addLiveIn(Reg);
697     }
698 
699     if (auto *DepMI = NC.getOnlyDependency()) {
700       for (auto &MO : DepMI->operands()) {
701         if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead())
702           continue;
703         if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
704           NC.getNotNullSucc()->addLiveIn(MO.getReg());
705       }
706     }
707 
708     NC.getMemOperation()->eraseFromParent();
709     NC.getCheckOperation()->eraseFromParent();
710 
711     // Insert an *unconditional* branch to not-null successor.
712     TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
713                       /*Cond=*/None, DL);
714 
715     NumImplicitNullChecks++;
716   }
717 }
718 
719 char ImplicitNullChecks::ID = 0;
720 
721 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
722 
723 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
724                       "Implicit null checks", false, false)
725 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
726 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
727                     "Implicit null checks", false, false)
728