1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/Verifier.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <set>
67 #include <utility>
68 #include <vector>
69
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
73
74 #define DEBUG_TYPE "code-extractor"
75
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82 cl::desc("Aggregate arguments to code-extracted functions"));
83
84 /// Test whether a block is valid for extraction.
isBlockValidForExtraction(const BasicBlock & BB,const SetVector<BasicBlock * > & Result,bool AllowVarArgs,bool AllowAlloca)85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86 const SetVector<BasicBlock *> &Result,
87 bool AllowVarArgs, bool AllowAlloca) {
88 // taking the address of a basic block moved to another function is illegal
89 if (BB.hasAddressTaken())
90 return false;
91
92 // don't hoist code that uses another basicblock address, as it's likely to
93 // lead to unexpected behavior, like cross-function jumps
94 SmallPtrSet<User const *, 16> Visited;
95 SmallVector<User const *, 16> ToVisit;
96
97 for (Instruction const &Inst : BB)
98 ToVisit.push_back(&Inst);
99
100 while (!ToVisit.empty()) {
101 User const *Curr = ToVisit.pop_back_val();
102 if (!Visited.insert(Curr).second)
103 continue;
104 if (isa<BlockAddress const>(Curr))
105 return false; // even a reference to self is likely to be not compatible
106
107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108 continue;
109
110 for (auto const &U : Curr->operands()) {
111 if (auto *UU = dyn_cast<User>(U))
112 ToVisit.push_back(UU);
113 }
114 }
115
116 // If explicitly requested, allow vastart and alloca. For invoke instructions
117 // verify that extraction is valid.
118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119 if (isa<AllocaInst>(I)) {
120 if (!AllowAlloca)
121 return false;
122 continue;
123 }
124
125 if (const auto *II = dyn_cast<InvokeInst>(I)) {
126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127 // must be a part of the subgraph which is being extracted.
128 if (auto *UBB = II->getUnwindDest())
129 if (!Result.count(UBB))
130 return false;
131 continue;
132 }
133
134 // All catch handlers of a catchswitch instruction as well as the unwind
135 // destination must be in the subgraph.
136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137 if (auto *UBB = CSI->getUnwindDest())
138 if (!Result.count(UBB))
139 return false;
140 for (auto *HBB : CSI->handlers())
141 if (!Result.count(const_cast<BasicBlock*>(HBB)))
142 return false;
143 continue;
144 }
145
146 // Make sure that entire catch handler is within subgraph. It is sufficient
147 // to check that catch return's block is in the list.
148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149 for (const auto *U : CPI->users())
150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152 return false;
153 continue;
154 }
155
156 // And do similar checks for cleanup handler - the entire handler must be
157 // in subgraph which is going to be extracted. For cleanup return should
158 // additionally check that the unwind destination is also in the subgraph.
159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160 for (const auto *U : CPI->users())
161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163 return false;
164 continue;
165 }
166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167 if (auto *UBB = CRI->getUnwindDest())
168 if (!Result.count(UBB))
169 return false;
170 continue;
171 }
172
173 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174 if (const Function *F = CI->getCalledFunction()) {
175 auto IID = F->getIntrinsicID();
176 if (IID == Intrinsic::vastart) {
177 if (AllowVarArgs)
178 continue;
179 else
180 return false;
181 }
182
183 // Currently, we miscompile outlined copies of eh_typid_for. There are
184 // proposals for fixing this in llvm.org/PR39545.
185 if (IID == Intrinsic::eh_typeid_for)
186 return false;
187 }
188 }
189 }
190
191 return true;
192 }
193
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
buildExtractionBlockSet(ArrayRef<BasicBlock * > BBs,DominatorTree * DT,bool AllowVarArgs,bool AllowAlloca)196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197 bool AllowVarArgs, bool AllowAlloca) {
198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199 SetVector<BasicBlock *> Result;
200
201 // Loop over the blocks, adding them to our set-vector, and aborting with an
202 // empty set if we encounter invalid blocks.
203 for (BasicBlock *BB : BBs) {
204 // If this block is dead, don't process it.
205 if (DT && !DT->isReachableFromEntry(BB))
206 continue;
207
208 if (!Result.insert(BB))
209 llvm_unreachable("Repeated basic blocks in extraction input");
210 }
211
212 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213 << '\n');
214
215 for (auto *BB : Result) {
216 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217 return {};
218
219 // Make sure that the first block is not a landing pad.
220 if (BB == Result.front()) {
221 if (BB->isEHPad()) {
222 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223 return {};
224 }
225 continue;
226 }
227
228 // All blocks other than the first must not have predecessors outside of
229 // the subgraph which is being extracted.
230 for (auto *PBB : predecessors(BB))
231 if (!Result.count(PBB)) {
232 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233 "outside the region except for the first block!\n"
234 << "Problematic source BB: " << BB->getName() << "\n"
235 << "Problematic destination BB: " << PBB->getName()
236 << "\n");
237 return {};
238 }
239 }
240
241 return Result;
242 }
243
CodeExtractor(ArrayRef<BasicBlock * > BBs,DominatorTree * DT,bool AggregateArgs,BlockFrequencyInfo * BFI,BranchProbabilityInfo * BPI,AssumptionCache * AC,bool AllowVarArgs,bool AllowAlloca,std::string Suffix)244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245 bool AggregateArgs, BlockFrequencyInfo *BFI,
246 BranchProbabilityInfo *BPI, AssumptionCache *AC,
247 bool AllowVarArgs, bool AllowAlloca,
248 std::string Suffix)
249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
251 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
252 Suffix(Suffix) {}
253
CodeExtractor(DominatorTree & DT,Loop & L,bool AggregateArgs,BlockFrequencyInfo * BFI,BranchProbabilityInfo * BPI,AssumptionCache * AC,std::string Suffix)254 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
255 BlockFrequencyInfo *BFI,
256 BranchProbabilityInfo *BPI, AssumptionCache *AC,
257 std::string Suffix)
258 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
259 BPI(BPI), AC(AC), AllowVarArgs(false),
260 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
261 /* AllowVarArgs */ false,
262 /* AllowAlloca */ false)),
263 Suffix(Suffix) {}
264
265 /// definedInRegion - Return true if the specified value is defined in the
266 /// extracted region.
definedInRegion(const SetVector<BasicBlock * > & Blocks,Value * V)267 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
268 if (Instruction *I = dyn_cast<Instruction>(V))
269 if (Blocks.count(I->getParent()))
270 return true;
271 return false;
272 }
273
274 /// definedInCaller - Return true if the specified value is defined in the
275 /// function being code extracted, but not in the region being extracted.
276 /// These values must be passed in as live-ins to the function.
definedInCaller(const SetVector<BasicBlock * > & Blocks,Value * V)277 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
278 if (isa<Argument>(V)) return true;
279 if (Instruction *I = dyn_cast<Instruction>(V))
280 if (!Blocks.count(I->getParent()))
281 return true;
282 return false;
283 }
284
getCommonExitBlock(const SetVector<BasicBlock * > & Blocks)285 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
286 BasicBlock *CommonExitBlock = nullptr;
287 auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
288 for (auto *Succ : successors(Block)) {
289 // Internal edges, ok.
290 if (Blocks.count(Succ))
291 continue;
292 if (!CommonExitBlock) {
293 CommonExitBlock = Succ;
294 continue;
295 }
296 if (CommonExitBlock != Succ)
297 return true;
298 }
299 return false;
300 };
301
302 if (any_of(Blocks, hasNonCommonExitSucc))
303 return nullptr;
304
305 return CommonExitBlock;
306 }
307
CodeExtractorAnalysisCache(Function & F)308 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
309 for (BasicBlock &BB : F) {
310 for (Instruction &II : BB.instructionsWithoutDebug())
311 if (auto *AI = dyn_cast<AllocaInst>(&II))
312 Allocas.push_back(AI);
313
314 findSideEffectInfoForBlock(BB);
315 }
316 }
317
findSideEffectInfoForBlock(BasicBlock & BB)318 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
319 for (Instruction &II : BB.instructionsWithoutDebug()) {
320 unsigned Opcode = II.getOpcode();
321 Value *MemAddr = nullptr;
322 switch (Opcode) {
323 case Instruction::Store:
324 case Instruction::Load: {
325 if (Opcode == Instruction::Store) {
326 StoreInst *SI = cast<StoreInst>(&II);
327 MemAddr = SI->getPointerOperand();
328 } else {
329 LoadInst *LI = cast<LoadInst>(&II);
330 MemAddr = LI->getPointerOperand();
331 }
332 // Global variable can not be aliased with locals.
333 if (dyn_cast<Constant>(MemAddr))
334 break;
335 Value *Base = MemAddr->stripInBoundsConstantOffsets();
336 if (!isa<AllocaInst>(Base)) {
337 SideEffectingBlocks.insert(&BB);
338 return;
339 }
340 BaseMemAddrs[&BB].insert(Base);
341 break;
342 }
343 default: {
344 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
345 if (IntrInst) {
346 if (IntrInst->isLifetimeStartOrEnd())
347 break;
348 SideEffectingBlocks.insert(&BB);
349 return;
350 }
351 // Treat all the other cases conservatively if it has side effects.
352 if (II.mayHaveSideEffects()) {
353 SideEffectingBlocks.insert(&BB);
354 return;
355 }
356 }
357 }
358 }
359 }
360
doesBlockContainClobberOfAddr(BasicBlock & BB,AllocaInst * Addr) const361 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
362 BasicBlock &BB, AllocaInst *Addr) const {
363 if (SideEffectingBlocks.count(&BB))
364 return true;
365 auto It = BaseMemAddrs.find(&BB);
366 if (It != BaseMemAddrs.end())
367 return It->second.count(Addr);
368 return false;
369 }
370
isLegalToShrinkwrapLifetimeMarkers(const CodeExtractorAnalysisCache & CEAC,Instruction * Addr) const371 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
372 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
373 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
374 Function *Func = (*Blocks.begin())->getParent();
375 for (BasicBlock &BB : *Func) {
376 if (Blocks.count(&BB))
377 continue;
378 if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
379 return false;
380 }
381 return true;
382 }
383
384 BasicBlock *
findOrCreateBlockForHoisting(BasicBlock * CommonExitBlock)385 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
386 BasicBlock *SinglePredFromOutlineRegion = nullptr;
387 assert(!Blocks.count(CommonExitBlock) &&
388 "Expect a block outside the region!");
389 for (auto *Pred : predecessors(CommonExitBlock)) {
390 if (!Blocks.count(Pred))
391 continue;
392 if (!SinglePredFromOutlineRegion) {
393 SinglePredFromOutlineRegion = Pred;
394 } else if (SinglePredFromOutlineRegion != Pred) {
395 SinglePredFromOutlineRegion = nullptr;
396 break;
397 }
398 }
399
400 if (SinglePredFromOutlineRegion)
401 return SinglePredFromOutlineRegion;
402
403 #ifndef NDEBUG
404 auto getFirstPHI = [](BasicBlock *BB) {
405 BasicBlock::iterator I = BB->begin();
406 PHINode *FirstPhi = nullptr;
407 while (I != BB->end()) {
408 PHINode *Phi = dyn_cast<PHINode>(I);
409 if (!Phi)
410 break;
411 if (!FirstPhi) {
412 FirstPhi = Phi;
413 break;
414 }
415 }
416 return FirstPhi;
417 };
418 // If there are any phi nodes, the single pred either exists or has already
419 // be created before code extraction.
420 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
421 #endif
422
423 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
424 CommonExitBlock->getFirstNonPHI()->getIterator());
425
426 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
427 PI != PE;) {
428 BasicBlock *Pred = *PI++;
429 if (Blocks.count(Pred))
430 continue;
431 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
432 }
433 // Now add the old exit block to the outline region.
434 Blocks.insert(CommonExitBlock);
435 return CommonExitBlock;
436 }
437
438 // Find the pair of life time markers for address 'Addr' that are either
439 // defined inside the outline region or can legally be shrinkwrapped into the
440 // outline region. If there are not other untracked uses of the address, return
441 // the pair of markers if found; otherwise return a pair of nullptr.
442 CodeExtractor::LifetimeMarkerInfo
getLifetimeMarkers(const CodeExtractorAnalysisCache & CEAC,Instruction * Addr,BasicBlock * ExitBlock) const443 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
444 Instruction *Addr,
445 BasicBlock *ExitBlock) const {
446 LifetimeMarkerInfo Info;
447
448 for (User *U : Addr->users()) {
449 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
450 if (IntrInst) {
451 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
452 // Do not handle the case where Addr has multiple start markers.
453 if (Info.LifeStart)
454 return {};
455 Info.LifeStart = IntrInst;
456 }
457 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
458 if (Info.LifeEnd)
459 return {};
460 Info.LifeEnd = IntrInst;
461 }
462 continue;
463 }
464 // Find untracked uses of the address, bail.
465 if (!definedInRegion(Blocks, U))
466 return {};
467 }
468
469 if (!Info.LifeStart || !Info.LifeEnd)
470 return {};
471
472 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
473 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
474 // Do legality check.
475 if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
476 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
477 return {};
478
479 // Check to see if we have a place to do hoisting, if not, bail.
480 if (Info.HoistLifeEnd && !ExitBlock)
481 return {};
482
483 return Info;
484 }
485
findAllocas(const CodeExtractorAnalysisCache & CEAC,ValueSet & SinkCands,ValueSet & HoistCands,BasicBlock * & ExitBlock) const486 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
487 ValueSet &SinkCands, ValueSet &HoistCands,
488 BasicBlock *&ExitBlock) const {
489 Function *Func = (*Blocks.begin())->getParent();
490 ExitBlock = getCommonExitBlock(Blocks);
491
492 auto moveOrIgnoreLifetimeMarkers =
493 [&](const LifetimeMarkerInfo &LMI) -> bool {
494 if (!LMI.LifeStart)
495 return false;
496 if (LMI.SinkLifeStart) {
497 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
498 << "\n");
499 SinkCands.insert(LMI.LifeStart);
500 }
501 if (LMI.HoistLifeEnd) {
502 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
503 HoistCands.insert(LMI.LifeEnd);
504 }
505 return true;
506 };
507
508 // Look up allocas in the original function in CodeExtractorAnalysisCache, as
509 // this is much faster than walking all the instructions.
510 for (AllocaInst *AI : CEAC.getAllocas()) {
511 BasicBlock *BB = AI->getParent();
512 if (Blocks.count(BB))
513 continue;
514
515 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
516 // check whether it is actually still in the original function.
517 Function *AIFunc = BB->getParent();
518 if (AIFunc != Func)
519 continue;
520
521 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
522 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
523 if (Moved) {
524 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
525 SinkCands.insert(AI);
526 continue;
527 }
528
529 // Follow any bitcasts.
530 SmallVector<Instruction *, 2> Bitcasts;
531 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
532 for (User *U : AI->users()) {
533 if (U->stripInBoundsConstantOffsets() == AI) {
534 Instruction *Bitcast = cast<Instruction>(U);
535 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
536 if (LMI.LifeStart) {
537 Bitcasts.push_back(Bitcast);
538 BitcastLifetimeInfo.push_back(LMI);
539 continue;
540 }
541 }
542
543 // Found unknown use of AI.
544 if (!definedInRegion(Blocks, U)) {
545 Bitcasts.clear();
546 break;
547 }
548 }
549
550 // Either no bitcasts reference the alloca or there are unknown uses.
551 if (Bitcasts.empty())
552 continue;
553
554 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
555 SinkCands.insert(AI);
556 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
557 Instruction *BitcastAddr = Bitcasts[I];
558 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
559 assert(LMI.LifeStart &&
560 "Unsafe to sink bitcast without lifetime markers");
561 moveOrIgnoreLifetimeMarkers(LMI);
562 if (!definedInRegion(Blocks, BitcastAddr)) {
563 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
564 << "\n");
565 SinkCands.insert(BitcastAddr);
566 }
567 }
568 }
569 }
570
isEligible() const571 bool CodeExtractor::isEligible() const {
572 if (Blocks.empty())
573 return false;
574 BasicBlock *Header = *Blocks.begin();
575 Function *F = Header->getParent();
576
577 // For functions with varargs, check that varargs handling is only done in the
578 // outlined function, i.e vastart and vaend are only used in outlined blocks.
579 if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
580 auto containsVarArgIntrinsic = [](const Instruction &I) {
581 if (const CallInst *CI = dyn_cast<CallInst>(&I))
582 if (const Function *Callee = CI->getCalledFunction())
583 return Callee->getIntrinsicID() == Intrinsic::vastart ||
584 Callee->getIntrinsicID() == Intrinsic::vaend;
585 return false;
586 };
587
588 for (auto &BB : *F) {
589 if (Blocks.count(&BB))
590 continue;
591 if (llvm::any_of(BB, containsVarArgIntrinsic))
592 return false;
593 }
594 }
595 return true;
596 }
597
findInputsOutputs(ValueSet & Inputs,ValueSet & Outputs,const ValueSet & SinkCands) const598 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
599 const ValueSet &SinkCands) const {
600 for (BasicBlock *BB : Blocks) {
601 // If a used value is defined outside the region, it's an input. If an
602 // instruction is used outside the region, it's an output.
603 for (Instruction &II : *BB) {
604 for (auto &OI : II.operands()) {
605 Value *V = OI;
606 if (!SinkCands.count(V) && definedInCaller(Blocks, V))
607 Inputs.insert(V);
608 }
609
610 for (User *U : II.users())
611 if (!definedInRegion(Blocks, U)) {
612 Outputs.insert(&II);
613 break;
614 }
615 }
616 }
617 }
618
619 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
620 /// of the region, we need to split the entry block of the region so that the
621 /// PHI node is easier to deal with.
severSplitPHINodesOfEntry(BasicBlock * & Header)622 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
623 unsigned NumPredsFromRegion = 0;
624 unsigned NumPredsOutsideRegion = 0;
625
626 if (Header != &Header->getParent()->getEntryBlock()) {
627 PHINode *PN = dyn_cast<PHINode>(Header->begin());
628 if (!PN) return; // No PHI nodes.
629
630 // If the header node contains any PHI nodes, check to see if there is more
631 // than one entry from outside the region. If so, we need to sever the
632 // header block into two.
633 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
634 if (Blocks.count(PN->getIncomingBlock(i)))
635 ++NumPredsFromRegion;
636 else
637 ++NumPredsOutsideRegion;
638
639 // If there is one (or fewer) predecessor from outside the region, we don't
640 // need to do anything special.
641 if (NumPredsOutsideRegion <= 1) return;
642 }
643
644 // Otherwise, we need to split the header block into two pieces: one
645 // containing PHI nodes merging values from outside of the region, and a
646 // second that contains all of the code for the block and merges back any
647 // incoming values from inside of the region.
648 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
649
650 // We only want to code extract the second block now, and it becomes the new
651 // header of the region.
652 BasicBlock *OldPred = Header;
653 Blocks.remove(OldPred);
654 Blocks.insert(NewBB);
655 Header = NewBB;
656
657 // Okay, now we need to adjust the PHI nodes and any branches from within the
658 // region to go to the new header block instead of the old header block.
659 if (NumPredsFromRegion) {
660 PHINode *PN = cast<PHINode>(OldPred->begin());
661 // Loop over all of the predecessors of OldPred that are in the region,
662 // changing them to branch to NewBB instead.
663 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
664 if (Blocks.count(PN->getIncomingBlock(i))) {
665 Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
666 TI->replaceUsesOfWith(OldPred, NewBB);
667 }
668
669 // Okay, everything within the region is now branching to the right block, we
670 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
671 BasicBlock::iterator AfterPHIs;
672 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
673 PHINode *PN = cast<PHINode>(AfterPHIs);
674 // Create a new PHI node in the new region, which has an incoming value
675 // from OldPred of PN.
676 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
677 PN->getName() + ".ce", &NewBB->front());
678 PN->replaceAllUsesWith(NewPN);
679 NewPN->addIncoming(PN, OldPred);
680
681 // Loop over all of the incoming value in PN, moving them to NewPN if they
682 // are from the extracted region.
683 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
684 if (Blocks.count(PN->getIncomingBlock(i))) {
685 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
686 PN->removeIncomingValue(i);
687 --i;
688 }
689 }
690 }
691 }
692 }
693
694 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
695 /// outlined region, we split these PHIs on two: one with inputs from region
696 /// and other with remaining incoming blocks; then first PHIs are placed in
697 /// outlined region.
severSplitPHINodesOfExits(const SmallPtrSetImpl<BasicBlock * > & Exits)698 void CodeExtractor::severSplitPHINodesOfExits(
699 const SmallPtrSetImpl<BasicBlock *> &Exits) {
700 for (BasicBlock *ExitBB : Exits) {
701 BasicBlock *NewBB = nullptr;
702
703 for (PHINode &PN : ExitBB->phis()) {
704 // Find all incoming values from the outlining region.
705 SmallVector<unsigned, 2> IncomingVals;
706 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
707 if (Blocks.count(PN.getIncomingBlock(i)))
708 IncomingVals.push_back(i);
709
710 // Do not process PHI if there is one (or fewer) predecessor from region.
711 // If PHI has exactly one predecessor from region, only this one incoming
712 // will be replaced on codeRepl block, so it should be safe to skip PHI.
713 if (IncomingVals.size() <= 1)
714 continue;
715
716 // Create block for new PHIs and add it to the list of outlined if it
717 // wasn't done before.
718 if (!NewBB) {
719 NewBB = BasicBlock::Create(ExitBB->getContext(),
720 ExitBB->getName() + ".split",
721 ExitBB->getParent(), ExitBB);
722 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
723 pred_end(ExitBB));
724 for (BasicBlock *PredBB : Preds)
725 if (Blocks.count(PredBB))
726 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
727 BranchInst::Create(ExitBB, NewBB);
728 Blocks.insert(NewBB);
729 }
730
731 // Split this PHI.
732 PHINode *NewPN =
733 PHINode::Create(PN.getType(), IncomingVals.size(),
734 PN.getName() + ".ce", NewBB->getFirstNonPHI());
735 for (unsigned i : IncomingVals)
736 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
737 for (unsigned i : reverse(IncomingVals))
738 PN.removeIncomingValue(i, false);
739 PN.addIncoming(NewPN, NewBB);
740 }
741 }
742 }
743
splitReturnBlocks()744 void CodeExtractor::splitReturnBlocks() {
745 for (BasicBlock *Block : Blocks)
746 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
747 BasicBlock *New =
748 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
749 if (DT) {
750 // Old dominates New. New node dominates all other nodes dominated
751 // by Old.
752 DomTreeNode *OldNode = DT->getNode(Block);
753 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
754 OldNode->end());
755
756 DomTreeNode *NewNode = DT->addNewBlock(New, Block);
757
758 for (DomTreeNode *I : Children)
759 DT->changeImmediateDominator(I, NewNode);
760 }
761 }
762 }
763
764 /// constructFunction - make a function based on inputs and outputs, as follows:
765 /// f(in0, ..., inN, out0, ..., outN)
constructFunction(const ValueSet & inputs,const ValueSet & outputs,BasicBlock * header,BasicBlock * newRootNode,BasicBlock * newHeader,Function * oldFunction,Module * M)766 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
767 const ValueSet &outputs,
768 BasicBlock *header,
769 BasicBlock *newRootNode,
770 BasicBlock *newHeader,
771 Function *oldFunction,
772 Module *M) {
773 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
774 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
775
776 // This function returns unsigned, outputs will go back by reference.
777 switch (NumExitBlocks) {
778 case 0:
779 case 1: RetTy = Type::getVoidTy(header->getContext()); break;
780 case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
781 default: RetTy = Type::getInt16Ty(header->getContext()); break;
782 }
783
784 std::vector<Type *> paramTy;
785
786 // Add the types of the input values to the function's argument list
787 for (Value *value : inputs) {
788 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
789 paramTy.push_back(value->getType());
790 }
791
792 // Add the types of the output values to the function's argument list.
793 for (Value *output : outputs) {
794 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
795 if (AggregateArgs)
796 paramTy.push_back(output->getType());
797 else
798 paramTy.push_back(PointerType::getUnqual(output->getType()));
799 }
800
801 LLVM_DEBUG({
802 dbgs() << "Function type: " << *RetTy << " f(";
803 for (Type *i : paramTy)
804 dbgs() << *i << ", ";
805 dbgs() << ")\n";
806 });
807
808 StructType *StructTy = nullptr;
809 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
810 StructTy = StructType::get(M->getContext(), paramTy);
811 paramTy.clear();
812 paramTy.push_back(PointerType::getUnqual(StructTy));
813 }
814 FunctionType *funcType =
815 FunctionType::get(RetTy, paramTy,
816 AllowVarArgs && oldFunction->isVarArg());
817
818 std::string SuffixToUse =
819 Suffix.empty()
820 ? (header->getName().empty() ? "extracted" : header->getName().str())
821 : Suffix;
822 // Create the new function
823 Function *newFunction = Function::Create(
824 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
825 oldFunction->getName() + "." + SuffixToUse, M);
826 // If the old function is no-throw, so is the new one.
827 if (oldFunction->doesNotThrow())
828 newFunction->setDoesNotThrow();
829
830 // Inherit the uwtable attribute if we need to.
831 if (oldFunction->hasUWTable())
832 newFunction->setHasUWTable();
833
834 // Inherit all of the target dependent attributes and white-listed
835 // target independent attributes.
836 // (e.g. If the extracted region contains a call to an x86.sse
837 // instruction we need to make sure that the extracted region has the
838 // "target-features" attribute allowing it to be lowered.
839 // FIXME: This should be changed to check to see if a specific
840 // attribute can not be inherited.
841 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
842 if (Attr.isStringAttribute()) {
843 if (Attr.getKindAsString() == "thunk")
844 continue;
845 } else
846 switch (Attr.getKindAsEnum()) {
847 // Those attributes cannot be propagated safely. Explicitly list them
848 // here so we get a warning if new attributes are added. This list also
849 // includes non-function attributes.
850 case Attribute::Alignment:
851 case Attribute::AllocSize:
852 case Attribute::ArgMemOnly:
853 case Attribute::Builtin:
854 case Attribute::ByVal:
855 case Attribute::Convergent:
856 case Attribute::Dereferenceable:
857 case Attribute::DereferenceableOrNull:
858 case Attribute::InAlloca:
859 case Attribute::InReg:
860 case Attribute::InaccessibleMemOnly:
861 case Attribute::InaccessibleMemOrArgMemOnly:
862 case Attribute::JumpTable:
863 case Attribute::Naked:
864 case Attribute::Nest:
865 case Attribute::NoAlias:
866 case Attribute::NoBuiltin:
867 case Attribute::NoCapture:
868 case Attribute::NoReturn:
869 case Attribute::NoSync:
870 case Attribute::None:
871 case Attribute::NonNull:
872 case Attribute::ReadNone:
873 case Attribute::ReadOnly:
874 case Attribute::Returned:
875 case Attribute::ReturnsTwice:
876 case Attribute::SExt:
877 case Attribute::Speculatable:
878 case Attribute::StackAlignment:
879 case Attribute::StructRet:
880 case Attribute::SwiftError:
881 case Attribute::SwiftSelf:
882 case Attribute::WillReturn:
883 case Attribute::WriteOnly:
884 case Attribute::ZExt:
885 case Attribute::ImmArg:
886 case Attribute::EndAttrKinds:
887 continue;
888 // Those attributes should be safe to propagate to the extracted function.
889 case Attribute::AlwaysInline:
890 case Attribute::Cold:
891 case Attribute::NoRecurse:
892 case Attribute::InlineHint:
893 case Attribute::MinSize:
894 case Attribute::NoDuplicate:
895 case Attribute::NoFree:
896 case Attribute::NoImplicitFloat:
897 case Attribute::NoInline:
898 case Attribute::NonLazyBind:
899 case Attribute::NoRedZone:
900 case Attribute::NoUnwind:
901 case Attribute::OptForFuzzing:
902 case Attribute::OptimizeNone:
903 case Attribute::OptimizeForSize:
904 case Attribute::SafeStack:
905 case Attribute::ShadowCallStack:
906 case Attribute::SanitizeAddress:
907 case Attribute::SanitizeMemory:
908 case Attribute::SanitizeThread:
909 case Attribute::SanitizeHWAddress:
910 case Attribute::SanitizeMemTag:
911 case Attribute::SpeculativeLoadHardening:
912 case Attribute::StackProtect:
913 case Attribute::StackProtectReq:
914 case Attribute::StackProtectStrong:
915 case Attribute::StrictFP:
916 case Attribute::UWTable:
917 case Attribute::NoCfCheck:
918 break;
919 }
920
921 newFunction->addFnAttr(Attr);
922 }
923 newFunction->getBasicBlockList().push_back(newRootNode);
924
925 // Create an iterator to name all of the arguments we inserted.
926 Function::arg_iterator AI = newFunction->arg_begin();
927
928 // Rewrite all users of the inputs in the extracted region to use the
929 // arguments (or appropriate addressing into struct) instead.
930 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
931 Value *RewriteVal;
932 if (AggregateArgs) {
933 Value *Idx[2];
934 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
935 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
936 Instruction *TI = newFunction->begin()->getTerminator();
937 GetElementPtrInst *GEP = GetElementPtrInst::Create(
938 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
939 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
940 "loadgep_" + inputs[i]->getName(), TI);
941 } else
942 RewriteVal = &*AI++;
943
944 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
945 for (User *use : Users)
946 if (Instruction *inst = dyn_cast<Instruction>(use))
947 if (Blocks.count(inst->getParent()))
948 inst->replaceUsesOfWith(inputs[i], RewriteVal);
949 }
950
951 // Set names for input and output arguments.
952 if (!AggregateArgs) {
953 AI = newFunction->arg_begin();
954 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
955 AI->setName(inputs[i]->getName());
956 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
957 AI->setName(outputs[i]->getName()+".out");
958 }
959
960 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
961 // within the new function. This must be done before we lose track of which
962 // blocks were originally in the code region.
963 std::vector<User *> Users(header->user_begin(), header->user_end());
964 for (auto &U : Users)
965 // The BasicBlock which contains the branch is not in the region
966 // modify the branch target to a new block
967 if (Instruction *I = dyn_cast<Instruction>(U))
968 if (I->isTerminator() && I->getFunction() == oldFunction &&
969 !Blocks.count(I->getParent()))
970 I->replaceUsesOfWith(header, newHeader);
971
972 return newFunction;
973 }
974
975 /// Erase lifetime.start markers which reference inputs to the extraction
976 /// region, and insert the referenced memory into \p LifetimesStart.
977 ///
978 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
979 /// of allocas which will be moved from the caller function into the extracted
980 /// function (\p SunkAllocas).
eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock * > & Blocks,const SetVector<Value * > & SunkAllocas,SetVector<Value * > & LifetimesStart)981 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
982 const SetVector<Value *> &SunkAllocas,
983 SetVector<Value *> &LifetimesStart) {
984 for (BasicBlock *BB : Blocks) {
985 for (auto It = BB->begin(), End = BB->end(); It != End;) {
986 auto *II = dyn_cast<IntrinsicInst>(&*It);
987 ++It;
988 if (!II || !II->isLifetimeStartOrEnd())
989 continue;
990
991 // Get the memory operand of the lifetime marker. If the underlying
992 // object is a sunk alloca, or is otherwise defined in the extraction
993 // region, the lifetime marker must not be erased.
994 Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
995 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
996 continue;
997
998 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
999 LifetimesStart.insert(Mem);
1000 II->eraseFromParent();
1001 }
1002 }
1003 }
1004
1005 /// Insert lifetime start/end markers surrounding the call to the new function
1006 /// for objects defined in the caller.
insertLifetimeMarkersSurroundingCall(Module * M,ArrayRef<Value * > LifetimesStart,ArrayRef<Value * > LifetimesEnd,CallInst * TheCall)1007 static void insertLifetimeMarkersSurroundingCall(
1008 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1009 CallInst *TheCall) {
1010 LLVMContext &Ctx = M->getContext();
1011 auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1012 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1013 Instruction *Term = TheCall->getParent()->getTerminator();
1014
1015 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1016 // needed to satisfy this requirement so they may be reused.
1017 DenseMap<Value *, Value *> Bitcasts;
1018
1019 // Emit lifetime markers for the pointers given in \p Objects. Insert the
1020 // markers before the call if \p InsertBefore, and after the call otherwise.
1021 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1022 bool InsertBefore) {
1023 for (Value *Mem : Objects) {
1024 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1025 TheCall->getFunction()) &&
1026 "Input memory not defined in original function");
1027 Value *&MemAsI8Ptr = Bitcasts[Mem];
1028 if (!MemAsI8Ptr) {
1029 if (Mem->getType() == Int8PtrTy)
1030 MemAsI8Ptr = Mem;
1031 else
1032 MemAsI8Ptr =
1033 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1034 }
1035
1036 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1037 if (InsertBefore)
1038 Marker->insertBefore(TheCall);
1039 else
1040 Marker->insertBefore(Term);
1041 }
1042 };
1043
1044 if (!LifetimesStart.empty()) {
1045 auto StartFn = llvm::Intrinsic::getDeclaration(
1046 M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1047 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1048 }
1049
1050 if (!LifetimesEnd.empty()) {
1051 auto EndFn = llvm::Intrinsic::getDeclaration(
1052 M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1053 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1054 }
1055 }
1056
1057 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1058 /// the call instruction, splitting any PHI nodes in the header block as
1059 /// necessary.
emitCallAndSwitchStatement(Function * newFunction,BasicBlock * codeReplacer,ValueSet & inputs,ValueSet & outputs)1060 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1061 BasicBlock *codeReplacer,
1062 ValueSet &inputs,
1063 ValueSet &outputs) {
1064 // Emit a call to the new function, passing in: *pointer to struct (if
1065 // aggregating parameters), or plan inputs and allocated memory for outputs
1066 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1067
1068 Module *M = newFunction->getParent();
1069 LLVMContext &Context = M->getContext();
1070 const DataLayout &DL = M->getDataLayout();
1071 CallInst *call = nullptr;
1072
1073 // Add inputs as params, or to be filled into the struct
1074 unsigned ArgNo = 0;
1075 SmallVector<unsigned, 1> SwiftErrorArgs;
1076 for (Value *input : inputs) {
1077 if (AggregateArgs)
1078 StructValues.push_back(input);
1079 else {
1080 params.push_back(input);
1081 if (input->isSwiftError())
1082 SwiftErrorArgs.push_back(ArgNo);
1083 }
1084 ++ArgNo;
1085 }
1086
1087 // Create allocas for the outputs
1088 for (Value *output : outputs) {
1089 if (AggregateArgs) {
1090 StructValues.push_back(output);
1091 } else {
1092 AllocaInst *alloca =
1093 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1094 nullptr, output->getName() + ".loc",
1095 &codeReplacer->getParent()->front().front());
1096 ReloadOutputs.push_back(alloca);
1097 params.push_back(alloca);
1098 }
1099 }
1100
1101 StructType *StructArgTy = nullptr;
1102 AllocaInst *Struct = nullptr;
1103 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1104 std::vector<Type *> ArgTypes;
1105 for (ValueSet::iterator v = StructValues.begin(),
1106 ve = StructValues.end(); v != ve; ++v)
1107 ArgTypes.push_back((*v)->getType());
1108
1109 // Allocate a struct at the beginning of this function
1110 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1111 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1112 "structArg",
1113 &codeReplacer->getParent()->front().front());
1114 params.push_back(Struct);
1115
1116 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1117 Value *Idx[2];
1118 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1119 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1120 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1121 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1122 codeReplacer->getInstList().push_back(GEP);
1123 StoreInst *SI = new StoreInst(StructValues[i], GEP);
1124 codeReplacer->getInstList().push_back(SI);
1125 }
1126 }
1127
1128 // Emit the call to the function
1129 call = CallInst::Create(newFunction, params,
1130 NumExitBlocks > 1 ? "targetBlock" : "");
1131 // Add debug location to the new call, if the original function has debug
1132 // info. In that case, the terminator of the entry block of the extracted
1133 // function contains the first debug location of the extracted function,
1134 // set in extractCodeRegion.
1135 if (codeReplacer->getParent()->getSubprogram()) {
1136 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1137 call->setDebugLoc(DL);
1138 }
1139 codeReplacer->getInstList().push_back(call);
1140
1141 // Set swifterror parameter attributes.
1142 for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1143 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1144 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1145 }
1146
1147 Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1148 unsigned FirstOut = inputs.size();
1149 if (!AggregateArgs)
1150 std::advance(OutputArgBegin, inputs.size());
1151
1152 // Reload the outputs passed in by reference.
1153 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1154 Value *Output = nullptr;
1155 if (AggregateArgs) {
1156 Value *Idx[2];
1157 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1158 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1159 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1160 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1161 codeReplacer->getInstList().push_back(GEP);
1162 Output = GEP;
1163 } else {
1164 Output = ReloadOutputs[i];
1165 }
1166 LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1167 outputs[i]->getName() + ".reload");
1168 Reloads.push_back(load);
1169 codeReplacer->getInstList().push_back(load);
1170 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1171 for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1172 Instruction *inst = cast<Instruction>(Users[u]);
1173 if (!Blocks.count(inst->getParent()))
1174 inst->replaceUsesOfWith(outputs[i], load);
1175 }
1176 }
1177
1178 // Now we can emit a switch statement using the call as a value.
1179 SwitchInst *TheSwitch =
1180 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1181 codeReplacer, 0, codeReplacer);
1182
1183 // Since there may be multiple exits from the original region, make the new
1184 // function return an unsigned, switch on that number. This loop iterates
1185 // over all of the blocks in the extracted region, updating any terminator
1186 // instructions in the to-be-extracted region that branch to blocks that are
1187 // not in the region to be extracted.
1188 std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1189
1190 unsigned switchVal = 0;
1191 for (BasicBlock *Block : Blocks) {
1192 Instruction *TI = Block->getTerminator();
1193 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1194 if (!Blocks.count(TI->getSuccessor(i))) {
1195 BasicBlock *OldTarget = TI->getSuccessor(i);
1196 // add a new basic block which returns the appropriate value
1197 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1198 if (!NewTarget) {
1199 // If we don't already have an exit stub for this non-extracted
1200 // destination, create one now!
1201 NewTarget = BasicBlock::Create(Context,
1202 OldTarget->getName() + ".exitStub",
1203 newFunction);
1204 unsigned SuccNum = switchVal++;
1205
1206 Value *brVal = nullptr;
1207 switch (NumExitBlocks) {
1208 case 0:
1209 case 1: break; // No value needed.
1210 case 2: // Conditional branch, return a bool
1211 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1212 break;
1213 default:
1214 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1215 break;
1216 }
1217
1218 ReturnInst::Create(Context, brVal, NewTarget);
1219
1220 // Update the switch instruction.
1221 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1222 SuccNum),
1223 OldTarget);
1224 }
1225
1226 // rewrite the original branch instruction with this new target
1227 TI->setSuccessor(i, NewTarget);
1228 }
1229 }
1230
1231 // Store the arguments right after the definition of output value.
1232 // This should be proceeded after creating exit stubs to be ensure that invoke
1233 // result restore will be placed in the outlined function.
1234 Function::arg_iterator OAI = OutputArgBegin;
1235 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1236 auto *OutI = dyn_cast<Instruction>(outputs[i]);
1237 if (!OutI)
1238 continue;
1239
1240 // Find proper insertion point.
1241 BasicBlock::iterator InsertPt;
1242 // In case OutI is an invoke, we insert the store at the beginning in the
1243 // 'normal destination' BB. Otherwise we insert the store right after OutI.
1244 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1245 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1246 else if (auto *Phi = dyn_cast<PHINode>(OutI))
1247 InsertPt = Phi->getParent()->getFirstInsertionPt();
1248 else
1249 InsertPt = std::next(OutI->getIterator());
1250
1251 Instruction *InsertBefore = &*InsertPt;
1252 assert((InsertBefore->getFunction() == newFunction ||
1253 Blocks.count(InsertBefore->getParent())) &&
1254 "InsertPt should be in new function");
1255 assert(OAI != newFunction->arg_end() &&
1256 "Number of output arguments should match "
1257 "the amount of defined values");
1258 if (AggregateArgs) {
1259 Value *Idx[2];
1260 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1261 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1262 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1263 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1264 InsertBefore);
1265 new StoreInst(outputs[i], GEP, InsertBefore);
1266 // Since there should be only one struct argument aggregating
1267 // all the output values, we shouldn't increment OAI, which always
1268 // points to the struct argument, in this case.
1269 } else {
1270 new StoreInst(outputs[i], &*OAI, InsertBefore);
1271 ++OAI;
1272 }
1273 }
1274
1275 // Now that we've done the deed, simplify the switch instruction.
1276 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1277 switch (NumExitBlocks) {
1278 case 0:
1279 // There are no successors (the block containing the switch itself), which
1280 // means that previously this was the last part of the function, and hence
1281 // this should be rewritten as a `ret'
1282
1283 // Check if the function should return a value
1284 if (OldFnRetTy->isVoidTy()) {
1285 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void
1286 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1287 // return what we have
1288 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1289 } else {
1290 // Otherwise we must have code extracted an unwind or something, just
1291 // return whatever we want.
1292 ReturnInst::Create(Context,
1293 Constant::getNullValue(OldFnRetTy), TheSwitch);
1294 }
1295
1296 TheSwitch->eraseFromParent();
1297 break;
1298 case 1:
1299 // Only a single destination, change the switch into an unconditional
1300 // branch.
1301 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1302 TheSwitch->eraseFromParent();
1303 break;
1304 case 2:
1305 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1306 call, TheSwitch);
1307 TheSwitch->eraseFromParent();
1308 break;
1309 default:
1310 // Otherwise, make the default destination of the switch instruction be one
1311 // of the other successors.
1312 TheSwitch->setCondition(call);
1313 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1314 // Remove redundant case
1315 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1316 break;
1317 }
1318
1319 // Insert lifetime markers around the reloads of any output values. The
1320 // allocas output values are stored in are only in-use in the codeRepl block.
1321 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1322
1323 return call;
1324 }
1325
moveCodeToFunction(Function * newFunction)1326 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1327 Function *oldFunc = (*Blocks.begin())->getParent();
1328 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1329 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1330
1331 for (BasicBlock *Block : Blocks) {
1332 // Delete the basic block from the old function, and the list of blocks
1333 oldBlocks.remove(Block);
1334
1335 // Insert this basic block into the new function
1336 newBlocks.push_back(Block);
1337 }
1338 }
1339
calculateNewCallTerminatorWeights(BasicBlock * CodeReplacer,DenseMap<BasicBlock *,BlockFrequency> & ExitWeights,BranchProbabilityInfo * BPI)1340 void CodeExtractor::calculateNewCallTerminatorWeights(
1341 BasicBlock *CodeReplacer,
1342 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1343 BranchProbabilityInfo *BPI) {
1344 using Distribution = BlockFrequencyInfoImplBase::Distribution;
1345 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1346
1347 // Update the branch weights for the exit block.
1348 Instruction *TI = CodeReplacer->getTerminator();
1349 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1350
1351 // Block Frequency distribution with dummy node.
1352 Distribution BranchDist;
1353
1354 // Add each of the frequencies of the successors.
1355 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1356 BlockNode ExitNode(i);
1357 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1358 if (ExitFreq != 0)
1359 BranchDist.addExit(ExitNode, ExitFreq);
1360 else
1361 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1362 }
1363
1364 // Check for no total weight.
1365 if (BranchDist.Total == 0)
1366 return;
1367
1368 // Normalize the distribution so that they can fit in unsigned.
1369 BranchDist.normalize();
1370
1371 // Create normalized branch weights and set the metadata.
1372 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1373 const auto &Weight = BranchDist.Weights[I];
1374
1375 // Get the weight and update the current BFI.
1376 BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1377 BranchProbability BP(Weight.Amount, BranchDist.Total);
1378 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1379 }
1380 TI->setMetadata(
1381 LLVMContext::MD_prof,
1382 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1383 }
1384
1385 Function *
extractCodeRegion(const CodeExtractorAnalysisCache & CEAC)1386 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1387 if (!isEligible())
1388 return nullptr;
1389
1390 // Assumption: this is a single-entry code region, and the header is the first
1391 // block in the region.
1392 BasicBlock *header = *Blocks.begin();
1393 Function *oldFunction = header->getParent();
1394
1395 // Calculate the entry frequency of the new function before we change the root
1396 // block.
1397 BlockFrequency EntryFreq;
1398 if (BFI) {
1399 assert(BPI && "Both BPI and BFI are required to preserve profile info");
1400 for (BasicBlock *Pred : predecessors(header)) {
1401 if (Blocks.count(Pred))
1402 continue;
1403 EntryFreq +=
1404 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1405 }
1406 }
1407
1408 if (AC) {
1409 // Remove @llvm.assume calls that were moved to the new function from the
1410 // old function's assumption cache.
1411 for (BasicBlock *Block : Blocks)
1412 for (auto &I : *Block)
1413 if (match(&I, m_Intrinsic<Intrinsic::assume>()))
1414 AC->unregisterAssumption(cast<CallInst>(&I));
1415 }
1416
1417 // If we have any return instructions in the region, split those blocks so
1418 // that the return is not in the region.
1419 splitReturnBlocks();
1420
1421 // Calculate the exit blocks for the extracted region and the total exit
1422 // weights for each of those blocks.
1423 DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1424 SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1425 for (BasicBlock *Block : Blocks) {
1426 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1427 ++SI) {
1428 if (!Blocks.count(*SI)) {
1429 // Update the branch weight for this successor.
1430 if (BFI) {
1431 BlockFrequency &BF = ExitWeights[*SI];
1432 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1433 }
1434 ExitBlocks.insert(*SI);
1435 }
1436 }
1437 }
1438 NumExitBlocks = ExitBlocks.size();
1439
1440 // If we have to split PHI nodes of the entry or exit blocks, do so now.
1441 severSplitPHINodesOfEntry(header);
1442 severSplitPHINodesOfExits(ExitBlocks);
1443
1444 // This takes place of the original loop
1445 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1446 "codeRepl", oldFunction,
1447 header);
1448
1449 // The new function needs a root node because other nodes can branch to the
1450 // head of the region, but the entry node of a function cannot have preds.
1451 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1452 "newFuncRoot");
1453 auto *BranchI = BranchInst::Create(header);
1454 // If the original function has debug info, we have to add a debug location
1455 // to the new branch instruction from the artificial entry block.
1456 // We use the debug location of the first instruction in the extracted
1457 // blocks, as there is no other equivalent line in the source code.
1458 if (oldFunction->getSubprogram()) {
1459 any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1460 return any_of(*BB, [&BranchI](const Instruction &I) {
1461 if (!I.getDebugLoc())
1462 return false;
1463 BranchI->setDebugLoc(I.getDebugLoc());
1464 return true;
1465 });
1466 });
1467 }
1468 newFuncRoot->getInstList().push_back(BranchI);
1469
1470 ValueSet inputs, outputs, SinkingCands, HoistingCands;
1471 BasicBlock *CommonExit = nullptr;
1472 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1473 assert(HoistingCands.empty() || CommonExit);
1474
1475 // Find inputs to, outputs from the code region.
1476 findInputsOutputs(inputs, outputs, SinkingCands);
1477
1478 // Now sink all instructions which only have non-phi uses inside the region.
1479 // Group the allocas at the start of the block, so that any bitcast uses of
1480 // the allocas are well-defined.
1481 AllocaInst *FirstSunkAlloca = nullptr;
1482 for (auto *II : SinkingCands) {
1483 if (auto *AI = dyn_cast<AllocaInst>(II)) {
1484 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1485 if (!FirstSunkAlloca)
1486 FirstSunkAlloca = AI;
1487 }
1488 }
1489 assert((SinkingCands.empty() || FirstSunkAlloca) &&
1490 "Did not expect a sink candidate without any allocas");
1491 for (auto *II : SinkingCands) {
1492 if (!isa<AllocaInst>(II)) {
1493 cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1494 }
1495 }
1496
1497 if (!HoistingCands.empty()) {
1498 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1499 Instruction *TI = HoistToBlock->getTerminator();
1500 for (auto *II : HoistingCands)
1501 cast<Instruction>(II)->moveBefore(TI);
1502 }
1503
1504 // Collect objects which are inputs to the extraction region and also
1505 // referenced by lifetime start markers within it. The effects of these
1506 // markers must be replicated in the calling function to prevent the stack
1507 // coloring pass from merging slots which store input objects.
1508 ValueSet LifetimesStart;
1509 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1510
1511 // Construct new function based on inputs/outputs & add allocas for all defs.
1512 Function *newFunction =
1513 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1514 oldFunction, oldFunction->getParent());
1515
1516 // Update the entry count of the function.
1517 if (BFI) {
1518 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1519 if (Count.hasValue())
1520 newFunction->setEntryCount(
1521 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1522 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1523 }
1524
1525 CallInst *TheCall =
1526 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1527
1528 moveCodeToFunction(newFunction);
1529
1530 // Replicate the effects of any lifetime start/end markers which referenced
1531 // input objects in the extraction region by placing markers around the call.
1532 insertLifetimeMarkersSurroundingCall(
1533 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1534
1535 // Propagate personality info to the new function if there is one.
1536 if (oldFunction->hasPersonalityFn())
1537 newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1538
1539 // Update the branch weights for the exit block.
1540 if (BFI && NumExitBlocks > 1)
1541 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1542
1543 // Loop over all of the PHI nodes in the header and exit blocks, and change
1544 // any references to the old incoming edge to be the new incoming edge.
1545 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1546 PHINode *PN = cast<PHINode>(I);
1547 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1548 if (!Blocks.count(PN->getIncomingBlock(i)))
1549 PN->setIncomingBlock(i, newFuncRoot);
1550 }
1551
1552 for (BasicBlock *ExitBB : ExitBlocks)
1553 for (PHINode &PN : ExitBB->phis()) {
1554 Value *IncomingCodeReplacerVal = nullptr;
1555 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1556 // Ignore incoming values from outside of the extracted region.
1557 if (!Blocks.count(PN.getIncomingBlock(i)))
1558 continue;
1559
1560 // Ensure that there is only one incoming value from codeReplacer.
1561 if (!IncomingCodeReplacerVal) {
1562 PN.setIncomingBlock(i, codeReplacer);
1563 IncomingCodeReplacerVal = PN.getIncomingValue(i);
1564 } else
1565 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1566 "PHI has two incompatbile incoming values from codeRepl");
1567 }
1568 }
1569
1570 // Erase debug info intrinsics. Variable updates within the new function are
1571 // invisible to debuggers. This could be improved by defining a DISubprogram
1572 // for the new function.
1573 for (BasicBlock &BB : *newFunction) {
1574 auto BlockIt = BB.begin();
1575 // Remove debug info intrinsics from the new function.
1576 while (BlockIt != BB.end()) {
1577 Instruction *Inst = &*BlockIt;
1578 ++BlockIt;
1579 if (isa<DbgInfoIntrinsic>(Inst))
1580 Inst->eraseFromParent();
1581 }
1582 // Remove debug info intrinsics which refer to values in the new function
1583 // from the old function.
1584 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1585 for (Instruction &I : BB)
1586 findDbgUsers(DbgUsers, &I);
1587 for (DbgVariableIntrinsic *DVI : DbgUsers)
1588 DVI->eraseFromParent();
1589 }
1590
1591 // Mark the new function `noreturn` if applicable. Terminators which resume
1592 // exception propagation are treated as returning instructions. This is to
1593 // avoid inserting traps after calls to outlined functions which unwind.
1594 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1595 const Instruction *Term = BB.getTerminator();
1596 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1597 });
1598 if (doesNotReturn)
1599 newFunction->setDoesNotReturn();
1600
1601 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1602 newFunction->dump();
1603 report_fatal_error("verification of newFunction failed!");
1604 });
1605 LLVM_DEBUG(if (verifyFunction(*oldFunction))
1606 report_fatal_error("verification of oldFunction failed!"));
1607 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, AC))
1608 report_fatal_error("Stale Asumption cache for old Function!"));
1609 return newFunction;
1610 }
1611
verifyAssumptionCache(const Function & F,AssumptionCache * AC)1612 bool CodeExtractor::verifyAssumptionCache(const Function& F,
1613 AssumptionCache *AC) {
1614 for (auto AssumeVH : AC->assumptions()) {
1615 CallInst *I = cast<CallInst>(AssumeVH);
1616 if (I->getFunction() != &F)
1617 return true;
1618 }
1619 return false;
1620 }
1621