• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""
16The module transforms.py_transform is implemented based on Python. It provides common
17operations including OneHotOp.
18"""
19import json
20import sys
21import numpy as np
22
23from .validators import check_one_hot_op, check_compose_list, check_random_apply, check_transforms_list, \
24    check_compose_call
25from . import py_transforms_util as util
26from .c_transforms import TensorOperation
27
28
29def not_random(function):
30    """
31    Specify the function as "not random", i.e., it produces deterministic result.
32    A Python function can only be cached after it is specified as "not random".
33    """
34    function.random = False
35    return function
36
37
38class PyTensorOperation:
39    """
40    Base Python Tensor Operations class
41    """
42
43    def to_json(self):
44        """
45        Base to_json for Python tensor operations class
46        """
47        json_obj = {}
48        json_trans = {}
49        if "transforms" in self.__dict__.keys():
50            # operations which have transforms as input, need to call _to_json() for each transform to serialize
51            json_list = []
52            for transform in self.transforms:
53                json_list.append(json.loads(transform.to_json()))
54            json_trans["transforms"] = json_list
55            self.__dict__.pop("transforms")
56        if "output_type" in self.__dict__.keys():
57            json_trans["output_type"] = np.dtype(
58                self.__dict__["output_type"]).name
59            self.__dict__.pop("output_type")
60        json_obj["tensor_op_params"] = self.__dict__
61        # append transforms to the tensor_op_params of the operation
62        json_obj["tensor_op_params"].update(json_trans)
63        json_obj["tensor_op_name"] = self.__class__.__name__
64        json_obj["python_module"] = self.__class__.__module__
65        return json.dumps(json_obj)
66
67    @classmethod
68    def from_json(cls, json_string):
69        """
70        Base from_json for Python tensor operations class
71        """
72        json_obj = json.loads(json_string)
73        new_op = cls.__new__(cls)
74        new_op.__dict__ = json_obj
75        if "transforms" in json_obj.keys():
76            # operations which have transforms as input, need to call _from_json() for each transform to deseriallize
77            transforms = []
78            for json_op in json_obj["transforms"]:
79                transforms.append(getattr(
80                    sys.modules[json_op["python_module"]], json_op["tensor_op_name"]).from_json(
81                        json.dumps(json_op["tensor_op_params"])))
82            new_op.transforms = transforms
83        if "output_type" in json_obj.keys():
84            output_type = np.dtype(json_obj["output_type"])
85            new_op.output_type = output_type
86        return new_op
87
88
89class OneHotOp(PyTensorOperation):
90    """
91    Apply one hot encoding transformation to the input label, make label be more smoothing and continuous.
92
93    Args:
94        num_classes (int): Number of classes of objects in dataset.
95            It should be larger than the largest label number in the dataset.
96        smoothing_rate (float, optional): Adjustable hyperparameter for label smoothing level.
97            (Default=0.0 means no smoothing is applied.)
98
99    Examples:
100        >>> # Assume that dataset has 10 classes, thus the label ranges from 0 to 9
101        >>> transforms_list = [py_transforms.OneHotOp(num_classes=10, smoothing_rate=0.1)]
102        >>> transform = py_transforms.Compose(transforms_list)
103        >>> mnist_dataset = mnist_dataset.map(input_columns=["label"], operations=transform)
104    """
105
106    @check_one_hot_op
107    def __init__(self, num_classes, smoothing_rate=0.0):
108        self.num_classes = num_classes
109        self.smoothing_rate = smoothing_rate
110        self.random = False
111
112    def __call__(self, label):
113        """
114        Call method.
115
116        Args:
117            label (numpy.ndarray): label to be applied label smoothing.
118
119        Returns:
120            label (numpy.ndarray), label after being Smoothed.
121        """
122        return util.one_hot_encoding(label, self.num_classes, self.smoothing_rate)
123
124
125class Compose(PyTensorOperation):
126    """
127    Compose a list of transforms.
128
129    .. Note::
130        Compose takes a list of transformations either provided in py_transforms or from user-defined implementation;
131        each can be an initialized transformation class or a lambda function, as long as the output from the last
132        transformation is a single tensor of type numpy.ndarray. See below for an example of how to use Compose
133        with py_transforms classes and check out FiveCrop or TenCrop for the use of them in conjunction with lambda
134        functions.
135
136    Args:
137        transforms (list): List of transformations to be applied.
138
139    Examples:
140        >>> image_folder_dataset_dir = "/path/to/image_folder_dataset_directory"
141        >>> # create a dataset that reads all files in dataset_dir with 8 threads
142        >>> image_folder_dataset = ds.ImageFolderDataset(image_folder_dataset_dir, num_parallel_workers=8)
143        >>> # create a list of transformations to be applied to the image data
144        >>> transform = py_transforms.Compose([py_vision.Decode(),
145        ...                                    py_vision.RandomHorizontalFlip(0.5),
146        ...                                    py_vision.ToTensor(),
147        ...                                    py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)),
148        ...                                    py_vision.RandomErasing()])
149        >>> # apply the transform to the dataset through dataset.map function
150        >>> image_folder_dataset = image_folder_dataset.map(operations=transform, input_columns=["image"])
151        >>>
152        >>> # Compose is also be invoked implicitly, by just passing in a list of ops
153        >>> # the above example then becomes:
154        >>> transforms_list = [py_vision.Decode(),
155        ...                    py_vision.RandomHorizontalFlip(0.5),
156        ...                    py_vision.ToTensor(),
157        ...                    py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)),
158        ...                    py_vision.RandomErasing()]
159        >>>
160        >>> # apply the transform to the dataset through dataset.map()
161        >>> image_folder_dataset_1 = image_folder_dataset_1.map(operations=transforms_list, input_columns=["image"])
162        >>>
163        >>> # Certain C++ and Python ops can be combined, but not all of them
164        >>> # An example of combined operations
165        >>> arr = [0, 1]
166        >>> dataset = ds.NumpySlicesDataset(arr, column_names=["cols"], shuffle=False)
167        >>> transformed_list = [py_transforms.OneHotOp(2), c_transforms.Mask(c_transforms.Relational.EQ, 1)]
168        >>> dataset = dataset.map(operations=transformed_list, input_columns=["cols"])
169        >>>
170        >>> # Here is an example of mixing vision ops
171        >>> import numpy as np
172        >>> op_list=[c_vision.Decode(),
173        ...          c_vision.Resize((224, 244)),
174        ...          py_vision.ToPIL(),
175        ...          np.array, # need to convert PIL image to a NumPy array to pass it to C++ operation
176        ...          c_vision.Resize((24, 24))]
177        >>> image_folder_dataset = image_folder_dataset.map(operations=op_list,  input_columns=["image"])
178    """
179
180    @check_compose_list
181    def __init__(self, transforms):
182        self.transforms = transforms
183        if all(hasattr(transform, "random") and not transform.random for transform in self.transforms):
184            self.random = False
185
186    @check_compose_call
187    def __call__(self, *args):
188        """
189        Call method.
190
191        Returns:
192            lambda function, Lambda function that takes in an args to apply transformations on.
193        """
194        return util.compose(self.transforms, *args)
195
196    @staticmethod
197    def reduce(operations):
198        """
199        Wraps adjacent Python operations in a Compose to allow mixing of Python and C++ operations.
200
201        Args:
202            operations (list): list of tensor operations.
203
204        Returns:
205            list, the reduced list of operations.
206        """
207        if len(operations) == 1:
208            if str(operations).find("c_transform") >= 0 or isinstance(operations[0], TensorOperation):
209                return operations
210            return [util.FuncWrapper(operations[0])]
211
212        new_ops, start_ind, end_ind = [], 0, 0
213        for i, op in enumerate(operations):
214            if str(op).find("c_transform") >= 0:
215                # reset counts
216                if start_ind != end_ind:
217                    new_ops.append(Compose(operations[start_ind:end_ind]))
218                new_ops.append(op)
219                start_ind, end_ind = i + 1, i + 1
220            else:
221                end_ind += 1
222        # do additional check in case the last operation is a Python operation
223        if start_ind != end_ind:
224            new_ops.append(Compose(operations[start_ind:end_ind]))
225        return new_ops
226
227
228class RandomApply(PyTensorOperation):
229    """
230    Randomly perform a series of transforms with a given probability.
231
232    Args:
233        transforms (list): List of transformations to apply.
234        prob (float, optional): The probability to apply the transformation list (default=0.5).
235
236    Examples:
237        >>> from mindspore.dataset.transforms.py_transforms import Compose
238        >>> transforms_list = [py_vision.RandomHorizontalFlip(0.5),
239        ...                    py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)),
240        ...                    py_vision.RandomErasing()]
241        >>> transforms = Compose([py_vision.Decode(),
242        ...                       py_transforms.RandomApply(transforms_list, prob=0.6),
243        ...                       py_vision.ToTensor()])
244        >>> image_folder_dataset = image_folder_dataset.map(operations=transforms, input_columns=["image"])
245    """
246
247    @check_random_apply
248    def __init__(self, transforms, prob=0.5):
249        self.prob = prob
250        self.transforms = transforms
251
252    def __call__(self, img):
253        """
254        Call method.
255
256        Args:
257            img (PIL image): Image to be randomly applied a list transformations.
258
259        Returns:
260            img (PIL image), Transformed image.
261        """
262        return util.random_apply(img, self.transforms, self.prob)
263
264
265class RandomChoice(PyTensorOperation):
266    """
267    Randomly select one transform from a series of transforms and applies that on the image.
268
269    Args:
270         transforms (list): List of transformations to be chosen from to apply.
271
272    Examples:
273        >>> from mindspore.dataset.transforms.py_transforms import Compose
274        >>> transforms_list = [py_vision.RandomHorizontalFlip(0.5),
275        ...                    py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)),
276        ...                    py_vision.RandomErasing()]
277        >>> transforms = Compose([py_vision.Decode(),
278        ...                       py_transforms.RandomChoice(transforms_list),
279        ...                       py_vision.ToTensor()])
280        >>> image_folder_dataset = image_folder_dataset.map(operations=transforms, input_columns=["image"])
281    """
282
283    @check_transforms_list
284    def __init__(self, transforms):
285        self.transforms = transforms
286
287    def __call__(self, img):
288        """
289        Call method.
290
291        Args:
292            img (PIL image): Image to be applied transformation.
293
294        Returns:
295            img (PIL image), Transformed image.
296        """
297        return util.random_choice(img, self.transforms)
298
299
300class RandomOrder(PyTensorOperation):
301    """
302    Perform a series of transforms to the input PIL image in a random order.
303
304    Args:
305        transforms (list): List of the transformations to apply.
306
307    Examples:
308        >>> from mindspore.dataset.transforms.py_transforms import Compose
309        >>> transforms_list = [py_vision.RandomHorizontalFlip(0.5),
310        ...                    py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)),
311        ...                    py_vision.RandomErasing()]
312        >>> transforms = Compose([py_vision.Decode(),
313        ...                       py_transforms.RandomOrder(transforms_list),
314        ...                       py_vision.ToTensor()])
315        >>> image_folder_dataset = image_folder_dataset.map(operations=transforms, input_columns=["image"])
316    """
317
318    @check_transforms_list
319    def __init__(self, transforms):
320        self.transforms = transforms
321
322    def __call__(self, img):
323        """
324        Call method.
325
326        Args:
327            img (PIL image): Image to apply transformations in a random order.
328
329        Returns:
330            img (PIL image), Transformed image.
331        """
332        return util.random_order(img, self.transforms)
333