1 /**
2 * Copyright 2020 Huawei Technologies Co., Ltd
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "pipeline/jit/pipeline_ge.h"
18
19 #include <sstream>
20 #include <map>
21 #include <unordered_map>
22 #include <cstdlib>
23 #include <algorithm>
24
25 #include "debug/anf_ir_dump.h"
26 #include "ir/tensor.h"
27 #include "transform/graph_ir/convert.h"
28 #include "transform/graph_ir/df_graph_manager.h"
29 #include "transform/graph_ir/graph_builder.h"
30 #include "transform/graph_ir/graph_runner.h"
31 #include "debug/draw.h"
32 #include "abstract/abstract_value.h"
33 #include "utils/convert_utils_py.h"
34
35 namespace mindspore {
36 namespace pipeline {
37 using Tensor = mindspore::tensor::Tensor;
38 using MetaTensor = mindspore::tensor::MetaTensor;
39 using TensorOrderMap = std::map<std::string, std::shared_ptr<Tensor>>;
40 using mindspore::abstract::AbstractTensor;
41 using mindspore::abstract::AbstractTuple;
42 using mindspore::abstract::AbstractTuplePtr;
43 using mindspore::transform::DfGraphConvertor;
44 using mindspore::transform::DfGraphManager;
45 using mindspore::transform::GeTensorPtr;
46 using mindspore::transform::MeTensorPtr;
47 using mindspore::transform::Status;
48 using mindspore::transform::TransformUtil;
49
DoExecNonInputGraph(const std::string & phase)50 void DoExecNonInputGraph(const std::string &phase) {
51 std::vector<GeTensorPtr> ge_tensors;
52 std::vector<GeTensorPtr> ge_outputs;
53 transform::RunOptions run_options;
54 run_options.name = phase;
55 auto graph_runner = DfGraphManager::GetInstance().GetGraphRunner();
56 if (graph_runner == nullptr) {
57 MS_LOG(ERROR) << "Can not found GraphRunner";
58 return;
59 }
60
61 {
62 // Release GIL before calling into (potentially long-running) C++ code
63 py::gil_scoped_release release;
64 Status ret = graph_runner->RunGraph(run_options, ge_tensors, &ge_outputs);
65 if (ret != Status::SUCCESS) {
66 MS_LOG(ERROR) << "Exec graph:" << run_options.name << " failed";
67 return;
68 }
69 }
70 }
71
SetGeOption(const std::map<std::string,std::string> & options)72 void SetGeOption(const std::map<std::string, std::string> &options) {
73 ConfigManager::GetInstance().set_ge_initialize_options(options);
74 }
75
CreateSessionAndGraphRunner(bool is_training=true)76 Status CreateSessionAndGraphRunner(bool is_training = true) {
77 std::shared_ptr<ge::Session> sess = DfGraphManager::GetInstance().GetGeSession();
78 if (sess == nullptr) {
79 transform::SessionOptions options;
80 if (is_training) {
81 options["ge.trainFlag"] = "1";
82 options["ge.streamNum"] = "100";
83 options["ge.enabledLocalFmkop"] = "1";
84 options["ge.hcomParallel"] = "1";
85 } else {
86 options["ge.trainFlag"] = "0";
87 }
88
89 options["ge.enablePrintOpPass"] = "0";
90 sess = transform::GraphRunner::NewSession(options);
91 if (sess == nullptr) {
92 MS_LOG(ERROR) << "Init data graph failed, because of create Ge session failed";
93 return Status::FAILED;
94 } else {
95 DfGraphManager::GetInstance().SetGeSession(sess);
96 }
97 }
98
99 transform::GraphRunnerOptions options;
100 options.sess_ptr = sess;
101 auto graph_runner = std::make_shared<transform::GraphRunner>(options);
102 if (graph_runner == nullptr) {
103 MS_LOG(ERROR) << "Create new graph runner failed";
104 return Status::FAILED;
105 } else {
106 DfGraphManager::GetInstance().SetGraphRunner(graph_runner);
107 }
108
109 return Status::SUCCESS;
110 }
111
InitExecDatasetGe(const std::string & queue_name,int64_t size,int64_t batch_size,const std::vector<TypePtr> & types,const std::vector<std::vector<int64_t>> & shapes,const std::vector<int64_t> & input_indexes,const std::string & phase)112 bool InitExecDatasetGe(const std::string &queue_name, int64_t size, int64_t batch_size,
113 const std::vector<TypePtr> &types, const std::vector<std::vector<int64_t>> &shapes,
114 const std::vector<int64_t> &input_indexes, const std::string &phase) {
115 std::vector<int64_t> ge_types;
116 (void)std::transform(types.begin(), types.end(), std::back_inserter(ge_types), [](const TypePtr &i) -> int64_t {
117 return transform::TransformUtil::ConvertDataType(i->type_id());
118 });
119
120 ConfigManager::GetInstance().set_dataset_mode(DatasetMode::DS_SINK_MODE);
121 ConfigManager::GetInstance().set_iter_num(size);
122 ConfigManager::GetInstance().set_dataset_phase(phase);
123
124 DatasetGraphParam param(queue_name, size, batch_size, ge_types, shapes, input_indexes);
125 ConfigManager::GetInstance().set_dataset_param(param);
126
127 if (transform::BuildDatasetGraph(param, phase) != transform::SUCCESS) {
128 MS_LOG(ERROR) << "Build dateset graph failed.";
129 return false;
130 }
131
132 #if ENABLE_TRAIN
133 (void)setenv("GE_TRAIN", "1", 1);
134 #else
135 (void)setenv("GE_TRAIN", "0", 1);
136 #endif
137
138 if (CreateSessionAndGraphRunner(static_cast<bool>(ENABLE_TRAIN)) != Status::SUCCESS) {
139 MS_LOG(ERROR) << "Create GE Session or GraphRunner failed.";
140 return false;
141 }
142
143 MS_LOG(INFO) << "DoExecNonInputGraph:" << phase;
144 DoExecNonInputGraph(phase);
145
146 return true;
147 }
148
ConvertObjectToTensors(const py::dict & dict,TensorOrderMap * const tensors)149 void ConvertObjectToTensors(const py::dict &dict, TensorOrderMap *const tensors) {
150 for (auto item : dict) {
151 if ((!py::isinstance<py::str>(item.first))) {
152 MS_LOG(WARNING) << "Type of key of py_dict is not string, ignore it.";
153 continue;
154 }
155 std::shared_ptr<Tensor> tensor;
156 std::string name = py::cast<std::string>(item.first);
157 if (py::isinstance<py::float_>(item.second.attr("data"))) {
158 // convert float to tensor with shape([1])
159 tensor = std::make_shared<Tensor>(kNumberTypeFloat32, std::vector<int64_t>({1}));
160 *(static_cast<float *>(tensor->data_c())) = py::cast<float>(item.second.attr("data"));
161 } else if (py::isinstance<py::int_>(item.second.attr("data"))) {
162 // convert int64_t to tensor with shape([1])
163 tensor = std::make_shared<Tensor>(kNumberTypeInt32, std::vector<int64_t>({1}));
164 *(static_cast<float *>(tensor->data_c())) = py::cast<float>(item.second.attr("data"));
165 } else if (py::isinstance<Tensor>(item.second.attr("data"))) {
166 // cast tensor
167 tensor = py::cast<std::shared_ptr<Tensor>>(item.second.attr("data"));
168 }
169
170 if (tensor == nullptr) {
171 MS_LOG(EXCEPTION) << "Get default value for " << name << " failed";
172 }
173 (void)tensors->emplace(name, tensor);
174 }
175 }
176
AddDFGraph(const std::map<std::string,ExecutorInfoPtr> & info,const py::dict & init_params,const std::string & phase,const py::object & broadcast_params)177 bool AddDFGraph(const std::map<std::string, ExecutorInfoPtr> &info, const py::dict &init_params,
178 const std::string &phase, const py::object &broadcast_params) {
179 FuncGraphPtr anf_graph = info.at(phase)->func_graph;
180 DfGraphConvertor converter(anf_graph);
181
182 size_t pos = phase.find('.');
183 std::string net_id = ((pos == std::string::npos || pos == phase.size() - 1) ? phase : phase.substr(pos + 1));
184 std::string phase_prefix = phase.substr(0, pos);
185 if (phase_prefix == "export") {
186 MS_LOG(INFO) << "Set DfGraphConvertor training : false";
187 converter.set_training(false);
188 }
189
190 TensorOrderMap init_tensors{};
191 ConvertObjectToTensors(init_params, &init_tensors);
192 (void)converter.ConvertAllNode().InitParam(init_tensors).BuildGraph();
193
194 if (!broadcast_params.is_none()) {
195 if (!py::isinstance<py::dict>(broadcast_params)) {
196 MS_LOG(ERROR) << "Invalid broadcast params, it must be py::dict type";
197 return false;
198 }
199 py::dict broadcast = broadcast_params.cast<py::dict>();
200 if (broadcast.empty()) {
201 (void)converter.GenerateBroadcastGraph(init_tensors);
202 } else {
203 TensorOrderMap broadcast_tensors{};
204 ConvertObjectToTensors(broadcast, &broadcast_tensors);
205 (void)converter.GenerateBroadcastGraph(broadcast_tensors);
206 }
207 MS_LOG(INFO) << "Generate broadcast graph with params and broadcast_empty is " << broadcast.empty();
208 }
209
210 (void)converter.GenerateCheckpointGraph();
211 if (converter.ErrCode() != 0) {
212 DfGraphManager::GetInstance().ClearGraph();
213 MS_LOG(ERROR) << "Convert df graph failed, err:" << converter.ErrCode();
214 return false;
215 }
216 #ifdef ENABLE_DUMP_IR
217 if (MsContext::GetInstance()->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG)) {
218 converter.DrawComputeGraph(GetSaveGraphsPathName("ge_graph.dot")); // for debug
219 converter.DrawInitGraph(GetSaveGraphsPathName("init_graph.dot")); // for debug
220 converter.DrawSaveCheckpointGraph(GetSaveGraphsPathName("save_checkpoint_graph.dot")); // for debug
221 }
222 #endif
223 std::string init_graph = "init_subgraph." + net_id;
224 std::string checkpoint_name = "save." + net_id;
225 if (phase.find("train") != std::string::npos) {
226 (void)DfGraphManager::GetInstance().AddGraph(phase, converter.GetComputeGraph(), {{"ge.exec.variable_acc", "1"}});
227 } else {
228 (void)DfGraphManager::GetInstance().AddGraph(phase, converter.GetComputeGraph());
229 }
230 (void)DfGraphManager::GetInstance().AddGraph(init_graph, converter.GetInitGraph());
231 (void)DfGraphManager::GetInstance().AddGraph(BROADCAST_GRAPH_NAME, converter.GetBroadcastGraph());
232
233 Status ret = DfGraphManager::GetInstance().AddGraph(checkpoint_name, converter.GetSaveCheckpointGraph());
234 if (ret == Status::SUCCESS) {
235 DfGraphManager::GetInstance().SetAnfGraph(checkpoint_name, anf_graph);
236 }
237
238 return true;
239 }
240
BuildDFGraph(const std::map<std::string,ExecutorInfoPtr> & info,const py::dict & init_params,const std::string & phase,const py::object & broadcast_params)241 FuncGraphPtr BuildDFGraph(const std::map<std::string, ExecutorInfoPtr> &info, const py::dict &init_params,
242 const std::string &phase, const py::object &broadcast_params) {
243 if (info.count(phase) == 0) {
244 MS_LOG(EXCEPTION) << "No phase in executor:" << GetPhasePrefix(phase);
245 }
246 FuncGraphPtr anf_graph = info.at(phase)->func_graph;
247 #ifdef ENABLE_DUMP_IR
248 if (MsContext::GetInstance()->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG)) {
249 draw::Draw("anf_graph.dot", anf_graph); // for debug
250 DumpIR("anf_graph.ir", anf_graph, true);
251 }
252 #endif
253
254 if (!AddDFGraph(info, init_params, phase, broadcast_params)) {
255 MS_LOG(ERROR) << "GenConvertor failed";
256 return nullptr;
257 }
258
259 #if ENABLE_TRAIN
260 (void)setenv("GE_TRAIN", "1", 1);
261 #else
262 (void)setenv("GE_TRAIN", "0", 1);
263 #endif
264
265 if (CreateSessionAndGraphRunner(static_cast<bool>(ENABLE_TRAIN)) != Status::SUCCESS) {
266 MS_LOG(ERROR) << "Create GE Session or GraphRunner failed.";
267 return nullptr;
268 }
269
270 return anf_graph;
271 }
272
RunGEInitGraph(const py::dict & init_params,const std::string & phase)273 void RunGEInitGraph(const py::dict &init_params, const std::string &phase) {
274 MS_LOG(DEBUG) << "ExecInitGraph start.";
275 TensorOrderMap inputs_with_name{};
276 ConvertObjectToTensors(init_params, &inputs_with_name);
277 std::vector<tensor::TensorPtr> inputs;
278 (void)std::transform(inputs_with_name.begin(), inputs_with_name.end(), std::back_inserter(inputs),
279 [](const std::pair<std::string, tensor::TensorPtr> &item) { return item.second; });
280
281 std::vector<GeTensorPtr> ge_tensors = TransformUtil::ConvertInputTensors(inputs, kOpFormat_NCHW);
282 if (ge_tensors.size() != inputs.size()) {
283 MS_LOG(ERROR) << "Args convert to ge tensor error.";
284 return;
285 }
286 MS_LOG(DEBUG) << "Run graph begin, inputs size is: " << inputs.size() << ".";
287
288 std::vector<GeTensorPtr> ge_outputs;
289 transform::RunOptions run_options;
290
291 run_options.name = phase;
292 if (DfGraphManager::GetInstance().GetGraphByName(phase) == nullptr) {
293 MS_LOG(WARNING) << "Can not find " << phase << " sub graph, don't need data init subgraph in INFER mode.";
294 return;
295 }
296 auto graph_runner = DfGraphManager::GetInstance().GetGraphRunner();
297 if (graph_runner == nullptr) {
298 MS_LOG(EXCEPTION) << "Can not found GraphRunner.";
299 }
300 {
301 // Release GIL before calling into (potentially long-running) C++ code
302 py::gil_scoped_release release;
303 Status ret = graph_runner->RunGraph(run_options, ge_tensors, &ge_outputs);
304 if (ret != Status::SUCCESS) {
305 MS_LOG(EXCEPTION) << "Exec " << phase << " graph failed.";
306 }
307
308 MS_LOG(INFO) << "Exec " << phase << " graph success.";
309
310 if ((ConfigManager::GetInstance().parallel_strategy() == ParallelStrategy::DISTRIBUTION) &&
311 (DfGraphManager::GetInstance().GetGraphByName(BROADCAST_GRAPH_NAME) != nullptr)) {
312 run_options.name = BROADCAST_GRAPH_NAME;
313 ret = graph_runner->RunGraph(run_options, ge_tensors, &ge_outputs);
314 if (ret != Status::SUCCESS) {
315 MS_LOG(EXCEPTION) << "Exec BROADCAST_GRAPH_NAME failed.";
316 }
317 MS_LOG(INFO) << "Exec broadcast graph success.";
318 }
319 }
320 }
321
ExtractGeneralCnodeRet(const AbstractBasePtr & cnode_data,const py::tuple & data,size_t * count)322 py::object ExtractGeneralCnodeRet(const AbstractBasePtr &cnode_data, const py::tuple &data, size_t *count) {
323 MS_EXCEPTION_IF_NULL(cnode_data);
324
325 if (cnode_data->isa<AbstractTensor>()) {
326 if (*count >= data.size()) {
327 MS_LOG(EXCEPTION) << "The number of elements in the outputs : " << data.size()
328 << " less than the number of elements required. ";
329 }
330
331 BaseShapePtr shape = cnode_data->BuildShape();
332 if (!shape->isa<abstract::Shape>()) {
333 MS_LOG(EXCEPTION) << "The shape of the tensor derived is not Shape, is " << shape->ToString();
334 }
335 auto shape_me = shape->cast<abstract::ShapePtr>()->shape();
336 auto shape_ge = py::cast<Tensor &>(data[*count]).shape();
337 if (shape_ge != shape_me) {
338 MS_LOG(EXCEPTION) << "The shape of the " << *count << "th tensor returned: " << shape_ge
339 << " is not the same as the shape of the tensor derived: " << shape_me;
340 }
341
342 return data[(*count)++];
343 }
344
345 if (!cnode_data->isa<AbstractTuple>()) {
346 MS_LOG(EXCEPTION) << "The output of operator in the final anf graph could "
347 << "only be a tensor or a tuple of tensor, but got " << cnode_data->BuildValue()->ToString()
348 << ".";
349 }
350 auto data_tp = cnode_data->cast<AbstractTuplePtr>();
351 auto elements = data_tp->elements();
352 size_t size = data_tp->size();
353 auto tp = py::tuple(size);
354 for (size_t i = 0; i < size; i++) {
355 tp[i] = ExtractGeneralCnodeRet(elements[i], data, count);
356 }
357 return std::move(tp);
358 }
359
StructureOutput(const AnfNodePtr & output_node,const py::tuple & data,size_t * count)360 py::object StructureOutput(const AnfNodePtr &output_node, const py::tuple &data, size_t *count) {
361 MS_EXCEPTION_IF_NULL(output_node);
362
363 if (output_node->isa<ValueNode>()) {
364 return ValueToPyData(GetValueNode(output_node));
365 }
366
367 if (output_node->isa<Parameter>()) {
368 if (*count >= data.size()) {
369 MS_LOG(EXCEPTION) << "The number of elements in the outputs : " << data.size()
370 << " less than the number of elements required. ";
371 }
372 return data[(*count)++];
373 }
374
375 auto output_c = output_node->cast<CNodePtr>();
376 if (output_c == nullptr) {
377 MS_LOG(EXCEPTION) << "The final anf graph could only have constant, parameter, and operator, but got "
378 << output_node->ToString();
379 }
380
381 if (output_c->IsApply(prim::kPrimMakeTuple)) {
382 auto input_list = output_c->inputs();
383 size_t size = input_list.size();
384 auto tp = py::tuple(size - 1);
385 for (size_t i = 1; i < size; i++) {
386 tp[i - 1] = StructureOutput(input_list[i], data, count);
387 }
388 return std::move(tp);
389 }
390 if (output_c->IsApply(prim::kPrimDepend)) {
391 return StructureOutput(output_c->input(1), data, count);
392 }
393
394 return ExtractGeneralCnodeRet(output_c->abstract(), data, count);
395 }
396
DoExecGraph(const FuncGraphPtr & graph,const std::vector<MeTensorPtr> & inputs,const std::string & phase)397 std::shared_ptr<py::object> DoExecGraph(const FuncGraphPtr &graph, const std::vector<MeTensorPtr> &inputs,
398 const std::string &phase) {
399 std::vector<GeTensorPtr> ge_tensors = TransformUtil::ConvertInputTensors(inputs, kOpFormat_NCHW);
400 if (ge_tensors.size() != inputs.size()) {
401 MS_LOG(EXCEPTION) << "Convert me args to ge tensor error.";
402 }
403
404 std::vector<GeTensorPtr> ge_outputs;
405 transform::RunOptions run_options;
406 run_options.name = phase;
407 auto graph_runner = DfGraphManager::GetInstance().GetGraphRunner();
408 if (graph_runner == nullptr) {
409 MS_LOG(EXCEPTION) << "Can not found GraphRunner.";
410 }
411
412 {
413 // Release GIL before calling into (potentially long-running) C++ code
414 py::gil_scoped_release release;
415 MS_LOG(DEBUG) << "Run graph begin, inputs size is: " << inputs.size();
416 Status ret = graph_runner->RunGraph(run_options, ge_tensors, &ge_outputs);
417 MS_LOG(DEBUG) << "Run graph finish, outputs size is: " << ge_outputs.size();
418 if (ret != Status::SUCCESS) {
419 MS_LOG(ERROR) << "Exec graph failed";
420 return nullptr;
421 }
422 }
423
424 std::vector<MeTensorPtr> me_outputs = TransformUtil::ConvertGeTensors(ge_outputs);
425 if (me_outputs.size() != ge_outputs.size()) {
426 MS_LOG(WARNING) << "Convert output Ge tensor to Me tensor failed";
427 }
428
429 py::tuple outputs(me_outputs.size());
430 for (std::size_t i = 0; i < outputs.size(); i++) {
431 outputs[i] = *me_outputs[i];
432 }
433
434 std::shared_ptr<py::object> ret = nullptr;
435
436 AnfNodePtr output_node = graph->get_return()->input(1);
437 MS_EXCEPTION_IF_NULL(output_node);
438 size_t count = 0;
439 py::object oj = StructureOutput(output_node, outputs, &count);
440 ret = std::make_shared<py::object>(oj);
441
442 return ret;
443 }
444
ProcessGeArg(const std::map<std::string,ExecutorInfoPtr> & info,const py::tuple & args,const std::string & phase,std::vector<tensor::TensorPtr> * inputs)445 void ProcessGeArg(const std::map<std::string, ExecutorInfoPtr> &info, const py::tuple &args, const std::string &phase,
446 std::vector<tensor::TensorPtr> *inputs) {
447 // check the arg and use the GraphExecutorPy args
448 std::size_t size = args.size();
449
450 if (info.count(phase) == 0) {
451 MS_LOG(EXCEPTION) << "No phase in executor:" << GetPhasePrefix(phase);
452 }
453
454 auto arg_size = info.at(phase)->arg_list_size;
455 if (size != arg_size) {
456 MS_LOG(EXCEPTION) << "The real arg num : size = " << size << ". graph_arg_size = " << arg_size;
457 }
458
459 // process the first args of tensor
460 // only in dataset normal(non-sink) mode, fp_bp graph need input tensors
461 if (ConfigManager::GetInstance().dataset_mode() == DS_NORMAL_MODE) {
462 for (std::size_t i = 0; i < size; i++) {
463 ValuePtr converted = nullptr;
464 bool succ = parse::ConvertData(args[i], &converted);
465 if (!succ) {
466 MS_LOG(EXCEPTION) << "The " << i << "th arg convert failed.";
467 }
468 if (converted->isa<tensor::Tensor>()) {
469 inputs->push_back(converted->cast<tensor::TensorPtr>());
470 } else {
471 MS_EXCEPTION(TypeError) << "The " << i << "th arg: " << converted->ToString() << " is not tensor.";
472 }
473 }
474 }
475 }
476
ExecDFGraph(const std::map<std::string,ExecutorInfoPtr> & info,const py::tuple & args,const std::string & phase)477 py::object ExecDFGraph(const std::map<std::string, ExecutorInfoPtr> &info, const py::tuple &args,
478 const std::string &phase) {
479 std::string phase_prefix = GetPhasePrefix(phase);
480 if (phase_prefix == "save") {
481 DoExecNonInputGraph(phase);
482 ConfigManager::GetInstance().ResetConfig();
483 return py::none();
484 }
485
486 if (info.count(phase) == 0) {
487 MS_LOG(EXCEPTION) << "There is no phase:" << phase;
488 }
489 FuncGraphPtr anf_graph = info.at(phase)->func_graph;
490
491 #ifdef ENABLE_INFER
492 // Now don't use the graph because the exec ge function don't take effect
493 MS_EXCEPTION_IF_NULL(info.at(phase)->func_graph);
494 if (ENABLE_TRAIN != info.at(phase)->func_graph->has_flag("training")) {
495 MS_LOG(ERROR) << "Graph training mode mismatch mode of libraries";
496 ConfigManager::GetInstance().ResetConfig();
497 return py::none();
498 }
499 #endif
500
501 std::shared_ptr<py::object> ret_val = std::make_shared<py::object>();
502 // We will not execute graph when output is constant or just input itself.
503 if (IsGraphOutputValueNodeOrParameter(info.at(phase)->func_graph->output(), args, ret_val)) {
504 ConfigManager::GetInstance().ResetConfig();
505 return *ret_val;
506 }
507
508 std::vector<tensor::TensorPtr> inputs;
509 ProcessGeArg(info, args, phase, &inputs);
510
511 std::shared_ptr<py::object> ret = DoExecGraph(anf_graph, inputs, phase);
512 ConfigManager::GetInstance().ResetConfig();
513 if (ret != nullptr) {
514 return *ret;
515 } else {
516 MS_LOG(EXCEPTION) << "Exec graph failed";
517 }
518 }
519
ExportDFGraph(const std::string & file_name,const std::string & phase)520 void ExportDFGraph(const std::string &file_name, const std::string &phase) {
521 MS_LOG(DEBUG) << "Export graph begin.";
522 transform::DfGraphWrapperPtr wrap_ptr = DfGraphManager::GetInstance().GetGraphByName(phase);
523 if (wrap_ptr == nullptr) {
524 MS_LOG(ERROR) << "Get graph form DfGraphManager failed!";
525 return;
526 }
527
528 transform::DfGraphPtr ge_graph = wrap_ptr->graph_ptr_;
529 if (ge_graph == nullptr) {
530 MS_LOG(ERROR) << "Graph is null!";
531 return;
532 }
533
534 if (ge_graph->SaveToFile(file_name) != 0) {
535 MS_LOG(EXCEPTION) << "Export air model failed.";
536 }
537 MS_LOG(INFO) << "Export air model finish.";
538 }
539 } // namespace pipeline
540 } // namespace mindspore
541