1 //===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This pass implements a data flow analysis that propagates debug location
10 /// information by inserting additional DBG_VALUE insts into the machine
11 /// instruction stream. Before running, each DBG_VALUE inst corresponds to a
12 /// source assignment of a variable. Afterwards, a DBG_VALUE inst specifies a
13 /// variable location for the current basic block (see SourceLevelDebugging.rst).
14 ///
15 /// This is a separate pass from DbgValueHistoryCalculator to facilitate
16 /// testing and improve modularity.
17 ///
18 /// Each variable location is represented by a VarLoc object that identifies the
19 /// source variable, its current machine-location, and the DBG_VALUE inst that
20 /// specifies the location. Each VarLoc is indexed in the (function-scope)
21 /// VarLocMap, giving each VarLoc a unique index. Rather than operate directly
22 /// on machine locations, the dataflow analysis in this pass identifies
23 /// locations by their index in the VarLocMap, meaning all the variable
24 /// locations in a block can be described by a sparse vector of VarLocMap
25 /// indexes.
26 ///
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PostOrderIterator.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/SparseBitVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/UniqueVector.h"
37 #include "llvm/CodeGen/LexicalScopes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineMemOperand.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/PseudoSourceValue.h"
47 #include "llvm/CodeGen/RegisterScavenging.h"
48 #include "llvm/CodeGen/TargetFrameLowering.h"
49 #include "llvm/CodeGen/TargetInstrInfo.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetRegisterInfo.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/Config/llvm-config.h"
55 #include "llvm/IR/DIBuilder.h"
56 #include "llvm/IR/DebugInfoMetadata.h"
57 #include "llvm/IR/DebugLoc.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/MC/MCRegisterInfo.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <functional>
71 #include <queue>
72 #include <tuple>
73 #include <utility>
74 #include <vector>
75
76 using namespace llvm;
77
78 #define DEBUG_TYPE "livedebugvalues"
79
80 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
81 STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed");
82
83 // If @MI is a DBG_VALUE with debug value described by a defined
84 // register, returns the number of this register. In the other case, returns 0.
isDbgValueDescribedByReg(const MachineInstr & MI)85 static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
86 assert(MI.isDebugValue() && "expected a DBG_VALUE");
87 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
88 // If location of variable is described using a register (directly
89 // or indirectly), this register is always a first operand.
90 return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : Register();
91 }
92
93 /// If \p Op is a stack or frame register return true, otherwise return false.
94 /// This is used to avoid basing the debug entry values on the registers, since
95 /// we do not support it at the moment.
isRegOtherThanSPAndFP(const MachineOperand & Op,const MachineInstr & MI,const TargetRegisterInfo * TRI)96 static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
97 const MachineInstr &MI,
98 const TargetRegisterInfo *TRI) {
99 if (!Op.isReg())
100 return false;
101
102 const MachineFunction *MF = MI.getParent()->getParent();
103 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
104 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
105 Register FP = TRI->getFrameRegister(*MF);
106 Register Reg = Op.getReg();
107
108 return Reg && Reg != SP && Reg != FP;
109 }
110
111 namespace {
112
113 using DefinedRegsSet = SmallSet<Register, 32>;
114
115 class LiveDebugValues : public MachineFunctionPass {
116 private:
117 const TargetRegisterInfo *TRI;
118 const TargetInstrInfo *TII;
119 const TargetFrameLowering *TFI;
120 BitVector CalleeSavedRegs;
121 LexicalScopes LS;
122
123 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
124
125 /// Keeps track of lexical scopes associated with a user value's source
126 /// location.
127 class UserValueScopes {
128 DebugLoc DL;
129 LexicalScopes &LS;
130 SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;
131
132 public:
UserValueScopes(DebugLoc D,LexicalScopes & L)133 UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}
134
135 /// Return true if current scope dominates at least one machine
136 /// instruction in a given machine basic block.
dominates(MachineBasicBlock * MBB)137 bool dominates(MachineBasicBlock *MBB) {
138 if (LBlocks.empty())
139 LS.getMachineBasicBlocks(DL, LBlocks);
140 return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
141 }
142 };
143
144 using FragmentInfo = DIExpression::FragmentInfo;
145 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
146
147 /// A pair of debug variable and value location.
148 struct VarLoc {
149 // The location at which a spilled variable resides. It consists of a
150 // register and an offset.
151 struct SpillLoc {
152 unsigned SpillBase;
153 int SpillOffset;
operator ==__anon9ae753250111::LiveDebugValues::VarLoc::SpillLoc154 bool operator==(const SpillLoc &Other) const {
155 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
156 }
157 };
158
159 /// Identity of the variable at this location.
160 const DebugVariable Var;
161
162 /// The expression applied to this location.
163 const DIExpression *Expr;
164
165 /// DBG_VALUE to clone var/expr information from if this location
166 /// is moved.
167 const MachineInstr &MI;
168
169 mutable UserValueScopes UVS;
170 enum VarLocKind {
171 InvalidKind = 0,
172 RegisterKind,
173 SpillLocKind,
174 ImmediateKind,
175 EntryValueKind,
176 EntryValueBackupKind,
177 EntryValueCopyBackupKind
178 } Kind = InvalidKind;
179
180 /// The value location. Stored separately to avoid repeatedly
181 /// extracting it from MI.
182 union {
183 uint64_t RegNo;
184 SpillLoc SpillLocation;
185 uint64_t Hash;
186 int64_t Immediate;
187 const ConstantFP *FPImm;
188 const ConstantInt *CImm;
189 } Loc;
190
VarLoc__anon9ae753250111::LiveDebugValues::VarLoc191 VarLoc(const MachineInstr &MI, LexicalScopes &LS)
192 : Var(MI.getDebugVariable(), MI.getDebugExpression(),
193 MI.getDebugLoc()->getInlinedAt()),
194 Expr(MI.getDebugExpression()), MI(MI), UVS(MI.getDebugLoc(), LS) {
195 static_assert((sizeof(Loc) == sizeof(uint64_t)),
196 "hash does not cover all members of Loc");
197 assert(MI.isDebugValue() && "not a DBG_VALUE");
198 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
199 if (int RegNo = isDbgValueDescribedByReg(MI)) {
200 Kind = RegisterKind;
201 Loc.RegNo = RegNo;
202 } else if (MI.getOperand(0).isImm()) {
203 Kind = ImmediateKind;
204 Loc.Immediate = MI.getOperand(0).getImm();
205 } else if (MI.getOperand(0).isFPImm()) {
206 Kind = ImmediateKind;
207 Loc.FPImm = MI.getOperand(0).getFPImm();
208 } else if (MI.getOperand(0).isCImm()) {
209 Kind = ImmediateKind;
210 Loc.CImm = MI.getOperand(0).getCImm();
211 }
212
213 // We create the debug entry values from the factory functions rather than
214 // from this ctor.
215 assert(Kind != EntryValueKind && !isEntryBackupLoc());
216 }
217
218 /// Take the variable and machine-location in DBG_VALUE MI, and build an
219 /// entry location using the given expression.
CreateEntryLoc__anon9ae753250111::LiveDebugValues::VarLoc220 static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
221 const DIExpression *EntryExpr, unsigned Reg) {
222 VarLoc VL(MI, LS);
223 assert(VL.Kind == RegisterKind);
224 VL.Kind = EntryValueKind;
225 VL.Expr = EntryExpr;
226 VL.Loc.RegNo = Reg;
227 return VL;
228 }
229
230 /// Take the variable and machine-location from the DBG_VALUE (from the
231 /// function entry), and build an entry value backup location. The backup
232 /// location will turn into the normal location if the backup is valid at
233 /// the time of the primary location clobbering.
CreateEntryBackupLoc__anon9ae753250111::LiveDebugValues::VarLoc234 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
235 LexicalScopes &LS,
236 const DIExpression *EntryExpr) {
237 VarLoc VL(MI, LS);
238 assert(VL.Kind == RegisterKind);
239 VL.Kind = EntryValueBackupKind;
240 VL.Expr = EntryExpr;
241 return VL;
242 }
243
244 /// Take the variable and machine-location from the DBG_VALUE (from the
245 /// function entry), and build a copy of an entry value backup location by
246 /// setting the register location to NewReg.
CreateEntryCopyBackupLoc__anon9ae753250111::LiveDebugValues::VarLoc247 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
248 LexicalScopes &LS,
249 const DIExpression *EntryExpr,
250 unsigned NewReg) {
251 VarLoc VL(MI, LS);
252 assert(VL.Kind == RegisterKind);
253 VL.Kind = EntryValueCopyBackupKind;
254 VL.Expr = EntryExpr;
255 VL.Loc.RegNo = NewReg;
256 return VL;
257 }
258
259 /// Copy the register location in DBG_VALUE MI, updating the register to
260 /// be NewReg.
CreateCopyLoc__anon9ae753250111::LiveDebugValues::VarLoc261 static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS,
262 unsigned NewReg) {
263 VarLoc VL(MI, LS);
264 assert(VL.Kind == RegisterKind);
265 VL.Loc.RegNo = NewReg;
266 return VL;
267 }
268
269 /// Take the variable described by DBG_VALUE MI, and create a VarLoc
270 /// locating it in the specified spill location.
CreateSpillLoc__anon9ae753250111::LiveDebugValues::VarLoc271 static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase,
272 int SpillOffset, LexicalScopes &LS) {
273 VarLoc VL(MI, LS);
274 assert(VL.Kind == RegisterKind);
275 VL.Kind = SpillLocKind;
276 VL.Loc.SpillLocation = {SpillBase, SpillOffset};
277 return VL;
278 }
279
280 /// Create a DBG_VALUE representing this VarLoc in the given function.
281 /// Copies variable-specific information such as DILocalVariable and
282 /// inlining information from the original DBG_VALUE instruction, which may
283 /// have been several transfers ago.
BuildDbgValue__anon9ae753250111::LiveDebugValues::VarLoc284 MachineInstr *BuildDbgValue(MachineFunction &MF) const {
285 const DebugLoc &DbgLoc = MI.getDebugLoc();
286 bool Indirect = MI.isIndirectDebugValue();
287 const auto &IID = MI.getDesc();
288 const DILocalVariable *Var = MI.getDebugVariable();
289 const DIExpression *DIExpr = MI.getDebugExpression();
290
291 switch (Kind) {
292 case EntryValueKind:
293 // An entry value is a register location -- but with an updated
294 // expression. The register location of such DBG_VALUE is always the one
295 // from the entry DBG_VALUE, it does not matter if the entry value was
296 // copied in to another register due to some optimizations.
297 return BuildMI(MF, DbgLoc, IID, Indirect, MI.getOperand(0).getReg(),
298 Var, Expr);
299 case RegisterKind:
300 // Register locations are like the source DBG_VALUE, but with the
301 // register number from this VarLoc.
302 return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr);
303 case SpillLocKind: {
304 // Spills are indirect DBG_VALUEs, with a base register and offset.
305 // Use the original DBG_VALUEs expression to build the spilt location
306 // on top of. FIXME: spill locations created before this pass runs
307 // are not recognized, and not handled here.
308 auto *SpillExpr = DIExpression::prepend(
309 DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset);
310 unsigned Base = Loc.SpillLocation.SpillBase;
311 return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr);
312 }
313 case ImmediateKind: {
314 MachineOperand MO = MI.getOperand(0);
315 return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr);
316 }
317 case EntryValueBackupKind:
318 case EntryValueCopyBackupKind:
319 case InvalidKind:
320 llvm_unreachable(
321 "Tried to produce DBG_VALUE for invalid or backup VarLoc");
322 }
323 llvm_unreachable("Unrecognized LiveDebugValues.VarLoc.Kind enum");
324 }
325
326 /// Is the Loc field a constant or constant object?
isConstant__anon9ae753250111::LiveDebugValues::VarLoc327 bool isConstant() const { return Kind == ImmediateKind; }
328
329 /// Check if the Loc field is an entry backup location.
isEntryBackupLoc__anon9ae753250111::LiveDebugValues::VarLoc330 bool isEntryBackupLoc() const {
331 return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind;
332 }
333
334 /// If this variable is described by a register holding the entry value,
335 /// return it, otherwise return 0.
getEntryValueBackupReg__anon9ae753250111::LiveDebugValues::VarLoc336 unsigned getEntryValueBackupReg() const {
337 if (Kind == EntryValueBackupKind)
338 return Loc.RegNo;
339 return 0;
340 }
341
342 /// If this variable is described by a register holding the copy of the
343 /// entry value, return it, otherwise return 0.
getEntryValueCopyBackupReg__anon9ae753250111::LiveDebugValues::VarLoc344 unsigned getEntryValueCopyBackupReg() const {
345 if (Kind == EntryValueCopyBackupKind)
346 return Loc.RegNo;
347 return 0;
348 }
349
350 /// If this variable is described by a register, return it,
351 /// otherwise return 0.
isDescribedByReg__anon9ae753250111::LiveDebugValues::VarLoc352 unsigned isDescribedByReg() const {
353 if (Kind == RegisterKind)
354 return Loc.RegNo;
355 return 0;
356 }
357
358 /// Determine whether the lexical scope of this value's debug location
359 /// dominates MBB.
dominates__anon9ae753250111::LiveDebugValues::VarLoc360 bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); }
361
362 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
363 // TRI can be null.
dump__anon9ae753250111::LiveDebugValues::VarLoc364 void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
365 dbgs() << "VarLoc(";
366 switch (Kind) {
367 case RegisterKind:
368 case EntryValueKind:
369 case EntryValueBackupKind:
370 case EntryValueCopyBackupKind:
371 dbgs() << printReg(Loc.RegNo, TRI);
372 break;
373 case SpillLocKind:
374 dbgs() << printReg(Loc.SpillLocation.SpillBase, TRI);
375 dbgs() << "[" << Loc.SpillLocation.SpillOffset << "]";
376 break;
377 case ImmediateKind:
378 dbgs() << Loc.Immediate;
379 break;
380 case InvalidKind:
381 llvm_unreachable("Invalid VarLoc in dump method");
382 }
383
384 dbgs() << ", \"" << Var.getVariable()->getName() << "\", " << *Expr
385 << ", ";
386 if (Var.getInlinedAt())
387 dbgs() << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
388 else
389 dbgs() << "(null))";
390
391 if (isEntryBackupLoc())
392 dbgs() << " (backup loc)\n";
393 else
394 dbgs() << "\n";
395 }
396 #endif
397
operator ==__anon9ae753250111::LiveDebugValues::VarLoc398 bool operator==(const VarLoc &Other) const {
399 return Kind == Other.Kind && Var == Other.Var &&
400 Loc.Hash == Other.Loc.Hash && Expr == Other.Expr;
401 }
402
403 /// This operator guarantees that VarLocs are sorted by Variable first.
operator <__anon9ae753250111::LiveDebugValues::VarLoc404 bool operator<(const VarLoc &Other) const {
405 return std::tie(Var, Kind, Loc.Hash, Expr) <
406 std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr);
407 }
408 };
409
410 using VarLocMap = UniqueVector<VarLoc>;
411 using VarLocSet = SparseBitVector<>;
412 using VarLocInMBB = SmallDenseMap<const MachineBasicBlock *, VarLocSet>;
413 struct TransferDebugPair {
414 MachineInstr *TransferInst; /// Instruction where this transfer occurs.
415 unsigned LocationID; /// Location number for the transfer dest.
416 };
417 using TransferMap = SmallVector<TransferDebugPair, 4>;
418
419 // Types for recording sets of variable fragments that overlap. For a given
420 // local variable, we record all other fragments of that variable that could
421 // overlap it, to reduce search time.
422 using FragmentOfVar =
423 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
424 using OverlapMap =
425 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
426
427 // Helper while building OverlapMap, a map of all fragments seen for a given
428 // DILocalVariable.
429 using VarToFragments =
430 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
431
432 /// This holds the working set of currently open ranges. For fast
433 /// access, this is done both as a set of VarLocIDs, and a map of
434 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
435 /// previous open ranges for the same variable. In addition, we keep
436 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
437 /// methods act differently depending on whether a VarLoc is primary
438 /// location or backup one. In the case the VarLoc is backup location
439 /// we will erase/insert from the EntryValuesBackupVars map, otherwise
440 /// we perform the operation on the Vars.
441 class OpenRangesSet {
442 VarLocSet VarLocs;
443 // Map the DebugVariable to recent primary location ID.
444 SmallDenseMap<DebugVariable, unsigned, 8> Vars;
445 // Map the DebugVariable to recent backup location ID.
446 SmallDenseMap<DebugVariable, unsigned, 8> EntryValuesBackupVars;
447 OverlapMap &OverlappingFragments;
448
449 public:
OpenRangesSet(OverlapMap & _OLapMap)450 OpenRangesSet(OverlapMap &_OLapMap) : OverlappingFragments(_OLapMap) {}
451
getVarLocs() const452 const VarLocSet &getVarLocs() const { return VarLocs; }
453
454 /// Terminate all open ranges for VL.Var by removing it from the set.
455 void erase(const VarLoc &VL);
456
457 /// Terminate all open ranges listed in \c KillSet by removing
458 /// them from the set.
459 void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs);
460
461 /// Insert a new range into the set.
462 void insert(unsigned VarLocID, const VarLoc &VL);
463
464 /// Insert a set of ranges.
insertFromLocSet(const VarLocSet & ToLoad,const VarLocMap & Map)465 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) {
466 for (unsigned Id : ToLoad) {
467 const VarLoc &VarL = Map[Id];
468 insert(Id, VarL);
469 }
470 }
471
472 llvm::Optional<unsigned> getEntryValueBackup(DebugVariable Var);
473
474 /// Empty the set.
clear()475 void clear() {
476 VarLocs.clear();
477 Vars.clear();
478 EntryValuesBackupVars.clear();
479 }
480
481 /// Return whether the set is empty or not.
empty() const482 bool empty() const {
483 assert(Vars.empty() == EntryValuesBackupVars.empty() &&
484 Vars.empty() == VarLocs.empty() &&
485 "open ranges are inconsistent");
486 return VarLocs.empty();
487 }
488 };
489
490 /// Tests whether this instruction is a spill to a stack location.
491 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
492
493 /// Decide if @MI is a spill instruction and return true if it is. We use 2
494 /// criteria to make this decision:
495 /// - Is this instruction a store to a spill slot?
496 /// - Is there a register operand that is both used and killed?
497 /// TODO: Store optimization can fold spills into other stores (including
498 /// other spills). We do not handle this yet (more than one memory operand).
499 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
500 unsigned &Reg);
501
502 /// Returns true if the given machine instruction is a debug value which we
503 /// can emit entry values for.
504 ///
505 /// Currently, we generate debug entry values only for parameters that are
506 /// unmodified throughout the function and located in a register.
507 bool isEntryValueCandidate(const MachineInstr &MI,
508 const DefinedRegsSet &Regs) const;
509
510 /// If a given instruction is identified as a spill, return the spill location
511 /// and set \p Reg to the spilled register.
512 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
513 MachineFunction *MF,
514 unsigned &Reg);
515 /// Given a spill instruction, extract the register and offset used to
516 /// address the spill location in a target independent way.
517 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
518 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
519 TransferMap &Transfers, VarLocMap &VarLocIDs,
520 unsigned OldVarID, TransferKind Kind,
521 unsigned NewReg = 0);
522
523 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
524 VarLocMap &VarLocIDs);
525 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
526 VarLocMap &VarLocIDs, TransferMap &Transfers);
527 bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
528 VarLocMap &VarLocIDs, const VarLoc &EntryVL);
529 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
530 VarLocMap &VarLocIDs, TransferMap &Transfers,
531 SparseBitVector<> &KillSet);
532 void recordEntryValue(const MachineInstr &MI,
533 const DefinedRegsSet &DefinedRegs,
534 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
535 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
536 VarLocMap &VarLocIDs, TransferMap &Transfers);
537 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
538 VarLocMap &VarLocIDs, TransferMap &Transfers);
539 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
540 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
541
542 void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
543 VarLocMap &VarLocIDs, TransferMap &Transfers);
544
545 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
546 OverlapMap &OLapMap);
547
548 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
549 const VarLocMap &VarLocIDs,
550 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
551 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks,
552 VarLocInMBB &PendingInLocs);
553
554 /// Create DBG_VALUE insts for inlocs that have been propagated but
555 /// had their instruction creation deferred.
556 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
557
558 bool ExtendRanges(MachineFunction &MF);
559
560 public:
561 static char ID;
562
563 /// Default construct and initialize the pass.
564 LiveDebugValues();
565
566 /// Tell the pass manager which passes we depend on and what
567 /// information we preserve.
568 void getAnalysisUsage(AnalysisUsage &AU) const override;
569
getRequiredProperties() const570 MachineFunctionProperties getRequiredProperties() const override {
571 return MachineFunctionProperties().set(
572 MachineFunctionProperties::Property::NoVRegs);
573 }
574
575 /// Print to ostream with a message.
576 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
577 const VarLocMap &VarLocIDs, const char *msg,
578 raw_ostream &Out) const;
579
580 /// Calculate the liveness information for the given machine function.
581 bool runOnMachineFunction(MachineFunction &MF) override;
582 };
583
584 } // end anonymous namespace
585
586 //===----------------------------------------------------------------------===//
587 // Implementation
588 //===----------------------------------------------------------------------===//
589
590 char LiveDebugValues::ID = 0;
591
592 char &llvm::LiveDebugValuesID = LiveDebugValues::ID;
593
594 INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis",
595 false, false)
596
597 /// Default construct and initialize the pass.
LiveDebugValues()598 LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
599 initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
600 }
601
602 /// Tell the pass manager which passes we depend on and what information we
603 /// preserve.
getAnalysisUsage(AnalysisUsage & AU) const604 void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
605 AU.setPreservesCFG();
606 MachineFunctionPass::getAnalysisUsage(AU);
607 }
608
609 /// Erase a variable from the set of open ranges, and additionally erase any
610 /// fragments that may overlap it. If the VarLoc is a buckup location, erase
611 /// the variable from the EntryValuesBackupVars set, indicating we should stop
612 /// tracking its backup entry location. Otherwise, if the VarLoc is primary
613 /// location, erase the variable from the Vars set.
erase(const VarLoc & VL)614 void LiveDebugValues::OpenRangesSet::erase(const VarLoc &VL) {
615 // Erasure helper.
616 auto DoErase = [VL, this](DebugVariable VarToErase) {
617 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
618 auto It = EraseFrom->find(VarToErase);
619 if (It != EraseFrom->end()) {
620 unsigned ID = It->second;
621 VarLocs.reset(ID);
622 EraseFrom->erase(It);
623 }
624 };
625
626 DebugVariable Var = VL.Var;
627
628 // Erase the variable/fragment that ends here.
629 DoErase(Var);
630
631 // Extract the fragment. Interpret an empty fragment as one that covers all
632 // possible bits.
633 FragmentInfo ThisFragment = Var.getFragmentOrDefault();
634
635 // There may be fragments that overlap the designated fragment. Look them up
636 // in the pre-computed overlap map, and erase them too.
637 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
638 if (MapIt != OverlappingFragments.end()) {
639 for (auto Fragment : MapIt->second) {
640 LiveDebugValues::OptFragmentInfo FragmentHolder;
641 if (!DebugVariable::isDefaultFragment(Fragment))
642 FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment);
643 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
644 }
645 }
646 }
647
erase(const VarLocSet & KillSet,const VarLocMap & VarLocIDs)648 void LiveDebugValues::OpenRangesSet::erase(const VarLocSet &KillSet,
649 const VarLocMap &VarLocIDs) {
650 VarLocs.intersectWithComplement(KillSet);
651 for (unsigned ID : KillSet) {
652 const VarLoc *VL = &VarLocIDs[ID];
653 auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
654 EraseFrom->erase(VL->Var);
655 }
656 }
657
insert(unsigned VarLocID,const VarLoc & VL)658 void LiveDebugValues::OpenRangesSet::insert(unsigned VarLocID,
659 const VarLoc &VL) {
660 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
661 VarLocs.set(VarLocID);
662 InsertInto->insert({VL.Var, VarLocID});
663 }
664
665 /// Return the Loc ID of an entry value backup location, if it exists for the
666 /// variable.
667 llvm::Optional<unsigned>
getEntryValueBackup(DebugVariable Var)668 LiveDebugValues::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
669 auto It = EntryValuesBackupVars.find(Var);
670 if (It != EntryValuesBackupVars.end())
671 return It->second;
672
673 return llvm::None;
674 }
675
676 //===----------------------------------------------------------------------===//
677 // Debug Range Extension Implementation
678 //===----------------------------------------------------------------------===//
679
680 #ifndef NDEBUG
printVarLocInMBB(const MachineFunction & MF,const VarLocInMBB & V,const VarLocMap & VarLocIDs,const char * msg,raw_ostream & Out) const681 void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
682 const VarLocInMBB &V,
683 const VarLocMap &VarLocIDs,
684 const char *msg,
685 raw_ostream &Out) const {
686 Out << '\n' << msg << '\n';
687 for (const MachineBasicBlock &BB : MF) {
688 const VarLocSet &L = V.lookup(&BB);
689 if (L.empty())
690 continue;
691 Out << "MBB: " << BB.getNumber() << ":\n";
692 for (unsigned VLL : L) {
693 const VarLoc &VL = VarLocIDs[VLL];
694 Out << " Var: " << VL.Var.getVariable()->getName();
695 Out << " MI: ";
696 VL.dump(TRI, Out);
697 }
698 }
699 Out << "\n";
700 }
701 #endif
702
703 LiveDebugValues::VarLoc::SpillLoc
extractSpillBaseRegAndOffset(const MachineInstr & MI)704 LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
705 assert(MI.hasOneMemOperand() &&
706 "Spill instruction does not have exactly one memory operand?");
707 auto MMOI = MI.memoperands_begin();
708 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
709 assert(PVal->kind() == PseudoSourceValue::FixedStack &&
710 "Inconsistent memory operand in spill instruction");
711 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
712 const MachineBasicBlock *MBB = MI.getParent();
713 unsigned Reg;
714 int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
715 return {Reg, Offset};
716 }
717
718 /// Try to salvage the debug entry value if we encounter a new debug value
719 /// describing the same parameter, otherwise stop tracking the value. Return
720 /// true if we should stop tracking the entry value, otherwise return false.
removeEntryValue(const MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,const VarLoc & EntryVL)721 bool LiveDebugValues::removeEntryValue(const MachineInstr &MI,
722 OpenRangesSet &OpenRanges,
723 VarLocMap &VarLocIDs,
724 const VarLoc &EntryVL) {
725 // Skip the DBG_VALUE which is the debug entry value itself.
726 if (MI.isIdenticalTo(EntryVL.MI))
727 return false;
728
729 // If the parameter's location is not register location, we can not track
730 // the entry value any more. In addition, if the debug expression from the
731 // DBG_VALUE is not empty, we can assume the parameter's value has changed
732 // indicating that we should stop tracking its entry value as well.
733 if (!MI.getOperand(0).isReg() ||
734 MI.getDebugExpression()->getNumElements() != 0)
735 return true;
736
737 // If the DBG_VALUE comes from a copy instruction that copies the entry value,
738 // it means the parameter's value has not changed and we should be able to use
739 // its entry value.
740 bool TrySalvageEntryValue = false;
741 Register Reg = MI.getOperand(0).getReg();
742 auto I = std::next(MI.getReverseIterator());
743 const MachineOperand *SrcRegOp, *DestRegOp;
744 if (I != MI.getParent()->rend()) {
745 // TODO: Try to keep tracking of an entry value if we encounter a propagated
746 // DBG_VALUE describing the copy of the entry value. (Propagated entry value
747 // does not indicate the parameter modification.)
748 auto DestSrc = TII->isCopyInstr(*I);
749 if (!DestSrc)
750 return true;
751
752 SrcRegOp = DestSrc->Source;
753 DestRegOp = DestSrc->Destination;
754 if (Reg != DestRegOp->getReg())
755 return true;
756 TrySalvageEntryValue = true;
757 }
758
759 if (TrySalvageEntryValue) {
760 for (unsigned ID : OpenRanges.getVarLocs()) {
761 const VarLoc &VL = VarLocIDs[ID];
762 if (!VL.isEntryBackupLoc())
763 continue;
764
765 if (VL.getEntryValueCopyBackupReg() == Reg &&
766 VL.MI.getOperand(0).getReg() == SrcRegOp->getReg())
767 return false;
768 }
769 }
770
771 return true;
772 }
773
774 /// End all previous ranges related to @MI and start a new range from @MI
775 /// if it is a DBG_VALUE instr.
transferDebugValue(const MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs)776 void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
777 OpenRangesSet &OpenRanges,
778 VarLocMap &VarLocIDs) {
779 if (!MI.isDebugValue())
780 return;
781 const DILocalVariable *Var = MI.getDebugVariable();
782 const DIExpression *Expr = MI.getDebugExpression();
783 const DILocation *DebugLoc = MI.getDebugLoc();
784 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
785 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
786 "Expected inlined-at fields to agree");
787
788 DebugVariable V(Var, Expr, InlinedAt);
789
790 // Check if this DBG_VALUE indicates a parameter's value changing.
791 // If that is the case, we should stop tracking its entry value.
792 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
793 if (Var->isParameter() && EntryValBackupID) {
794 const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
795 if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) {
796 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
797 MI.print(dbgs(), /*IsStandalone*/ false,
798 /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
799 /*AddNewLine*/ true, TII));
800 OpenRanges.erase(EntryVL);
801 }
802 }
803
804 unsigned ID;
805 if (isDbgValueDescribedByReg(MI) || MI.getOperand(0).isImm() ||
806 MI.getOperand(0).isFPImm() || MI.getOperand(0).isCImm()) {
807 // Use normal VarLoc constructor for registers and immediates.
808 VarLoc VL(MI, LS);
809 // End all previous ranges of VL.Var.
810 OpenRanges.erase(VL);
811
812 ID = VarLocIDs.insert(VL);
813 // Add the VarLoc to OpenRanges from this DBG_VALUE.
814 OpenRanges.insert(ID, VL);
815 } else if (MI.hasOneMemOperand()) {
816 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
817 } else {
818 // This must be an undefined location. We should leave OpenRanges closed.
819 assert(MI.getOperand(0).isReg() && MI.getOperand(0).getReg() == 0 &&
820 "Unexpected non-undef DBG_VALUE encountered");
821 }
822 }
823
824 /// Turn the entry value backup locations into primary locations.
emitEntryValues(MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,TransferMap & Transfers,SparseBitVector<> & KillSet)825 void LiveDebugValues::emitEntryValues(MachineInstr &MI,
826 OpenRangesSet &OpenRanges,
827 VarLocMap &VarLocIDs,
828 TransferMap &Transfers,
829 SparseBitVector<> &KillSet) {
830 for (unsigned ID : KillSet) {
831 if (!VarLocIDs[ID].Var.getVariable()->isParameter())
832 continue;
833
834 auto DebugVar = VarLocIDs[ID].Var;
835 auto EntryValBackupID = OpenRanges.getEntryValueBackup(DebugVar);
836
837 // If the parameter has the entry value backup, it means we should
838 // be able to use its entry value.
839 if (!EntryValBackupID)
840 continue;
841
842 const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
843 VarLoc EntryLoc =
844 VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo);
845 unsigned EntryValueID = VarLocIDs.insert(EntryLoc);
846 Transfers.push_back({&MI, EntryValueID});
847 OpenRanges.insert(EntryValueID, EntryLoc);
848 }
849 }
850
851 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
852 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
853 /// new VarLoc. If \p NewReg is different than default zero value then the
854 /// new location will be register location created by the copy like instruction,
855 /// otherwise it is variable's location on the stack.
insertTransferDebugPair(MachineInstr & MI,OpenRangesSet & OpenRanges,TransferMap & Transfers,VarLocMap & VarLocIDs,unsigned OldVarID,TransferKind Kind,unsigned NewReg)856 void LiveDebugValues::insertTransferDebugPair(
857 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
858 VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind,
859 unsigned NewReg) {
860 const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
861
862 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
863 unsigned LocId = VarLocIDs.insert(VL);
864
865 // Close this variable's previous location range.
866 OpenRanges.erase(VL);
867
868 // Record the new location as an open range, and a postponed transfer
869 // inserting a DBG_VALUE for this location.
870 OpenRanges.insert(LocId, VL);
871 TransferDebugPair MIP = {&MI, LocId};
872 Transfers.push_back(MIP);
873 };
874
875 // End all previous ranges of VL.Var.
876 OpenRanges.erase(VarLocIDs[OldVarID]);
877 switch (Kind) {
878 case TransferKind::TransferCopy: {
879 assert(NewReg &&
880 "No register supplied when handling a copy of a debug value");
881 // Create a DBG_VALUE instruction to describe the Var in its new
882 // register location.
883 VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
884 ProcessVarLoc(VL);
885 LLVM_DEBUG({
886 dbgs() << "Creating VarLoc for register copy:";
887 VL.dump(TRI);
888 });
889 return;
890 }
891 case TransferKind::TransferSpill: {
892 // Create a DBG_VALUE instruction to describe the Var in its spilled
893 // location.
894 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
895 VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase,
896 SpillLocation.SpillOffset, LS);
897 ProcessVarLoc(VL);
898 LLVM_DEBUG({
899 dbgs() << "Creating VarLoc for spill:";
900 VL.dump(TRI);
901 });
902 return;
903 }
904 case TransferKind::TransferRestore: {
905 assert(NewReg &&
906 "No register supplied when handling a restore of a debug value");
907 // DebugInstr refers to the pre-spill location, therefore we can reuse
908 // its expression.
909 VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
910 ProcessVarLoc(VL);
911 LLVM_DEBUG({
912 dbgs() << "Creating VarLoc for restore:";
913 VL.dump(TRI);
914 });
915 return;
916 }
917 }
918 llvm_unreachable("Invalid transfer kind");
919 }
920
921 /// A definition of a register may mark the end of a range.
transferRegisterDef(MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,TransferMap & Transfers)922 void LiveDebugValues::transferRegisterDef(
923 MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
924 TransferMap &Transfers) {
925 MachineFunction *MF = MI.getMF();
926 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
927 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
928 SparseBitVector<> KillSet;
929 for (const MachineOperand &MO : MI.operands()) {
930 // Determine whether the operand is a register def. Assume that call
931 // instructions never clobber SP, because some backends (e.g., AArch64)
932 // never list SP in the regmask.
933 if (MO.isReg() && MO.isDef() && MO.getReg() &&
934 Register::isPhysicalRegister(MO.getReg()) &&
935 !(MI.isCall() && MO.getReg() == SP)) {
936 // Remove ranges of all aliased registers.
937 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
938 for (unsigned ID : OpenRanges.getVarLocs())
939 if (VarLocIDs[ID].isDescribedByReg() == *RAI)
940 KillSet.set(ID);
941 } else if (MO.isRegMask()) {
942 // Remove ranges of all clobbered registers. Register masks don't usually
943 // list SP as preserved. While the debug info may be off for an
944 // instruction or two around callee-cleanup calls, transferring the
945 // DEBUG_VALUE across the call is still a better user experience.
946 for (unsigned ID : OpenRanges.getVarLocs()) {
947 unsigned Reg = VarLocIDs[ID].isDescribedByReg();
948 if (Reg && Reg != SP && MO.clobbersPhysReg(Reg))
949 KillSet.set(ID);
950 }
951 }
952 }
953 OpenRanges.erase(KillSet, VarLocIDs);
954
955 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
956 auto &TM = TPC->getTM<TargetMachine>();
957 if (TM.Options.EnableDebugEntryValues)
958 emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet);
959 }
960 }
961
isSpillInstruction(const MachineInstr & MI,MachineFunction * MF)962 bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
963 MachineFunction *MF) {
964 // TODO: Handle multiple stores folded into one.
965 if (!MI.hasOneMemOperand())
966 return false;
967
968 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
969 return false; // This is not a spill instruction, since no valid size was
970 // returned from either function.
971
972 return true;
973 }
974
isLocationSpill(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)975 bool LiveDebugValues::isLocationSpill(const MachineInstr &MI,
976 MachineFunction *MF, unsigned &Reg) {
977 if (!isSpillInstruction(MI, MF))
978 return false;
979
980 auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
981 if (!MO.isReg() || !MO.isUse()) {
982 Reg = 0;
983 return false;
984 }
985 Reg = MO.getReg();
986 return MO.isKill();
987 };
988
989 for (const MachineOperand &MO : MI.operands()) {
990 // In a spill instruction generated by the InlineSpiller the spilled
991 // register has its kill flag set.
992 if (isKilledReg(MO, Reg))
993 return true;
994 if (Reg != 0) {
995 // Check whether next instruction kills the spilled register.
996 // FIXME: Current solution does not cover search for killed register in
997 // bundles and instructions further down the chain.
998 auto NextI = std::next(MI.getIterator());
999 // Skip next instruction that points to basic block end iterator.
1000 if (MI.getParent()->end() == NextI)
1001 continue;
1002 unsigned RegNext;
1003 for (const MachineOperand &MONext : NextI->operands()) {
1004 // Return true if we came across the register from the
1005 // previous spill instruction that is killed in NextI.
1006 if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1007 return true;
1008 }
1009 }
1010 }
1011 // Return false if we didn't find spilled register.
1012 return false;
1013 }
1014
1015 Optional<LiveDebugValues::VarLoc::SpillLoc>
isRestoreInstruction(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1016 LiveDebugValues::isRestoreInstruction(const MachineInstr &MI,
1017 MachineFunction *MF, unsigned &Reg) {
1018 if (!MI.hasOneMemOperand())
1019 return None;
1020
1021 // FIXME: Handle folded restore instructions with more than one memory
1022 // operand.
1023 if (MI.getRestoreSize(TII)) {
1024 Reg = MI.getOperand(0).getReg();
1025 return extractSpillBaseRegAndOffset(MI);
1026 }
1027 return None;
1028 }
1029
1030 /// A spilled register may indicate that we have to end the current range of
1031 /// a variable and create a new one for the spill location.
1032 /// A restored register may indicate the reverse situation.
1033 /// We don't want to insert any instructions in process(), so we just create
1034 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
1035 /// It will be inserted into the BB when we're done iterating over the
1036 /// instructions.
transferSpillOrRestoreInst(MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,TransferMap & Transfers)1037 void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI,
1038 OpenRangesSet &OpenRanges,
1039 VarLocMap &VarLocIDs,
1040 TransferMap &Transfers) {
1041 MachineFunction *MF = MI.getMF();
1042 TransferKind TKind;
1043 unsigned Reg;
1044 Optional<VarLoc::SpillLoc> Loc;
1045
1046 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1047
1048 // First, if there are any DBG_VALUEs pointing at a spill slot that is
1049 // written to, then close the variable location. The value in memory
1050 // will have changed.
1051 VarLocSet KillSet;
1052 if (isSpillInstruction(MI, MF)) {
1053 Loc = extractSpillBaseRegAndOffset(MI);
1054 for (unsigned ID : OpenRanges.getVarLocs()) {
1055 const VarLoc &VL = VarLocIDs[ID];
1056 if (VL.Kind == VarLoc::SpillLocKind && VL.Loc.SpillLocation == *Loc) {
1057 // This location is overwritten by the current instruction -- terminate
1058 // the open range, and insert an explicit DBG_VALUE $noreg.
1059 //
1060 // Doing this at a later stage would require re-interpreting all
1061 // DBG_VALUes and DIExpressions to identify whether they point at
1062 // memory, and then analysing all memory writes to see if they
1063 // overwrite that memory, which is expensive.
1064 //
1065 // At this stage, we already know which DBG_VALUEs are for spills and
1066 // where they are located; it's best to fix handle overwrites now.
1067 KillSet.set(ID);
1068 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0);
1069 unsigned UndefLocID = VarLocIDs.insert(UndefVL);
1070 Transfers.push_back({&MI, UndefLocID});
1071 }
1072 }
1073 OpenRanges.erase(KillSet, VarLocIDs);
1074 }
1075
1076 // Try to recognise spill and restore instructions that may create a new
1077 // variable location.
1078 if (isLocationSpill(MI, MF, Reg)) {
1079 TKind = TransferKind::TransferSpill;
1080 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
1081 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1082 << "\n");
1083 } else {
1084 if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1085 return;
1086 TKind = TransferKind::TransferRestore;
1087 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
1088 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1089 << "\n");
1090 }
1091 // Check if the register or spill location is the location of a debug value.
1092 for (unsigned ID : OpenRanges.getVarLocs()) {
1093 if (TKind == TransferKind::TransferSpill &&
1094 VarLocIDs[ID].isDescribedByReg() == Reg) {
1095 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
1096 << VarLocIDs[ID].Var.getVariable()->getName() << ")\n");
1097 } else if (TKind == TransferKind::TransferRestore &&
1098 VarLocIDs[ID].Kind == VarLoc::SpillLocKind &&
1099 VarLocIDs[ID].Loc.SpillLocation == *Loc) {
1100 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
1101 << VarLocIDs[ID].Var.getVariable()->getName() << ")\n");
1102 } else
1103 continue;
1104 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TKind,
1105 Reg);
1106 return;
1107 }
1108 }
1109
1110 /// If \p MI is a register copy instruction, that copies a previously tracked
1111 /// value from one register to another register that is callee saved, we
1112 /// create new DBG_VALUE instruction described with copy destination register.
transferRegisterCopy(MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,TransferMap & Transfers)1113 void LiveDebugValues::transferRegisterCopy(MachineInstr &MI,
1114 OpenRangesSet &OpenRanges,
1115 VarLocMap &VarLocIDs,
1116 TransferMap &Transfers) {
1117 auto DestSrc = TII->isCopyInstr(MI);
1118 if (!DestSrc)
1119 return;
1120
1121 const MachineOperand *DestRegOp = DestSrc->Destination;
1122 const MachineOperand *SrcRegOp = DestSrc->Source;
1123
1124 if (!DestRegOp->isDef())
1125 return;
1126
1127 auto isCalleeSavedReg = [&](unsigned Reg) {
1128 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1129 if (CalleeSavedRegs.test(*RAI))
1130 return true;
1131 return false;
1132 };
1133
1134 Register SrcReg = SrcRegOp->getReg();
1135 Register DestReg = DestRegOp->getReg();
1136
1137 // We want to recognize instructions where destination register is callee
1138 // saved register. If register that could be clobbered by the call is
1139 // included, there would be a great chance that it is going to be clobbered
1140 // soon. It is more likely that previous register location, which is callee
1141 // saved, is going to stay unclobbered longer, even if it is killed.
1142 if (!isCalleeSavedReg(DestReg))
1143 return;
1144
1145 // Remember an entry value movement. If we encounter a new debug value of
1146 // a parameter describing only a moving of the value around, rather then
1147 // modifying it, we are still able to use the entry value if needed.
1148 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
1149 for (unsigned ID : OpenRanges.getVarLocs()) {
1150 if (VarLocIDs[ID].getEntryValueBackupReg() == SrcReg) {
1151 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
1152 VarLoc EntryValLocCopyBackup = VarLoc::CreateEntryCopyBackupLoc(
1153 VarLocIDs[ID].MI, LS, VarLocIDs[ID].Expr, DestReg);
1154
1155 // Stop tracking the original entry value.
1156 OpenRanges.erase(VarLocIDs[ID]);
1157
1158 // Start tracking the entry value copy.
1159 unsigned EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup);
1160 OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup);
1161 break;
1162 }
1163 }
1164 }
1165
1166 if (!SrcRegOp->isKill())
1167 return;
1168
1169 for (unsigned ID : OpenRanges.getVarLocs()) {
1170 if (VarLocIDs[ID].isDescribedByReg() == SrcReg) {
1171 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID,
1172 TransferKind::TransferCopy, DestReg);
1173 return;
1174 }
1175 }
1176 }
1177
1178 /// Terminate all open ranges at the end of the current basic block.
transferTerminator(MachineBasicBlock * CurMBB,OpenRangesSet & OpenRanges,VarLocInMBB & OutLocs,const VarLocMap & VarLocIDs)1179 bool LiveDebugValues::transferTerminator(MachineBasicBlock *CurMBB,
1180 OpenRangesSet &OpenRanges,
1181 VarLocInMBB &OutLocs,
1182 const VarLocMap &VarLocIDs) {
1183 bool Changed = false;
1184
1185 LLVM_DEBUG(for (unsigned ID
1186 : OpenRanges.getVarLocs()) {
1187 // Copy OpenRanges to OutLocs, if not already present.
1188 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";
1189 VarLocIDs[ID].dump(TRI);
1190 });
1191 VarLocSet &VLS = OutLocs[CurMBB];
1192 Changed = VLS != OpenRanges.getVarLocs();
1193 // New OutLocs set may be different due to spill, restore or register
1194 // copy instruction processing.
1195 if (Changed)
1196 VLS = OpenRanges.getVarLocs();
1197 OpenRanges.clear();
1198 return Changed;
1199 }
1200
1201 /// Accumulate a mapping between each DILocalVariable fragment and other
1202 /// fragments of that DILocalVariable which overlap. This reduces work during
1203 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1204 /// known-to-overlap fragments are present".
1205 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1206 /// fragment usage.
1207 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1208 /// Variable which are known to exist.
1209 /// \param OverlappingFragments The overlap map being constructed, from one
1210 /// Var/Fragment pair to a vector of fragments known to overlap.
accumulateFragmentMap(MachineInstr & MI,VarToFragments & SeenFragments,OverlapMap & OverlappingFragments)1211 void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI,
1212 VarToFragments &SeenFragments,
1213 OverlapMap &OverlappingFragments) {
1214 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1215 MI.getDebugLoc()->getInlinedAt());
1216 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1217
1218 // If this is the first sighting of this variable, then we are guaranteed
1219 // there are currently no overlapping fragments either. Initialize the set
1220 // of seen fragments, record no overlaps for the current one, and return.
1221 auto SeenIt = SeenFragments.find(MIVar.getVariable());
1222 if (SeenIt == SeenFragments.end()) {
1223 SmallSet<FragmentInfo, 4> OneFragment;
1224 OneFragment.insert(ThisFragment);
1225 SeenFragments.insert({MIVar.getVariable(), OneFragment});
1226
1227 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1228 return;
1229 }
1230
1231 // If this particular Variable/Fragment pair already exists in the overlap
1232 // map, it has already been accounted for.
1233 auto IsInOLapMap =
1234 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1235 if (!IsInOLapMap.second)
1236 return;
1237
1238 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1239 auto &AllSeenFragments = SeenIt->second;
1240
1241 // Otherwise, examine all other seen fragments for this variable, with "this"
1242 // fragment being a previously unseen fragment. Record any pair of
1243 // overlapping fragments.
1244 for (auto &ASeenFragment : AllSeenFragments) {
1245 // Does this previously seen fragment overlap?
1246 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1247 // Yes: Mark the current fragment as being overlapped.
1248 ThisFragmentsOverlaps.push_back(ASeenFragment);
1249 // Mark the previously seen fragment as being overlapped by the current
1250 // one.
1251 auto ASeenFragmentsOverlaps =
1252 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
1253 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
1254 "Previously seen var fragment has no vector of overlaps");
1255 ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1256 }
1257 }
1258
1259 AllSeenFragments.insert(ThisFragment);
1260 }
1261
1262 /// This routine creates OpenRanges.
process(MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,TransferMap & Transfers)1263 void LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1264 VarLocMap &VarLocIDs, TransferMap &Transfers) {
1265 transferDebugValue(MI, OpenRanges, VarLocIDs);
1266 transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers);
1267 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
1268 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
1269 }
1270
1271 /// This routine joins the analysis results of all incoming edges in @MBB by
1272 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1273 /// source variable in all the predecessors of @MBB reside in the same location.
join(MachineBasicBlock & MBB,VarLocInMBB & OutLocs,VarLocInMBB & InLocs,const VarLocMap & VarLocIDs,SmallPtrSet<const MachineBasicBlock *,16> & Visited,SmallPtrSetImpl<const MachineBasicBlock * > & ArtificialBlocks,VarLocInMBB & PendingInLocs)1274 bool LiveDebugValues::join(
1275 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1276 const VarLocMap &VarLocIDs,
1277 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1278 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks,
1279 VarLocInMBB &PendingInLocs) {
1280 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1281 bool Changed = false;
1282
1283 VarLocSet InLocsT; // Temporary incoming locations.
1284
1285 // For all predecessors of this MBB, find the set of VarLocs that
1286 // can be joined.
1287 int NumVisited = 0;
1288 for (auto p : MBB.predecessors()) {
1289 // Ignore backedges if we have not visited the predecessor yet. As the
1290 // predecessor hasn't yet had locations propagated into it, most locations
1291 // will not yet be valid, so treat them as all being uninitialized and
1292 // potentially valid. If a location guessed to be correct here is
1293 // invalidated later, we will remove it when we revisit this block.
1294 if (!Visited.count(p)) {
1295 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()
1296 << "\n");
1297 continue;
1298 }
1299 auto OL = OutLocs.find(p);
1300 // Join is null in case of empty OutLocs from any of the pred.
1301 if (OL == OutLocs.end())
1302 return false;
1303
1304 // Just copy over the Out locs to incoming locs for the first visited
1305 // predecessor, and for all other predecessors join the Out locs.
1306 if (!NumVisited)
1307 InLocsT = OL->second;
1308 else
1309 InLocsT &= OL->second;
1310
1311 LLVM_DEBUG({
1312 if (!InLocsT.empty()) {
1313 for (auto ID : InLocsT)
1314 dbgs() << " gathered candidate incoming var: "
1315 << VarLocIDs[ID].Var.getVariable()->getName() << "\n";
1316 }
1317 });
1318
1319 NumVisited++;
1320 }
1321
1322 // Filter out DBG_VALUES that are out of scope.
1323 VarLocSet KillSet;
1324 bool IsArtificial = ArtificialBlocks.count(&MBB);
1325 if (!IsArtificial) {
1326 for (auto ID : InLocsT) {
1327 if (!VarLocIDs[ID].dominates(MBB)) {
1328 KillSet.set(ID);
1329 LLVM_DEBUG({
1330 auto Name = VarLocIDs[ID].Var.getVariable()->getName();
1331 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";
1332 });
1333 }
1334 }
1335 }
1336 InLocsT.intersectWithComplement(KillSet);
1337
1338 // As we are processing blocks in reverse post-order we
1339 // should have processed at least one predecessor, unless it
1340 // is the entry block which has no predecessor.
1341 assert((NumVisited || MBB.pred_empty()) &&
1342 "Should have processed at least one predecessor");
1343
1344 VarLocSet &ILS = InLocs[&MBB];
1345 VarLocSet &Pending = PendingInLocs[&MBB];
1346
1347 // New locations will have DBG_VALUE insts inserted at the start of the
1348 // block, after location propagation has finished. Record the insertions
1349 // that we need to perform in the Pending set.
1350 VarLocSet Diff = InLocsT;
1351 Diff.intersectWithComplement(ILS);
1352 for (auto ID : Diff) {
1353 Pending.set(ID);
1354 ILS.set(ID);
1355 ++NumInserted;
1356 Changed = true;
1357 }
1358
1359 // We may have lost locations by learning about a predecessor that either
1360 // loses or moves a variable. Find any locations in ILS that are not in the
1361 // new in-locations, and delete those.
1362 VarLocSet Removed = ILS;
1363 Removed.intersectWithComplement(InLocsT);
1364 for (auto ID : Removed) {
1365 Pending.reset(ID);
1366 ILS.reset(ID);
1367 ++NumRemoved;
1368 Changed = true;
1369 }
1370
1371 return Changed;
1372 }
1373
flushPendingLocs(VarLocInMBB & PendingInLocs,VarLocMap & VarLocIDs)1374 void LiveDebugValues::flushPendingLocs(VarLocInMBB &PendingInLocs,
1375 VarLocMap &VarLocIDs) {
1376 // PendingInLocs records all locations propagated into blocks, which have
1377 // not had DBG_VALUE insts created. Go through and create those insts now.
1378 for (auto &Iter : PendingInLocs) {
1379 // Map is keyed on a constant pointer, unwrap it so we can insert insts.
1380 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
1381 VarLocSet &Pending = Iter.second;
1382
1383 for (unsigned ID : Pending) {
1384 // The ID location is live-in to MBB -- work out what kind of machine
1385 // location it is and create a DBG_VALUE.
1386 const VarLoc &DiffIt = VarLocIDs[ID];
1387 if (DiffIt.isEntryBackupLoc())
1388 continue;
1389 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
1390 MBB.insert(MBB.instr_begin(), MI);
1391
1392 (void)MI;
1393 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
1394 }
1395 }
1396 }
1397
isEntryValueCandidate(const MachineInstr & MI,const DefinedRegsSet & DefinedRegs) const1398 bool LiveDebugValues::isEntryValueCandidate(
1399 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
1400 assert(MI.isDebugValue() && "This must be DBG_VALUE.");
1401
1402 // TODO: Add support for local variables that are expressed in terms of
1403 // parameters entry values.
1404 // TODO: Add support for modified arguments that can be expressed
1405 // by using its entry value.
1406 auto *DIVar = MI.getDebugVariable();
1407 if (!DIVar->isParameter())
1408 return false;
1409
1410 // Do not consider parameters that belong to an inlined function.
1411 if (MI.getDebugLoc()->getInlinedAt())
1412 return false;
1413
1414 // Do not consider indirect debug values (TODO: explain why).
1415 if (MI.isIndirectDebugValue())
1416 return false;
1417
1418 // Only consider parameters that are described using registers. Parameters
1419 // that are passed on the stack are not yet supported, so ignore debug
1420 // values that are described by the frame or stack pointer.
1421 if (!isRegOtherThanSPAndFP(MI.getOperand(0), MI, TRI))
1422 return false;
1423
1424 // If a parameter's value has been propagated from the caller, then the
1425 // parameter's DBG_VALUE may be described using a register defined by some
1426 // instruction in the entry block, in which case we shouldn't create an
1427 // entry value.
1428 if (DefinedRegs.count(MI.getOperand(0).getReg()))
1429 return false;
1430
1431 // TODO: Add support for parameters that have a pre-existing debug expressions
1432 // (e.g. fragments, or indirect parameters using DW_OP_deref).
1433 if (MI.getDebugExpression()->getNumElements() > 0)
1434 return false;
1435
1436 return true;
1437 }
1438
1439 /// Collect all register defines (including aliases) for the given instruction.
collectRegDefs(const MachineInstr & MI,DefinedRegsSet & Regs,const TargetRegisterInfo * TRI)1440 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
1441 const TargetRegisterInfo *TRI) {
1442 for (const MachineOperand &MO : MI.operands())
1443 if (MO.isReg() && MO.isDef() && MO.getReg())
1444 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
1445 Regs.insert(*AI);
1446 }
1447
1448 /// This routine records the entry values of function parameters. The values
1449 /// could be used as backup values. If we loose the track of some unmodified
1450 /// parameters, the backup values will be used as a primary locations.
recordEntryValue(const MachineInstr & MI,const DefinedRegsSet & DefinedRegs,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs)1451 void LiveDebugValues::recordEntryValue(const MachineInstr &MI,
1452 const DefinedRegsSet &DefinedRegs,
1453 OpenRangesSet &OpenRanges,
1454 VarLocMap &VarLocIDs) {
1455 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
1456 auto &TM = TPC->getTM<TargetMachine>();
1457 if (!TM.Options.EnableDebugEntryValues)
1458 return;
1459 }
1460
1461 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
1462 MI.getDebugLoc()->getInlinedAt());
1463
1464 if (!isEntryValueCandidate(MI, DefinedRegs) ||
1465 OpenRanges.getEntryValueBackup(V))
1466 return;
1467
1468 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
1469
1470 // Create the entry value and use it as a backup location until it is
1471 // valid. It is valid until a parameter is not changed.
1472 DIExpression *NewExpr =
1473 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
1474 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
1475 unsigned EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup);
1476 OpenRanges.insert(EntryValLocID, EntryValLocAsBackup);
1477 }
1478
1479 /// Calculate the liveness information for the given machine function and
1480 /// extend ranges across basic blocks.
ExtendRanges(MachineFunction & MF)1481 bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
1482 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
1483
1484 bool Changed = false;
1485 bool OLChanged = false;
1486 bool MBBJoined = false;
1487
1488 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
1489 OverlapMap OverlapFragments; // Map of overlapping variable fragments.
1490 OpenRangesSet OpenRanges(OverlapFragments);
1491 // Ranges that are open until end of bb.
1492 VarLocInMBB OutLocs; // Ranges that exist beyond bb.
1493 VarLocInMBB InLocs; // Ranges that are incoming after joining.
1494 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as
1495 // spills, copies and restores).
1496 VarLocInMBB PendingInLocs; // Ranges that are incoming after joining, but
1497 // that we have deferred creating DBG_VALUE insts
1498 // for immediately.
1499
1500 VarToFragments SeenFragments;
1501
1502 // Blocks which are artificial, i.e. blocks which exclusively contain
1503 // instructions without locations, or with line 0 locations.
1504 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
1505
1506 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1507 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
1508 std::priority_queue<unsigned int, std::vector<unsigned int>,
1509 std::greater<unsigned int>>
1510 Worklist;
1511 std::priority_queue<unsigned int, std::vector<unsigned int>,
1512 std::greater<unsigned int>>
1513 Pending;
1514
1515 // Set of register defines that are seen when traversing the entry block
1516 // looking for debug entry value candidates.
1517 DefinedRegsSet DefinedRegs;
1518
1519 // Only in the case of entry MBB collect DBG_VALUEs representing
1520 // function parameters in order to generate debug entry values for them.
1521 MachineBasicBlock &First_MBB = *(MF.begin());
1522 for (auto &MI : First_MBB) {
1523 collectRegDefs(MI, DefinedRegs, TRI);
1524 if (MI.isDebugValue())
1525 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
1526 }
1527
1528 // Initialize per-block structures and scan for fragment overlaps.
1529 for (auto &MBB : MF) {
1530 PendingInLocs[&MBB] = VarLocSet();
1531
1532 for (auto &MI : MBB) {
1533 if (MI.isDebugValue())
1534 accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
1535 }
1536 }
1537
1538 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
1539 if (const DebugLoc &DL = MI.getDebugLoc())
1540 return DL.getLine() != 0;
1541 return false;
1542 };
1543 for (auto &MBB : MF)
1544 if (none_of(MBB.instrs(), hasNonArtificialLocation))
1545 ArtificialBlocks.insert(&MBB);
1546
1547 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
1548 "OutLocs after initialization", dbgs()));
1549
1550 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
1551 unsigned int RPONumber = 0;
1552 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
1553 OrderToBB[RPONumber] = *RI;
1554 BBToOrder[*RI] = RPONumber;
1555 Worklist.push(RPONumber);
1556 ++RPONumber;
1557 }
1558 // This is a standard "union of predecessor outs" dataflow problem.
1559 // To solve it, we perform join() and process() using the two worklist method
1560 // until the ranges converge.
1561 // Ranges have converged when both worklists are empty.
1562 SmallPtrSet<const MachineBasicBlock *, 16> Visited;
1563 while (!Worklist.empty() || !Pending.empty()) {
1564 // We track what is on the pending worklist to avoid inserting the same
1565 // thing twice. We could avoid this with a custom priority queue, but this
1566 // is probably not worth it.
1567 SmallPtrSet<MachineBasicBlock *, 16> OnPending;
1568 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
1569 while (!Worklist.empty()) {
1570 MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
1571 Worklist.pop();
1572 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
1573 ArtificialBlocks, PendingInLocs);
1574 MBBJoined |= Visited.insert(MBB).second;
1575 if (MBBJoined) {
1576 MBBJoined = false;
1577 Changed = true;
1578 // Now that we have started to extend ranges across BBs we need to
1579 // examine spill, copy and restore instructions to see whether they
1580 // operate with registers that correspond to user variables.
1581 // First load any pending inlocs.
1582 OpenRanges.insertFromLocSet(PendingInLocs[MBB], VarLocIDs);
1583 for (auto &MI : *MBB)
1584 process(MI, OpenRanges, VarLocIDs, Transfers);
1585 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
1586
1587 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
1588 "OutLocs after propagating", dbgs()));
1589 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
1590 "InLocs after propagating", dbgs()));
1591
1592 if (OLChanged) {
1593 OLChanged = false;
1594 for (auto s : MBB->successors())
1595 if (OnPending.insert(s).second) {
1596 Pending.push(BBToOrder[s]);
1597 }
1598 }
1599 }
1600 }
1601 Worklist.swap(Pending);
1602 // At this point, pending must be empty, since it was just the empty
1603 // worklist
1604 assert(Pending.empty() && "Pending should be empty");
1605 }
1606
1607 // Add any DBG_VALUE instructions created by location transfers.
1608 for (auto &TR : Transfers) {
1609 MachineBasicBlock *MBB = TR.TransferInst->getParent();
1610 const VarLoc &VL = VarLocIDs[TR.LocationID];
1611 MachineInstr *MI = VL.BuildDbgValue(MF);
1612 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
1613 }
1614 Transfers.clear();
1615
1616 // Deferred inlocs will not have had any DBG_VALUE insts created; do
1617 // that now.
1618 flushPendingLocs(PendingInLocs, VarLocIDs);
1619
1620 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
1621 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
1622 return Changed;
1623 }
1624
runOnMachineFunction(MachineFunction & MF)1625 bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
1626 if (!MF.getFunction().getSubprogram())
1627 // LiveDebugValues will already have removed all DBG_VALUEs.
1628 return false;
1629
1630 // Skip functions from NoDebug compilation units.
1631 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
1632 DICompileUnit::NoDebug)
1633 return false;
1634
1635 TRI = MF.getSubtarget().getRegisterInfo();
1636 TII = MF.getSubtarget().getInstrInfo();
1637 TFI = MF.getSubtarget().getFrameLowering();
1638 TFI->getCalleeSaves(MF, CalleeSavedRegs);
1639 LS.initialize(MF);
1640
1641 bool Changed = ExtendRanges(MF);
1642 return Changed;
1643 }
1644