• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ImutAVLTree and ImmutableSet classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ADT_IMMUTABLESET_H
14 #define LLVM_ADT_IMMUTABLESET_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/iterator.h"
20 #include "llvm/Support/Allocator.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <cassert>
23 #include <cstdint>
24 #include <functional>
25 #include <iterator>
26 #include <new>
27 #include <vector>
28 
29 namespace llvm {
30 
31 //===----------------------------------------------------------------------===//
32 // Immutable AVL-Tree Definition.
33 //===----------------------------------------------------------------------===//
34 
35 template <typename ImutInfo> class ImutAVLFactory;
36 template <typename ImutInfo> class ImutIntervalAVLFactory;
37 template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
38 template <typename ImutInfo> class ImutAVLTreeGenericIterator;
39 
40 template <typename ImutInfo >
41 class ImutAVLTree {
42 public:
43   using key_type_ref = typename ImutInfo::key_type_ref;
44   using value_type = typename ImutInfo::value_type;
45   using value_type_ref = typename ImutInfo::value_type_ref;
46   using Factory = ImutAVLFactory<ImutInfo>;
47   using iterator = ImutAVLTreeInOrderIterator<ImutInfo>;
48 
49   friend class ImutAVLFactory<ImutInfo>;
50   friend class ImutIntervalAVLFactory<ImutInfo>;
51   friend class ImutAVLTreeGenericIterator<ImutInfo>;
52 
53   //===----------------------------------------------------===//
54   // Public Interface.
55   //===----------------------------------------------------===//
56 
57   /// Return a pointer to the left subtree.  This value
58   ///  is NULL if there is no left subtree.
getLeft()59   ImutAVLTree *getLeft() const { return left; }
60 
61   /// Return a pointer to the right subtree.  This value is
62   ///  NULL if there is no right subtree.
getRight()63   ImutAVLTree *getRight() const { return right; }
64 
65   /// getHeight - Returns the height of the tree.  A tree with no subtrees
66   ///  has a height of 1.
getHeight()67   unsigned getHeight() const { return height; }
68 
69   /// getValue - Returns the data value associated with the tree node.
getValue()70   const value_type& getValue() const { return value; }
71 
72   /// find - Finds the subtree associated with the specified key value.
73   ///  This method returns NULL if no matching subtree is found.
find(key_type_ref K)74   ImutAVLTree* find(key_type_ref K) {
75     ImutAVLTree *T = this;
76     while (T) {
77       key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
78       if (ImutInfo::isEqual(K,CurrentKey))
79         return T;
80       else if (ImutInfo::isLess(K,CurrentKey))
81         T = T->getLeft();
82       else
83         T = T->getRight();
84     }
85     return nullptr;
86   }
87 
88   /// getMaxElement - Find the subtree associated with the highest ranged
89   ///  key value.
getMaxElement()90   ImutAVLTree* getMaxElement() {
91     ImutAVLTree *T = this;
92     ImutAVLTree *Right = T->getRight();
93     while (Right) { T = Right; Right = T->getRight(); }
94     return T;
95   }
96 
97   /// size - Returns the number of nodes in the tree, which includes
98   ///  both leaves and non-leaf nodes.
size()99   unsigned size() const {
100     unsigned n = 1;
101     if (const ImutAVLTree* L = getLeft())
102       n += L->size();
103     if (const ImutAVLTree* R = getRight())
104       n += R->size();
105     return n;
106   }
107 
108   /// begin - Returns an iterator that iterates over the nodes of the tree
109   ///  in an inorder traversal.  The returned iterator thus refers to the
110   ///  the tree node with the minimum data element.
begin()111   iterator begin() const { return iterator(this); }
112 
113   /// end - Returns an iterator for the tree that denotes the end of an
114   ///  inorder traversal.
end()115   iterator end() const { return iterator(); }
116 
isElementEqual(value_type_ref V)117   bool isElementEqual(value_type_ref V) const {
118     // Compare the keys.
119     if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
120                            ImutInfo::KeyOfValue(V)))
121       return false;
122 
123     // Also compare the data values.
124     if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
125                                ImutInfo::DataOfValue(V)))
126       return false;
127 
128     return true;
129   }
130 
isElementEqual(const ImutAVLTree * RHS)131   bool isElementEqual(const ImutAVLTree* RHS) const {
132     return isElementEqual(RHS->getValue());
133   }
134 
135   /// isEqual - Compares two trees for structural equality and returns true
136   ///   if they are equal.  This worst case performance of this operation is
137   //    linear in the sizes of the trees.
isEqual(const ImutAVLTree & RHS)138   bool isEqual(const ImutAVLTree& RHS) const {
139     if (&RHS == this)
140       return true;
141 
142     iterator LItr = begin(), LEnd = end();
143     iterator RItr = RHS.begin(), REnd = RHS.end();
144 
145     while (LItr != LEnd && RItr != REnd) {
146       if (&*LItr == &*RItr) {
147         LItr.skipSubTree();
148         RItr.skipSubTree();
149         continue;
150       }
151 
152       if (!LItr->isElementEqual(&*RItr))
153         return false;
154 
155       ++LItr;
156       ++RItr;
157     }
158 
159     return LItr == LEnd && RItr == REnd;
160   }
161 
162   /// isNotEqual - Compares two trees for structural inequality.  Performance
163   ///  is the same is isEqual.
isNotEqual(const ImutAVLTree & RHS)164   bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
165 
166   /// contains - Returns true if this tree contains a subtree (node) that
167   ///  has an data element that matches the specified key.  Complexity
168   ///  is logarithmic in the size of the tree.
contains(key_type_ref K)169   bool contains(key_type_ref K) { return (bool) find(K); }
170 
171   /// foreach - A member template the accepts invokes operator() on a functor
172   ///  object (specifed by Callback) for every node/subtree in the tree.
173   ///  Nodes are visited using an inorder traversal.
174   template <typename Callback>
foreach(Callback & C)175   void foreach(Callback& C) {
176     if (ImutAVLTree* L = getLeft())
177       L->foreach(C);
178 
179     C(value);
180 
181     if (ImutAVLTree* R = getRight())
182       R->foreach(C);
183   }
184 
185   /// validateTree - A utility method that checks that the balancing and
186   ///  ordering invariants of the tree are satisifed.  It is a recursive
187   ///  method that returns the height of the tree, which is then consumed
188   ///  by the enclosing validateTree call.  External callers should ignore the
189   ///  return value.  An invalid tree will cause an assertion to fire in
190   ///  a debug build.
validateTree()191   unsigned validateTree() const {
192     unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
193     unsigned HR = getRight() ? getRight()->validateTree() : 0;
194     (void) HL;
195     (void) HR;
196 
197     assert(getHeight() == ( HL > HR ? HL : HR ) + 1
198             && "Height calculation wrong");
199 
200     assert((HL > HR ? HL-HR : HR-HL) <= 2
201            && "Balancing invariant violated");
202 
203     assert((!getLeft() ||
204             ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
205                              ImutInfo::KeyOfValue(getValue()))) &&
206            "Value in left child is not less that current value");
207 
208     assert((!getRight() ||
209              ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
210                               ImutInfo::KeyOfValue(getRight()->getValue()))) &&
211            "Current value is not less that value of right child");
212 
213     return getHeight();
214   }
215 
216   //===----------------------------------------------------===//
217   // Internal values.
218   //===----------------------------------------------------===//
219 
220 private:
221   Factory *factory;
222   ImutAVLTree *left;
223   ImutAVLTree *right;
224   ImutAVLTree *prev = nullptr;
225   ImutAVLTree *next = nullptr;
226 
227   unsigned height : 28;
228   bool IsMutable : 1;
229   bool IsDigestCached : 1;
230   bool IsCanonicalized : 1;
231 
232   value_type value;
233   uint32_t digest = 0;
234   uint32_t refCount = 0;
235 
236   //===----------------------------------------------------===//
237   // Internal methods (node manipulation; used by Factory).
238   //===----------------------------------------------------===//
239 
240 private:
241   /// ImutAVLTree - Internal constructor that is only called by
242   ///   ImutAVLFactory.
ImutAVLTree(Factory * f,ImutAVLTree * l,ImutAVLTree * r,value_type_ref v,unsigned height)243   ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
244               unsigned height)
245     : factory(f), left(l), right(r), height(height), IsMutable(true),
246       IsDigestCached(false), IsCanonicalized(false), value(v)
247   {
248     if (left) left->retain();
249     if (right) right->retain();
250   }
251 
252   /// isMutable - Returns true if the left and right subtree references
253   ///  (as well as height) can be changed.  If this method returns false,
254   ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
255   ///  object should always have this method return true.  Further, if this
256   ///  method returns false for an instance of ImutAVLTree, all subtrees
257   ///  will also have this method return false.  The converse is not true.
isMutable()258   bool isMutable() const { return IsMutable; }
259 
260   /// hasCachedDigest - Returns true if the digest for this tree is cached.
261   ///  This can only be true if the tree is immutable.
hasCachedDigest()262   bool hasCachedDigest() const { return IsDigestCached; }
263 
264   //===----------------------------------------------------===//
265   // Mutating operations.  A tree root can be manipulated as
266   // long as its reference has not "escaped" from internal
267   // methods of a factory object (see below).  When a tree
268   // pointer is externally viewable by client code, the
269   // internal "mutable bit" is cleared to mark the tree
270   // immutable.  Note that a tree that still has its mutable
271   // bit set may have children (subtrees) that are themselves
272   // immutable.
273   //===----------------------------------------------------===//
274 
275   /// markImmutable - Clears the mutable flag for a tree.  After this happens,
276   ///   it is an error to call setLeft(), setRight(), and setHeight().
markImmutable()277   void markImmutable() {
278     assert(isMutable() && "Mutable flag already removed.");
279     IsMutable = false;
280   }
281 
282   /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
markedCachedDigest()283   void markedCachedDigest() {
284     assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
285     IsDigestCached = true;
286   }
287 
288   /// setHeight - Changes the height of the tree.  Used internally by
289   ///  ImutAVLFactory.
setHeight(unsigned h)290   void setHeight(unsigned h) {
291     assert(isMutable() && "Only a mutable tree can have its height changed.");
292     height = h;
293   }
294 
computeDigest(ImutAVLTree * L,ImutAVLTree * R,value_type_ref V)295   static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
296                                 value_type_ref V) {
297     uint32_t digest = 0;
298 
299     if (L)
300       digest += L->computeDigest();
301 
302     // Compute digest of stored data.
303     FoldingSetNodeID ID;
304     ImutInfo::Profile(ID,V);
305     digest += ID.ComputeHash();
306 
307     if (R)
308       digest += R->computeDigest();
309 
310     return digest;
311   }
312 
computeDigest()313   uint32_t computeDigest() {
314     // Check the lowest bit to determine if digest has actually been
315     // pre-computed.
316     if (hasCachedDigest())
317       return digest;
318 
319     uint32_t X = computeDigest(getLeft(), getRight(), getValue());
320     digest = X;
321     markedCachedDigest();
322     return X;
323   }
324 
325   //===----------------------------------------------------===//
326   // Reference count operations.
327   //===----------------------------------------------------===//
328 
329 public:
retain()330   void retain() { ++refCount; }
331 
release()332   void release() {
333     assert(refCount > 0);
334     if (--refCount == 0)
335       destroy();
336   }
337 
destroy()338   void destroy() {
339     if (left)
340       left->release();
341     if (right)
342       right->release();
343     if (IsCanonicalized) {
344       if (next)
345         next->prev = prev;
346 
347       if (prev)
348         prev->next = next;
349       else
350         factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
351     }
352 
353     // We need to clear the mutability bit in case we are
354     // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
355     IsMutable = false;
356     factory->freeNodes.push_back(this);
357   }
358 };
359 
360 //===----------------------------------------------------------------------===//
361 // Immutable AVL-Tree Factory class.
362 //===----------------------------------------------------------------------===//
363 
364 template <typename ImutInfo >
365 class ImutAVLFactory {
366   friend class ImutAVLTree<ImutInfo>;
367 
368   using TreeTy = ImutAVLTree<ImutInfo>;
369   using value_type_ref = typename TreeTy::value_type_ref;
370   using key_type_ref = typename TreeTy::key_type_ref;
371   using CacheTy = DenseMap<unsigned, TreeTy*>;
372 
373   CacheTy Cache;
374   uintptr_t Allocator;
375   std::vector<TreeTy*> createdNodes;
376   std::vector<TreeTy*> freeNodes;
377 
ownsAllocator()378   bool ownsAllocator() const {
379     return (Allocator & 0x1) == 0;
380   }
381 
getAllocator()382   BumpPtrAllocator& getAllocator() const {
383     return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
384   }
385 
386   //===--------------------------------------------------===//
387   // Public interface.
388   //===--------------------------------------------------===//
389 
390 public:
ImutAVLFactory()391   ImutAVLFactory()
392     : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
393 
ImutAVLFactory(BumpPtrAllocator & Alloc)394   ImutAVLFactory(BumpPtrAllocator& Alloc)
395     : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
396 
~ImutAVLFactory()397   ~ImutAVLFactory() {
398     if (ownsAllocator()) delete &getAllocator();
399   }
400 
add(TreeTy * T,value_type_ref V)401   TreeTy* add(TreeTy* T, value_type_ref V) {
402     T = add_internal(V,T);
403     markImmutable(T);
404     recoverNodes();
405     return T;
406   }
407 
remove(TreeTy * T,key_type_ref V)408   TreeTy* remove(TreeTy* T, key_type_ref V) {
409     T = remove_internal(V,T);
410     markImmutable(T);
411     recoverNodes();
412     return T;
413   }
414 
getEmptyTree()415   TreeTy* getEmptyTree() const { return nullptr; }
416 
417 protected:
418   //===--------------------------------------------------===//
419   // A bunch of quick helper functions used for reasoning
420   // about the properties of trees and their children.
421   // These have succinct names so that the balancing code
422   // is as terse (and readable) as possible.
423   //===--------------------------------------------------===//
424 
isEmpty(TreeTy * T)425   bool            isEmpty(TreeTy* T) const { return !T; }
getHeight(TreeTy * T)426   unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
getLeft(TreeTy * T)427   TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
getRight(TreeTy * T)428   TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
getValue(TreeTy * T)429   value_type_ref  getValue(TreeTy* T) const { return T->value; }
430 
431   // Make sure the index is not the Tombstone or Entry key of the DenseMap.
maskCacheIndex(unsigned I)432   static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
433 
incrementHeight(TreeTy * L,TreeTy * R)434   unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
435     unsigned hl = getHeight(L);
436     unsigned hr = getHeight(R);
437     return (hl > hr ? hl : hr) + 1;
438   }
439 
compareTreeWithSection(TreeTy * T,typename TreeTy::iterator & TI,typename TreeTy::iterator & TE)440   static bool compareTreeWithSection(TreeTy* T,
441                                      typename TreeTy::iterator& TI,
442                                      typename TreeTy::iterator& TE) {
443     typename TreeTy::iterator I = T->begin(), E = T->end();
444     for ( ; I!=E ; ++I, ++TI) {
445       if (TI == TE || !I->isElementEqual(&*TI))
446         return false;
447     }
448     return true;
449   }
450 
451   //===--------------------------------------------------===//
452   // "createNode" is used to generate new tree roots that link
453   // to other trees.  The functon may also simply move links
454   // in an existing root if that root is still marked mutable.
455   // This is necessary because otherwise our balancing code
456   // would leak memory as it would create nodes that are
457   // then discarded later before the finished tree is
458   // returned to the caller.
459   //===--------------------------------------------------===//
460 
createNode(TreeTy * L,value_type_ref V,TreeTy * R)461   TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
462     BumpPtrAllocator& A = getAllocator();
463     TreeTy* T;
464     if (!freeNodes.empty()) {
465       T = freeNodes.back();
466       freeNodes.pop_back();
467       assert(T != L);
468       assert(T != R);
469     } else {
470       T = (TreeTy*) A.Allocate<TreeTy>();
471     }
472     new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
473     createdNodes.push_back(T);
474     return T;
475   }
476 
createNode(TreeTy * newLeft,TreeTy * oldTree,TreeTy * newRight)477   TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
478     return createNode(newLeft, getValue(oldTree), newRight);
479   }
480 
recoverNodes()481   void recoverNodes() {
482     for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
483       TreeTy *N = createdNodes[i];
484       if (N->isMutable() && N->refCount == 0)
485         N->destroy();
486     }
487     createdNodes.clear();
488   }
489 
490   /// balanceTree - Used by add_internal and remove_internal to
491   ///  balance a newly created tree.
balanceTree(TreeTy * L,value_type_ref V,TreeTy * R)492   TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
493     unsigned hl = getHeight(L);
494     unsigned hr = getHeight(R);
495 
496     if (hl > hr + 2) {
497       assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
498 
499       TreeTy *LL = getLeft(L);
500       TreeTy *LR = getRight(L);
501 
502       if (getHeight(LL) >= getHeight(LR))
503         return createNode(LL, L, createNode(LR,V,R));
504 
505       assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
506 
507       TreeTy *LRL = getLeft(LR);
508       TreeTy *LRR = getRight(LR);
509 
510       return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
511     }
512 
513     if (hr > hl + 2) {
514       assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
515 
516       TreeTy *RL = getLeft(R);
517       TreeTy *RR = getRight(R);
518 
519       if (getHeight(RR) >= getHeight(RL))
520         return createNode(createNode(L,V,RL), R, RR);
521 
522       assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
523 
524       TreeTy *RLL = getLeft(RL);
525       TreeTy *RLR = getRight(RL);
526 
527       return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
528     }
529 
530     return createNode(L,V,R);
531   }
532 
533   /// add_internal - Creates a new tree that includes the specified
534   ///  data and the data from the original tree.  If the original tree
535   ///  already contained the data item, the original tree is returned.
add_internal(value_type_ref V,TreeTy * T)536   TreeTy* add_internal(value_type_ref V, TreeTy* T) {
537     if (isEmpty(T))
538       return createNode(T, V, T);
539     assert(!T->isMutable());
540 
541     key_type_ref K = ImutInfo::KeyOfValue(V);
542     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
543 
544     if (ImutInfo::isEqual(K,KCurrent))
545       return createNode(getLeft(T), V, getRight(T));
546     else if (ImutInfo::isLess(K,KCurrent))
547       return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
548     else
549       return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
550   }
551 
552   /// remove_internal - Creates a new tree that includes all the data
553   ///  from the original tree except the specified data.  If the
554   ///  specified data did not exist in the original tree, the original
555   ///  tree is returned.
remove_internal(key_type_ref K,TreeTy * T)556   TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
557     if (isEmpty(T))
558       return T;
559 
560     assert(!T->isMutable());
561 
562     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
563 
564     if (ImutInfo::isEqual(K,KCurrent)) {
565       return combineTrees(getLeft(T), getRight(T));
566     } else if (ImutInfo::isLess(K,KCurrent)) {
567       return balanceTree(remove_internal(K, getLeft(T)),
568                                             getValue(T), getRight(T));
569     } else {
570       return balanceTree(getLeft(T), getValue(T),
571                          remove_internal(K, getRight(T)));
572     }
573   }
574 
combineTrees(TreeTy * L,TreeTy * R)575   TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
576     if (isEmpty(L))
577       return R;
578     if (isEmpty(R))
579       return L;
580     TreeTy* OldNode;
581     TreeTy* newRight = removeMinBinding(R,OldNode);
582     return balanceTree(L, getValue(OldNode), newRight);
583   }
584 
removeMinBinding(TreeTy * T,TreeTy * & Noderemoved)585   TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
586     assert(!isEmpty(T));
587     if (isEmpty(getLeft(T))) {
588       Noderemoved = T;
589       return getRight(T);
590     }
591     return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
592                        getValue(T), getRight(T));
593   }
594 
595   /// markImmutable - Clears the mutable bits of a root and all of its
596   ///  descendants.
markImmutable(TreeTy * T)597   void markImmutable(TreeTy* T) {
598     if (!T || !T->isMutable())
599       return;
600     T->markImmutable();
601     markImmutable(getLeft(T));
602     markImmutable(getRight(T));
603   }
604 
605 public:
getCanonicalTree(TreeTy * TNew)606   TreeTy *getCanonicalTree(TreeTy *TNew) {
607     if (!TNew)
608       return nullptr;
609 
610     if (TNew->IsCanonicalized)
611       return TNew;
612 
613     // Search the hashtable for another tree with the same digest, and
614     // if find a collision compare those trees by their contents.
615     unsigned digest = TNew->computeDigest();
616     TreeTy *&entry = Cache[maskCacheIndex(digest)];
617     do {
618       if (!entry)
619         break;
620       for (TreeTy *T = entry ; T != nullptr; T = T->next) {
621         // Compare the Contents('T') with Contents('TNew')
622         typename TreeTy::iterator TI = T->begin(), TE = T->end();
623         if (!compareTreeWithSection(TNew, TI, TE))
624           continue;
625         if (TI != TE)
626           continue; // T has more contents than TNew.
627         // Trees did match!  Return 'T'.
628         if (TNew->refCount == 0)
629           TNew->destroy();
630         return T;
631       }
632       entry->prev = TNew;
633       TNew->next = entry;
634     }
635     while (false);
636 
637     entry = TNew;
638     TNew->IsCanonicalized = true;
639     return TNew;
640   }
641 };
642 
643 //===----------------------------------------------------------------------===//
644 // Immutable AVL-Tree Iterators.
645 //===----------------------------------------------------------------------===//
646 
647 template <typename ImutInfo>
648 class ImutAVLTreeGenericIterator
649     : public std::iterator<std::bidirectional_iterator_tag,
650                            ImutAVLTree<ImutInfo>> {
651   SmallVector<uintptr_t,20> stack;
652 
653 public:
654   enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
655                    Flags=0x3 };
656 
657   using TreeTy = ImutAVLTree<ImutInfo>;
658 
659   ImutAVLTreeGenericIterator() = default;
ImutAVLTreeGenericIterator(const TreeTy * Root)660   ImutAVLTreeGenericIterator(const TreeTy *Root) {
661     if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
662   }
663 
664   TreeTy &operator*() const {
665     assert(!stack.empty());
666     return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
667   }
668   TreeTy *operator->() const { return &*this; }
669 
getVisitState()670   uintptr_t getVisitState() const {
671     assert(!stack.empty());
672     return stack.back() & Flags;
673   }
674 
atEnd()675   bool atEnd() const { return stack.empty(); }
676 
atBeginning()677   bool atBeginning() const {
678     return stack.size() == 1 && getVisitState() == VisitedNone;
679   }
680 
skipToParent()681   void skipToParent() {
682     assert(!stack.empty());
683     stack.pop_back();
684     if (stack.empty())
685       return;
686     switch (getVisitState()) {
687       case VisitedNone:
688         stack.back() |= VisitedLeft;
689         break;
690       case VisitedLeft:
691         stack.back() |= VisitedRight;
692         break;
693       default:
694         llvm_unreachable("Unreachable.");
695     }
696   }
697 
698   bool operator==(const ImutAVLTreeGenericIterator &x) const {
699     return stack == x.stack;
700   }
701 
702   bool operator!=(const ImutAVLTreeGenericIterator &x) const {
703     return !(*this == x);
704   }
705 
706   ImutAVLTreeGenericIterator &operator++() {
707     assert(!stack.empty());
708     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
709     assert(Current);
710     switch (getVisitState()) {
711       case VisitedNone:
712         if (TreeTy* L = Current->getLeft())
713           stack.push_back(reinterpret_cast<uintptr_t>(L));
714         else
715           stack.back() |= VisitedLeft;
716         break;
717       case VisitedLeft:
718         if (TreeTy* R = Current->getRight())
719           stack.push_back(reinterpret_cast<uintptr_t>(R));
720         else
721           stack.back() |= VisitedRight;
722         break;
723       case VisitedRight:
724         skipToParent();
725         break;
726       default:
727         llvm_unreachable("Unreachable.");
728     }
729     return *this;
730   }
731 
732   ImutAVLTreeGenericIterator &operator--() {
733     assert(!stack.empty());
734     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
735     assert(Current);
736     switch (getVisitState()) {
737       case VisitedNone:
738         stack.pop_back();
739         break;
740       case VisitedLeft:
741         stack.back() &= ~Flags; // Set state to "VisitedNone."
742         if (TreeTy* L = Current->getLeft())
743           stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
744         break;
745       case VisitedRight:
746         stack.back() &= ~Flags;
747         stack.back() |= VisitedLeft;
748         if (TreeTy* R = Current->getRight())
749           stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
750         break;
751       default:
752         llvm_unreachable("Unreachable.");
753     }
754     return *this;
755   }
756 };
757 
758 template <typename ImutInfo>
759 class ImutAVLTreeInOrderIterator
760     : public std::iterator<std::bidirectional_iterator_tag,
761                            ImutAVLTree<ImutInfo>> {
762   using InternalIteratorTy = ImutAVLTreeGenericIterator<ImutInfo>;
763 
764   InternalIteratorTy InternalItr;
765 
766 public:
767   using TreeTy = ImutAVLTree<ImutInfo>;
768 
ImutAVLTreeInOrderIterator(const TreeTy * Root)769   ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
770     if (Root)
771       ++*this; // Advance to first element.
772   }
773 
ImutAVLTreeInOrderIterator()774   ImutAVLTreeInOrderIterator() : InternalItr() {}
775 
776   bool operator==(const ImutAVLTreeInOrderIterator &x) const {
777     return InternalItr == x.InternalItr;
778   }
779 
780   bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
781     return !(*this == x);
782   }
783 
784   TreeTy &operator*() const { return *InternalItr; }
785   TreeTy *operator->() const { return &*InternalItr; }
786 
787   ImutAVLTreeInOrderIterator &operator++() {
788     do ++InternalItr;
789     while (!InternalItr.atEnd() &&
790            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
791 
792     return *this;
793   }
794 
795   ImutAVLTreeInOrderIterator &operator--() {
796     do --InternalItr;
797     while (!InternalItr.atBeginning() &&
798            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
799 
800     return *this;
801   }
802 
skipSubTree()803   void skipSubTree() {
804     InternalItr.skipToParent();
805 
806     while (!InternalItr.atEnd() &&
807            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
808       ++InternalItr;
809   }
810 };
811 
812 /// Generic iterator that wraps a T::TreeTy::iterator and exposes
813 /// iterator::getValue() on dereference.
814 template <typename T>
815 struct ImutAVLValueIterator
816     : iterator_adaptor_base<
817           ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
818           typename std::iterator_traits<
819               typename T::TreeTy::iterator>::iterator_category,
820           const typename T::value_type> {
821   ImutAVLValueIterator() = default;
ImutAVLValueIteratorImutAVLValueIterator822   explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
823       : ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
824 
825   typename ImutAVLValueIterator::reference operator*() const {
826     return this->I->getValue();
827   }
828 };
829 
830 //===----------------------------------------------------------------------===//
831 // Trait classes for Profile information.
832 //===----------------------------------------------------------------------===//
833 
834 /// Generic profile template.  The default behavior is to invoke the
835 /// profile method of an object.  Specializations for primitive integers
836 /// and generic handling of pointers is done below.
837 template <typename T>
838 struct ImutProfileInfo {
839   using value_type = const T;
840   using value_type_ref = const T&;
841 
ProfileImutProfileInfo842   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
843     FoldingSetTrait<T>::Profile(X,ID);
844   }
845 };
846 
847 /// Profile traits for integers.
848 template <typename T>
849 struct ImutProfileInteger {
850   using value_type = const T;
851   using value_type_ref = const T&;
852 
ProfileImutProfileInteger853   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
854     ID.AddInteger(X);
855   }
856 };
857 
858 #define PROFILE_INTEGER_INFO(X)\
859 template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
860 
861 PROFILE_INTEGER_INFO(char)
862 PROFILE_INTEGER_INFO(unsigned char)
863 PROFILE_INTEGER_INFO(short)
864 PROFILE_INTEGER_INFO(unsigned short)
865 PROFILE_INTEGER_INFO(unsigned)
866 PROFILE_INTEGER_INFO(signed)
867 PROFILE_INTEGER_INFO(long)
868 PROFILE_INTEGER_INFO(unsigned long)
869 PROFILE_INTEGER_INFO(long long)
870 PROFILE_INTEGER_INFO(unsigned long long)
871 
872 #undef PROFILE_INTEGER_INFO
873 
874 /// Profile traits for booleans.
875 template <>
876 struct ImutProfileInfo<bool> {
877   using value_type = const bool;
878   using value_type_ref = const bool&;
879 
880   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
881     ID.AddBoolean(X);
882   }
883 };
884 
885 /// Generic profile trait for pointer types.  We treat pointers as
886 /// references to unique objects.
887 template <typename T>
888 struct ImutProfileInfo<T*> {
889   using value_type = const T*;
890   using value_type_ref = value_type;
891 
892   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
893     ID.AddPointer(X);
894   }
895 };
896 
897 //===----------------------------------------------------------------------===//
898 // Trait classes that contain element comparison operators and type
899 //  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
900 //  inherit from the profile traits (ImutProfileInfo) to include operations
901 //  for element profiling.
902 //===----------------------------------------------------------------------===//
903 
904 /// ImutContainerInfo - Generic definition of comparison operations for
905 ///   elements of immutable containers that defaults to using
906 ///   std::equal_to<> and std::less<> to perform comparison of elements.
907 template <typename T>
908 struct ImutContainerInfo : public ImutProfileInfo<T> {
909   using value_type = typename ImutProfileInfo<T>::value_type;
910   using value_type_ref = typename ImutProfileInfo<T>::value_type_ref;
911   using key_type = value_type;
912   using key_type_ref = value_type_ref;
913   using data_type = bool;
914   using data_type_ref = bool;
915 
916   static key_type_ref KeyOfValue(value_type_ref D) { return D; }
917   static data_type_ref DataOfValue(value_type_ref) { return true; }
918 
919   static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
920     return std::equal_to<key_type>()(LHS,RHS);
921   }
922 
923   static bool isLess(key_type_ref LHS, key_type_ref RHS) {
924     return std::less<key_type>()(LHS,RHS);
925   }
926 
927   static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
928 };
929 
930 /// ImutContainerInfo - Specialization for pointer values to treat pointers
931 ///  as references to unique objects.  Pointers are thus compared by
932 ///  their addresses.
933 template <typename T>
934 struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
935   using value_type = typename ImutProfileInfo<T*>::value_type;
936   using value_type_ref = typename ImutProfileInfo<T*>::value_type_ref;
937   using key_type = value_type;
938   using key_type_ref = value_type_ref;
939   using data_type = bool;
940   using data_type_ref = bool;
941 
942   static key_type_ref KeyOfValue(value_type_ref D) { return D; }
943   static data_type_ref DataOfValue(value_type_ref) { return true; }
944 
945   static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
946 
947   static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
948 
949   static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
950 };
951 
952 //===----------------------------------------------------------------------===//
953 // Immutable Set
954 //===----------------------------------------------------------------------===//
955 
956 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>>
957 class ImmutableSet {
958 public:
959   using value_type = typename ValInfo::value_type;
960   using value_type_ref = typename ValInfo::value_type_ref;
961   using TreeTy = ImutAVLTree<ValInfo>;
962 
963 private:
964   TreeTy *Root;
965 
966 public:
967   /// Constructs a set from a pointer to a tree root.  In general one
968   /// should use a Factory object to create sets instead of directly
969   /// invoking the constructor, but there are cases where make this
970   /// constructor public is useful.
971   explicit ImmutableSet(TreeTy* R) : Root(R) {
972     if (Root) { Root->retain(); }
973   }
974 
975   ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
976     if (Root) { Root->retain(); }
977   }
978 
979   ~ImmutableSet() {
980     if (Root) { Root->release(); }
981   }
982 
983   ImmutableSet &operator=(const ImmutableSet &X) {
984     if (Root != X.Root) {
985       if (X.Root) { X.Root->retain(); }
986       if (Root) { Root->release(); }
987       Root = X.Root;
988     }
989     return *this;
990   }
991 
992   class Factory {
993     typename TreeTy::Factory F;
994     const bool Canonicalize;
995 
996   public:
997     Factory(bool canonicalize = true)
998       : Canonicalize(canonicalize) {}
999 
1000     Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
1001       : F(Alloc), Canonicalize(canonicalize) {}
1002 
1003     Factory(const Factory& RHS) = delete;
1004     void operator=(const Factory& RHS) = delete;
1005 
1006     /// getEmptySet - Returns an immutable set that contains no elements.
1007     ImmutableSet getEmptySet() {
1008       return ImmutableSet(F.getEmptyTree());
1009     }
1010 
1011     /// add - Creates a new immutable set that contains all of the values
1012     ///  of the original set with the addition of the specified value.  If
1013     ///  the original set already included the value, then the original set is
1014     ///  returned and no memory is allocated.  The time and space complexity
1015     ///  of this operation is logarithmic in the size of the original set.
1016     ///  The memory allocated to represent the set is released when the
1017     ///  factory object that created the set is destroyed.
1018     LLVM_NODISCARD ImmutableSet add(ImmutableSet Old, value_type_ref V) {
1019       TreeTy *NewT = F.add(Old.Root, V);
1020       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
1021     }
1022 
1023     /// remove - Creates a new immutable set that contains all of the values
1024     ///  of the original set with the exception of the specified value.  If
1025     ///  the original set did not contain the value, the original set is
1026     ///  returned and no memory is allocated.  The time and space complexity
1027     ///  of this operation is logarithmic in the size of the original set.
1028     ///  The memory allocated to represent the set is released when the
1029     ///  factory object that created the set is destroyed.
1030     LLVM_NODISCARD ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
1031       TreeTy *NewT = F.remove(Old.Root, V);
1032       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
1033     }
1034 
1035     BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
1036 
1037     typename TreeTy::Factory *getTreeFactory() const {
1038       return const_cast<typename TreeTy::Factory *>(&F);
1039     }
1040   };
1041 
1042   friend class Factory;
1043 
1044   /// Returns true if the set contains the specified value.
1045   bool contains(value_type_ref V) const {
1046     return Root ? Root->contains(V) : false;
1047   }
1048 
1049   bool operator==(const ImmutableSet &RHS) const {
1050     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
1051   }
1052 
1053   bool operator!=(const ImmutableSet &RHS) const {
1054     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
1055   }
1056 
1057   TreeTy *getRoot() {
1058     if (Root) { Root->retain(); }
1059     return Root;
1060   }
1061 
1062   TreeTy *getRootWithoutRetain() const {
1063     return Root;
1064   }
1065 
1066   /// isEmpty - Return true if the set contains no elements.
1067   bool isEmpty() const { return !Root; }
1068 
1069   /// isSingleton - Return true if the set contains exactly one element.
1070   ///   This method runs in constant time.
1071   bool isSingleton() const { return getHeight() == 1; }
1072 
1073   template <typename Callback>
1074   void foreach(Callback& C) { if (Root) Root->foreach(C); }
1075 
1076   template <typename Callback>
1077   void foreach() { if (Root) { Callback C; Root->foreach(C); } }
1078 
1079   //===--------------------------------------------------===//
1080   // Iterators.
1081   //===--------------------------------------------------===//
1082 
1083   using iterator = ImutAVLValueIterator<ImmutableSet>;
1084 
1085   iterator begin() const { return iterator(Root); }
1086   iterator end() const { return iterator(); }
1087 
1088   //===--------------------------------------------------===//
1089   // Utility methods.
1090   //===--------------------------------------------------===//
1091 
1092   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
1093 
1094   static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
1095     ID.AddPointer(S.Root);
1096   }
1097 
1098   void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
1099 
1100   //===--------------------------------------------------===//
1101   // For testing.
1102   //===--------------------------------------------------===//
1103 
1104   void validateTree() const { if (Root) Root->validateTree(); }
1105 };
1106 
1107 // NOTE: This may some day replace the current ImmutableSet.
1108 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>>
1109 class ImmutableSetRef {
1110 public:
1111   using value_type = typename ValInfo::value_type;
1112   using value_type_ref = typename ValInfo::value_type_ref;
1113   using TreeTy = ImutAVLTree<ValInfo>;
1114   using FactoryTy = typename TreeTy::Factory;
1115 
1116 private:
1117   TreeTy *Root;
1118   FactoryTy *Factory;
1119 
1120 public:
1121   /// Constructs a set from a pointer to a tree root.  In general one
1122   /// should use a Factory object to create sets instead of directly
1123   /// invoking the constructor, but there are cases where make this
1124   /// constructor public is useful.
1125   explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
1126     : Root(R),
1127       Factory(F) {
1128     if (Root) { Root->retain(); }
1129   }
1130 
1131   ImmutableSetRef(const ImmutableSetRef &X)
1132     : Root(X.Root),
1133       Factory(X.Factory) {
1134     if (Root) { Root->retain(); }
1135   }
1136 
1137   ~ImmutableSetRef() {
1138     if (Root) { Root->release(); }
1139   }
1140 
1141   ImmutableSetRef &operator=(const ImmutableSetRef &X) {
1142     if (Root != X.Root) {
1143       if (X.Root) { X.Root->retain(); }
1144       if (Root) { Root->release(); }
1145       Root = X.Root;
1146       Factory = X.Factory;
1147     }
1148     return *this;
1149   }
1150 
1151   static ImmutableSetRef getEmptySet(FactoryTy *F) {
1152     return ImmutableSetRef(0, F);
1153   }
1154 
1155   ImmutableSetRef add(value_type_ref V) {
1156     return ImmutableSetRef(Factory->add(Root, V), Factory);
1157   }
1158 
1159   ImmutableSetRef remove(value_type_ref V) {
1160     return ImmutableSetRef(Factory->remove(Root, V), Factory);
1161   }
1162 
1163   /// Returns true if the set contains the specified value.
1164   bool contains(value_type_ref V) const {
1165     return Root ? Root->contains(V) : false;
1166   }
1167 
1168   ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
1169     return ImmutableSet<ValT>(canonicalize ?
1170                               Factory->getCanonicalTree(Root) : Root);
1171   }
1172 
1173   TreeTy *getRootWithoutRetain() const {
1174     return Root;
1175   }
1176 
1177   bool operator==(const ImmutableSetRef &RHS) const {
1178     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
1179   }
1180 
1181   bool operator!=(const ImmutableSetRef &RHS) const {
1182     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
1183   }
1184 
1185   /// isEmpty - Return true if the set contains no elements.
1186   bool isEmpty() const { return !Root; }
1187 
1188   /// isSingleton - Return true if the set contains exactly one element.
1189   ///   This method runs in constant time.
1190   bool isSingleton() const { return getHeight() == 1; }
1191 
1192   //===--------------------------------------------------===//
1193   // Iterators.
1194   //===--------------------------------------------------===//
1195 
1196   using iterator = ImutAVLValueIterator<ImmutableSetRef>;
1197 
1198   iterator begin() const { return iterator(Root); }
1199   iterator end() const { return iterator(); }
1200 
1201   //===--------------------------------------------------===//
1202   // Utility methods.
1203   //===--------------------------------------------------===//
1204 
1205   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
1206 
1207   static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
1208     ID.AddPointer(S.Root);
1209   }
1210 
1211   void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
1212 
1213   //===--------------------------------------------------===//
1214   // For testing.
1215   //===--------------------------------------------------===//
1216 
1217   void validateTree() const { if (Root) Root->validateTree(); }
1218 };
1219 
1220 } // end namespace llvm
1221 
1222 #endif // LLVM_ADT_IMMUTABLESET_H
1223