1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/IntrinsicsWebAssembly.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetOptions.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "wasm-lower"
39
WebAssemblyTargetLowering(const TargetMachine & TM,const WebAssemblySubtarget & STI)40 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
41 const TargetMachine &TM, const WebAssemblySubtarget &STI)
42 : TargetLowering(TM), Subtarget(&STI) {
43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
44
45 // Booleans always contain 0 or 1.
46 setBooleanContents(ZeroOrOneBooleanContent);
47 // Except in SIMD vectors
48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
49 // We don't know the microarchitecture here, so just reduce register pressure.
50 setSchedulingPreference(Sched::RegPressure);
51 // Tell ISel that we have a stack pointer.
52 setStackPointerRegisterToSaveRestore(
53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
54 // Set up the register classes.
55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
59 if (Subtarget->hasSIMD128()) {
60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
64 }
65 if (Subtarget->hasUnimplementedSIMD128()) {
66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
68 }
69 // Compute derived properties from the register classes.
70 computeRegisterProperties(Subtarget->getRegisterInfo());
71
72 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
73 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
74 setOperationAction(ISD::JumpTable, MVTPtr, Custom);
75 setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
76 setOperationAction(ISD::BRIND, MVT::Other, Custom);
77
78 // Take the default expansion for va_arg, va_copy, and va_end. There is no
79 // default action for va_start, so we do that custom.
80 setOperationAction(ISD::VASTART, MVT::Other, Custom);
81 setOperationAction(ISD::VAARG, MVT::Other, Expand);
82 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
83 setOperationAction(ISD::VAEND, MVT::Other, Expand);
84
85 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
86 // Don't expand the floating-point types to constant pools.
87 setOperationAction(ISD::ConstantFP, T, Legal);
88 // Expand floating-point comparisons.
89 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
90 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
91 setCondCodeAction(CC, T, Expand);
92 // Expand floating-point library function operators.
93 for (auto Op :
94 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
95 setOperationAction(Op, T, Expand);
96 // Note supported floating-point library function operators that otherwise
97 // default to expand.
98 for (auto Op :
99 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
100 setOperationAction(Op, T, Legal);
101 // Support minimum and maximum, which otherwise default to expand.
102 setOperationAction(ISD::FMINIMUM, T, Legal);
103 setOperationAction(ISD::FMAXIMUM, T, Legal);
104 // WebAssembly currently has no builtin f16 support.
105 setOperationAction(ISD::FP16_TO_FP, T, Expand);
106 setOperationAction(ISD::FP_TO_FP16, T, Expand);
107 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
108 setTruncStoreAction(T, MVT::f16, Expand);
109 }
110
111 // Expand unavailable integer operations.
112 for (auto Op :
113 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
114 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
115 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
116 for (auto T : {MVT::i32, MVT::i64})
117 setOperationAction(Op, T, Expand);
118 if (Subtarget->hasSIMD128())
119 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
120 setOperationAction(Op, T, Expand);
121 if (Subtarget->hasUnimplementedSIMD128())
122 setOperationAction(Op, MVT::v2i64, Expand);
123 }
124
125 // SIMD-specific configuration
126 if (Subtarget->hasSIMD128()) {
127 // Support saturating add for i8x16 and i16x8
128 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
129 for (auto T : {MVT::v16i8, MVT::v8i16})
130 setOperationAction(Op, T, Legal);
131
132 // Custom lower BUILD_VECTORs to minimize number of replace_lanes
133 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
134 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
135 if (Subtarget->hasUnimplementedSIMD128())
136 for (auto T : {MVT::v2i64, MVT::v2f64})
137 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
138
139 // We have custom shuffle lowering to expose the shuffle mask
140 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
141 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
142 if (Subtarget->hasUnimplementedSIMD128())
143 for (auto T: {MVT::v2i64, MVT::v2f64})
144 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
145
146 // Custom lowering since wasm shifts must have a scalar shift amount
147 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
148 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
149 setOperationAction(Op, T, Custom);
150 if (Subtarget->hasUnimplementedSIMD128())
151 setOperationAction(Op, MVT::v2i64, Custom);
152 }
153
154 // Custom lower lane accesses to expand out variable indices
155 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
156 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
157 setOperationAction(Op, T, Custom);
158 if (Subtarget->hasUnimplementedSIMD128())
159 for (auto T : {MVT::v2i64, MVT::v2f64})
160 setOperationAction(Op, T, Custom);
161 }
162
163 // There is no i64x2.mul instruction
164 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
165
166 // There are no vector select instructions
167 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
168 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
169 setOperationAction(Op, T, Expand);
170 if (Subtarget->hasUnimplementedSIMD128())
171 for (auto T : {MVT::v2i64, MVT::v2f64})
172 setOperationAction(Op, T, Expand);
173 }
174
175 // Expand integer operations supported for scalars but not SIMD
176 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
177 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
178 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
179 setOperationAction(Op, T, Expand);
180 if (Subtarget->hasUnimplementedSIMD128())
181 setOperationAction(Op, MVT::v2i64, Expand);
182 }
183
184 // But we do have integer min and max operations
185 if (Subtarget->hasUnimplementedSIMD128()) {
186 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
188 setOperationAction(Op, T, Legal);
189 }
190
191 // Expand float operations supported for scalars but not SIMD
192 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
193 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
194 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) {
195 setOperationAction(Op, MVT::v4f32, Expand);
196 if (Subtarget->hasUnimplementedSIMD128())
197 setOperationAction(Op, MVT::v2f64, Expand);
198 }
199
200 // Expand operations not supported for i64x2 vectors
201 if (Subtarget->hasUnimplementedSIMD128())
202 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC)
203 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom);
204
205 // Expand additional SIMD ops that V8 hasn't implemented yet
206 if (!Subtarget->hasUnimplementedSIMD128()) {
207 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
208 setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
209 }
210 }
211
212 // As a special case, these operators use the type to mean the type to
213 // sign-extend from.
214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
215 if (!Subtarget->hasSignExt()) {
216 // Sign extends are legal only when extending a vector extract
217 auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
218 for (auto T : {MVT::i8, MVT::i16, MVT::i32})
219 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
220 }
221 for (auto T : MVT::integer_fixedlen_vector_valuetypes())
222 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
223
224 // Dynamic stack allocation: use the default expansion.
225 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
226 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
227 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
228
229 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
230 setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
231
232 // Expand these forms; we pattern-match the forms that we can handle in isel.
233 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
234 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
235 setOperationAction(Op, T, Expand);
236
237 // We have custom switch handling.
238 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
239
240 // WebAssembly doesn't have:
241 // - Floating-point extending loads.
242 // - Floating-point truncating stores.
243 // - i1 extending loads.
244 // - truncating SIMD stores and most extending loads
245 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
246 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
247 for (auto T : MVT::integer_valuetypes())
248 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
249 setLoadExtAction(Ext, T, MVT::i1, Promote);
250 if (Subtarget->hasSIMD128()) {
251 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
252 MVT::v2f64}) {
253 for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
254 if (MVT(T) != MemT) {
255 setTruncStoreAction(T, MemT, Expand);
256 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
257 setLoadExtAction(Ext, T, MemT, Expand);
258 }
259 }
260 }
261 // But some vector extending loads are legal
262 if (Subtarget->hasUnimplementedSIMD128()) {
263 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
264 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
265 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
266 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
267 }
268 }
269 }
270
271 // Don't do anything clever with build_pairs
272 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
273
274 // Trap lowers to wasm unreachable
275 setOperationAction(ISD::TRAP, MVT::Other, Legal);
276
277 // Exception handling intrinsics
278 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
279 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
280
281 setMaxAtomicSizeInBitsSupported(64);
282
283 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
284 // consistent with the f64 and f128 names.
285 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
286 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
287
288 // Define the emscripten name for return address helper.
289 // TODO: when implementing other WASM backends, make this generic or only do
290 // this on emscripten depending on what they end up doing.
291 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
292
293 // Always convert switches to br_tables unless there is only one case, which
294 // is equivalent to a simple branch. This reduces code size for wasm, and we
295 // defer possible jump table optimizations to the VM.
296 setMinimumJumpTableEntries(2);
297 }
298
299 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const300 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
301 // We have wasm instructions for these
302 switch (AI->getOperation()) {
303 case AtomicRMWInst::Add:
304 case AtomicRMWInst::Sub:
305 case AtomicRMWInst::And:
306 case AtomicRMWInst::Or:
307 case AtomicRMWInst::Xor:
308 case AtomicRMWInst::Xchg:
309 return AtomicExpansionKind::None;
310 default:
311 break;
312 }
313 return AtomicExpansionKind::CmpXChg;
314 }
315
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo) const316 FastISel *WebAssemblyTargetLowering::createFastISel(
317 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
318 return WebAssembly::createFastISel(FuncInfo, LibInfo);
319 }
320
getScalarShiftAmountTy(const DataLayout &,EVT VT) const321 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
322 EVT VT) const {
323 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
324 if (BitWidth > 1 && BitWidth < 8)
325 BitWidth = 8;
326
327 if (BitWidth > 64) {
328 // The shift will be lowered to a libcall, and compiler-rt libcalls expect
329 // the count to be an i32.
330 BitWidth = 32;
331 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
332 "32-bit shift counts ought to be enough for anyone");
333 }
334
335 MVT Result = MVT::getIntegerVT(BitWidth);
336 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
337 "Unable to represent scalar shift amount type");
338 return Result;
339 }
340
341 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
342 // undefined result on invalid/overflow, to the WebAssembly opcode, which
343 // traps on invalid/overflow.
LowerFPToInt(MachineInstr & MI,DebugLoc DL,MachineBasicBlock * BB,const TargetInstrInfo & TII,bool IsUnsigned,bool Int64,bool Float64,unsigned LoweredOpcode)344 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
345 MachineBasicBlock *BB,
346 const TargetInstrInfo &TII,
347 bool IsUnsigned, bool Int64,
348 bool Float64, unsigned LoweredOpcode) {
349 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
350
351 Register OutReg = MI.getOperand(0).getReg();
352 Register InReg = MI.getOperand(1).getReg();
353
354 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
355 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
356 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
357 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
358 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
359 unsigned Eqz = WebAssembly::EQZ_I32;
360 unsigned And = WebAssembly::AND_I32;
361 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
362 int64_t Substitute = IsUnsigned ? 0 : Limit;
363 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
364 auto &Context = BB->getParent()->getFunction().getContext();
365 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
366
367 const BasicBlock *LLVMBB = BB->getBasicBlock();
368 MachineFunction *F = BB->getParent();
369 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
370 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
371 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
372
373 MachineFunction::iterator It = ++BB->getIterator();
374 F->insert(It, FalseMBB);
375 F->insert(It, TrueMBB);
376 F->insert(It, DoneMBB);
377
378 // Transfer the remainder of BB and its successor edges to DoneMBB.
379 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
380 DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
381
382 BB->addSuccessor(TrueMBB);
383 BB->addSuccessor(FalseMBB);
384 TrueMBB->addSuccessor(DoneMBB);
385 FalseMBB->addSuccessor(DoneMBB);
386
387 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
388 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
389 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
390 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
391 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
392 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
393 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
394
395 MI.eraseFromParent();
396 // For signed numbers, we can do a single comparison to determine whether
397 // fabs(x) is within range.
398 if (IsUnsigned) {
399 Tmp0 = InReg;
400 } else {
401 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
402 }
403 BuildMI(BB, DL, TII.get(FConst), Tmp1)
404 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
405 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
406
407 // For unsigned numbers, we have to do a separate comparison with zero.
408 if (IsUnsigned) {
409 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
410 Register SecondCmpReg =
411 MRI.createVirtualRegister(&WebAssembly::I32RegClass);
412 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
413 BuildMI(BB, DL, TII.get(FConst), Tmp1)
414 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
415 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
416 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
417 CmpReg = AndReg;
418 }
419
420 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
421
422 // Create the CFG diamond to select between doing the conversion or using
423 // the substitute value.
424 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
425 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
426 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
427 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
428 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
429 .addReg(FalseReg)
430 .addMBB(FalseMBB)
431 .addReg(TrueReg)
432 .addMBB(TrueMBB);
433
434 return DoneMBB;
435 }
436
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const437 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
438 MachineInstr &MI, MachineBasicBlock *BB) const {
439 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
440 DebugLoc DL = MI.getDebugLoc();
441
442 switch (MI.getOpcode()) {
443 default:
444 llvm_unreachable("Unexpected instr type to insert");
445 case WebAssembly::FP_TO_SINT_I32_F32:
446 return LowerFPToInt(MI, DL, BB, TII, false, false, false,
447 WebAssembly::I32_TRUNC_S_F32);
448 case WebAssembly::FP_TO_UINT_I32_F32:
449 return LowerFPToInt(MI, DL, BB, TII, true, false, false,
450 WebAssembly::I32_TRUNC_U_F32);
451 case WebAssembly::FP_TO_SINT_I64_F32:
452 return LowerFPToInt(MI, DL, BB, TII, false, true, false,
453 WebAssembly::I64_TRUNC_S_F32);
454 case WebAssembly::FP_TO_UINT_I64_F32:
455 return LowerFPToInt(MI, DL, BB, TII, true, true, false,
456 WebAssembly::I64_TRUNC_U_F32);
457 case WebAssembly::FP_TO_SINT_I32_F64:
458 return LowerFPToInt(MI, DL, BB, TII, false, false, true,
459 WebAssembly::I32_TRUNC_S_F64);
460 case WebAssembly::FP_TO_UINT_I32_F64:
461 return LowerFPToInt(MI, DL, BB, TII, true, false, true,
462 WebAssembly::I32_TRUNC_U_F64);
463 case WebAssembly::FP_TO_SINT_I64_F64:
464 return LowerFPToInt(MI, DL, BB, TII, false, true, true,
465 WebAssembly::I64_TRUNC_S_F64);
466 case WebAssembly::FP_TO_UINT_I64_F64:
467 return LowerFPToInt(MI, DL, BB, TII, true, true, true,
468 WebAssembly::I64_TRUNC_U_F64);
469 llvm_unreachable("Unexpected instruction to emit with custom inserter");
470 }
471 }
472
473 const char *
getTargetNodeName(unsigned Opcode) const474 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
475 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
476 case WebAssemblyISD::FIRST_NUMBER:
477 case WebAssemblyISD::FIRST_MEM_OPCODE:
478 break;
479 #define HANDLE_NODETYPE(NODE) \
480 case WebAssemblyISD::NODE: \
481 return "WebAssemblyISD::" #NODE;
482 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
483 #include "WebAssemblyISD.def"
484 #undef HANDLE_MEM_NODETYPE
485 #undef HANDLE_NODETYPE
486 }
487 return nullptr;
488 }
489
490 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const491 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
492 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
493 // First, see if this is a constraint that directly corresponds to a
494 // WebAssembly register class.
495 if (Constraint.size() == 1) {
496 switch (Constraint[0]) {
497 case 'r':
498 assert(VT != MVT::iPTR && "Pointer MVT not expected here");
499 if (Subtarget->hasSIMD128() && VT.isVector()) {
500 if (VT.getSizeInBits() == 128)
501 return std::make_pair(0U, &WebAssembly::V128RegClass);
502 }
503 if (VT.isInteger() && !VT.isVector()) {
504 if (VT.getSizeInBits() <= 32)
505 return std::make_pair(0U, &WebAssembly::I32RegClass);
506 if (VT.getSizeInBits() <= 64)
507 return std::make_pair(0U, &WebAssembly::I64RegClass);
508 }
509 break;
510 default:
511 break;
512 }
513 }
514
515 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
516 }
517
isCheapToSpeculateCttz() const518 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
519 // Assume ctz is a relatively cheap operation.
520 return true;
521 }
522
isCheapToSpeculateCtlz() const523 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
524 // Assume clz is a relatively cheap operation.
525 return true;
526 }
527
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const528 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
529 const AddrMode &AM,
530 Type *Ty, unsigned AS,
531 Instruction *I) const {
532 // WebAssembly offsets are added as unsigned without wrapping. The
533 // isLegalAddressingMode gives us no way to determine if wrapping could be
534 // happening, so we approximate this by accepting only non-negative offsets.
535 if (AM.BaseOffs < 0)
536 return false;
537
538 // WebAssembly has no scale register operands.
539 if (AM.Scale != 0)
540 return false;
541
542 // Everything else is legal.
543 return true;
544 }
545
allowsMisalignedMemoryAccesses(EVT,unsigned,unsigned,MachineMemOperand::Flags,bool * Fast) const546 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
547 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
548 MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
549 // WebAssembly supports unaligned accesses, though it should be declared
550 // with the p2align attribute on loads and stores which do so, and there
551 // may be a performance impact. We tell LLVM they're "fast" because
552 // for the kinds of things that LLVM uses this for (merging adjacent stores
553 // of constants, etc.), WebAssembly implementations will either want the
554 // unaligned access or they'll split anyway.
555 if (Fast)
556 *Fast = true;
557 return true;
558 }
559
isIntDivCheap(EVT VT,AttributeList Attr) const560 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
561 AttributeList Attr) const {
562 // The current thinking is that wasm engines will perform this optimization,
563 // so we can save on code size.
564 return true;
565 }
566
isVectorLoadExtDesirable(SDValue ExtVal) const567 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
568 if (!Subtarget->hasUnimplementedSIMD128())
569 return false;
570 MVT ExtT = ExtVal.getSimpleValueType();
571 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0);
572 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
573 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
574 (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
575 }
576
getSetCCResultType(const DataLayout & DL,LLVMContext & C,EVT VT) const577 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
578 LLVMContext &C,
579 EVT VT) const {
580 if (VT.isVector())
581 return VT.changeVectorElementTypeToInteger();
582
583 return TargetLowering::getSetCCResultType(DL, C, VT);
584 }
585
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const586 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
587 const CallInst &I,
588 MachineFunction &MF,
589 unsigned Intrinsic) const {
590 switch (Intrinsic) {
591 case Intrinsic::wasm_atomic_notify:
592 Info.opc = ISD::INTRINSIC_W_CHAIN;
593 Info.memVT = MVT::i32;
594 Info.ptrVal = I.getArgOperand(0);
595 Info.offset = 0;
596 Info.align = Align(4);
597 // atomic.notify instruction does not really load the memory specified with
598 // this argument, but MachineMemOperand should either be load or store, so
599 // we set this to a load.
600 // FIXME Volatile isn't really correct, but currently all LLVM atomic
601 // instructions are treated as volatiles in the backend, so we should be
602 // consistent. The same applies for wasm_atomic_wait intrinsics too.
603 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
604 return true;
605 case Intrinsic::wasm_atomic_wait_i32:
606 Info.opc = ISD::INTRINSIC_W_CHAIN;
607 Info.memVT = MVT::i32;
608 Info.ptrVal = I.getArgOperand(0);
609 Info.offset = 0;
610 Info.align = Align(4);
611 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
612 return true;
613 case Intrinsic::wasm_atomic_wait_i64:
614 Info.opc = ISD::INTRINSIC_W_CHAIN;
615 Info.memVT = MVT::i64;
616 Info.ptrVal = I.getArgOperand(0);
617 Info.offset = 0;
618 Info.align = Align(8);
619 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
620 return true;
621 default:
622 return false;
623 }
624 }
625
626 //===----------------------------------------------------------------------===//
627 // WebAssembly Lowering private implementation.
628 //===----------------------------------------------------------------------===//
629
630 //===----------------------------------------------------------------------===//
631 // Lowering Code
632 //===----------------------------------------------------------------------===//
633
fail(const SDLoc & DL,SelectionDAG & DAG,const char * Msg)634 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
635 MachineFunction &MF = DAG.getMachineFunction();
636 DAG.getContext()->diagnose(
637 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
638 }
639
640 // Test whether the given calling convention is supported.
callingConvSupported(CallingConv::ID CallConv)641 static bool callingConvSupported(CallingConv::ID CallConv) {
642 // We currently support the language-independent target-independent
643 // conventions. We don't yet have a way to annotate calls with properties like
644 // "cold", and we don't have any call-clobbered registers, so these are mostly
645 // all handled the same.
646 return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
647 CallConv == CallingConv::Cold ||
648 CallConv == CallingConv::PreserveMost ||
649 CallConv == CallingConv::PreserveAll ||
650 CallConv == CallingConv::CXX_FAST_TLS ||
651 CallConv == CallingConv::WASM_EmscriptenInvoke;
652 }
653
654 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const655 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
656 SmallVectorImpl<SDValue> &InVals) const {
657 SelectionDAG &DAG = CLI.DAG;
658 SDLoc DL = CLI.DL;
659 SDValue Chain = CLI.Chain;
660 SDValue Callee = CLI.Callee;
661 MachineFunction &MF = DAG.getMachineFunction();
662 auto Layout = MF.getDataLayout();
663
664 CallingConv::ID CallConv = CLI.CallConv;
665 if (!callingConvSupported(CallConv))
666 fail(DL, DAG,
667 "WebAssembly doesn't support language-specific or target-specific "
668 "calling conventions yet");
669 if (CLI.IsPatchPoint)
670 fail(DL, DAG, "WebAssembly doesn't support patch point yet");
671
672 if (CLI.IsTailCall) {
673 bool MustTail = CLI.CS && CLI.CS.isMustTailCall();
674 if (Subtarget->hasTailCall() && !CLI.IsVarArg) {
675 // Do not tail call unless caller and callee return types match
676 const Function &F = MF.getFunction();
677 const TargetMachine &TM = getTargetMachine();
678 Type *RetTy = F.getReturnType();
679 SmallVector<MVT, 4> CallerRetTys;
680 SmallVector<MVT, 4> CalleeRetTys;
681 computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
682 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
683 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
684 std::equal(CallerRetTys.begin(), CallerRetTys.end(),
685 CalleeRetTys.begin());
686 if (!TypesMatch) {
687 // musttail in this case would be an LLVM IR validation failure
688 assert(!MustTail);
689 CLI.IsTailCall = false;
690 }
691 } else {
692 CLI.IsTailCall = false;
693 if (MustTail) {
694 if (CLI.IsVarArg) {
695 // The return would pop the argument buffer
696 fail(DL, DAG, "WebAssembly does not support varargs tail calls");
697 } else {
698 fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled");
699 }
700 }
701 }
702 }
703
704 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
705 if (Ins.size() > 1)
706 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
707
708 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
709 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
710
711 // The generic code may have added an sret argument. If we're lowering an
712 // invoke function, the ABI requires that the function pointer be the first
713 // argument, so we may have to swap the arguments.
714 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
715 Outs[0].Flags.isSRet()) {
716 std::swap(Outs[0], Outs[1]);
717 std::swap(OutVals[0], OutVals[1]);
718 }
719
720 unsigned NumFixedArgs = 0;
721 for (unsigned I = 0; I < Outs.size(); ++I) {
722 const ISD::OutputArg &Out = Outs[I];
723 SDValue &OutVal = OutVals[I];
724 if (Out.Flags.isNest())
725 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
726 if (Out.Flags.isInAlloca())
727 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
728 if (Out.Flags.isInConsecutiveRegs())
729 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
730 if (Out.Flags.isInConsecutiveRegsLast())
731 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
732 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
733 auto &MFI = MF.getFrameInfo();
734 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
735 Out.Flags.getByValAlign(),
736 /*isSS=*/false);
737 SDValue SizeNode =
738 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
739 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
740 Chain = DAG.getMemcpy(
741 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
742 /*isVolatile*/ false, /*AlwaysInline=*/false,
743 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
744 OutVal = FINode;
745 }
746 // Count the number of fixed args *after* legalization.
747 NumFixedArgs += Out.IsFixed;
748 }
749
750 bool IsVarArg = CLI.IsVarArg;
751 auto PtrVT = getPointerTy(Layout);
752
753 // Analyze operands of the call, assigning locations to each operand.
754 SmallVector<CCValAssign, 16> ArgLocs;
755 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
756
757 if (IsVarArg) {
758 // Outgoing non-fixed arguments are placed in a buffer. First
759 // compute their offsets and the total amount of buffer space needed.
760 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
761 const ISD::OutputArg &Out = Outs[I];
762 SDValue &Arg = OutVals[I];
763 EVT VT = Arg.getValueType();
764 assert(VT != MVT::iPTR && "Legalized args should be concrete");
765 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
766 unsigned Align = std::max(Out.Flags.getOrigAlign(),
767 Layout.getABITypeAlignment(Ty));
768 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
769 Align);
770 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
771 Offset, VT.getSimpleVT(),
772 CCValAssign::Full));
773 }
774 }
775
776 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
777
778 SDValue FINode;
779 if (IsVarArg && NumBytes) {
780 // For non-fixed arguments, next emit stores to store the argument values
781 // to the stack buffer at the offsets computed above.
782 int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
783 Layout.getStackAlignment(),
784 /*isSS=*/false);
785 unsigned ValNo = 0;
786 SmallVector<SDValue, 8> Chains;
787 for (SDValue Arg :
788 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
789 assert(ArgLocs[ValNo].getValNo() == ValNo &&
790 "ArgLocs should remain in order and only hold varargs args");
791 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
792 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
793 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
794 DAG.getConstant(Offset, DL, PtrVT));
795 Chains.push_back(
796 DAG.getStore(Chain, DL, Arg, Add,
797 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
798 }
799 if (!Chains.empty())
800 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
801 } else if (IsVarArg) {
802 FINode = DAG.getIntPtrConstant(0, DL);
803 }
804
805 if (Callee->getOpcode() == ISD::GlobalAddress) {
806 // If the callee is a GlobalAddress node (quite common, every direct call
807 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
808 // doesn't at MO_GOT which is not needed for direct calls.
809 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
810 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
811 getPointerTy(DAG.getDataLayout()),
812 GA->getOffset());
813 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
814 getPointerTy(DAG.getDataLayout()), Callee);
815 }
816
817 // Compute the operands for the CALLn node.
818 SmallVector<SDValue, 16> Ops;
819 Ops.push_back(Chain);
820 Ops.push_back(Callee);
821
822 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
823 // isn't reliable.
824 Ops.append(OutVals.begin(),
825 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
826 // Add a pointer to the vararg buffer.
827 if (IsVarArg)
828 Ops.push_back(FINode);
829
830 SmallVector<EVT, 8> InTys;
831 for (const auto &In : Ins) {
832 assert(!In.Flags.isByVal() && "byval is not valid for return values");
833 assert(!In.Flags.isNest() && "nest is not valid for return values");
834 if (In.Flags.isInAlloca())
835 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
836 if (In.Flags.isInConsecutiveRegs())
837 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
838 if (In.Flags.isInConsecutiveRegsLast())
839 fail(DL, DAG,
840 "WebAssembly hasn't implemented cons regs last return values");
841 // Ignore In.getOrigAlign() because all our arguments are passed in
842 // registers.
843 InTys.push_back(In.VT);
844 }
845
846 if (CLI.IsTailCall) {
847 // ret_calls do not return values to the current frame
848 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
849 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
850 }
851
852 InTys.push_back(MVT::Other);
853 SDVTList InTyList = DAG.getVTList(InTys);
854 SDValue Res =
855 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
856 DL, InTyList, Ops);
857 if (Ins.empty()) {
858 Chain = Res;
859 } else {
860 InVals.push_back(Res);
861 Chain = Res.getValue(1);
862 }
863
864 return Chain;
865 }
866
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext &) const867 bool WebAssemblyTargetLowering::CanLowerReturn(
868 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
869 const SmallVectorImpl<ISD::OutputArg> &Outs,
870 LLVMContext & /*Context*/) const {
871 // WebAssembly can only handle returning tuples with multivalue enabled
872 return Subtarget->hasMultivalue() || Outs.size() <= 1;
873 }
874
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const875 SDValue WebAssemblyTargetLowering::LowerReturn(
876 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
877 const SmallVectorImpl<ISD::OutputArg> &Outs,
878 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
879 SelectionDAG &DAG) const {
880 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
881 "MVP WebAssembly can only return up to one value");
882 if (!callingConvSupported(CallConv))
883 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
884
885 SmallVector<SDValue, 4> RetOps(1, Chain);
886 RetOps.append(OutVals.begin(), OutVals.end());
887 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
888
889 // Record the number and types of the return values.
890 for (const ISD::OutputArg &Out : Outs) {
891 assert(!Out.Flags.isByVal() && "byval is not valid for return values");
892 assert(!Out.Flags.isNest() && "nest is not valid for return values");
893 assert(Out.IsFixed && "non-fixed return value is not valid");
894 if (Out.Flags.isInAlloca())
895 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
896 if (Out.Flags.isInConsecutiveRegs())
897 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
898 if (Out.Flags.isInConsecutiveRegsLast())
899 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
900 }
901
902 return Chain;
903 }
904
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const905 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
906 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
907 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
908 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
909 if (!callingConvSupported(CallConv))
910 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
911
912 MachineFunction &MF = DAG.getMachineFunction();
913 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
914
915 // Set up the incoming ARGUMENTS value, which serves to represent the liveness
916 // of the incoming values before they're represented by virtual registers.
917 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
918
919 for (const ISD::InputArg &In : Ins) {
920 if (In.Flags.isInAlloca())
921 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
922 if (In.Flags.isNest())
923 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
924 if (In.Flags.isInConsecutiveRegs())
925 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
926 if (In.Flags.isInConsecutiveRegsLast())
927 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
928 // Ignore In.getOrigAlign() because all our arguments are passed in
929 // registers.
930 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
931 DAG.getTargetConstant(InVals.size(),
932 DL, MVT::i32))
933 : DAG.getUNDEF(In.VT));
934
935 // Record the number and types of arguments.
936 MFI->addParam(In.VT);
937 }
938
939 // Varargs are copied into a buffer allocated by the caller, and a pointer to
940 // the buffer is passed as an argument.
941 if (IsVarArg) {
942 MVT PtrVT = getPointerTy(MF.getDataLayout());
943 Register VarargVreg =
944 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
945 MFI->setVarargBufferVreg(VarargVreg);
946 Chain = DAG.getCopyToReg(
947 Chain, DL, VarargVreg,
948 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
949 DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
950 MFI->addParam(PtrVT);
951 }
952
953 // Record the number and types of arguments and results.
954 SmallVector<MVT, 4> Params;
955 SmallVector<MVT, 4> Results;
956 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
957 DAG.getTarget(), Params, Results);
958 for (MVT VT : Results)
959 MFI->addResult(VT);
960 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
961 // the param logic here with ComputeSignatureVTs
962 assert(MFI->getParams().size() == Params.size() &&
963 std::equal(MFI->getParams().begin(), MFI->getParams().end(),
964 Params.begin()));
965
966 return Chain;
967 }
968
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const969 void WebAssemblyTargetLowering::ReplaceNodeResults(
970 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
971 switch (N->getOpcode()) {
972 case ISD::SIGN_EXTEND_INREG:
973 // Do not add any results, signifying that N should not be custom lowered
974 // after all. This happens because simd128 turns on custom lowering for
975 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
976 // illegal type.
977 break;
978 default:
979 llvm_unreachable(
980 "ReplaceNodeResults not implemented for this op for WebAssembly!");
981 }
982 }
983
984 //===----------------------------------------------------------------------===//
985 // Custom lowering hooks.
986 //===----------------------------------------------------------------------===//
987
LowerOperation(SDValue Op,SelectionDAG & DAG) const988 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
989 SelectionDAG &DAG) const {
990 SDLoc DL(Op);
991 switch (Op.getOpcode()) {
992 default:
993 llvm_unreachable("unimplemented operation lowering");
994 return SDValue();
995 case ISD::FrameIndex:
996 return LowerFrameIndex(Op, DAG);
997 case ISD::GlobalAddress:
998 return LowerGlobalAddress(Op, DAG);
999 case ISD::ExternalSymbol:
1000 return LowerExternalSymbol(Op, DAG);
1001 case ISD::JumpTable:
1002 return LowerJumpTable(Op, DAG);
1003 case ISD::BR_JT:
1004 return LowerBR_JT(Op, DAG);
1005 case ISD::VASTART:
1006 return LowerVASTART(Op, DAG);
1007 case ISD::BlockAddress:
1008 case ISD::BRIND:
1009 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1010 return SDValue();
1011 case ISD::RETURNADDR:
1012 return LowerRETURNADDR(Op, DAG);
1013 case ISD::FRAMEADDR:
1014 return LowerFRAMEADDR(Op, DAG);
1015 case ISD::CopyToReg:
1016 return LowerCopyToReg(Op, DAG);
1017 case ISD::EXTRACT_VECTOR_ELT:
1018 case ISD::INSERT_VECTOR_ELT:
1019 return LowerAccessVectorElement(Op, DAG);
1020 case ISD::INTRINSIC_VOID:
1021 case ISD::INTRINSIC_WO_CHAIN:
1022 case ISD::INTRINSIC_W_CHAIN:
1023 return LowerIntrinsic(Op, DAG);
1024 case ISD::SIGN_EXTEND_INREG:
1025 return LowerSIGN_EXTEND_INREG(Op, DAG);
1026 case ISD::BUILD_VECTOR:
1027 return LowerBUILD_VECTOR(Op, DAG);
1028 case ISD::VECTOR_SHUFFLE:
1029 return LowerVECTOR_SHUFFLE(Op, DAG);
1030 case ISD::SETCC:
1031 return LowerSETCC(Op, DAG);
1032 case ISD::SHL:
1033 case ISD::SRA:
1034 case ISD::SRL:
1035 return LowerShift(Op, DAG);
1036 }
1037 }
1038
LowerCopyToReg(SDValue Op,SelectionDAG & DAG) const1039 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1040 SelectionDAG &DAG) const {
1041 SDValue Src = Op.getOperand(2);
1042 if (isa<FrameIndexSDNode>(Src.getNode())) {
1043 // CopyToReg nodes don't support FrameIndex operands. Other targets select
1044 // the FI to some LEA-like instruction, but since we don't have that, we
1045 // need to insert some kind of instruction that can take an FI operand and
1046 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1047 // local.copy between Op and its FI operand.
1048 SDValue Chain = Op.getOperand(0);
1049 SDLoc DL(Op);
1050 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1051 EVT VT = Src.getValueType();
1052 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1053 : WebAssembly::COPY_I64,
1054 DL, VT, Src),
1055 0);
1056 return Op.getNode()->getNumValues() == 1
1057 ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1058 : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1059 Op.getNumOperands() == 4 ? Op.getOperand(3)
1060 : SDValue());
1061 }
1062 return SDValue();
1063 }
1064
LowerFrameIndex(SDValue Op,SelectionDAG & DAG) const1065 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1066 SelectionDAG &DAG) const {
1067 int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1068 return DAG.getTargetFrameIndex(FI, Op.getValueType());
1069 }
1070
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1071 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1072 SelectionDAG &DAG) const {
1073 SDLoc DL(Op);
1074
1075 if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1076 fail(DL, DAG,
1077 "Non-Emscripten WebAssembly hasn't implemented "
1078 "__builtin_return_address");
1079 return SDValue();
1080 }
1081
1082 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1083 return SDValue();
1084
1085 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1086 MakeLibCallOptions CallOptions;
1087 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1088 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1089 .first;
1090 }
1091
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1092 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1093 SelectionDAG &DAG) const {
1094 // Non-zero depths are not supported by WebAssembly currently. Use the
1095 // legalizer's default expansion, which is to return 0 (what this function is
1096 // documented to do).
1097 if (Op.getConstantOperandVal(0) > 0)
1098 return SDValue();
1099
1100 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1101 EVT VT = Op.getValueType();
1102 Register FP =
1103 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1104 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1105 }
1106
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1107 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1108 SelectionDAG &DAG) const {
1109 SDLoc DL(Op);
1110 const auto *GA = cast<GlobalAddressSDNode>(Op);
1111 EVT VT = Op.getValueType();
1112 assert(GA->getTargetFlags() == 0 &&
1113 "Unexpected target flags on generic GlobalAddressSDNode");
1114 if (GA->getAddressSpace() != 0)
1115 fail(DL, DAG, "WebAssembly only expects the 0 address space");
1116
1117 unsigned OperandFlags = 0;
1118 if (isPositionIndependent()) {
1119 const GlobalValue *GV = GA->getGlobal();
1120 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1121 MachineFunction &MF = DAG.getMachineFunction();
1122 MVT PtrVT = getPointerTy(MF.getDataLayout());
1123 const char *BaseName;
1124 if (GV->getValueType()->isFunctionTy()) {
1125 BaseName = MF.createExternalSymbolName("__table_base");
1126 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1127 }
1128 else {
1129 BaseName = MF.createExternalSymbolName("__memory_base");
1130 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1131 }
1132 SDValue BaseAddr =
1133 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1134 DAG.getTargetExternalSymbol(BaseName, PtrVT));
1135
1136 SDValue SymAddr = DAG.getNode(
1137 WebAssemblyISD::WrapperPIC, DL, VT,
1138 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1139 OperandFlags));
1140
1141 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1142 } else {
1143 OperandFlags = WebAssemblyII::MO_GOT;
1144 }
1145 }
1146
1147 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1148 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1149 GA->getOffset(), OperandFlags));
1150 }
1151
1152 SDValue
LowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const1153 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1154 SelectionDAG &DAG) const {
1155 SDLoc DL(Op);
1156 const auto *ES = cast<ExternalSymbolSDNode>(Op);
1157 EVT VT = Op.getValueType();
1158 assert(ES->getTargetFlags() == 0 &&
1159 "Unexpected target flags on generic ExternalSymbolSDNode");
1160 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1161 DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1162 }
1163
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1164 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1165 SelectionDAG &DAG) const {
1166 // There's no need for a Wrapper node because we always incorporate a jump
1167 // table operand into a BR_TABLE instruction, rather than ever
1168 // materializing it in a register.
1169 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1170 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1171 JT->getTargetFlags());
1172 }
1173
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const1174 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1175 SelectionDAG &DAG) const {
1176 SDLoc DL(Op);
1177 SDValue Chain = Op.getOperand(0);
1178 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1179 SDValue Index = Op.getOperand(2);
1180 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1181
1182 SmallVector<SDValue, 8> Ops;
1183 Ops.push_back(Chain);
1184 Ops.push_back(Index);
1185
1186 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1187 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1188
1189 // Add an operand for each case.
1190 for (auto MBB : MBBs)
1191 Ops.push_back(DAG.getBasicBlock(MBB));
1192
1193 // TODO: For now, we just pick something arbitrary for a default case for now.
1194 // We really want to sniff out the guard and put in the real default case (and
1195 // delete the guard).
1196 Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1197
1198 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1199 }
1200
LowerVASTART(SDValue Op,SelectionDAG & DAG) const1201 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1202 SelectionDAG &DAG) const {
1203 SDLoc DL(Op);
1204 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1205
1206 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1207 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1208
1209 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1210 MFI->getVarargBufferVreg(), PtrVT);
1211 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1212 MachinePointerInfo(SV), 0);
1213 }
1214
LowerIntrinsic(SDValue Op,SelectionDAG & DAG) const1215 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1216 SelectionDAG &DAG) const {
1217 MachineFunction &MF = DAG.getMachineFunction();
1218 unsigned IntNo;
1219 switch (Op.getOpcode()) {
1220 case ISD::INTRINSIC_VOID:
1221 case ISD::INTRINSIC_W_CHAIN:
1222 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1223 break;
1224 case ISD::INTRINSIC_WO_CHAIN:
1225 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1226 break;
1227 default:
1228 llvm_unreachable("Invalid intrinsic");
1229 }
1230 SDLoc DL(Op);
1231
1232 switch (IntNo) {
1233 default:
1234 return SDValue(); // Don't custom lower most intrinsics.
1235
1236 case Intrinsic::wasm_lsda: {
1237 EVT VT = Op.getValueType();
1238 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1239 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1240 auto &Context = MF.getMMI().getContext();
1241 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1242 Twine(MF.getFunctionNumber()));
1243 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1244 DAG.getMCSymbol(S, PtrVT));
1245 }
1246
1247 case Intrinsic::wasm_throw: {
1248 // We only support C++ exceptions for now
1249 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1250 if (Tag != CPP_EXCEPTION)
1251 llvm_unreachable("Invalid tag!");
1252 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1253 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1254 const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1255 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1256 DAG.getTargetExternalSymbol(SymName, PtrVT));
1257 return DAG.getNode(WebAssemblyISD::THROW, DL,
1258 MVT::Other, // outchain type
1259 {
1260 Op.getOperand(0), // inchain
1261 SymNode, // exception symbol
1262 Op.getOperand(3) // thrown value
1263 });
1264 }
1265 }
1266 }
1267
1268 SDValue
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const1269 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1270 SelectionDAG &DAG) const {
1271 SDLoc DL(Op);
1272 // If sign extension operations are disabled, allow sext_inreg only if operand
1273 // is a vector extract. SIMD does not depend on sign extension operations, but
1274 // allowing sext_inreg in this context lets us have simple patterns to select
1275 // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1276 // simpler in this file, but would necessitate large and brittle patterns to
1277 // undo the expansion and select extract_lane_s instructions.
1278 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1279 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1280 const SDValue &Extract = Op.getOperand(0);
1281 MVT VecT = Extract.getOperand(0).getSimpleValueType();
1282 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode())
1283 ->getVT()
1284 .getSimpleVT();
1285 MVT ExtractedVecT =
1286 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1287 if (ExtractedVecT == VecT)
1288 return Op;
1289 // Bitcast vector to appropriate type to ensure ISel pattern coverage
1290 const SDValue &Index = Extract.getOperand(1);
1291 unsigned IndexVal =
1292 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue();
1293 unsigned Scale =
1294 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1295 assert(Scale > 1);
1296 SDValue NewIndex =
1297 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType());
1298 SDValue NewExtract = DAG.getNode(
1299 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1300 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1301 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(),
1302 NewExtract, Op.getOperand(1));
1303 }
1304 // Otherwise expand
1305 return SDValue();
1306 }
1307
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const1308 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1309 SelectionDAG &DAG) const {
1310 SDLoc DL(Op);
1311 const EVT VecT = Op.getValueType();
1312 const EVT LaneT = Op.getOperand(0).getValueType();
1313 const size_t Lanes = Op.getNumOperands();
1314 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8;
1315
1316 // BUILD_VECTORs are lowered to the instruction that initializes the highest
1317 // possible number of lanes at once followed by a sequence of replace_lane
1318 // instructions to individually initialize any remaining lanes.
1319
1320 // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1321 // swizzled lanes should be given greater weight.
1322
1323 // TODO: Investigate building vectors by shuffling together vectors built by
1324 // separately specialized means.
1325
1326 auto IsConstant = [](const SDValue &V) {
1327 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1328 };
1329
1330 // Returns the source vector and index vector pair if they exist. Checks for:
1331 // (extract_vector_elt
1332 // $src,
1333 // (sign_extend_inreg (extract_vector_elt $indices, $i))
1334 // )
1335 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1336 auto Bail = std::make_pair(SDValue(), SDValue());
1337 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1338 return Bail;
1339 const SDValue &SwizzleSrc = Lane->getOperand(0);
1340 const SDValue &IndexExt = Lane->getOperand(1);
1341 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1342 return Bail;
1343 const SDValue &Index = IndexExt->getOperand(0);
1344 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1345 return Bail;
1346 const SDValue &SwizzleIndices = Index->getOperand(0);
1347 if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1348 SwizzleIndices.getValueType() != MVT::v16i8 ||
1349 Index->getOperand(1)->getOpcode() != ISD::Constant ||
1350 Index->getConstantOperandVal(1) != I)
1351 return Bail;
1352 return std::make_pair(SwizzleSrc, SwizzleIndices);
1353 };
1354
1355 using ValueEntry = std::pair<SDValue, size_t>;
1356 SmallVector<ValueEntry, 16> SplatValueCounts;
1357
1358 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1359 SmallVector<SwizzleEntry, 16> SwizzleCounts;
1360
1361 auto AddCount = [](auto &Counts, const auto &Val) {
1362 auto CountIt = std::find_if(Counts.begin(), Counts.end(),
1363 [&Val](auto E) { return E.first == Val; });
1364 if (CountIt == Counts.end()) {
1365 Counts.emplace_back(Val, 1);
1366 } else {
1367 CountIt->second++;
1368 }
1369 };
1370
1371 auto GetMostCommon = [](auto &Counts) {
1372 auto CommonIt =
1373 std::max_element(Counts.begin(), Counts.end(),
1374 [](auto A, auto B) { return A.second < B.second; });
1375 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1376 return *CommonIt;
1377 };
1378
1379 size_t NumConstantLanes = 0;
1380
1381 // Count eligible lanes for each type of vector creation op
1382 for (size_t I = 0; I < Lanes; ++I) {
1383 const SDValue &Lane = Op->getOperand(I);
1384 if (Lane.isUndef())
1385 continue;
1386
1387 AddCount(SplatValueCounts, Lane);
1388
1389 if (IsConstant(Lane)) {
1390 NumConstantLanes++;
1391 } else if (CanSwizzle) {
1392 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1393 if (SwizzleSrcs.first)
1394 AddCount(SwizzleCounts, SwizzleSrcs);
1395 }
1396 }
1397
1398 SDValue SplatValue;
1399 size_t NumSplatLanes;
1400 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1401
1402 SDValue SwizzleSrc;
1403 SDValue SwizzleIndices;
1404 size_t NumSwizzleLanes = 0;
1405 if (SwizzleCounts.size())
1406 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1407 NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1408
1409 // Predicate returning true if the lane is properly initialized by the
1410 // original instruction
1411 std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1412 SDValue Result;
1413 if (Subtarget->hasUnimplementedSIMD128()) {
1414 // Prefer swizzles over vector consts over splats
1415 if (NumSwizzleLanes >= NumSplatLanes &&
1416 NumSwizzleLanes >= NumConstantLanes) {
1417 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1418 SwizzleIndices);
1419 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1420 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1421 return Swizzled == GetSwizzleSrcs(I, Lane);
1422 };
1423 } else if (NumConstantLanes >= NumSplatLanes) {
1424 SmallVector<SDValue, 16> ConstLanes;
1425 for (const SDValue &Lane : Op->op_values()) {
1426 if (IsConstant(Lane)) {
1427 ConstLanes.push_back(Lane);
1428 } else if (LaneT.isFloatingPoint()) {
1429 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1430 } else {
1431 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1432 }
1433 }
1434 Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1435 IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
1436 return IsConstant(Lane);
1437 };
1438 }
1439 }
1440 if (!Result) {
1441 // Use a splat, but possibly a load_splat
1442 LoadSDNode *SplattedLoad;
1443 if (Subtarget->hasUnimplementedSIMD128() &&
1444 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1445 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1446 Result = DAG.getMemIntrinsicNode(
1447 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1448 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1449 SplattedLoad->getOffset()},
1450 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1451 } else {
1452 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1453 }
1454 IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
1455 return Lane == SplatValue;
1456 };
1457 }
1458
1459 // Add replace_lane instructions for any unhandled values
1460 for (size_t I = 0; I < Lanes; ++I) {
1461 const SDValue &Lane = Op->getOperand(I);
1462 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1463 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1464 DAG.getConstant(I, DL, MVT::i32));
1465 }
1466
1467 return Result;
1468 }
1469
1470 SDValue
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const1471 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1472 SelectionDAG &DAG) const {
1473 SDLoc DL(Op);
1474 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1475 MVT VecType = Op.getOperand(0).getSimpleValueType();
1476 assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1477 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1478
1479 // Space for two vector args and sixteen mask indices
1480 SDValue Ops[18];
1481 size_t OpIdx = 0;
1482 Ops[OpIdx++] = Op.getOperand(0);
1483 Ops[OpIdx++] = Op.getOperand(1);
1484
1485 // Expand mask indices to byte indices and materialize them as operands
1486 for (int M : Mask) {
1487 for (size_t J = 0; J < LaneBytes; ++J) {
1488 // Lower undefs (represented by -1 in mask) to zero
1489 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1490 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1491 }
1492 }
1493
1494 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1495 }
1496
LowerSETCC(SDValue Op,SelectionDAG & DAG) const1497 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
1498 SelectionDAG &DAG) const {
1499 SDLoc DL(Op);
1500 // The legalizer does not know how to expand the comparison modes of i64x2
1501 // vectors because no comparison modes are supported. We could solve this by
1502 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes
1503 // (which return i64x2 results) as well. So instead we manually unroll i64x2
1504 // comparisons here.
1505 assert(Subtarget->hasUnimplementedSIMD128());
1506 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
1507 SmallVector<SDValue, 2> LHS, RHS;
1508 DAG.ExtractVectorElements(Op->getOperand(0), LHS);
1509 DAG.ExtractVectorElements(Op->getOperand(1), RHS);
1510 const SDValue &CC = Op->getOperand(2);
1511 auto MakeLane = [&](unsigned I) {
1512 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
1513 DAG.getConstant(uint64_t(-1), DL, MVT::i64),
1514 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
1515 };
1516 return DAG.getBuildVector(Op->getValueType(0), DL,
1517 {MakeLane(0), MakeLane(1)});
1518 }
1519
1520 SDValue
LowerAccessVectorElement(SDValue Op,SelectionDAG & DAG) const1521 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1522 SelectionDAG &DAG) const {
1523 // Allow constant lane indices, expand variable lane indices
1524 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1525 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1526 return Op;
1527 else
1528 // Perform default expansion
1529 return SDValue();
1530 }
1531
unrollVectorShift(SDValue Op,SelectionDAG & DAG)1532 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1533 EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1534 // 32-bit and 64-bit unrolled shifts will have proper semantics
1535 if (LaneT.bitsGE(MVT::i32))
1536 return DAG.UnrollVectorOp(Op.getNode());
1537 // Otherwise mask the shift value to get proper semantics from 32-bit shift
1538 SDLoc DL(Op);
1539 SDValue ShiftVal = Op.getOperand(1);
1540 uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1541 SDValue MaskedShiftVal = DAG.getNode(
1542 ISD::AND, // mask opcode
1543 DL, ShiftVal.getValueType(), // masked value type
1544 ShiftVal, // original shift value operand
1545 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1546 );
1547
1548 return DAG.UnrollVectorOp(
1549 DAG.getNode(Op.getOpcode(), // original shift opcode
1550 DL, Op.getValueType(), // original return type
1551 Op.getOperand(0), // original vector operand,
1552 MaskedShiftVal // new masked shift value operand
1553 )
1554 .getNode());
1555 }
1556
LowerShift(SDValue Op,SelectionDAG & DAG) const1557 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1558 SelectionDAG &DAG) const {
1559 SDLoc DL(Op);
1560
1561 // Only manually lower vector shifts
1562 assert(Op.getSimpleValueType().isVector());
1563
1564 // Unroll non-splat vector shifts
1565 BuildVectorSDNode *ShiftVec;
1566 SDValue SplatVal;
1567 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1568 !(SplatVal = ShiftVec->getSplatValue()))
1569 return unrollVectorShift(Op, DAG);
1570
1571 // All splats except i64x2 const splats are handled by patterns
1572 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1573 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1574 return Op;
1575
1576 // i64x2 const splats are custom lowered to avoid unnecessary wraps
1577 unsigned Opcode;
1578 switch (Op.getOpcode()) {
1579 case ISD::SHL:
1580 Opcode = WebAssemblyISD::VEC_SHL;
1581 break;
1582 case ISD::SRA:
1583 Opcode = WebAssemblyISD::VEC_SHR_S;
1584 break;
1585 case ISD::SRL:
1586 Opcode = WebAssemblyISD::VEC_SHR_U;
1587 break;
1588 default:
1589 llvm_unreachable("unexpected opcode");
1590 }
1591 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1592 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1593 DAG.getConstant(Shift, DL, MVT::i32));
1594 }
1595
1596 //===----------------------------------------------------------------------===//
1597 // WebAssembly Optimization Hooks
1598 //===----------------------------------------------------------------------===//
1599