1 /**
2 * Copyright 2020 Huawei Technologies Co., Ltd
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <iostream>
17 #include <memory>
18 #include <vector>
19
20 #include "common/common_test.h"
21 #include "common/py_func_graph_fetcher.h"
22
23 #include "securec/include/securec.h"
24 #include "ir/tensor.h"
25 #include "pybind_api/ir/tensor_py.h"
26
27 using mindspore::tensor::TensorPy;
28
29 namespace mindspore {
30 namespace tensor {
31
32 class TestMetaTensor : public UT::Common {
33 public:
TestMetaTensor()34 TestMetaTensor() {}
SetUp()35 virtual void SetUp() {
36 std::vector<int64_t> dimensions({2, 3});
37 meta_tensor_ = MetaTensor(TypeId::kNumberTypeFloat64, dimensions);
38 }
39
40 protected:
41 MetaTensor meta_tensor_;
42 };
43
TEST_F(TestMetaTensor,InitTest)44 TEST_F(TestMetaTensor, InitTest) {
45 std::vector<int64_t> dimensions({2, 3});
46 MetaTensor meta_tensor(TypeId::kNumberTypeFloat64, dimensions);
47
48 // Test type
49 ASSERT_EQ(TypeId::kNumberTypeFloat64, meta_tensor.data_type());
50
51 // Test dimensions
52 ASSERT_EQ(2, meta_tensor.DimensionSize(0));
53 ASSERT_EQ(3, meta_tensor.DimensionSize(1));
54 ASSERT_EQ(-1, meta_tensor.DimensionSize(2));
55
56 // Test number of elements
57 ASSERT_EQ(6, meta_tensor.ElementsNum());
58 }
59
60 // Test type
TEST_F(TestMetaTensor,TypeTest)61 TEST_F(TestMetaTensor, TypeTest) {
62 meta_tensor_.set_data_type(TypeId::kNumberTypeInt32);
63 ASSERT_EQ(TypeId::kNumberTypeInt32, meta_tensor_.data_type());
64 }
65
66 // Test shape
TEST_F(TestMetaTensor,ShapeTest)67 TEST_F(TestMetaTensor, ShapeTest) {
68 std::vector<int64_t> dimensions({5, 6, 7});
69 meta_tensor_.set_shape(dimensions);
70
71 ASSERT_EQ(5, meta_tensor_.DimensionSize(0));
72 ASSERT_EQ(6, meta_tensor_.DimensionSize(1));
73 ASSERT_EQ(7, meta_tensor_.DimensionSize(2));
74
75 // Test number of elements
76 ASSERT_EQ(210, meta_tensor_.ElementsNum());
77 }
78
TEST_F(TestMetaTensor,EqualTest)79 TEST_F(TestMetaTensor, EqualTest) {
80 std::vector<int64_t> dimensions({2, 3});
81 MetaTensor meta_tensor_x(TypeId::kNumberTypeFloat64, dimensions);
82 MetaTensor meta_tensor_y(meta_tensor_x);
83
84 ASSERT_TRUE(meta_tensor_x == meta_tensor_y);
85
86 MetaTensor meta_tensor_z(TypeId::kNumberTypeFloat32, dimensions);
87 ASSERT_FALSE(meta_tensor_x == meta_tensor_z);
88
89 meta_tensor_z = meta_tensor_x;
90 ASSERT_TRUE(meta_tensor_x == meta_tensor_z);
91 }
92
93 class TestTensor : public UT::Common {
94 public:
TestTensor()95 TestTensor() {}
SetUp()96 virtual void SetUp() { UT::InitPythonPath(); }
97 };
98
BuildInputTensor()99 py::array_t<float, py::array::c_style> BuildInputTensor() {
100 // Init tensor data by py::array_t<float>
101 py::array_t<float, py::array::c_style> input = py::array_t<float, py::array::c_style>({2, 3});
102 auto array = input.mutable_unchecked();
103 float start = 0;
104 for (int i = 0; i < array.shape(0); i++) {
105 for (int j = 0; j < array.shape(1); j++) {
106 array(i, j) = start++;
107 }
108 }
109 return input;
110 }
111
TEST_F(TestTensor,PyArrayScalarTest)112 TEST_F(TestTensor, PyArrayScalarTest) {
113 std::vector<int64_t> dimensions;
114 py::array data = py::array_t<int64_t, py::array::c_style>(dimensions);
115 uint8_t *data_buf = reinterpret_cast<uint8_t *>(data.request(true).ptr);
116
117 int64_t num = 1;
118 errno_t ret = memcpy_s(data_buf, sizeof(int64_t), &num, sizeof(int64_t));
119
120 ASSERT_EQ(0, ret);
121
122 ASSERT_EQ(num, *data_buf);
123 }
124
TEST_F(TestTensor,InitScalarTest)125 TEST_F(TestTensor, InitScalarTest) {
126 std::vector<int64_t> dimensions;
127 Tensor tensor(TypeId::kNumberTypeInt64, dimensions);
128 uint8_t *data_buf = reinterpret_cast<uint8_t *>(tensor.data_c());
129
130 int64_t num = 1;
131 errno_t ret = memcpy_s(data_buf, sizeof(int64_t), &num, sizeof(int64_t));
132
133 ASSERT_EQ(0, ret);
134
135 ASSERT_EQ(num, *data_buf);
136
137 // Test type
138 ASSERT_EQ(TypeId::kNumberTypeInt64, tensor.data_type());
139
140 // Test dimensions
141 ASSERT_EQ(0, tensor.DataDim());
142
143 // Test shape
144 ASSERT_EQ(0, tensor.shape().size());
145 std::vector<int64_t> empty_shape;
146 ASSERT_EQ(empty_shape, tensor.shape());
147
148 // Test number of elements
149 ASSERT_EQ(1, tensor.ElementsNum());
150 ASSERT_EQ(1, tensor.DataSize());
151 }
152
TEST_F(TestTensor,InitTensorPtrTest)153 TEST_F(TestTensor, InitTensorPtrTest) {
154 std::vector<int64_t> dimensions;
155 Tensor tensor(TypeId::kNumberTypeInt64, dimensions);
156
157 std::shared_ptr<Tensor> tensor_ptr = std::make_shared<Tensor>(tensor);
158
159 // Test type
160 ASSERT_EQ(TypeId::kNumberTypeInt64, tensor_ptr->data_type());
161
162 // Test dimensions
163 ASSERT_EQ(0, tensor_ptr->DataDim());
164
165 // Test shape
166 ASSERT_EQ(0, tensor_ptr->shape().size());
167 std::vector<int64_t> empty_shape;
168 ASSERT_EQ(empty_shape, tensor_ptr->shape());
169
170 // Test number of elements
171 ASSERT_EQ(1, tensor_ptr->ElementsNum());
172 ASSERT_EQ(1, tensor_ptr->DataSize());
173 }
174
TEST_F(TestTensor,InitByTupleTest)175 TEST_F(TestTensor, InitByTupleTest) {
176 const std::vector<int64_t> shape = {2, 3, 4};
177 TypePtr data_type = kFloat32;
178 Tensor tuple_tensor(data_type->type_id(), shape);
179 ASSERT_EQ(2, tuple_tensor.DimensionSize(0));
180 ASSERT_EQ(3, tuple_tensor.DimensionSize(1));
181 ASSERT_EQ(4, tuple_tensor.DimensionSize(2));
182
183 // Test number of elements
184 ASSERT_EQ(24, tuple_tensor.ElementsNum());
185 ASSERT_EQ(TypeId::kNumberTypeFloat32, tuple_tensor.data_type());
186
187 py::tuple tuple = py::make_tuple(1.0, 2.0, 3, 4, 5, 6);
188 TensorPtr tensor = TensorPy::MakeTensor(py::array(tuple), kFloat64);
189 py::array array = TensorPy::AsNumpy(*tensor);
190
191 std::cout << "Dim: " << array.ndim() << std::endl;
192 ASSERT_EQ(1, array.ndim());
193
194 std::cout << "Num of Elements: " << array.size() << std::endl;
195 ASSERT_EQ(6, array.size());
196
197 std::cout << "Elements: " << std::endl;
198 // Must be double, or the result is not right
199 double *tensor_data = reinterpret_cast<double *>(tensor->data_c());
200 for (int i = 0; i < array.size(); i++) {
201 std::cout << tensor_data[i] << std::endl;
202 }
203 }
204
TEST_F(TestTensor,EqualTest)205 TEST_F(TestTensor, EqualTest) {
206 py::tuple tuple = py::make_tuple(1, 2, 3, 4, 5, 6);
207 TensorPtr tensor_int8 = TensorPy::MakeTensor(py::array(tuple), kInt8);
208 ASSERT_TRUE(*tensor_int8 == *tensor_int8);
209
210 ASSERT_EQ(TypeId::kNumberTypeInt8, tensor_int8->data_type_c());
211
212 TensorPtr tensor_int16 = TensorPy::MakeTensor(py::array(tuple), kInt16);
213 ASSERT_EQ(TypeId::kNumberTypeInt16, tensor_int16->data_type_c());
214
215 TensorPtr tensor_int32 = TensorPy::MakeTensor(py::array(tuple), kInt32);
216 ASSERT_EQ(TypeId::kNumberTypeInt32, tensor_int32->data_type_c());
217
218 TensorPtr tensor_float16 = TensorPy::MakeTensor(py::array(tuple), kFloat16);
219 ASSERT_EQ(TypeId::kNumberTypeFloat16, tensor_float16->data_type_c());
220
221 TensorPtr tensor_float32 = TensorPy::MakeTensor(py::array(tuple), kFloat32);
222 ASSERT_EQ(TypeId::kNumberTypeFloat32, tensor_float32->data_type_c());
223
224 TensorPtr tensor_float64 = TensorPy::MakeTensor(py::array(tuple), kFloat64);
225 ASSERT_EQ(TypeId::kNumberTypeFloat64, tensor_float64->data_type_c());
226 }
227
TEST_F(TestTensor,ValueEqualTest)228 TEST_F(TestTensor, ValueEqualTest) {
229 py::tuple tuple = py::make_tuple(1, 2, 3, 4, 5, 6);
230 TensorPtr t1 = TensorPy::MakeTensor(py::array(tuple), kInt32);
231 TensorPtr t2 = TensorPy::MakeTensor(py::array(tuple), kInt32);
232 ASSERT_TRUE(t1->ValueEqual(*t1));
233 ASSERT_TRUE(t1->ValueEqual(*t2));
234
235 std::vector<int64_t> shape = {6};
236 TensorPtr t3 = std::make_shared<Tensor>(kInt32->type_id(), shape);
237 TensorPtr t4 = std::make_shared<Tensor>(kInt32->type_id(), shape);
238 ASSERT_TRUE(t3->ValueEqual(*t3));
239 ASSERT_FALSE(t3->ValueEqual(*t4));
240 ASSERT_FALSE(t3->ValueEqual(*t1));
241 ASSERT_FALSE(t1->ValueEqual(*t3));
242
243 memcpy_s(t3->data_c(), t3->data().nbytes(), t1->data_c(), t1->data().nbytes());
244 ASSERT_TRUE(t1->ValueEqual(*t3));
245 ASSERT_FALSE(t3->ValueEqual(*t4));
246 ASSERT_FALSE(t4->ValueEqual(*t3));
247 }
248
TEST_F(TestTensor,PyArrayTest)249 TEST_F(TestTensor, PyArrayTest) {
250 py::array_t<float, py::array::c_style> input({2, 3});
251 auto array = input.mutable_unchecked();
252 float sum = 0;
253 std::cout << "sum"
254 << " = " << std::endl;
255
256 float start = 0;
257 for (int i = 0; i < array.shape(0); i++) {
258 for (int j = 0; j < array.shape(1); j++) {
259 array(i, j) = start++;
260 sum += array(i, j);
261 std::cout << "sum + "
262 << "array[" << i << ", " << j << "]"
263 << " = " << sum << std::endl;
264 }
265 }
266
267 ASSERT_EQ(15, sum);
268 }
269
TEST_F(TestTensor,InitByFloatArrayDataCTest)270 TEST_F(TestTensor, InitByFloatArrayDataCTest) {
271 // Init tensor data by py::array_t<float>
272 auto tensor = TensorPy::MakeTensor(BuildInputTensor());
273
274 // Print some information of the tensor
275 std::cout << "Datatype: " << tensor->data_type() << std::endl;
276 ASSERT_EQ(TypeId::kNumberTypeFloat32, tensor->data_type());
277
278 std::cout << "Dim: " << tensor->DataDim() << std::endl;
279 ASSERT_EQ(2, tensor->DataDim());
280
281 std::cout << "Num of Elements: " << tensor->ElementsNum() << std::endl;
282 ASSERT_EQ(6, tensor->ElementsNum());
283
284 // Print each elements
285 std::cout << "Elements: " << std::endl;
286 float *tensor_data = reinterpret_cast<float *>(tensor->data_c());
287 for (int i = 0; i < tensor->ElementsNum(); i++) {
288 std::cout << tensor_data[i] << std::endl;
289 }
290 }
291
TEST_F(TestTensor,InitByFloatArrayDataTest)292 TEST_F(TestTensor, InitByFloatArrayDataTest) {
293 // Init tensor data by py::array_t<float>
294 TensorPtr tensor = TensorPy::MakeTensor(BuildInputTensor());
295
296 // Print some information of the tensor
297 std::cout << "Datatype: " << tensor->data_type() << std::endl;
298 ASSERT_EQ(TypeId::kNumberTypeFloat32, tensor->data_type());
299
300 std::cout << "Dim: " << tensor->DataDim() << std::endl;
301 ASSERT_EQ(2, tensor->DataDim());
302
303 std::vector<int64_t> dimensions = tensor->shape();
304 ASSERT_GT(dimensions.size(), 1);
305 std::cout << "Dim0: " << dimensions[0] << std::endl;
306 ASSERT_EQ(2, dimensions[0]);
307
308 std::cout << "Dim1: " << dimensions[1] << std::endl;
309 ASSERT_EQ(3, dimensions[1]);
310
311 std::cout << "Num of Elements: " << tensor->ElementsNum() << std::endl;
312 ASSERT_EQ(6, tensor->ElementsNum());
313
314 // Print each elements
315 std::cout << "Elements: " << std::endl;
316 py::array_t<float> data = py::cast<py::array_t<float>>(TensorPy::AsNumpy(*tensor));
317 auto array = data.unchecked<2>();
318 for (int i = 0; i < array.shape(0); i++) {
319 for (int j = 0; j < array.shape(1); j++) {
320 std::cout << array(i, j) << std::endl;
321 }
322 }
323 }
324
TEST_F(TestTensor,PyArrayDataTest)325 TEST_F(TestTensor, PyArrayDataTest) {
326 py::array_t<float, py::array::c_style> input({2, 3});
327 float *data = reinterpret_cast<float *>(input.request().ptr);
328 float ge_tensor_data[] = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6};
329 errno_t ret = memcpy_s(data, input.nbytes(), ge_tensor_data, sizeof(ge_tensor_data));
330 ASSERT_EQ(0, ret);
331 auto array = input.mutable_unchecked();
332 for (int i = 0; i < array.shape(0); i++) {
333 for (int j = 0; j < array.shape(1); j++) {
334 ASSERT_EQ(array(i, j), ge_tensor_data[3 * i + j]);
335 }
336 }
337 }
338
TEST_F(TestTensor,TensorDataTest)339 TEST_F(TestTensor, TensorDataTest) {
340 // Init a data buffer
341 float ge_tensor_data[] = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6};
342
343 // Create a Tensor with wanted data type and shape
344 Tensor tensor(TypeId::kNumberTypeFloat32, std::vector<int64_t>({2, 3}));
345
346 // Get the writable data pointer from the tensor
347 float *me_tensor_data = reinterpret_cast<float *>(tensor.data_c());
348
349 // Copy data from buffer to tensor's data
350 errno_t ret = memcpy_s(me_tensor_data, tensor.data().nbytes(), ge_tensor_data, sizeof(ge_tensor_data));
351 ASSERT_EQ(0, ret);
352
353 // Testify if the data has been copied to the tensor data
354 py::array_t<float> data = py::cast<py::array_t<float>>(TensorPy::AsNumpy(tensor));
355 auto array = data.mutable_unchecked();
356 for (int i = 0; i < array.shape(0); i++) {
357 for (int j = 0; j < array.shape(1); j++) {
358 std::cout << "array[" << i << ", " << j << "]"
359 << " = " << array(i, j) << std::endl;
360 ASSERT_EQ(array(i, j), ge_tensor_data[3 * i + j]);
361 }
362 }
363 }
364
TEST_F(TestTensor,TensorPyCast)365 TEST_F(TestTensor, TensorPyCast) {
366 std::vector<int64_t> shape{2, 3, 4, 5};
367 py::tuple py_tuple = py::make_tuple(std::make_shared<Tensor>(kNumberTypeFloat32, shape));
368 auto shape1 = py::cast<Tensor &>(py_tuple[0]).shape();
369 const py::tuple &t = py_tuple;
370 auto shape2 = py::cast<const Tensor &>(t[0]).shape();
371 auto shape3 = py::cast<Tensor &>(t[0]).shape();
372 ASSERT_EQ(shape, shape1);
373 ASSERT_EQ(shape, shape2);
374 ASSERT_EQ(shape, shape3);
375 }
376
377 } // namespace tensor
378 } // namespace mindspore
379