1 /* 2 Simple DirectMedia Layer 3 Copyright (C) 1997-2016 Sam Lantinga <slouken@libsdl.org> 4 5 This software is provided 'as-is', without any express or implied 6 warranty. In no event will the authors be held liable for any damages 7 arising from the use of this software. 8 9 Permission is granted to anyone to use this software for any purpose, 10 including commercial applications, and to alter it and redistribute it 11 freely, subject to the following restrictions: 12 13 1. The origin of this software must not be misrepresented; you must not 14 claim that you wrote the original software. If you use this software 15 in a product, an acknowledgment in the product documentation would be 16 appreciated but is not required. 17 2. Altered source versions must be plainly marked as such, and must not be 18 misrepresented as being the original software. 19 3. This notice may not be removed or altered from any source distribution. 20 */ 21 22 /** 23 * \file SDL_atomic.h 24 * 25 * Atomic operations. 26 * 27 * IMPORTANT: 28 * If you are not an expert in concurrent lockless programming, you should 29 * only be using the atomic lock and reference counting functions in this 30 * file. In all other cases you should be protecting your data structures 31 * with full mutexes. 32 * 33 * The list of "safe" functions to use are: 34 * SDL_AtomicLock() 35 * SDL_AtomicUnlock() 36 * SDL_AtomicIncRef() 37 * SDL_AtomicDecRef() 38 * 39 * Seriously, here be dragons! 40 * ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 41 * 42 * You can find out a little more about lockless programming and the 43 * subtle issues that can arise here: 44 * http://msdn.microsoft.com/en-us/library/ee418650%28v=vs.85%29.aspx 45 * 46 * There's also lots of good information here: 47 * http://www.1024cores.net/home/lock-free-algorithms 48 * http://preshing.com/ 49 * 50 * These operations may or may not actually be implemented using 51 * processor specific atomic operations. When possible they are 52 * implemented as true processor specific atomic operations. When that 53 * is not possible the are implemented using locks that *do* use the 54 * available atomic operations. 55 * 56 * All of the atomic operations that modify memory are full memory barriers. 57 */ 58 59 #ifndef _SDL_atomic_h_ 60 #define _SDL_atomic_h_ 61 62 #include "SDL_stdinc.h" 63 #include "SDL_platform.h" 64 65 #include "begin_code.h" 66 67 /* Set up for C function definitions, even when using C++ */ 68 #ifdef __cplusplus 69 extern "C" { 70 #endif 71 72 /** 73 * \name SDL AtomicLock 74 * 75 * The atomic locks are efficient spinlocks using CPU instructions, 76 * but are vulnerable to starvation and can spin forever if a thread 77 * holding a lock has been terminated. For this reason you should 78 * minimize the code executed inside an atomic lock and never do 79 * expensive things like API or system calls while holding them. 80 * 81 * The atomic locks are not safe to lock recursively. 82 * 83 * Porting Note: 84 * The spin lock functions and type are required and can not be 85 * emulated because they are used in the atomic emulation code. 86 */ 87 /* @{ */ 88 89 typedef int SDL_SpinLock; 90 91 /** 92 * \brief Try to lock a spin lock by setting it to a non-zero value. 93 * 94 * \param lock Points to the lock. 95 * 96 * \return SDL_TRUE if the lock succeeded, SDL_FALSE if the lock is already held. 97 */ 98 extern DECLSPEC SDL_bool SDLCALL SDL_AtomicTryLock(SDL_SpinLock *lock); 99 100 /** 101 * \brief Lock a spin lock by setting it to a non-zero value. 102 * 103 * \param lock Points to the lock. 104 */ 105 extern DECLSPEC void SDLCALL SDL_AtomicLock(SDL_SpinLock *lock); 106 107 /** 108 * \brief Unlock a spin lock by setting it to 0. Always returns immediately 109 * 110 * \param lock Points to the lock. 111 */ 112 extern DECLSPEC void SDLCALL SDL_AtomicUnlock(SDL_SpinLock *lock); 113 114 /* @} *//* SDL AtomicLock */ 115 116 117 /** 118 * The compiler barrier prevents the compiler from reordering 119 * reads and writes to globally visible variables across the call. 120 */ 121 #if defined(_MSC_VER) && (_MSC_VER > 1200) 122 void _ReadWriteBarrier(void); 123 #pragma intrinsic(_ReadWriteBarrier) 124 #define SDL_CompilerBarrier() _ReadWriteBarrier() 125 #elif (defined(__GNUC__) && !defined(__EMSCRIPTEN__)) || (defined(__SUNPRO_C) && (__SUNPRO_C >= 0x5120)) 126 /* This is correct for all CPUs when using GCC or Solaris Studio 12.1+. */ 127 #define SDL_CompilerBarrier() __asm__ __volatile__ ("" : : : "memory") 128 #else 129 #define SDL_CompilerBarrier() \ 130 { SDL_SpinLock _tmp = 0; SDL_AtomicLock(&_tmp); SDL_AtomicUnlock(&_tmp); } 131 #endif 132 133 /** 134 * Memory barriers are designed to prevent reads and writes from being 135 * reordered by the compiler and being seen out of order on multi-core CPUs. 136 * 137 * A typical pattern would be for thread A to write some data and a flag, 138 * and for thread B to read the flag and get the data. In this case you 139 * would insert a release barrier between writing the data and the flag, 140 * guaranteeing that the data write completes no later than the flag is 141 * written, and you would insert an acquire barrier between reading the 142 * flag and reading the data, to ensure that all the reads associated 143 * with the flag have completed. 144 * 145 * In this pattern you should always see a release barrier paired with 146 * an acquire barrier and you should gate the data reads/writes with a 147 * single flag variable. 148 * 149 * For more information on these semantics, take a look at the blog post: 150 * http://preshing.com/20120913/acquire-and-release-semantics 151 */ 152 #if defined(__GNUC__) && (defined(__powerpc__) || defined(__ppc__)) 153 #define SDL_MemoryBarrierRelease() __asm__ __volatile__ ("lwsync" : : : "memory") 154 #define SDL_MemoryBarrierAcquire() __asm__ __volatile__ ("lwsync" : : : "memory") 155 #elif defined(__GNUC__) && defined(__arm__) 156 #if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7EM__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) 157 #define SDL_MemoryBarrierRelease() __asm__ __volatile__ ("dmb ish" : : : "memory") 158 #define SDL_MemoryBarrierAcquire() __asm__ __volatile__ ("dmb ish" : : : "memory") 159 #elif defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6T2__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) 160 #ifdef __thumb__ 161 /* The mcr instruction isn't available in thumb mode, use real functions */ 162 extern DECLSPEC void SDLCALL SDL_MemoryBarrierRelease(); 163 extern DECLSPEC void SDLCALL SDL_MemoryBarrierAcquire(); 164 #else 165 #define SDL_MemoryBarrierRelease() __asm__ __volatile__ ("mcr p15, 0, %0, c7, c10, 5" : : "r"(0) : "memory") 166 #define SDL_MemoryBarrierAcquire() __asm__ __volatile__ ("mcr p15, 0, %0, c7, c10, 5" : : "r"(0) : "memory") 167 #endif /* __thumb__ */ 168 #else 169 #define SDL_MemoryBarrierRelease() __asm__ __volatile__ ("" : : : "memory") 170 #define SDL_MemoryBarrierAcquire() __asm__ __volatile__ ("" : : : "memory") 171 #endif /* __GNUC__ && __arm__ */ 172 #else 173 #if (defined(__SUNPRO_C) && (__SUNPRO_C >= 0x5120)) 174 /* This is correct for all CPUs on Solaris when using Solaris Studio 12.1+. */ 175 #include <mbarrier.h> 176 #define SDL_MemoryBarrierRelease() __machine_rel_barrier() 177 #define SDL_MemoryBarrierAcquire() __machine_acq_barrier() 178 #else 179 /* This is correct for the x86 and x64 CPUs, and we'll expand this over time. */ 180 #define SDL_MemoryBarrierRelease() SDL_CompilerBarrier() 181 #define SDL_MemoryBarrierAcquire() SDL_CompilerBarrier() 182 #endif 183 #endif 184 185 /** 186 * \brief A type representing an atomic integer value. It is a struct 187 * so people don't accidentally use numeric operations on it. 188 */ 189 typedef struct { int value; } SDL_atomic_t; 190 191 /** 192 * \brief Set an atomic variable to a new value if it is currently an old value. 193 * 194 * \return SDL_TRUE if the atomic variable was set, SDL_FALSE otherwise. 195 * 196 * \note If you don't know what this function is for, you shouldn't use it! 197 */ 198 extern DECLSPEC SDL_bool SDLCALL SDL_AtomicCAS(SDL_atomic_t *a, int oldval, int newval); 199 200 /** 201 * \brief Set an atomic variable to a value. 202 * 203 * \return The previous value of the atomic variable. 204 */ 205 extern DECLSPEC int SDLCALL SDL_AtomicSet(SDL_atomic_t *a, int v); 206 207 /** 208 * \brief Get the value of an atomic variable 209 */ 210 extern DECLSPEC int SDLCALL SDL_AtomicGet(SDL_atomic_t *a); 211 212 /** 213 * \brief Add to an atomic variable. 214 * 215 * \return The previous value of the atomic variable. 216 * 217 * \note This same style can be used for any number operation 218 */ 219 extern DECLSPEC int SDLCALL SDL_AtomicAdd(SDL_atomic_t *a, int v); 220 221 /** 222 * \brief Increment an atomic variable used as a reference count. 223 */ 224 #ifndef SDL_AtomicIncRef 225 #define SDL_AtomicIncRef(a) SDL_AtomicAdd(a, 1) 226 #endif 227 228 /** 229 * \brief Decrement an atomic variable used as a reference count. 230 * 231 * \return SDL_TRUE if the variable reached zero after decrementing, 232 * SDL_FALSE otherwise 233 */ 234 #ifndef SDL_AtomicDecRef 235 #define SDL_AtomicDecRef(a) (SDL_AtomicAdd(a, -1) == 1) 236 #endif 237 238 /** 239 * \brief Set a pointer to a new value if it is currently an old value. 240 * 241 * \return SDL_TRUE if the pointer was set, SDL_FALSE otherwise. 242 * 243 * \note If you don't know what this function is for, you shouldn't use it! 244 */ 245 extern DECLSPEC SDL_bool SDLCALL SDL_AtomicCASPtr(void **a, void *oldval, void *newval); 246 247 /** 248 * \brief Set a pointer to a value atomically. 249 * 250 * \return The previous value of the pointer. 251 */ 252 extern DECLSPEC void* SDLCALL SDL_AtomicSetPtr(void **a, void* v); 253 254 /** 255 * \brief Get the value of a pointer atomically. 256 */ 257 extern DECLSPEC void* SDLCALL SDL_AtomicGetPtr(void **a); 258 259 /* Ends C function definitions when using C++ */ 260 #ifdef __cplusplus 261 } 262 #endif 263 264 #include "close_code.h" 265 266 #endif /* _SDL_atomic_h_ */ 267 268 /* vi: set ts=4 sw=4 expandtab: */ 269