• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
dev_base_seq_inc(struct net * net)203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
dev_index_hash(struct net * net,int ifindex)216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
rps_lock(struct softnet_data * sd)221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
rps_unlock(struct softnet_data * sd)228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
netdev_name_node_alloc(struct net_device * dev,const char * name)235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 						       const char *name)
237 {
238 	struct netdev_name_node *name_node;
239 
240 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 	if (!name_node)
242 		return NULL;
243 	INIT_HLIST_NODE(&name_node->hlist);
244 	name_node->dev = dev;
245 	name_node->name = name;
246 	return name_node;
247 }
248 
249 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 	struct netdev_name_node *name_node;
253 
254 	name_node = netdev_name_node_alloc(dev, dev->name);
255 	if (!name_node)
256 		return NULL;
257 	INIT_LIST_HEAD(&name_node->list);
258 	return name_node;
259 }
260 
netdev_name_node_free(struct netdev_name_node * name_node)261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 	kfree(name_node);
264 }
265 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)266 static void netdev_name_node_add(struct net *net,
267 				 struct netdev_name_node *name_node)
268 {
269 	hlist_add_head_rcu(&name_node->hlist,
270 			   dev_name_hash(net, name_node->name));
271 }
272 
netdev_name_node_del(struct netdev_name_node * name_node)273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 	hlist_del_rcu(&name_node->hlist);
276 }
277 
netdev_name_node_lookup(struct net * net,const char * name)278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 							const char *name)
280 {
281 	struct hlist_head *head = dev_name_hash(net, name);
282 	struct netdev_name_node *name_node;
283 
284 	hlist_for_each_entry(name_node, head, hlist)
285 		if (!strcmp(name_node->name, name))
286 			return name_node;
287 	return NULL;
288 }
289 
netdev_name_node_lookup_rcu(struct net * net,const char * name)290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 							    const char *name)
292 {
293 	struct hlist_head *head = dev_name_hash(net, name);
294 	struct netdev_name_node *name_node;
295 
296 	hlist_for_each_entry_rcu(name_node, head, hlist)
297 		if (!strcmp(name_node->name, name))
298 			return name_node;
299 	return NULL;
300 }
301 
netdev_name_node_alt_create(struct net_device * dev,const char * name)302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 	struct netdev_name_node *name_node;
305 	struct net *net = dev_net(dev);
306 
307 	name_node = netdev_name_node_lookup(net, name);
308 	if (name_node)
309 		return -EEXIST;
310 	name_node = netdev_name_node_alloc(dev, name);
311 	if (!name_node)
312 		return -ENOMEM;
313 	netdev_name_node_add(net, name_node);
314 	/* The node that holds dev->name acts as a head of per-device list. */
315 	list_add_tail(&name_node->list, &dev->name_node->list);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 	list_del(&name_node->list);
324 	netdev_name_node_del(name_node);
325 	kfree(name_node->name);
326 	netdev_name_node_free(name_node);
327 }
328 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 	struct netdev_name_node *name_node;
332 	struct net *net = dev_net(dev);
333 
334 	name_node = netdev_name_node_lookup(net, name);
335 	if (!name_node)
336 		return -ENOENT;
337 	/* lookup might have found our primary name or a name belonging
338 	 * to another device.
339 	 */
340 	if (name_node == dev->name_node || name_node->dev != dev)
341 		return -EINVAL;
342 
343 	__netdev_name_node_alt_destroy(name_node);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348 
netdev_name_node_alt_flush(struct net_device * dev)349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 	struct netdev_name_node *name_node, *tmp;
352 
353 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 		__netdev_name_node_alt_destroy(name_node);
355 }
356 
357 /* Device list insertion */
list_netdevice(struct net_device * dev)358 static void list_netdevice(struct net_device *dev)
359 {
360 	struct net *net = dev_net(dev);
361 
362 	ASSERT_RTNL();
363 
364 	write_lock_bh(&dev_base_lock);
365 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 	netdev_name_node_add(net, dev->name_node);
367 	hlist_add_head_rcu(&dev->index_hlist,
368 			   dev_index_hash(net, dev->ifindex));
369 	write_unlock_bh(&dev_base_lock);
370 
371 	dev_base_seq_inc(net);
372 }
373 
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
unlist_netdevice(struct net_device * dev)377 static void unlist_netdevice(struct net_device *dev)
378 {
379 	ASSERT_RTNL();
380 
381 	/* Unlink dev from the device chain */
382 	write_lock_bh(&dev_base_lock);
383 	list_del_rcu(&dev->dev_list);
384 	netdev_name_node_del(dev->name_node);
385 	hlist_del_rcu(&dev->index_hlist);
386 	write_unlock_bh(&dev_base_lock);
387 
388 	dev_base_seq_inc(dev_net(dev));
389 }
390 
391 /*
392  *	Our notifier list
393  */
394 
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396 
397 /*
398  *	Device drivers call our routines to queue packets here. We empty the
399  *	queue in the local softnet handler.
400  */
401 
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404 
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426 
427 static const char *const netdev_lock_name[] = {
428 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443 
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 
netdev_lock_pos(unsigned short dev_type)447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 	int i;
450 
451 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 		if (netdev_lock_type[i] == dev_type)
453 			return i;
454 	/* the last key is used by default */
455 	return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 						 unsigned short dev_type)
460 {
461 	int i;
462 
463 	i = netdev_lock_pos(dev_type);
464 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 				   netdev_lock_name[i]);
466 }
467 
netdev_set_addr_lockdep_class(struct net_device * dev)468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 	int i;
471 
472 	i = netdev_lock_pos(dev->type);
473 	lockdep_set_class_and_name(&dev->addr_list_lock,
474 				   &netdev_addr_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 						 unsigned short dev_type)
480 {
481 }
482 
netdev_set_addr_lockdep_class(struct net_device * dev)483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487 
488 /*******************************************************************************
489  *
490  *		Protocol management and registration routines
491  *
492  *******************************************************************************/
493 
494 
495 /*
496  *	Add a protocol ID to the list. Now that the input handler is
497  *	smarter we can dispense with all the messy stuff that used to be
498  *	here.
499  *
500  *	BEWARE!!! Protocol handlers, mangling input packets,
501  *	MUST BE last in hash buckets and checking protocol handlers
502  *	MUST start from promiscuous ptype_all chain in net_bh.
503  *	It is true now, do not change it.
504  *	Explanation follows: if protocol handler, mangling packet, will
505  *	be the first on list, it is not able to sense, that packet
506  *	is cloned and should be copied-on-write, so that it will
507  *	change it and subsequent readers will get broken packet.
508  *							--ANK (980803)
509  */
510 
ptype_head(const struct packet_type * pt)511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 	if (pt->type == htons(ETH_P_ALL))
514 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 	else
516 		return pt->dev ? &pt->dev->ptype_specific :
517 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519 
520 /**
521  *	dev_add_pack - add packet handler
522  *	@pt: packet type declaration
523  *
524  *	Add a protocol handler to the networking stack. The passed &packet_type
525  *	is linked into kernel lists and may not be freed until it has been
526  *	removed from the kernel lists.
527  *
528  *	This call does not sleep therefore it can not
529  *	guarantee all CPU's that are in middle of receiving packets
530  *	will see the new packet type (until the next received packet).
531  */
532 
dev_add_pack(struct packet_type * pt)533 void dev_add_pack(struct packet_type *pt)
534 {
535 	struct list_head *head = ptype_head(pt);
536 
537 	spin_lock(&ptype_lock);
538 	list_add_rcu(&pt->list, head);
539 	spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542 
543 /**
544  *	__dev_remove_pack	 - remove packet handler
545  *	@pt: packet type declaration
546  *
547  *	Remove a protocol handler that was previously added to the kernel
548  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *	from the kernel lists and can be freed or reused once this function
550  *	returns.
551  *
552  *      The packet type might still be in use by receivers
553  *	and must not be freed until after all the CPU's have gone
554  *	through a quiescent state.
555  */
__dev_remove_pack(struct packet_type * pt)556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 	struct packet_type *pt1;
560 
561 	spin_lock(&ptype_lock);
562 
563 	list_for_each_entry(pt1, head, list) {
564 		if (pt == pt1) {
565 			list_del_rcu(&pt->list);
566 			goto out;
567 		}
568 	}
569 
570 	pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 	spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575 
576 /**
577  *	dev_remove_pack	 - remove packet handler
578  *	@pt: packet type declaration
579  *
580  *	Remove a protocol handler that was previously added to the kernel
581  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *	from the kernel lists and can be freed or reused once this function
583  *	returns.
584  *
585  *	This call sleeps to guarantee that no CPU is looking at the packet
586  *	type after return.
587  */
dev_remove_pack(struct packet_type * pt)588 void dev_remove_pack(struct packet_type *pt)
589 {
590 	__dev_remove_pack(pt);
591 
592 	synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595 
596 
597 /**
598  *	dev_add_offload - register offload handlers
599  *	@po: protocol offload declaration
600  *
601  *	Add protocol offload handlers to the networking stack. The passed
602  *	&proto_offload is linked into kernel lists and may not be freed until
603  *	it has been removed from the kernel lists.
604  *
605  *	This call does not sleep therefore it can not
606  *	guarantee all CPU's that are in middle of receiving packets
607  *	will see the new offload handlers (until the next received packet).
608  */
dev_add_offload(struct packet_offload * po)609 void dev_add_offload(struct packet_offload *po)
610 {
611 	struct packet_offload *elem;
612 
613 	spin_lock(&offload_lock);
614 	list_for_each_entry(elem, &offload_base, list) {
615 		if (po->priority < elem->priority)
616 			break;
617 	}
618 	list_add_rcu(&po->list, elem->list.prev);
619 	spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622 
623 /**
624  *	__dev_remove_offload	 - remove offload handler
625  *	@po: packet offload declaration
626  *
627  *	Remove a protocol offload handler that was previously added to the
628  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *	is removed from the kernel lists and can be freed or reused once this
630  *	function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *	and must not be freed until after all the CPU's have gone
634  *	through a quiescent state.
635  */
__dev_remove_offload(struct packet_offload * po)636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 	struct list_head *head = &offload_base;
639 	struct packet_offload *po1;
640 
641 	spin_lock(&offload_lock);
642 
643 	list_for_each_entry(po1, head, list) {
644 		if (po == po1) {
645 			list_del_rcu(&po->list);
646 			goto out;
647 		}
648 	}
649 
650 	pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 	spin_unlock(&offload_lock);
653 }
654 
655 /**
656  *	dev_remove_offload	 - remove packet offload handler
657  *	@po: packet offload declaration
658  *
659  *	Remove a packet offload handler that was previously added to the kernel
660  *	offload handlers by dev_add_offload(). The passed &offload_type is
661  *	removed from the kernel lists and can be freed or reused once this
662  *	function returns.
663  *
664  *	This call sleeps to guarantee that no CPU is looking at the packet
665  *	type after return.
666  */
dev_remove_offload(struct packet_offload * po)667 void dev_remove_offload(struct packet_offload *po)
668 {
669 	__dev_remove_offload(po);
670 
671 	synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674 
675 /******************************************************************************
676  *
677  *		      Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680 
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 
684 /**
685  *	netdev_boot_setup_add	- add new setup entry
686  *	@name: name of the device
687  *	@map: configured settings for the device
688  *
689  *	Adds new setup entry to the dev_boot_setup list.  The function
690  *	returns 0 on error and 1 on success.  This is a generic routine to
691  *	all netdevices.
692  */
netdev_boot_setup_add(char * name,struct ifmap * map)693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 	struct netdev_boot_setup *s;
696 	int i;
697 
698 	s = dev_boot_setup;
699 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 			memset(s[i].name, 0, sizeof(s[i].name));
702 			strlcpy(s[i].name, name, IFNAMSIZ);
703 			memcpy(&s[i].map, map, sizeof(s[i].map));
704 			break;
705 		}
706 	}
707 
708 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710 
711 /**
712  * netdev_boot_setup_check	- check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
netdev_boot_setup_check(struct net_device * dev)720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 	struct netdev_boot_setup *s = dev_boot_setup;
723 	int i;
724 
725 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 		    !strcmp(dev->name, s[i].name)) {
728 			dev->irq = s[i].map.irq;
729 			dev->base_addr = s[i].map.base_addr;
730 			dev->mem_start = s[i].map.mem_start;
731 			dev->mem_end = s[i].map.mem_end;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738 
739 
740 /**
741  * netdev_boot_base	- get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
netdev_boot_base(const char * prefix,int unit)750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 	const struct netdev_boot_setup *s = dev_boot_setup;
753 	char name[IFNAMSIZ];
754 	int i;
755 
756 	sprintf(name, "%s%d", prefix, unit);
757 
758 	/*
759 	 * If device already registered then return base of 1
760 	 * to indicate not to probe for this interface
761 	 */
762 	if (__dev_get_by_name(&init_net, name))
763 		return 1;
764 
765 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 		if (!strcmp(name, s[i].name))
767 			return s[i].map.base_addr;
768 	return 0;
769 }
770 
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
netdev_boot_setup(char * str)774 int __init netdev_boot_setup(char *str)
775 {
776 	int ints[5];
777 	struct ifmap map;
778 
779 	str = get_options(str, ARRAY_SIZE(ints), ints);
780 	if (!str || !*str)
781 		return 0;
782 
783 	/* Save settings */
784 	memset(&map, 0, sizeof(map));
785 	if (ints[0] > 0)
786 		map.irq = ints[1];
787 	if (ints[0] > 1)
788 		map.base_addr = ints[2];
789 	if (ints[0] > 2)
790 		map.mem_start = ints[3];
791 	if (ints[0] > 3)
792 		map.mem_end = ints[4];
793 
794 	/* Add new entry to the list */
795 	return netdev_boot_setup_add(str, &map);
796 }
797 
798 __setup("netdev=", netdev_boot_setup);
799 
800 /*******************************************************************************
801  *
802  *			    Device Interface Subroutines
803  *
804  *******************************************************************************/
805 
806 /**
807  *	dev_get_iflink	- get 'iflink' value of a interface
808  *	@dev: targeted interface
809  *
810  *	Indicates the ifindex the interface is linked to.
811  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813 
dev_get_iflink(const struct net_device * dev)814 int dev_get_iflink(const struct net_device *dev)
815 {
816 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 		return dev->netdev_ops->ndo_get_iflink(dev);
818 
819 	return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822 
823 /**
824  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *	@dev: targeted interface
826  *	@skb: The packet.
827  *
828  *	For better visibility of tunnel traffic OVS needs to retrieve
829  *	egress tunnel information for a packet. Following API allows
830  *	user to get this info.
831  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 	struct ip_tunnel_info *info;
835 
836 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837 		return -EINVAL;
838 
839 	info = skb_tunnel_info_unclone(skb);
840 	if (!info)
841 		return -ENOMEM;
842 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 		return -EINVAL;
844 
845 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 
849 /**
850  *	__dev_get_by_name	- find a device by its name
851  *	@net: the applicable net namespace
852  *	@name: name to find
853  *
854  *	Find an interface by name. Must be called under RTNL semaphore
855  *	or @dev_base_lock. If the name is found a pointer to the device
856  *	is returned. If the name is not found then %NULL is returned. The
857  *	reference counters are not incremented so the caller must be
858  *	careful with locks.
859  */
860 
__dev_get_by_name(struct net * net,const char * name)861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 	struct netdev_name_node *node_name;
864 
865 	node_name = netdev_name_node_lookup(net, name);
866 	return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869 
870 /**
871  * dev_get_by_name_rcu	- find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881 
dev_get_by_name_rcu(struct net * net,const char * name)882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 	struct netdev_name_node *node_name;
885 
886 	node_name = netdev_name_node_lookup_rcu(net, name);
887 	return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 
891 /**
892  *	dev_get_by_name		- find a device by its name
893  *	@net: the applicable net namespace
894  *	@name: name to find
895  *
896  *	Find an interface by name. This can be called from any
897  *	context and does its own locking. The returned handle has
898  *	the usage count incremented and the caller must use dev_put() to
899  *	release it when it is no longer needed. %NULL is returned if no
900  *	matching device is found.
901  */
902 
dev_get_by_name(struct net * net,const char * name)903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 	struct net_device *dev;
906 
907 	rcu_read_lock();
908 	dev = dev_get_by_name_rcu(net, name);
909 	if (dev)
910 		dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	__dev_get_by_index - find a device by its ifindex
918  *	@net: the applicable net namespace
919  *	@ifindex: index of device
920  *
921  *	Search for an interface by index. Returns %NULL if the device
922  *	is not found or a pointer to the device. The device has not
923  *	had its reference counter increased so the caller must be careful
924  *	about locking. The caller must hold either the RTNL semaphore
925  *	or @dev_base_lock.
926  */
927 
__dev_get_by_index(struct net * net,int ifindex)928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 	struct net_device *dev;
931 	struct hlist_head *head = dev_index_hash(net, ifindex);
932 
933 	hlist_for_each_entry(dev, head, index_hlist)
934 		if (dev->ifindex == ifindex)
935 			return dev;
936 
937 	return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940 
941 /**
942  *	dev_get_by_index_rcu - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold RCU lock.
950  */
951 
dev_get_by_index_rcu(struct net * net,int ifindex)952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry_rcu(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964 
965 
966 /**
967  *	dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns NULL if the device
972  *	is not found or a pointer to the device. The device returned has
973  *	had a reference added and the pointer is safe until the user calls
974  *	dev_put to indicate they have finished with it.
975  */
976 
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	if (dev)
984 		dev_hold(dev);
985 	rcu_read_unlock();
986 	return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989 
990 /**
991  *	dev_get_by_napi_id - find a device by napi_id
992  *	@napi_id: ID of the NAPI struct
993  *
994  *	Search for an interface by NAPI ID. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not had
996  *	its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
dev_get_by_napi_id(unsigned int napi_id)1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 	struct napi_struct *napi;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held());
1005 
1006 	if (napi_id < MIN_NAPI_ID)
1007 		return NULL;
1008 
1009 	napi = napi_by_id(napi_id);
1010 
1011 	return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 
1015 /**
1016  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *	@net: network namespace
1018  *	@name: a pointer to the buffer where the name will be stored.
1019  *	@ifindex: the ifindex of the interface to get the name from.
1020  */
netdev_get_name(struct net * net,char * name,int ifindex)1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 	struct net_device *dev;
1024 	int ret;
1025 
1026 	down_read(&devnet_rename_sem);
1027 	rcu_read_lock();
1028 
1029 	dev = dev_get_by_index_rcu(net, ifindex);
1030 	if (!dev) {
1031 		ret = -ENODEV;
1032 		goto out;
1033 	}
1034 
1035 	strcpy(name, dev->name);
1036 
1037 	ret = 0;
1038 out:
1039 	rcu_read_unlock();
1040 	up_read(&devnet_rename_sem);
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *	@net: the applicable net namespace
1047  *	@type: media type of device
1048  *	@ha: hardware address
1049  *
1050  *	Search for an interface by MAC address. Returns NULL if the device
1051  *	is not found or a pointer to the device.
1052  *	The caller must hold RCU or RTNL.
1053  *	The returned device has not had its ref count increased
1054  *	and the caller must therefore be careful about locking
1055  *
1056  */
1057 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 				       const char *ha)
1060 {
1061 	struct net_device *dev;
1062 
1063 	for_each_netdev_rcu(net, dev)
1064 		if (dev->type == type &&
1065 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 			return dev;
1067 
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 	struct net_device *dev;
1075 
1076 	ASSERT_RTNL();
1077 	for_each_netdev(net, dev)
1078 		if (dev->type == type)
1079 			return dev;
1080 
1081 	return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087 	struct net_device *dev, *ret = NULL;
1088 
1089 	rcu_read_lock();
1090 	for_each_netdev_rcu(net, dev)
1091 		if (dev->type == type) {
1092 			dev_hold(dev);
1093 			ret = dev;
1094 			break;
1095 		}
1096 	rcu_read_unlock();
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100 
1101 /**
1102  *	__dev_get_by_flags - find any device with given flags
1103  *	@net: the applicable net namespace
1104  *	@if_flags: IFF_* values
1105  *	@mask: bitmask of bits in if_flags to check
1106  *
1107  *	Search for any interface with the given flags. Returns NULL if a device
1108  *	is not found or a pointer to the device. Must be called inside
1109  *	rtnl_lock(), and result refcount is unchanged.
1110  */
1111 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 				      unsigned short mask)
1114 {
1115 	struct net_device *dev, *ret;
1116 
1117 	ASSERT_RTNL();
1118 
1119 	ret = NULL;
1120 	for_each_netdev(net, dev) {
1121 		if (((dev->flags ^ if_flags) & mask) == 0) {
1122 			ret = dev;
1123 			break;
1124 		}
1125 	}
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129 
1130 /**
1131  *	dev_valid_name - check if name is okay for network device
1132  *	@name: name string
1133  *
1134  *	Network device names need to be valid file names to
1135  *	allow sysfs to work.  We also disallow any kind of
1136  *	whitespace.
1137  */
dev_valid_name(const char * name)1138 bool dev_valid_name(const char *name)
1139 {
1140 	if (*name == '\0')
1141 		return false;
1142 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 		return false;
1144 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 		return false;
1146 
1147 	while (*name) {
1148 		if (*name == '/' || *name == ':' || isspace(*name))
1149 			return false;
1150 		name++;
1151 	}
1152 	return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155 
1156 /**
1157  *	__dev_alloc_name - allocate a name for a device
1158  *	@net: network namespace to allocate the device name in
1159  *	@name: name format string
1160  *	@buf:  scratch buffer and result name string
1161  *
1162  *	Passed a format string - eg "lt%d" it will try and find a suitable
1163  *	id. It scans list of devices to build up a free map, then chooses
1164  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1165  *	while allocating the name and adding the device in order to avoid
1166  *	duplicates.
1167  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168  *	Returns the number of the unit assigned or a negative errno code.
1169  */
1170 
__dev_alloc_name(struct net * net,const char * name,char * buf)1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173 	int i = 0;
1174 	const char *p;
1175 	const int max_netdevices = 8*PAGE_SIZE;
1176 	unsigned long *inuse;
1177 	struct net_device *d;
1178 
1179 	if (!dev_valid_name(name))
1180 		return -EINVAL;
1181 
1182 	p = strchr(name, '%');
1183 	if (p) {
1184 		/*
1185 		 * Verify the string as this thing may have come from
1186 		 * the user.  There must be either one "%d" and no other "%"
1187 		 * characters.
1188 		 */
1189 		if (p[1] != 'd' || strchr(p + 2, '%'))
1190 			return -EINVAL;
1191 
1192 		/* Use one page as a bit array of possible slots */
1193 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 		if (!inuse)
1195 			return -ENOMEM;
1196 
1197 		for_each_netdev(net, d) {
1198 			struct netdev_name_node *name_node;
1199 			list_for_each_entry(name_node, &d->name_node->list, list) {
1200 				if (!sscanf(name_node->name, name, &i))
1201 					continue;
1202 				if (i < 0 || i >= max_netdevices)
1203 					continue;
1204 
1205 				/*  avoid cases where sscanf is not exact inverse of printf */
1206 				snprintf(buf, IFNAMSIZ, name, i);
1207 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1208 					set_bit(i, inuse);
1209 			}
1210 			if (!sscanf(d->name, name, &i))
1211 				continue;
1212 			if (i < 0 || i >= max_netdevices)
1213 				continue;
1214 
1215 			/*  avoid cases where sscanf is not exact inverse of printf */
1216 			snprintf(buf, IFNAMSIZ, name, i);
1217 			if (!strncmp(buf, d->name, IFNAMSIZ))
1218 				set_bit(i, inuse);
1219 		}
1220 
1221 		i = find_first_zero_bit(inuse, max_netdevices);
1222 		free_page((unsigned long) inuse);
1223 	}
1224 
1225 	snprintf(buf, IFNAMSIZ, name, i);
1226 	if (!__dev_get_by_name(net, buf))
1227 		return i;
1228 
1229 	/* It is possible to run out of possible slots
1230 	 * when the name is long and there isn't enough space left
1231 	 * for the digits, or if all bits are used.
1232 	 */
1233 	return -ENFILE;
1234 }
1235 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1236 static int dev_alloc_name_ns(struct net *net,
1237 			     struct net_device *dev,
1238 			     const char *name)
1239 {
1240 	char buf[IFNAMSIZ];
1241 	int ret;
1242 
1243 	BUG_ON(!net);
1244 	ret = __dev_alloc_name(net, name, buf);
1245 	if (ret >= 0)
1246 		strlcpy(dev->name, buf, IFNAMSIZ);
1247 	return ret;
1248 }
1249 
1250 /**
1251  *	dev_alloc_name - allocate a name for a device
1252  *	@dev: device
1253  *	@name: name format string
1254  *
1255  *	Passed a format string - eg "lt%d" it will try and find a suitable
1256  *	id. It scans list of devices to build up a free map, then chooses
1257  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1258  *	while allocating the name and adding the device in order to avoid
1259  *	duplicates.
1260  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1261  *	Returns the number of the unit assigned or a negative errno code.
1262  */
1263 
dev_alloc_name(struct net_device * dev,const char * name)1264 int dev_alloc_name(struct net_device *dev, const char *name)
1265 {
1266 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1267 }
1268 EXPORT_SYMBOL(dev_alloc_name);
1269 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1270 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1271 			      const char *name)
1272 {
1273 	BUG_ON(!net);
1274 
1275 	if (!dev_valid_name(name))
1276 		return -EINVAL;
1277 
1278 	if (strchr(name, '%'))
1279 		return dev_alloc_name_ns(net, dev, name);
1280 	else if (__dev_get_by_name(net, name))
1281 		return -EEXIST;
1282 	else if (dev->name != name)
1283 		strlcpy(dev->name, name, IFNAMSIZ);
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  *	dev_change_name - change name of a device
1290  *	@dev: device
1291  *	@newname: name (or format string) must be at least IFNAMSIZ
1292  *
1293  *	Change name of a device, can pass format strings "eth%d".
1294  *	for wildcarding.
1295  */
dev_change_name(struct net_device * dev,const char * newname)1296 int dev_change_name(struct net_device *dev, const char *newname)
1297 {
1298 	unsigned char old_assign_type;
1299 	char oldname[IFNAMSIZ];
1300 	int err = 0;
1301 	int ret;
1302 	struct net *net;
1303 
1304 	ASSERT_RTNL();
1305 	BUG_ON(!dev_net(dev));
1306 
1307 	net = dev_net(dev);
1308 
1309 	/* Some auto-enslaved devices e.g. failover slaves are
1310 	 * special, as userspace might rename the device after
1311 	 * the interface had been brought up and running since
1312 	 * the point kernel initiated auto-enslavement. Allow
1313 	 * live name change even when these slave devices are
1314 	 * up and running.
1315 	 *
1316 	 * Typically, users of these auto-enslaving devices
1317 	 * don't actually care about slave name change, as
1318 	 * they are supposed to operate on master interface
1319 	 * directly.
1320 	 */
1321 	if (dev->flags & IFF_UP &&
1322 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1323 		return -EBUSY;
1324 
1325 	down_write(&devnet_rename_sem);
1326 
1327 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1328 		up_write(&devnet_rename_sem);
1329 		return 0;
1330 	}
1331 
1332 	memcpy(oldname, dev->name, IFNAMSIZ);
1333 
1334 	err = dev_get_valid_name(net, dev, newname);
1335 	if (err < 0) {
1336 		up_write(&devnet_rename_sem);
1337 		return err;
1338 	}
1339 
1340 	if (oldname[0] && !strchr(oldname, '%'))
1341 		netdev_info(dev, "renamed from %s\n", oldname);
1342 
1343 	old_assign_type = dev->name_assign_type;
1344 	dev->name_assign_type = NET_NAME_RENAMED;
1345 
1346 rollback:
1347 	ret = device_rename(&dev->dev, dev->name);
1348 	if (ret) {
1349 		memcpy(dev->name, oldname, IFNAMSIZ);
1350 		dev->name_assign_type = old_assign_type;
1351 		up_write(&devnet_rename_sem);
1352 		return ret;
1353 	}
1354 
1355 	up_write(&devnet_rename_sem);
1356 
1357 	netdev_adjacent_rename_links(dev, oldname);
1358 
1359 	write_lock_bh(&dev_base_lock);
1360 	netdev_name_node_del(dev->name_node);
1361 	write_unlock_bh(&dev_base_lock);
1362 
1363 	synchronize_rcu();
1364 
1365 	write_lock_bh(&dev_base_lock);
1366 	netdev_name_node_add(net, dev->name_node);
1367 	write_unlock_bh(&dev_base_lock);
1368 
1369 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1370 	ret = notifier_to_errno(ret);
1371 
1372 	if (ret) {
1373 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1374 		if (err >= 0) {
1375 			err = ret;
1376 			down_write(&devnet_rename_sem);
1377 			memcpy(dev->name, oldname, IFNAMSIZ);
1378 			memcpy(oldname, newname, IFNAMSIZ);
1379 			dev->name_assign_type = old_assign_type;
1380 			old_assign_type = NET_NAME_RENAMED;
1381 			goto rollback;
1382 		} else {
1383 			pr_err("%s: name change rollback failed: %d\n",
1384 			       dev->name, ret);
1385 		}
1386 	}
1387 
1388 	return err;
1389 }
1390 
1391 /**
1392  *	dev_set_alias - change ifalias of a device
1393  *	@dev: device
1394  *	@alias: name up to IFALIASZ
1395  *	@len: limit of bytes to copy from info
1396  *
1397  *	Set ifalias for a device,
1398  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1399 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1400 {
1401 	struct dev_ifalias *new_alias = NULL;
1402 
1403 	if (len >= IFALIASZ)
1404 		return -EINVAL;
1405 
1406 	if (len) {
1407 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1408 		if (!new_alias)
1409 			return -ENOMEM;
1410 
1411 		memcpy(new_alias->ifalias, alias, len);
1412 		new_alias->ifalias[len] = 0;
1413 	}
1414 
1415 	mutex_lock(&ifalias_mutex);
1416 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1417 					mutex_is_locked(&ifalias_mutex));
1418 	mutex_unlock(&ifalias_mutex);
1419 
1420 	if (new_alias)
1421 		kfree_rcu(new_alias, rcuhead);
1422 
1423 	return len;
1424 }
1425 EXPORT_SYMBOL(dev_set_alias);
1426 
1427 /**
1428  *	dev_get_alias - get ifalias of a device
1429  *	@dev: device
1430  *	@name: buffer to store name of ifalias
1431  *	@len: size of buffer
1432  *
1433  *	get ifalias for a device.  Caller must make sure dev cannot go
1434  *	away,  e.g. rcu read lock or own a reference count to device.
1435  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1436 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1437 {
1438 	const struct dev_ifalias *alias;
1439 	int ret = 0;
1440 
1441 	rcu_read_lock();
1442 	alias = rcu_dereference(dev->ifalias);
1443 	if (alias)
1444 		ret = snprintf(name, len, "%s", alias->ifalias);
1445 	rcu_read_unlock();
1446 
1447 	return ret;
1448 }
1449 
1450 /**
1451  *	netdev_features_change - device changes features
1452  *	@dev: device to cause notification
1453  *
1454  *	Called to indicate a device has changed features.
1455  */
netdev_features_change(struct net_device * dev)1456 void netdev_features_change(struct net_device *dev)
1457 {
1458 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1459 }
1460 EXPORT_SYMBOL(netdev_features_change);
1461 
1462 /**
1463  *	netdev_state_change - device changes state
1464  *	@dev: device to cause notification
1465  *
1466  *	Called to indicate a device has changed state. This function calls
1467  *	the notifier chains for netdev_chain and sends a NEWLINK message
1468  *	to the routing socket.
1469  */
netdev_state_change(struct net_device * dev)1470 void netdev_state_change(struct net_device *dev)
1471 {
1472 	if (dev->flags & IFF_UP) {
1473 		struct netdev_notifier_change_info change_info = {
1474 			.info.dev = dev,
1475 		};
1476 
1477 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1478 					      &change_info.info);
1479 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1480 	}
1481 }
1482 EXPORT_SYMBOL(netdev_state_change);
1483 
1484 /**
1485  * netdev_notify_peers - notify network peers about existence of @dev
1486  * @dev: network device
1487  *
1488  * Generate traffic such that interested network peers are aware of
1489  * @dev, such as by generating a gratuitous ARP. This may be used when
1490  * a device wants to inform the rest of the network about some sort of
1491  * reconfiguration such as a failover event or virtual machine
1492  * migration.
1493  */
netdev_notify_peers(struct net_device * dev)1494 void netdev_notify_peers(struct net_device *dev)
1495 {
1496 	rtnl_lock();
1497 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1498 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1499 	rtnl_unlock();
1500 }
1501 EXPORT_SYMBOL(netdev_notify_peers);
1502 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1503 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1504 {
1505 	const struct net_device_ops *ops = dev->netdev_ops;
1506 	int ret;
1507 
1508 	ASSERT_RTNL();
1509 
1510 	if (!netif_device_present(dev)) {
1511 		/* may be detached because parent is runtime-suspended */
1512 		if (dev->dev.parent)
1513 			pm_runtime_resume(dev->dev.parent);
1514 		if (!netif_device_present(dev))
1515 			return -ENODEV;
1516 	}
1517 
1518 	/* Block netpoll from trying to do any rx path servicing.
1519 	 * If we don't do this there is a chance ndo_poll_controller
1520 	 * or ndo_poll may be running while we open the device
1521 	 */
1522 	netpoll_poll_disable(dev);
1523 
1524 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1525 	ret = notifier_to_errno(ret);
1526 	if (ret)
1527 		return ret;
1528 
1529 	set_bit(__LINK_STATE_START, &dev->state);
1530 
1531 	if (ops->ndo_validate_addr)
1532 		ret = ops->ndo_validate_addr(dev);
1533 
1534 	if (!ret && ops->ndo_open)
1535 		ret = ops->ndo_open(dev);
1536 
1537 	netpoll_poll_enable(dev);
1538 
1539 	if (ret)
1540 		clear_bit(__LINK_STATE_START, &dev->state);
1541 	else {
1542 		dev->flags |= IFF_UP;
1543 		dev_set_rx_mode(dev);
1544 		dev_activate(dev);
1545 		add_device_randomness(dev->dev_addr, dev->addr_len);
1546 	}
1547 
1548 	return ret;
1549 }
1550 
1551 /**
1552  *	dev_open	- prepare an interface for use.
1553  *	@dev: device to open
1554  *	@extack: netlink extended ack
1555  *
1556  *	Takes a device from down to up state. The device's private open
1557  *	function is invoked and then the multicast lists are loaded. Finally
1558  *	the device is moved into the up state and a %NETDEV_UP message is
1559  *	sent to the netdev notifier chain.
1560  *
1561  *	Calling this function on an active interface is a nop. On a failure
1562  *	a negative errno code is returned.
1563  */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1564 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1565 {
1566 	int ret;
1567 
1568 	if (dev->flags & IFF_UP)
1569 		return 0;
1570 
1571 	ret = __dev_open(dev, extack);
1572 	if (ret < 0)
1573 		return ret;
1574 
1575 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1576 	call_netdevice_notifiers(NETDEV_UP, dev);
1577 
1578 	return ret;
1579 }
1580 EXPORT_SYMBOL(dev_open);
1581 
__dev_close_many(struct list_head * head)1582 static void __dev_close_many(struct list_head *head)
1583 {
1584 	struct net_device *dev;
1585 
1586 	ASSERT_RTNL();
1587 	might_sleep();
1588 
1589 	list_for_each_entry(dev, head, close_list) {
1590 		/* Temporarily disable netpoll until the interface is down */
1591 		netpoll_poll_disable(dev);
1592 
1593 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1594 
1595 		clear_bit(__LINK_STATE_START, &dev->state);
1596 
1597 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1598 		 * can be even on different cpu. So just clear netif_running().
1599 		 *
1600 		 * dev->stop() will invoke napi_disable() on all of it's
1601 		 * napi_struct instances on this device.
1602 		 */
1603 		smp_mb__after_atomic(); /* Commit netif_running(). */
1604 	}
1605 
1606 	dev_deactivate_many(head);
1607 
1608 	list_for_each_entry(dev, head, close_list) {
1609 		const struct net_device_ops *ops = dev->netdev_ops;
1610 
1611 		/*
1612 		 *	Call the device specific close. This cannot fail.
1613 		 *	Only if device is UP
1614 		 *
1615 		 *	We allow it to be called even after a DETACH hot-plug
1616 		 *	event.
1617 		 */
1618 		if (ops->ndo_stop)
1619 			ops->ndo_stop(dev);
1620 
1621 		dev->flags &= ~IFF_UP;
1622 		netpoll_poll_enable(dev);
1623 	}
1624 }
1625 
__dev_close(struct net_device * dev)1626 static void __dev_close(struct net_device *dev)
1627 {
1628 	LIST_HEAD(single);
1629 
1630 	list_add(&dev->close_list, &single);
1631 	__dev_close_many(&single);
1632 	list_del(&single);
1633 }
1634 
dev_close_many(struct list_head * head,bool unlink)1635 void dev_close_many(struct list_head *head, bool unlink)
1636 {
1637 	struct net_device *dev, *tmp;
1638 
1639 	/* Remove the devices that don't need to be closed */
1640 	list_for_each_entry_safe(dev, tmp, head, close_list)
1641 		if (!(dev->flags & IFF_UP))
1642 			list_del_init(&dev->close_list);
1643 
1644 	__dev_close_many(head);
1645 
1646 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1647 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1648 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1649 		if (unlink)
1650 			list_del_init(&dev->close_list);
1651 	}
1652 }
1653 EXPORT_SYMBOL(dev_close_many);
1654 
1655 /**
1656  *	dev_close - shutdown an interface.
1657  *	@dev: device to shutdown
1658  *
1659  *	This function moves an active device into down state. A
1660  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1661  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1662  *	chain.
1663  */
dev_close(struct net_device * dev)1664 void dev_close(struct net_device *dev)
1665 {
1666 	if (dev->flags & IFF_UP) {
1667 		LIST_HEAD(single);
1668 
1669 		list_add(&dev->close_list, &single);
1670 		dev_close_many(&single, true);
1671 		list_del(&single);
1672 	}
1673 }
1674 EXPORT_SYMBOL(dev_close);
1675 
1676 
1677 /**
1678  *	dev_disable_lro - disable Large Receive Offload on a device
1679  *	@dev: device
1680  *
1681  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1682  *	called under RTNL.  This is needed if received packets may be
1683  *	forwarded to another interface.
1684  */
dev_disable_lro(struct net_device * dev)1685 void dev_disable_lro(struct net_device *dev)
1686 {
1687 	struct net_device *lower_dev;
1688 	struct list_head *iter;
1689 
1690 	dev->wanted_features &= ~NETIF_F_LRO;
1691 	netdev_update_features(dev);
1692 
1693 	if (unlikely(dev->features & NETIF_F_LRO))
1694 		netdev_WARN(dev, "failed to disable LRO!\n");
1695 
1696 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1697 		dev_disable_lro(lower_dev);
1698 }
1699 EXPORT_SYMBOL(dev_disable_lro);
1700 
1701 /**
1702  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1703  *	@dev: device
1704  *
1705  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1706  *	called under RTNL.  This is needed if Generic XDP is installed on
1707  *	the device.
1708  */
dev_disable_gro_hw(struct net_device * dev)1709 static void dev_disable_gro_hw(struct net_device *dev)
1710 {
1711 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1712 	netdev_update_features(dev);
1713 
1714 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1715 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1716 }
1717 
netdev_cmd_to_name(enum netdev_cmd cmd)1718 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1719 {
1720 #define N(val) 						\
1721 	case NETDEV_##val:				\
1722 		return "NETDEV_" __stringify(val);
1723 	switch (cmd) {
1724 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1725 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1726 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1727 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1728 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1729 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1730 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1731 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1732 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1733 	N(PRE_CHANGEADDR)
1734 	}
1735 #undef N
1736 	return "UNKNOWN_NETDEV_EVENT";
1737 }
1738 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1739 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1740 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1741 				   struct net_device *dev)
1742 {
1743 	struct netdev_notifier_info info = {
1744 		.dev = dev,
1745 	};
1746 
1747 	return nb->notifier_call(nb, val, &info);
1748 }
1749 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1750 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1751 					     struct net_device *dev)
1752 {
1753 	int err;
1754 
1755 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1756 	err = notifier_to_errno(err);
1757 	if (err)
1758 		return err;
1759 
1760 	if (!(dev->flags & IFF_UP))
1761 		return 0;
1762 
1763 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1764 	return 0;
1765 }
1766 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1767 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1768 						struct net_device *dev)
1769 {
1770 	if (dev->flags & IFF_UP) {
1771 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1772 					dev);
1773 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1774 	}
1775 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1776 }
1777 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1778 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1779 						 struct net *net)
1780 {
1781 	struct net_device *dev;
1782 	int err;
1783 
1784 	for_each_netdev(net, dev) {
1785 		err = call_netdevice_register_notifiers(nb, dev);
1786 		if (err)
1787 			goto rollback;
1788 	}
1789 	return 0;
1790 
1791 rollback:
1792 	for_each_netdev_continue_reverse(net, dev)
1793 		call_netdevice_unregister_notifiers(nb, dev);
1794 	return err;
1795 }
1796 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1797 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1798 						    struct net *net)
1799 {
1800 	struct net_device *dev;
1801 
1802 	for_each_netdev(net, dev)
1803 		call_netdevice_unregister_notifiers(nb, dev);
1804 }
1805 
1806 static int dev_boot_phase = 1;
1807 
1808 /**
1809  * register_netdevice_notifier - register a network notifier block
1810  * @nb: notifier
1811  *
1812  * Register a notifier to be called when network device events occur.
1813  * The notifier passed is linked into the kernel structures and must
1814  * not be reused until it has been unregistered. A negative errno code
1815  * is returned on a failure.
1816  *
1817  * When registered all registration and up events are replayed
1818  * to the new notifier to allow device to have a race free
1819  * view of the network device list.
1820  */
1821 
register_netdevice_notifier(struct notifier_block * nb)1822 int register_netdevice_notifier(struct notifier_block *nb)
1823 {
1824 	struct net *net;
1825 	int err;
1826 
1827 	/* Close race with setup_net() and cleanup_net() */
1828 	down_write(&pernet_ops_rwsem);
1829 	rtnl_lock();
1830 	err = raw_notifier_chain_register(&netdev_chain, nb);
1831 	if (err)
1832 		goto unlock;
1833 	if (dev_boot_phase)
1834 		goto unlock;
1835 	for_each_net(net) {
1836 		err = call_netdevice_register_net_notifiers(nb, net);
1837 		if (err)
1838 			goto rollback;
1839 	}
1840 
1841 unlock:
1842 	rtnl_unlock();
1843 	up_write(&pernet_ops_rwsem);
1844 	return err;
1845 
1846 rollback:
1847 	for_each_net_continue_reverse(net)
1848 		call_netdevice_unregister_net_notifiers(nb, net);
1849 
1850 	raw_notifier_chain_unregister(&netdev_chain, nb);
1851 	goto unlock;
1852 }
1853 EXPORT_SYMBOL(register_netdevice_notifier);
1854 
1855 /**
1856  * unregister_netdevice_notifier - unregister a network notifier block
1857  * @nb: notifier
1858  *
1859  * Unregister a notifier previously registered by
1860  * register_netdevice_notifier(). The notifier is unlinked into the
1861  * kernel structures and may then be reused. A negative errno code
1862  * is returned on a failure.
1863  *
1864  * After unregistering unregister and down device events are synthesized
1865  * for all devices on the device list to the removed notifier to remove
1866  * the need for special case cleanup code.
1867  */
1868 
unregister_netdevice_notifier(struct notifier_block * nb)1869 int unregister_netdevice_notifier(struct notifier_block *nb)
1870 {
1871 	struct net *net;
1872 	int err;
1873 
1874 	/* Close race with setup_net() and cleanup_net() */
1875 	down_write(&pernet_ops_rwsem);
1876 	rtnl_lock();
1877 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1878 	if (err)
1879 		goto unlock;
1880 
1881 	for_each_net(net)
1882 		call_netdevice_unregister_net_notifiers(nb, net);
1883 
1884 unlock:
1885 	rtnl_unlock();
1886 	up_write(&pernet_ops_rwsem);
1887 	return err;
1888 }
1889 EXPORT_SYMBOL(unregister_netdevice_notifier);
1890 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1891 static int __register_netdevice_notifier_net(struct net *net,
1892 					     struct notifier_block *nb,
1893 					     bool ignore_call_fail)
1894 {
1895 	int err;
1896 
1897 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1898 	if (err)
1899 		return err;
1900 	if (dev_boot_phase)
1901 		return 0;
1902 
1903 	err = call_netdevice_register_net_notifiers(nb, net);
1904 	if (err && !ignore_call_fail)
1905 		goto chain_unregister;
1906 
1907 	return 0;
1908 
1909 chain_unregister:
1910 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1911 	return err;
1912 }
1913 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1914 static int __unregister_netdevice_notifier_net(struct net *net,
1915 					       struct notifier_block *nb)
1916 {
1917 	int err;
1918 
1919 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1920 	if (err)
1921 		return err;
1922 
1923 	call_netdevice_unregister_net_notifiers(nb, net);
1924 	return 0;
1925 }
1926 
1927 /**
1928  * register_netdevice_notifier_net - register a per-netns network notifier block
1929  * @net: network namespace
1930  * @nb: notifier
1931  *
1932  * Register a notifier to be called when network device events occur.
1933  * The notifier passed is linked into the kernel structures and must
1934  * not be reused until it has been unregistered. A negative errno code
1935  * is returned on a failure.
1936  *
1937  * When registered all registration and up events are replayed
1938  * to the new notifier to allow device to have a race free
1939  * view of the network device list.
1940  */
1941 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1942 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1943 {
1944 	int err;
1945 
1946 	rtnl_lock();
1947 	err = __register_netdevice_notifier_net(net, nb, false);
1948 	rtnl_unlock();
1949 	return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_net);
1952 
1953 /**
1954  * unregister_netdevice_notifier_net - unregister a per-netns
1955  *                                     network notifier block
1956  * @net: network namespace
1957  * @nb: notifier
1958  *
1959  * Unregister a notifier previously registered by
1960  * register_netdevice_notifier(). The notifier is unlinked into the
1961  * kernel structures and may then be reused. A negative errno code
1962  * is returned on a failure.
1963  *
1964  * After unregistering unregister and down device events are synthesized
1965  * for all devices on the device list to the removed notifier to remove
1966  * the need for special case cleanup code.
1967  */
1968 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1969 int unregister_netdevice_notifier_net(struct net *net,
1970 				      struct notifier_block *nb)
1971 {
1972 	int err;
1973 
1974 	rtnl_lock();
1975 	err = __unregister_netdevice_notifier_net(net, nb);
1976 	rtnl_unlock();
1977 	return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1980 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1981 int register_netdevice_notifier_dev_net(struct net_device *dev,
1982 					struct notifier_block *nb,
1983 					struct netdev_net_notifier *nn)
1984 {
1985 	int err;
1986 
1987 	rtnl_lock();
1988 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1989 	if (!err) {
1990 		nn->nb = nb;
1991 		list_add(&nn->list, &dev->net_notifier_list);
1992 	}
1993 	rtnl_unlock();
1994 	return err;
1995 }
1996 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1997 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1998 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1999 					  struct notifier_block *nb,
2000 					  struct netdev_net_notifier *nn)
2001 {
2002 	int err;
2003 
2004 	rtnl_lock();
2005 	list_del(&nn->list);
2006 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2007 	rtnl_unlock();
2008 	return err;
2009 }
2010 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2011 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2012 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2013 					     struct net *net)
2014 {
2015 	struct netdev_net_notifier *nn;
2016 
2017 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2018 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2019 		__register_netdevice_notifier_net(net, nn->nb, true);
2020 	}
2021 }
2022 
2023 /**
2024  *	call_netdevice_notifiers_info - call all network notifier blocks
2025  *	@val: value passed unmodified to notifier function
2026  *	@info: notifier information data
2027  *
2028  *	Call all network notifier blocks.  Parameters and return value
2029  *	are as for raw_notifier_call_chain().
2030  */
2031 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2032 static int call_netdevice_notifiers_info(unsigned long val,
2033 					 struct netdev_notifier_info *info)
2034 {
2035 	struct net *net = dev_net(info->dev);
2036 	int ret;
2037 
2038 	ASSERT_RTNL();
2039 
2040 	/* Run per-netns notifier block chain first, then run the global one.
2041 	 * Hopefully, one day, the global one is going to be removed after
2042 	 * all notifier block registrators get converted to be per-netns.
2043 	 */
2044 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2045 	if (ret & NOTIFY_STOP_MASK)
2046 		return ret;
2047 	return raw_notifier_call_chain(&netdev_chain, val, info);
2048 }
2049 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2050 static int call_netdevice_notifiers_extack(unsigned long val,
2051 					   struct net_device *dev,
2052 					   struct netlink_ext_ack *extack)
2053 {
2054 	struct netdev_notifier_info info = {
2055 		.dev = dev,
2056 		.extack = extack,
2057 	};
2058 
2059 	return call_netdevice_notifiers_info(val, &info);
2060 }
2061 
2062 /**
2063  *	call_netdevice_notifiers - call all network notifier blocks
2064  *      @val: value passed unmodified to notifier function
2065  *      @dev: net_device pointer passed unmodified to notifier function
2066  *
2067  *	Call all network notifier blocks.  Parameters and return value
2068  *	are as for raw_notifier_call_chain().
2069  */
2070 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2071 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2072 {
2073 	return call_netdevice_notifiers_extack(val, dev, NULL);
2074 }
2075 EXPORT_SYMBOL(call_netdevice_notifiers);
2076 
2077 /**
2078  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2079  *	@val: value passed unmodified to notifier function
2080  *	@dev: net_device pointer passed unmodified to notifier function
2081  *	@arg: additional u32 argument passed to the notifier function
2082  *
2083  *	Call all network notifier blocks.  Parameters and return value
2084  *	are as for raw_notifier_call_chain().
2085  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2086 static int call_netdevice_notifiers_mtu(unsigned long val,
2087 					struct net_device *dev, u32 arg)
2088 {
2089 	struct netdev_notifier_info_ext info = {
2090 		.info.dev = dev,
2091 		.ext.mtu = arg,
2092 	};
2093 
2094 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2095 
2096 	return call_netdevice_notifiers_info(val, &info.info);
2097 }
2098 
2099 #ifdef CONFIG_NET_INGRESS
2100 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2101 
net_inc_ingress_queue(void)2102 void net_inc_ingress_queue(void)
2103 {
2104 	static_branch_inc(&ingress_needed_key);
2105 }
2106 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2107 
net_dec_ingress_queue(void)2108 void net_dec_ingress_queue(void)
2109 {
2110 	static_branch_dec(&ingress_needed_key);
2111 }
2112 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2113 #endif
2114 
2115 #ifdef CONFIG_NET_EGRESS
2116 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2117 
net_inc_egress_queue(void)2118 void net_inc_egress_queue(void)
2119 {
2120 	static_branch_inc(&egress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2123 
net_dec_egress_queue(void)2124 void net_dec_egress_queue(void)
2125 {
2126 	static_branch_dec(&egress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2129 #endif
2130 
2131 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2132 #ifdef CONFIG_JUMP_LABEL
2133 static atomic_t netstamp_needed_deferred;
2134 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2135 static void netstamp_clear(struct work_struct *work)
2136 {
2137 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2138 	int wanted;
2139 
2140 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2141 	if (wanted > 0)
2142 		static_branch_enable(&netstamp_needed_key);
2143 	else
2144 		static_branch_disable(&netstamp_needed_key);
2145 }
2146 static DECLARE_WORK(netstamp_work, netstamp_clear);
2147 #endif
2148 
net_enable_timestamp(void)2149 void net_enable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152 	int wanted;
2153 
2154 	while (1) {
2155 		wanted = atomic_read(&netstamp_wanted);
2156 		if (wanted <= 0)
2157 			break;
2158 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2159 			return;
2160 	}
2161 	atomic_inc(&netstamp_needed_deferred);
2162 	schedule_work(&netstamp_work);
2163 #else
2164 	static_branch_inc(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_enable_timestamp);
2168 
net_disable_timestamp(void)2169 void net_disable_timestamp(void)
2170 {
2171 #ifdef CONFIG_JUMP_LABEL
2172 	int wanted;
2173 
2174 	while (1) {
2175 		wanted = atomic_read(&netstamp_wanted);
2176 		if (wanted <= 1)
2177 			break;
2178 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2179 			return;
2180 	}
2181 	atomic_dec(&netstamp_needed_deferred);
2182 	schedule_work(&netstamp_work);
2183 #else
2184 	static_branch_dec(&netstamp_needed_key);
2185 #endif
2186 }
2187 EXPORT_SYMBOL(net_disable_timestamp);
2188 
net_timestamp_set(struct sk_buff * skb)2189 static inline void net_timestamp_set(struct sk_buff *skb)
2190 {
2191 	skb->tstamp = 0;
2192 	if (static_branch_unlikely(&netstamp_needed_key))
2193 		__net_timestamp(skb);
2194 }
2195 
2196 #define net_timestamp_check(COND, SKB)				\
2197 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2198 		if ((COND) && !(SKB)->tstamp)			\
2199 			__net_timestamp(SKB);			\
2200 	}							\
2201 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2202 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2203 {
2204 	unsigned int len;
2205 
2206 	if (!(dev->flags & IFF_UP))
2207 		return false;
2208 
2209 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2210 	if (skb->len <= len)
2211 		return true;
2212 
2213 	/* if TSO is enabled, we don't care about the length as the packet
2214 	 * could be forwarded without being segmented before
2215 	 */
2216 	if (skb_is_gso(skb))
2217 		return true;
2218 
2219 	return false;
2220 }
2221 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2222 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2223 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 	int ret = ____dev_forward_skb(dev, skb);
2226 
2227 	if (likely(!ret)) {
2228 		skb->protocol = eth_type_trans(skb, dev);
2229 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2230 	}
2231 
2232 	return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2235 
2236 /**
2237  * dev_forward_skb - loopback an skb to another netif
2238  *
2239  * @dev: destination network device
2240  * @skb: buffer to forward
2241  *
2242  * return values:
2243  *	NET_RX_SUCCESS	(no congestion)
2244  *	NET_RX_DROP     (packet was dropped, but freed)
2245  *
2246  * dev_forward_skb can be used for injecting an skb from the
2247  * start_xmit function of one device into the receive queue
2248  * of another device.
2249  *
2250  * The receiving device may be in another namespace, so
2251  * we have to clear all information in the skb that could
2252  * impact namespace isolation.
2253  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2254 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2255 {
2256 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2257 }
2258 EXPORT_SYMBOL_GPL(dev_forward_skb);
2259 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2260 static inline int deliver_skb(struct sk_buff *skb,
2261 			      struct packet_type *pt_prev,
2262 			      struct net_device *orig_dev)
2263 {
2264 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2265 		return -ENOMEM;
2266 	refcount_inc(&skb->users);
2267 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2268 }
2269 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2270 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2271 					  struct packet_type **pt,
2272 					  struct net_device *orig_dev,
2273 					  __be16 type,
2274 					  struct list_head *ptype_list)
2275 {
2276 	struct packet_type *ptype, *pt_prev = *pt;
2277 
2278 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2279 		if (ptype->type != type)
2280 			continue;
2281 		if (pt_prev)
2282 			deliver_skb(skb, pt_prev, orig_dev);
2283 		pt_prev = ptype;
2284 	}
2285 	*pt = pt_prev;
2286 }
2287 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2288 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2289 {
2290 	if (!ptype->af_packet_priv || !skb->sk)
2291 		return false;
2292 
2293 	if (ptype->id_match)
2294 		return ptype->id_match(ptype, skb->sk);
2295 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2296 		return true;
2297 
2298 	return false;
2299 }
2300 
2301 /**
2302  * dev_nit_active - return true if any network interface taps are in use
2303  *
2304  * @dev: network device to check for the presence of taps
2305  */
dev_nit_active(struct net_device * dev)2306 bool dev_nit_active(struct net_device *dev)
2307 {
2308 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2309 }
2310 EXPORT_SYMBOL_GPL(dev_nit_active);
2311 
2312 /*
2313  *	Support routine. Sends outgoing frames to any network
2314  *	taps currently in use.
2315  */
2316 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2317 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2318 {
2319 	struct packet_type *ptype;
2320 	struct sk_buff *skb2 = NULL;
2321 	struct packet_type *pt_prev = NULL;
2322 	struct list_head *ptype_list = &ptype_all;
2323 
2324 	rcu_read_lock();
2325 again:
2326 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2327 		if (ptype->ignore_outgoing)
2328 			continue;
2329 
2330 		/* Never send packets back to the socket
2331 		 * they originated from - MvS (miquels@drinkel.ow.org)
2332 		 */
2333 		if (skb_loop_sk(ptype, skb))
2334 			continue;
2335 
2336 		if (pt_prev) {
2337 			deliver_skb(skb2, pt_prev, skb->dev);
2338 			pt_prev = ptype;
2339 			continue;
2340 		}
2341 
2342 		/* need to clone skb, done only once */
2343 		skb2 = skb_clone(skb, GFP_ATOMIC);
2344 		if (!skb2)
2345 			goto out_unlock;
2346 
2347 		net_timestamp_set(skb2);
2348 
2349 		/* skb->nh should be correctly
2350 		 * set by sender, so that the second statement is
2351 		 * just protection against buggy protocols.
2352 		 */
2353 		skb_reset_mac_header(skb2);
2354 
2355 		if (skb_network_header(skb2) < skb2->data ||
2356 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2357 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2358 					     ntohs(skb2->protocol),
2359 					     dev->name);
2360 			skb_reset_network_header(skb2);
2361 		}
2362 
2363 		skb2->transport_header = skb2->network_header;
2364 		skb2->pkt_type = PACKET_OUTGOING;
2365 		pt_prev = ptype;
2366 	}
2367 
2368 	if (ptype_list == &ptype_all) {
2369 		ptype_list = &dev->ptype_all;
2370 		goto again;
2371 	}
2372 out_unlock:
2373 	if (pt_prev) {
2374 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2375 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2376 		else
2377 			kfree_skb(skb2);
2378 	}
2379 	rcu_read_unlock();
2380 }
2381 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2382 
2383 /**
2384  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2385  * @dev: Network device
2386  * @txq: number of queues available
2387  *
2388  * If real_num_tx_queues is changed the tc mappings may no longer be
2389  * valid. To resolve this verify the tc mapping remains valid and if
2390  * not NULL the mapping. With no priorities mapping to this
2391  * offset/count pair it will no longer be used. In the worst case TC0
2392  * is invalid nothing can be done so disable priority mappings. If is
2393  * expected that drivers will fix this mapping if they can before
2394  * calling netif_set_real_num_tx_queues.
2395  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2396 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2397 {
2398 	int i;
2399 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2400 
2401 	/* If TC0 is invalidated disable TC mapping */
2402 	if (tc->offset + tc->count > txq) {
2403 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2404 		dev->num_tc = 0;
2405 		return;
2406 	}
2407 
2408 	/* Invalidated prio to tc mappings set to TC0 */
2409 	for (i = 1; i < TC_BITMASK + 1; i++) {
2410 		int q = netdev_get_prio_tc_map(dev, i);
2411 
2412 		tc = &dev->tc_to_txq[q];
2413 		if (tc->offset + tc->count > txq) {
2414 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2415 				i, q);
2416 			netdev_set_prio_tc_map(dev, i, 0);
2417 		}
2418 	}
2419 }
2420 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2421 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2422 {
2423 	if (dev->num_tc) {
2424 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2425 		int i;
2426 
2427 		/* walk through the TCs and see if it falls into any of them */
2428 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2429 			if ((txq - tc->offset) < tc->count)
2430 				return i;
2431 		}
2432 
2433 		/* didn't find it, just return -1 to indicate no match */
2434 		return -1;
2435 	}
2436 
2437 	return 0;
2438 }
2439 EXPORT_SYMBOL(netdev_txq_to_tc);
2440 
2441 #ifdef CONFIG_XPS
2442 struct static_key xps_needed __read_mostly;
2443 EXPORT_SYMBOL(xps_needed);
2444 struct static_key xps_rxqs_needed __read_mostly;
2445 EXPORT_SYMBOL(xps_rxqs_needed);
2446 static DEFINE_MUTEX(xps_map_mutex);
2447 #define xmap_dereference(P)		\
2448 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2449 
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2450 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2451 			     int tci, u16 index)
2452 {
2453 	struct xps_map *map = NULL;
2454 	int pos;
2455 
2456 	if (dev_maps)
2457 		map = xmap_dereference(dev_maps->attr_map[tci]);
2458 	if (!map)
2459 		return false;
2460 
2461 	for (pos = map->len; pos--;) {
2462 		if (map->queues[pos] != index)
2463 			continue;
2464 
2465 		if (map->len > 1) {
2466 			map->queues[pos] = map->queues[--map->len];
2467 			break;
2468 		}
2469 
2470 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2471 		kfree_rcu(map, rcu);
2472 		return false;
2473 	}
2474 
2475 	return true;
2476 }
2477 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2478 static bool remove_xps_queue_cpu(struct net_device *dev,
2479 				 struct xps_dev_maps *dev_maps,
2480 				 int cpu, u16 offset, u16 count)
2481 {
2482 	int num_tc = dev->num_tc ? : 1;
2483 	bool active = false;
2484 	int tci;
2485 
2486 	for (tci = cpu * num_tc; num_tc--; tci++) {
2487 		int i, j;
2488 
2489 		for (i = count, j = offset; i--; j++) {
2490 			if (!remove_xps_queue(dev_maps, tci, j))
2491 				break;
2492 		}
2493 
2494 		active |= i < 0;
2495 	}
2496 
2497 	return active;
2498 }
2499 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2500 static void reset_xps_maps(struct net_device *dev,
2501 			   struct xps_dev_maps *dev_maps,
2502 			   bool is_rxqs_map)
2503 {
2504 	if (is_rxqs_map) {
2505 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2506 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2507 	} else {
2508 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2509 	}
2510 	static_key_slow_dec_cpuslocked(&xps_needed);
2511 	kfree_rcu(dev_maps, rcu);
2512 }
2513 
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2514 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2515 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2516 			   u16 offset, u16 count, bool is_rxqs_map)
2517 {
2518 	bool active = false;
2519 	int i, j;
2520 
2521 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2522 	     j < nr_ids;)
2523 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2524 					       count);
2525 	if (!active)
2526 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2527 
2528 	if (!is_rxqs_map) {
2529 		for (i = offset + (count - 1); count--; i--) {
2530 			netdev_queue_numa_node_write(
2531 				netdev_get_tx_queue(dev, i),
2532 				NUMA_NO_NODE);
2533 		}
2534 	}
2535 }
2536 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2537 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2538 				   u16 count)
2539 {
2540 	const unsigned long *possible_mask = NULL;
2541 	struct xps_dev_maps *dev_maps;
2542 	unsigned int nr_ids;
2543 
2544 	if (!static_key_false(&xps_needed))
2545 		return;
2546 
2547 	cpus_read_lock();
2548 	mutex_lock(&xps_map_mutex);
2549 
2550 	if (static_key_false(&xps_rxqs_needed)) {
2551 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2552 		if (dev_maps) {
2553 			nr_ids = dev->num_rx_queues;
2554 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2555 				       offset, count, true);
2556 		}
2557 	}
2558 
2559 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2560 	if (!dev_maps)
2561 		goto out_no_maps;
2562 
2563 	if (num_possible_cpus() > 1)
2564 		possible_mask = cpumask_bits(cpu_possible_mask);
2565 	nr_ids = nr_cpu_ids;
2566 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2567 		       false);
2568 
2569 out_no_maps:
2570 	mutex_unlock(&xps_map_mutex);
2571 	cpus_read_unlock();
2572 }
2573 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2574 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2575 {
2576 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2577 }
2578 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2579 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2580 				      u16 index, bool is_rxqs_map)
2581 {
2582 	struct xps_map *new_map;
2583 	int alloc_len = XPS_MIN_MAP_ALLOC;
2584 	int i, pos;
2585 
2586 	for (pos = 0; map && pos < map->len; pos++) {
2587 		if (map->queues[pos] != index)
2588 			continue;
2589 		return map;
2590 	}
2591 
2592 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2593 	if (map) {
2594 		if (pos < map->alloc_len)
2595 			return map;
2596 
2597 		alloc_len = map->alloc_len * 2;
2598 	}
2599 
2600 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2601 	 *  map
2602 	 */
2603 	if (is_rxqs_map)
2604 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2605 	else
2606 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2607 				       cpu_to_node(attr_index));
2608 	if (!new_map)
2609 		return NULL;
2610 
2611 	for (i = 0; i < pos; i++)
2612 		new_map->queues[i] = map->queues[i];
2613 	new_map->alloc_len = alloc_len;
2614 	new_map->len = pos;
2615 
2616 	return new_map;
2617 }
2618 
2619 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2620 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2621 			  u16 index, bool is_rxqs_map)
2622 {
2623 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2624 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2625 	int i, j, tci, numa_node_id = -2;
2626 	int maps_sz, num_tc = 1, tc = 0;
2627 	struct xps_map *map, *new_map;
2628 	bool active = false;
2629 	unsigned int nr_ids;
2630 
2631 	if (dev->num_tc) {
2632 		/* Do not allow XPS on subordinate device directly */
2633 		num_tc = dev->num_tc;
2634 		if (num_tc < 0)
2635 			return -EINVAL;
2636 
2637 		/* If queue belongs to subordinate dev use its map */
2638 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2639 
2640 		tc = netdev_txq_to_tc(dev, index);
2641 		if (tc < 0)
2642 			return -EINVAL;
2643 	}
2644 
2645 	mutex_lock(&xps_map_mutex);
2646 	if (is_rxqs_map) {
2647 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2648 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2649 		nr_ids = dev->num_rx_queues;
2650 	} else {
2651 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2652 		if (num_possible_cpus() > 1) {
2653 			online_mask = cpumask_bits(cpu_online_mask);
2654 			possible_mask = cpumask_bits(cpu_possible_mask);
2655 		}
2656 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2657 		nr_ids = nr_cpu_ids;
2658 	}
2659 
2660 	if (maps_sz < L1_CACHE_BYTES)
2661 		maps_sz = L1_CACHE_BYTES;
2662 
2663 	/* allocate memory for queue storage */
2664 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2665 	     j < nr_ids;) {
2666 		if (!new_dev_maps)
2667 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2668 		if (!new_dev_maps) {
2669 			mutex_unlock(&xps_map_mutex);
2670 			return -ENOMEM;
2671 		}
2672 
2673 		tci = j * num_tc + tc;
2674 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2675 				 NULL;
2676 
2677 		map = expand_xps_map(map, j, index, is_rxqs_map);
2678 		if (!map)
2679 			goto error;
2680 
2681 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2682 	}
2683 
2684 	if (!new_dev_maps)
2685 		goto out_no_new_maps;
2686 
2687 	if (!dev_maps) {
2688 		/* Increment static keys at most once per type */
2689 		static_key_slow_inc_cpuslocked(&xps_needed);
2690 		if (is_rxqs_map)
2691 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2692 	}
2693 
2694 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2695 	     j < nr_ids;) {
2696 		/* copy maps belonging to foreign traffic classes */
2697 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2698 			/* fill in the new device map from the old device map */
2699 			map = xmap_dereference(dev_maps->attr_map[tci]);
2700 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2701 		}
2702 
2703 		/* We need to explicitly update tci as prevous loop
2704 		 * could break out early if dev_maps is NULL.
2705 		 */
2706 		tci = j * num_tc + tc;
2707 
2708 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2709 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2710 			/* add tx-queue to CPU/rx-queue maps */
2711 			int pos = 0;
2712 
2713 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 			while ((pos < map->len) && (map->queues[pos] != index))
2715 				pos++;
2716 
2717 			if (pos == map->len)
2718 				map->queues[map->len++] = index;
2719 #ifdef CONFIG_NUMA
2720 			if (!is_rxqs_map) {
2721 				if (numa_node_id == -2)
2722 					numa_node_id = cpu_to_node(j);
2723 				else if (numa_node_id != cpu_to_node(j))
2724 					numa_node_id = -1;
2725 			}
2726 #endif
2727 		} else if (dev_maps) {
2728 			/* fill in the new device map from the old device map */
2729 			map = xmap_dereference(dev_maps->attr_map[tci]);
2730 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731 		}
2732 
2733 		/* copy maps belonging to foreign traffic classes */
2734 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2735 			/* fill in the new device map from the old device map */
2736 			map = xmap_dereference(dev_maps->attr_map[tci]);
2737 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2738 		}
2739 	}
2740 
2741 	if (is_rxqs_map)
2742 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2743 	else
2744 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2745 
2746 	/* Cleanup old maps */
2747 	if (!dev_maps)
2748 		goto out_no_old_maps;
2749 
2750 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2751 	     j < nr_ids;) {
2752 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2753 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2754 			map = xmap_dereference(dev_maps->attr_map[tci]);
2755 			if (map && map != new_map)
2756 				kfree_rcu(map, rcu);
2757 		}
2758 	}
2759 
2760 	kfree_rcu(dev_maps, rcu);
2761 
2762 out_no_old_maps:
2763 	dev_maps = new_dev_maps;
2764 	active = true;
2765 
2766 out_no_new_maps:
2767 	if (!is_rxqs_map) {
2768 		/* update Tx queue numa node */
2769 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2770 					     (numa_node_id >= 0) ?
2771 					     numa_node_id : NUMA_NO_NODE);
2772 	}
2773 
2774 	if (!dev_maps)
2775 		goto out_no_maps;
2776 
2777 	/* removes tx-queue from unused CPUs/rx-queues */
2778 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2779 	     j < nr_ids;) {
2780 		for (i = tc, tci = j * num_tc; i--; tci++)
2781 			active |= remove_xps_queue(dev_maps, tci, index);
2782 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2783 		    !netif_attr_test_online(j, online_mask, nr_ids))
2784 			active |= remove_xps_queue(dev_maps, tci, index);
2785 		for (i = num_tc - tc, tci++; --i; tci++)
2786 			active |= remove_xps_queue(dev_maps, tci, index);
2787 	}
2788 
2789 	/* free map if not active */
2790 	if (!active)
2791 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2792 
2793 out_no_maps:
2794 	mutex_unlock(&xps_map_mutex);
2795 
2796 	return 0;
2797 error:
2798 	/* remove any maps that we added */
2799 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2800 	     j < nr_ids;) {
2801 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2802 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2803 			map = dev_maps ?
2804 			      xmap_dereference(dev_maps->attr_map[tci]) :
2805 			      NULL;
2806 			if (new_map && new_map != map)
2807 				kfree(new_map);
2808 		}
2809 	}
2810 
2811 	mutex_unlock(&xps_map_mutex);
2812 
2813 	kfree(new_dev_maps);
2814 	return -ENOMEM;
2815 }
2816 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2817 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2818 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2819 			u16 index)
2820 {
2821 	int ret;
2822 
2823 	cpus_read_lock();
2824 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2825 	cpus_read_unlock();
2826 
2827 	return ret;
2828 }
2829 EXPORT_SYMBOL(netif_set_xps_queue);
2830 
2831 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2832 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2833 {
2834 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835 
2836 	/* Unbind any subordinate channels */
2837 	while (txq-- != &dev->_tx[0]) {
2838 		if (txq->sb_dev)
2839 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2840 	}
2841 }
2842 
netdev_reset_tc(struct net_device * dev)2843 void netdev_reset_tc(struct net_device *dev)
2844 {
2845 #ifdef CONFIG_XPS
2846 	netif_reset_xps_queues_gt(dev, 0);
2847 #endif
2848 	netdev_unbind_all_sb_channels(dev);
2849 
2850 	/* Reset TC configuration of device */
2851 	dev->num_tc = 0;
2852 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2853 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2854 }
2855 EXPORT_SYMBOL(netdev_reset_tc);
2856 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2857 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2858 {
2859 	if (tc >= dev->num_tc)
2860 		return -EINVAL;
2861 
2862 #ifdef CONFIG_XPS
2863 	netif_reset_xps_queues(dev, offset, count);
2864 #endif
2865 	dev->tc_to_txq[tc].count = count;
2866 	dev->tc_to_txq[tc].offset = offset;
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL(netdev_set_tc_queue);
2870 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2871 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2872 {
2873 	if (num_tc > TC_MAX_QUEUE)
2874 		return -EINVAL;
2875 
2876 #ifdef CONFIG_XPS
2877 	netif_reset_xps_queues_gt(dev, 0);
2878 #endif
2879 	netdev_unbind_all_sb_channels(dev);
2880 
2881 	dev->num_tc = num_tc;
2882 	return 0;
2883 }
2884 EXPORT_SYMBOL(netdev_set_num_tc);
2885 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2886 void netdev_unbind_sb_channel(struct net_device *dev,
2887 			      struct net_device *sb_dev)
2888 {
2889 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2890 
2891 #ifdef CONFIG_XPS
2892 	netif_reset_xps_queues_gt(sb_dev, 0);
2893 #endif
2894 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2895 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2896 
2897 	while (txq-- != &dev->_tx[0]) {
2898 		if (txq->sb_dev == sb_dev)
2899 			txq->sb_dev = NULL;
2900 	}
2901 }
2902 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2903 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2904 int netdev_bind_sb_channel_queue(struct net_device *dev,
2905 				 struct net_device *sb_dev,
2906 				 u8 tc, u16 count, u16 offset)
2907 {
2908 	/* Make certain the sb_dev and dev are already configured */
2909 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2910 		return -EINVAL;
2911 
2912 	/* We cannot hand out queues we don't have */
2913 	if ((offset + count) > dev->real_num_tx_queues)
2914 		return -EINVAL;
2915 
2916 	/* Record the mapping */
2917 	sb_dev->tc_to_txq[tc].count = count;
2918 	sb_dev->tc_to_txq[tc].offset = offset;
2919 
2920 	/* Provide a way for Tx queue to find the tc_to_txq map or
2921 	 * XPS map for itself.
2922 	 */
2923 	while (count--)
2924 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2925 
2926 	return 0;
2927 }
2928 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2929 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2930 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2931 {
2932 	/* Do not use a multiqueue device to represent a subordinate channel */
2933 	if (netif_is_multiqueue(dev))
2934 		return -ENODEV;
2935 
2936 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2937 	 * Channel 0 is meant to be "native" mode and used only to represent
2938 	 * the main root device. We allow writing 0 to reset the device back
2939 	 * to normal mode after being used as a subordinate channel.
2940 	 */
2941 	if (channel > S16_MAX)
2942 		return -EINVAL;
2943 
2944 	dev->num_tc = -channel;
2945 
2946 	return 0;
2947 }
2948 EXPORT_SYMBOL(netdev_set_sb_channel);
2949 
2950 /*
2951  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2952  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2953  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2954 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2955 {
2956 	bool disabling;
2957 	int rc;
2958 
2959 	disabling = txq < dev->real_num_tx_queues;
2960 
2961 	if (txq < 1 || txq > dev->num_tx_queues)
2962 		return -EINVAL;
2963 
2964 	if (dev->reg_state == NETREG_REGISTERED ||
2965 	    dev->reg_state == NETREG_UNREGISTERING) {
2966 		ASSERT_RTNL();
2967 
2968 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2969 						  txq);
2970 		if (rc)
2971 			return rc;
2972 
2973 		if (dev->num_tc)
2974 			netif_setup_tc(dev, txq);
2975 
2976 		dev_qdisc_change_real_num_tx(dev, txq);
2977 
2978 		dev->real_num_tx_queues = txq;
2979 
2980 		if (disabling) {
2981 			synchronize_net();
2982 			qdisc_reset_all_tx_gt(dev, txq);
2983 #ifdef CONFIG_XPS
2984 			netif_reset_xps_queues_gt(dev, txq);
2985 #endif
2986 		}
2987 	} else {
2988 		dev->real_num_tx_queues = txq;
2989 	}
2990 
2991 	return 0;
2992 }
2993 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2994 
2995 #ifdef CONFIG_SYSFS
2996 /**
2997  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2998  *	@dev: Network device
2999  *	@rxq: Actual number of RX queues
3000  *
3001  *	This must be called either with the rtnl_lock held or before
3002  *	registration of the net device.  Returns 0 on success, or a
3003  *	negative error code.  If called before registration, it always
3004  *	succeeds.
3005  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3006 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3007 {
3008 	int rc;
3009 
3010 	if (rxq < 1 || rxq > dev->num_rx_queues)
3011 		return -EINVAL;
3012 
3013 	if (dev->reg_state == NETREG_REGISTERED) {
3014 		ASSERT_RTNL();
3015 
3016 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3017 						  rxq);
3018 		if (rc)
3019 			return rc;
3020 	}
3021 
3022 	dev->real_num_rx_queues = rxq;
3023 	return 0;
3024 }
3025 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3026 #endif
3027 
3028 /**
3029  * netif_get_num_default_rss_queues - default number of RSS queues
3030  *
3031  * This routine should set an upper limit on the number of RSS queues
3032  * used by default by multiqueue devices.
3033  */
netif_get_num_default_rss_queues(void)3034 int netif_get_num_default_rss_queues(void)
3035 {
3036 	return is_kdump_kernel() ?
3037 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3038 }
3039 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3040 
__netif_reschedule(struct Qdisc * q)3041 static void __netif_reschedule(struct Qdisc *q)
3042 {
3043 	struct softnet_data *sd;
3044 	unsigned long flags;
3045 
3046 	local_irq_save(flags);
3047 	sd = this_cpu_ptr(&softnet_data);
3048 	q->next_sched = NULL;
3049 	*sd->output_queue_tailp = q;
3050 	sd->output_queue_tailp = &q->next_sched;
3051 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3052 	local_irq_restore(flags);
3053 }
3054 
__netif_schedule(struct Qdisc * q)3055 void __netif_schedule(struct Qdisc *q)
3056 {
3057 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3058 		__netif_reschedule(q);
3059 }
3060 EXPORT_SYMBOL(__netif_schedule);
3061 
3062 struct dev_kfree_skb_cb {
3063 	enum skb_free_reason reason;
3064 };
3065 
get_kfree_skb_cb(const struct sk_buff * skb)3066 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3067 {
3068 	return (struct dev_kfree_skb_cb *)skb->cb;
3069 }
3070 
netif_schedule_queue(struct netdev_queue * txq)3071 void netif_schedule_queue(struct netdev_queue *txq)
3072 {
3073 	rcu_read_lock();
3074 	if (!netif_xmit_stopped(txq)) {
3075 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3076 
3077 		__netif_schedule(q);
3078 	}
3079 	rcu_read_unlock();
3080 }
3081 EXPORT_SYMBOL(netif_schedule_queue);
3082 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3083 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3084 {
3085 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3086 		struct Qdisc *q;
3087 
3088 		rcu_read_lock();
3089 		q = rcu_dereference(dev_queue->qdisc);
3090 		__netif_schedule(q);
3091 		rcu_read_unlock();
3092 	}
3093 }
3094 EXPORT_SYMBOL(netif_tx_wake_queue);
3095 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3096 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3097 {
3098 	unsigned long flags;
3099 
3100 	if (unlikely(!skb))
3101 		return;
3102 
3103 	if (likely(refcount_read(&skb->users) == 1)) {
3104 		smp_rmb();
3105 		refcount_set(&skb->users, 0);
3106 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3107 		return;
3108 	}
3109 	get_kfree_skb_cb(skb)->reason = reason;
3110 	local_irq_save(flags);
3111 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3112 	__this_cpu_write(softnet_data.completion_queue, skb);
3113 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3114 	local_irq_restore(flags);
3115 }
3116 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3117 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3118 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3119 {
3120 	if (in_irq() || irqs_disabled())
3121 		__dev_kfree_skb_irq(skb, reason);
3122 	else
3123 		dev_kfree_skb(skb);
3124 }
3125 EXPORT_SYMBOL(__dev_kfree_skb_any);
3126 
3127 
3128 /**
3129  * netif_device_detach - mark device as removed
3130  * @dev: network device
3131  *
3132  * Mark device as removed from system and therefore no longer available.
3133  */
netif_device_detach(struct net_device * dev)3134 void netif_device_detach(struct net_device *dev)
3135 {
3136 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3137 	    netif_running(dev)) {
3138 		netif_tx_stop_all_queues(dev);
3139 	}
3140 }
3141 EXPORT_SYMBOL(netif_device_detach);
3142 
3143 /**
3144  * netif_device_attach - mark device as attached
3145  * @dev: network device
3146  *
3147  * Mark device as attached from system and restart if needed.
3148  */
netif_device_attach(struct net_device * dev)3149 void netif_device_attach(struct net_device *dev)
3150 {
3151 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3152 	    netif_running(dev)) {
3153 		netif_tx_wake_all_queues(dev);
3154 		__netdev_watchdog_up(dev);
3155 	}
3156 }
3157 EXPORT_SYMBOL(netif_device_attach);
3158 
3159 /*
3160  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3161  * to be used as a distribution range.
3162  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3163 static u16 skb_tx_hash(const struct net_device *dev,
3164 		       const struct net_device *sb_dev,
3165 		       struct sk_buff *skb)
3166 {
3167 	u32 hash;
3168 	u16 qoffset = 0;
3169 	u16 qcount = dev->real_num_tx_queues;
3170 
3171 	if (dev->num_tc) {
3172 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3173 
3174 		qoffset = sb_dev->tc_to_txq[tc].offset;
3175 		qcount = sb_dev->tc_to_txq[tc].count;
3176 		if (unlikely(!qcount)) {
3177 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3178 					     sb_dev->name, qoffset, tc);
3179 			qoffset = 0;
3180 			qcount = dev->real_num_tx_queues;
3181 		}
3182 	}
3183 
3184 	if (skb_rx_queue_recorded(skb)) {
3185 		hash = skb_get_rx_queue(skb);
3186 		if (hash >= qoffset)
3187 			hash -= qoffset;
3188 		while (unlikely(hash >= qcount))
3189 			hash -= qcount;
3190 		return hash + qoffset;
3191 	}
3192 
3193 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3194 }
3195 
skb_warn_bad_offload(const struct sk_buff * skb)3196 static void skb_warn_bad_offload(const struct sk_buff *skb)
3197 {
3198 	static const netdev_features_t null_features;
3199 	struct net_device *dev = skb->dev;
3200 	const char *name = "";
3201 
3202 	if (!net_ratelimit())
3203 		return;
3204 
3205 	if (dev) {
3206 		if (dev->dev.parent)
3207 			name = dev_driver_string(dev->dev.parent);
3208 		else
3209 			name = netdev_name(dev);
3210 	}
3211 	skb_dump(KERN_WARNING, skb, false);
3212 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3213 	     name, dev ? &dev->features : &null_features,
3214 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3215 }
3216 
3217 /*
3218  * Invalidate hardware checksum when packet is to be mangled, and
3219  * complete checksum manually on outgoing path.
3220  */
skb_checksum_help(struct sk_buff * skb)3221 int skb_checksum_help(struct sk_buff *skb)
3222 {
3223 	__wsum csum;
3224 	int ret = 0, offset;
3225 
3226 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3227 		goto out_set_summed;
3228 
3229 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3230 		skb_warn_bad_offload(skb);
3231 		return -EINVAL;
3232 	}
3233 
3234 	/* Before computing a checksum, we should make sure no frag could
3235 	 * be modified by an external entity : checksum could be wrong.
3236 	 */
3237 	if (skb_has_shared_frag(skb)) {
3238 		ret = __skb_linearize(skb);
3239 		if (ret)
3240 			goto out;
3241 	}
3242 
3243 	offset = skb_checksum_start_offset(skb);
3244 	BUG_ON(offset >= skb_headlen(skb));
3245 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3246 
3247 	offset += skb->csum_offset;
3248 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3249 
3250 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3251 	if (ret)
3252 		goto out;
3253 
3254 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3255 out_set_summed:
3256 	skb->ip_summed = CHECKSUM_NONE;
3257 out:
3258 	return ret;
3259 }
3260 EXPORT_SYMBOL(skb_checksum_help);
3261 
skb_crc32c_csum_help(struct sk_buff * skb)3262 int skb_crc32c_csum_help(struct sk_buff *skb)
3263 {
3264 	__le32 crc32c_csum;
3265 	int ret = 0, offset, start;
3266 
3267 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3268 		goto out;
3269 
3270 	if (unlikely(skb_is_gso(skb)))
3271 		goto out;
3272 
3273 	/* Before computing a checksum, we should make sure no frag could
3274 	 * be modified by an external entity : checksum could be wrong.
3275 	 */
3276 	if (unlikely(skb_has_shared_frag(skb))) {
3277 		ret = __skb_linearize(skb);
3278 		if (ret)
3279 			goto out;
3280 	}
3281 	start = skb_checksum_start_offset(skb);
3282 	offset = start + offsetof(struct sctphdr, checksum);
3283 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3284 		ret = -EINVAL;
3285 		goto out;
3286 	}
3287 
3288 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3289 	if (ret)
3290 		goto out;
3291 
3292 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3293 						  skb->len - start, ~(__u32)0,
3294 						  crc32c_csum_stub));
3295 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3296 	skb->ip_summed = CHECKSUM_NONE;
3297 	skb->csum_not_inet = 0;
3298 out:
3299 	return ret;
3300 }
3301 
skb_network_protocol(struct sk_buff * skb,int * depth)3302 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3303 {
3304 	__be16 type = skb->protocol;
3305 
3306 	/* Tunnel gso handlers can set protocol to ethernet. */
3307 	if (type == htons(ETH_P_TEB)) {
3308 		struct ethhdr *eth;
3309 
3310 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3311 			return 0;
3312 
3313 		eth = (struct ethhdr *)skb->data;
3314 		type = eth->h_proto;
3315 	}
3316 
3317 	return __vlan_get_protocol(skb, type, depth);
3318 }
3319 
3320 /**
3321  *	skb_mac_gso_segment - mac layer segmentation handler.
3322  *	@skb: buffer to segment
3323  *	@features: features for the output path (see dev->features)
3324  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3325 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3326 				    netdev_features_t features)
3327 {
3328 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3329 	struct packet_offload *ptype;
3330 	int vlan_depth = skb->mac_len;
3331 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3332 
3333 	if (unlikely(!type))
3334 		return ERR_PTR(-EINVAL);
3335 
3336 	__skb_pull(skb, vlan_depth);
3337 
3338 	rcu_read_lock();
3339 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3340 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3341 			segs = ptype->callbacks.gso_segment(skb, features);
3342 			break;
3343 		}
3344 	}
3345 	rcu_read_unlock();
3346 
3347 	__skb_push(skb, skb->data - skb_mac_header(skb));
3348 
3349 	return segs;
3350 }
3351 EXPORT_SYMBOL(skb_mac_gso_segment);
3352 
3353 
3354 /* openvswitch calls this on rx path, so we need a different check.
3355  */
skb_needs_check(struct sk_buff * skb,bool tx_path)3356 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3357 {
3358 	if (tx_path)
3359 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3360 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3361 
3362 	return skb->ip_summed == CHECKSUM_NONE;
3363 }
3364 
3365 /**
3366  *	__skb_gso_segment - Perform segmentation on skb.
3367  *	@skb: buffer to segment
3368  *	@features: features for the output path (see dev->features)
3369  *	@tx_path: whether it is called in TX path
3370  *
3371  *	This function segments the given skb and returns a list of segments.
3372  *
3373  *	It may return NULL if the skb requires no segmentation.  This is
3374  *	only possible when GSO is used for verifying header integrity.
3375  *
3376  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3377  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3378 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3379 				  netdev_features_t features, bool tx_path)
3380 {
3381 	struct sk_buff *segs;
3382 
3383 	if (unlikely(skb_needs_check(skb, tx_path))) {
3384 		int err;
3385 
3386 		/* We're going to init ->check field in TCP or UDP header */
3387 		err = skb_cow_head(skb, 0);
3388 		if (err < 0)
3389 			return ERR_PTR(err);
3390 	}
3391 
3392 	/* Only report GSO partial support if it will enable us to
3393 	 * support segmentation on this frame without needing additional
3394 	 * work.
3395 	 */
3396 	if (features & NETIF_F_GSO_PARTIAL) {
3397 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3398 		struct net_device *dev = skb->dev;
3399 
3400 		partial_features |= dev->features & dev->gso_partial_features;
3401 		if (!skb_gso_ok(skb, features | partial_features))
3402 			features &= ~NETIF_F_GSO_PARTIAL;
3403 	}
3404 
3405 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3406 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3407 
3408 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3409 	SKB_GSO_CB(skb)->encap_level = 0;
3410 
3411 	skb_reset_mac_header(skb);
3412 	skb_reset_mac_len(skb);
3413 
3414 	segs = skb_mac_gso_segment(skb, features);
3415 
3416 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3417 		skb_warn_bad_offload(skb);
3418 
3419 	return segs;
3420 }
3421 EXPORT_SYMBOL(__skb_gso_segment);
3422 
3423 /* Take action when hardware reception checksum errors are detected. */
3424 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3425 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3426 {
3427 	if (net_ratelimit()) {
3428 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3429 		skb_dump(KERN_ERR, skb, true);
3430 		dump_stack();
3431 	}
3432 }
3433 EXPORT_SYMBOL(netdev_rx_csum_fault);
3434 #endif
3435 
3436 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3437 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3438 {
3439 #ifdef CONFIG_HIGHMEM
3440 	int i;
3441 
3442 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3443 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3444 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3445 
3446 			if (PageHighMem(skb_frag_page(frag)))
3447 				return 1;
3448 		}
3449 	}
3450 #endif
3451 	return 0;
3452 }
3453 
3454 /* If MPLS offload request, verify we are testing hardware MPLS features
3455  * instead of standard features for the netdev.
3456  */
3457 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3458 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3459 					   netdev_features_t features,
3460 					   __be16 type)
3461 {
3462 	if (eth_p_mpls(type))
3463 		features &= skb->dev->mpls_features;
3464 
3465 	return features;
3466 }
3467 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3468 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3469 					   netdev_features_t features,
3470 					   __be16 type)
3471 {
3472 	return features;
3473 }
3474 #endif
3475 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3476 static netdev_features_t harmonize_features(struct sk_buff *skb,
3477 	netdev_features_t features)
3478 {
3479 	__be16 type;
3480 
3481 	type = skb_network_protocol(skb, NULL);
3482 	features = net_mpls_features(skb, features, type);
3483 
3484 	if (skb->ip_summed != CHECKSUM_NONE &&
3485 	    !can_checksum_protocol(features, type)) {
3486 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3487 	}
3488 	if (illegal_highdma(skb->dev, skb))
3489 		features &= ~NETIF_F_SG;
3490 
3491 	return features;
3492 }
3493 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3494 netdev_features_t passthru_features_check(struct sk_buff *skb,
3495 					  struct net_device *dev,
3496 					  netdev_features_t features)
3497 {
3498 	return features;
3499 }
3500 EXPORT_SYMBOL(passthru_features_check);
3501 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3502 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3503 					     struct net_device *dev,
3504 					     netdev_features_t features)
3505 {
3506 	return vlan_features_check(skb, features);
3507 }
3508 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3509 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3510 					    struct net_device *dev,
3511 					    netdev_features_t features)
3512 {
3513 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3514 
3515 	if (gso_segs > dev->gso_max_segs)
3516 		return features & ~NETIF_F_GSO_MASK;
3517 
3518 	/* Support for GSO partial features requires software
3519 	 * intervention before we can actually process the packets
3520 	 * so we need to strip support for any partial features now
3521 	 * and we can pull them back in after we have partially
3522 	 * segmented the frame.
3523 	 */
3524 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3525 		features &= ~dev->gso_partial_features;
3526 
3527 	/* Make sure to clear the IPv4 ID mangling feature if the
3528 	 * IPv4 header has the potential to be fragmented.
3529 	 */
3530 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3531 		struct iphdr *iph = skb->encapsulation ?
3532 				    inner_ip_hdr(skb) : ip_hdr(skb);
3533 
3534 		if (!(iph->frag_off & htons(IP_DF)))
3535 			features &= ~NETIF_F_TSO_MANGLEID;
3536 	}
3537 
3538 	return features;
3539 }
3540 
netif_skb_features(struct sk_buff * skb)3541 netdev_features_t netif_skb_features(struct sk_buff *skb)
3542 {
3543 	struct net_device *dev = skb->dev;
3544 	netdev_features_t features = dev->features;
3545 
3546 	if (skb_is_gso(skb))
3547 		features = gso_features_check(skb, dev, features);
3548 
3549 	/* If encapsulation offload request, verify we are testing
3550 	 * hardware encapsulation features instead of standard
3551 	 * features for the netdev
3552 	 */
3553 	if (skb->encapsulation)
3554 		features &= dev->hw_enc_features;
3555 
3556 	if (skb_vlan_tagged(skb))
3557 		features = netdev_intersect_features(features,
3558 						     dev->vlan_features |
3559 						     NETIF_F_HW_VLAN_CTAG_TX |
3560 						     NETIF_F_HW_VLAN_STAG_TX);
3561 
3562 	if (dev->netdev_ops->ndo_features_check)
3563 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3564 								features);
3565 	else
3566 		features &= dflt_features_check(skb, dev, features);
3567 
3568 	return harmonize_features(skb, features);
3569 }
3570 EXPORT_SYMBOL(netif_skb_features);
3571 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3572 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3573 		    struct netdev_queue *txq, bool more)
3574 {
3575 	unsigned int len;
3576 	int rc;
3577 
3578 	if (dev_nit_active(dev))
3579 		dev_queue_xmit_nit(skb, dev);
3580 
3581 	len = skb->len;
3582 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3583 	trace_net_dev_start_xmit(skb, dev);
3584 	rc = netdev_start_xmit(skb, dev, txq, more);
3585 	trace_net_dev_xmit(skb, rc, dev, len);
3586 
3587 	return rc;
3588 }
3589 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3590 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3591 				    struct netdev_queue *txq, int *ret)
3592 {
3593 	struct sk_buff *skb = first;
3594 	int rc = NETDEV_TX_OK;
3595 
3596 	while (skb) {
3597 		struct sk_buff *next = skb->next;
3598 
3599 		skb_mark_not_on_list(skb);
3600 		rc = xmit_one(skb, dev, txq, next != NULL);
3601 		if (unlikely(!dev_xmit_complete(rc))) {
3602 			skb->next = next;
3603 			goto out;
3604 		}
3605 
3606 		skb = next;
3607 		if (netif_tx_queue_stopped(txq) && skb) {
3608 			rc = NETDEV_TX_BUSY;
3609 			break;
3610 		}
3611 	}
3612 
3613 out:
3614 	*ret = rc;
3615 	return skb;
3616 }
3617 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3618 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3619 					  netdev_features_t features)
3620 {
3621 	if (skb_vlan_tag_present(skb) &&
3622 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3623 		skb = __vlan_hwaccel_push_inside(skb);
3624 	return skb;
3625 }
3626 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3627 int skb_csum_hwoffload_help(struct sk_buff *skb,
3628 			    const netdev_features_t features)
3629 {
3630 	if (unlikely(skb->csum_not_inet))
3631 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3632 			skb_crc32c_csum_help(skb);
3633 
3634 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3635 }
3636 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3637 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3638 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3639 {
3640 	netdev_features_t features;
3641 
3642 	features = netif_skb_features(skb);
3643 	skb = validate_xmit_vlan(skb, features);
3644 	if (unlikely(!skb))
3645 		goto out_null;
3646 
3647 	skb = sk_validate_xmit_skb(skb, dev);
3648 	if (unlikely(!skb))
3649 		goto out_null;
3650 
3651 	if (netif_needs_gso(skb, features)) {
3652 		struct sk_buff *segs;
3653 
3654 		segs = skb_gso_segment(skb, features);
3655 		if (IS_ERR(segs)) {
3656 			goto out_kfree_skb;
3657 		} else if (segs) {
3658 			consume_skb(skb);
3659 			skb = segs;
3660 		}
3661 	} else {
3662 		if (skb_needs_linearize(skb, features) &&
3663 		    __skb_linearize(skb))
3664 			goto out_kfree_skb;
3665 
3666 		/* If packet is not checksummed and device does not
3667 		 * support checksumming for this protocol, complete
3668 		 * checksumming here.
3669 		 */
3670 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3671 			if (skb->encapsulation)
3672 				skb_set_inner_transport_header(skb,
3673 							       skb_checksum_start_offset(skb));
3674 			else
3675 				skb_set_transport_header(skb,
3676 							 skb_checksum_start_offset(skb));
3677 			if (skb_csum_hwoffload_help(skb, features))
3678 				goto out_kfree_skb;
3679 		}
3680 	}
3681 
3682 	skb = validate_xmit_xfrm(skb, features, again);
3683 
3684 	return skb;
3685 
3686 out_kfree_skb:
3687 	kfree_skb(skb);
3688 out_null:
3689 	atomic_long_inc(&dev->tx_dropped);
3690 	return NULL;
3691 }
3692 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3693 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3694 {
3695 	struct sk_buff *next, *head = NULL, *tail;
3696 
3697 	for (; skb != NULL; skb = next) {
3698 		next = skb->next;
3699 		skb_mark_not_on_list(skb);
3700 
3701 		/* in case skb wont be segmented, point to itself */
3702 		skb->prev = skb;
3703 
3704 		skb = validate_xmit_skb(skb, dev, again);
3705 		if (!skb)
3706 			continue;
3707 
3708 		if (!head)
3709 			head = skb;
3710 		else
3711 			tail->next = skb;
3712 		/* If skb was segmented, skb->prev points to
3713 		 * the last segment. If not, it still contains skb.
3714 		 */
3715 		tail = skb->prev;
3716 	}
3717 	return head;
3718 }
3719 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3720 
qdisc_pkt_len_init(struct sk_buff * skb)3721 static void qdisc_pkt_len_init(struct sk_buff *skb)
3722 {
3723 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3724 
3725 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3726 
3727 	/* To get more precise estimation of bytes sent on wire,
3728 	 * we add to pkt_len the headers size of all segments
3729 	 */
3730 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3731 		unsigned int hdr_len;
3732 		u16 gso_segs = shinfo->gso_segs;
3733 
3734 		/* mac layer + network layer */
3735 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3736 
3737 		/* + transport layer */
3738 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3739 			const struct tcphdr *th;
3740 			struct tcphdr _tcphdr;
3741 
3742 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3743 						sizeof(_tcphdr), &_tcphdr);
3744 			if (likely(th))
3745 				hdr_len += __tcp_hdrlen(th);
3746 		} else {
3747 			struct udphdr _udphdr;
3748 
3749 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3750 					       sizeof(_udphdr), &_udphdr))
3751 				hdr_len += sizeof(struct udphdr);
3752 		}
3753 
3754 		if (shinfo->gso_type & SKB_GSO_DODGY)
3755 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3756 						shinfo->gso_size);
3757 
3758 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3759 	}
3760 }
3761 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3762 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3763 				 struct net_device *dev,
3764 				 struct netdev_queue *txq)
3765 {
3766 	spinlock_t *root_lock = qdisc_lock(q);
3767 	struct sk_buff *to_free = NULL;
3768 	bool contended;
3769 	int rc;
3770 
3771 	qdisc_calculate_pkt_len(skb, q);
3772 
3773 	if (q->flags & TCQ_F_NOLOCK) {
3774 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3775 		if (likely(!netif_xmit_frozen_or_stopped(txq)))
3776 			qdisc_run(q);
3777 
3778 		if (unlikely(to_free))
3779 			kfree_skb_list(to_free);
3780 		return rc;
3781 	}
3782 
3783 	/*
3784 	 * Heuristic to force contended enqueues to serialize on a
3785 	 * separate lock before trying to get qdisc main lock.
3786 	 * This permits qdisc->running owner to get the lock more
3787 	 * often and dequeue packets faster.
3788 	 */
3789 	contended = qdisc_is_running(q);
3790 	if (unlikely(contended))
3791 		spin_lock(&q->busylock);
3792 
3793 	spin_lock(root_lock);
3794 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3795 		__qdisc_drop(skb, &to_free);
3796 		rc = NET_XMIT_DROP;
3797 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3798 		   qdisc_run_begin(q)) {
3799 		/*
3800 		 * This is a work-conserving queue; there are no old skbs
3801 		 * waiting to be sent out; and the qdisc is not running -
3802 		 * xmit the skb directly.
3803 		 */
3804 
3805 		qdisc_bstats_update(q, skb);
3806 
3807 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3808 			if (unlikely(contended)) {
3809 				spin_unlock(&q->busylock);
3810 				contended = false;
3811 			}
3812 			__qdisc_run(q);
3813 		}
3814 
3815 		qdisc_run_end(q);
3816 		rc = NET_XMIT_SUCCESS;
3817 	} else {
3818 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3819 		if (qdisc_run_begin(q)) {
3820 			if (unlikely(contended)) {
3821 				spin_unlock(&q->busylock);
3822 				contended = false;
3823 			}
3824 			__qdisc_run(q);
3825 			qdisc_run_end(q);
3826 		}
3827 	}
3828 	spin_unlock(root_lock);
3829 	if (unlikely(to_free))
3830 		kfree_skb_list(to_free);
3831 	if (unlikely(contended))
3832 		spin_unlock(&q->busylock);
3833 	return rc;
3834 }
3835 
3836 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3837 static void skb_update_prio(struct sk_buff *skb)
3838 {
3839 	const struct netprio_map *map;
3840 	const struct sock *sk;
3841 	unsigned int prioidx;
3842 
3843 	if (skb->priority)
3844 		return;
3845 	map = rcu_dereference_bh(skb->dev->priomap);
3846 	if (!map)
3847 		return;
3848 	sk = skb_to_full_sk(skb);
3849 	if (!sk)
3850 		return;
3851 
3852 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3853 
3854 	if (prioidx < map->priomap_len)
3855 		skb->priority = map->priomap[prioidx];
3856 }
3857 #else
3858 #define skb_update_prio(skb)
3859 #endif
3860 
3861 /**
3862  *	dev_loopback_xmit - loop back @skb
3863  *	@net: network namespace this loopback is happening in
3864  *	@sk:  sk needed to be a netfilter okfn
3865  *	@skb: buffer to transmit
3866  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3867 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3868 {
3869 	skb_reset_mac_header(skb);
3870 	__skb_pull(skb, skb_network_offset(skb));
3871 	skb->pkt_type = PACKET_LOOPBACK;
3872 	if (skb->ip_summed == CHECKSUM_NONE)
3873 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3874 	WARN_ON(!skb_dst(skb));
3875 	skb_dst_force(skb);
3876 	netif_rx_ni(skb);
3877 	return 0;
3878 }
3879 EXPORT_SYMBOL(dev_loopback_xmit);
3880 
3881 #ifdef CONFIG_NET_EGRESS
3882 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3883 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3884 {
3885 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3886 	struct tcf_result cl_res;
3887 
3888 	if (!miniq)
3889 		return skb;
3890 
3891 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3892 	qdisc_skb_cb(skb)->mru = 0;
3893 	mini_qdisc_bstats_cpu_update(miniq, skb);
3894 
3895 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3896 	case TC_ACT_OK:
3897 	case TC_ACT_RECLASSIFY:
3898 		skb->tc_index = TC_H_MIN(cl_res.classid);
3899 		break;
3900 	case TC_ACT_SHOT:
3901 		mini_qdisc_qstats_cpu_drop(miniq);
3902 		*ret = NET_XMIT_DROP;
3903 		kfree_skb(skb);
3904 		return NULL;
3905 	case TC_ACT_STOLEN:
3906 	case TC_ACT_QUEUED:
3907 	case TC_ACT_TRAP:
3908 		*ret = NET_XMIT_SUCCESS;
3909 		consume_skb(skb);
3910 		return NULL;
3911 	case TC_ACT_REDIRECT:
3912 		/* No need to push/pop skb's mac_header here on egress! */
3913 		skb_do_redirect(skb);
3914 		*ret = NET_XMIT_SUCCESS;
3915 		return NULL;
3916 	default:
3917 		break;
3918 	}
3919 
3920 	return skb;
3921 }
3922 #endif /* CONFIG_NET_EGRESS */
3923 
3924 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3925 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3926 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3927 {
3928 	struct xps_map *map;
3929 	int queue_index = -1;
3930 
3931 	if (dev->num_tc) {
3932 		tci *= dev->num_tc;
3933 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3934 	}
3935 
3936 	map = rcu_dereference(dev_maps->attr_map[tci]);
3937 	if (map) {
3938 		if (map->len == 1)
3939 			queue_index = map->queues[0];
3940 		else
3941 			queue_index = map->queues[reciprocal_scale(
3942 						skb_get_hash(skb), map->len)];
3943 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3944 			queue_index = -1;
3945 	}
3946 	return queue_index;
3947 }
3948 #endif
3949 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3950 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3951 			 struct sk_buff *skb)
3952 {
3953 #ifdef CONFIG_XPS
3954 	struct xps_dev_maps *dev_maps;
3955 	struct sock *sk = skb->sk;
3956 	int queue_index = -1;
3957 
3958 	if (!static_key_false(&xps_needed))
3959 		return -1;
3960 
3961 	rcu_read_lock();
3962 	if (!static_key_false(&xps_rxqs_needed))
3963 		goto get_cpus_map;
3964 
3965 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3966 	if (dev_maps) {
3967 		int tci = sk_rx_queue_get(sk);
3968 
3969 		if (tci >= 0 && tci < dev->num_rx_queues)
3970 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3971 							  tci);
3972 	}
3973 
3974 get_cpus_map:
3975 	if (queue_index < 0) {
3976 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3977 		if (dev_maps) {
3978 			unsigned int tci = skb->sender_cpu - 1;
3979 
3980 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3981 							  tci);
3982 		}
3983 	}
3984 	rcu_read_unlock();
3985 
3986 	return queue_index;
3987 #else
3988 	return -1;
3989 #endif
3990 }
3991 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3992 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3993 		     struct net_device *sb_dev)
3994 {
3995 	return 0;
3996 }
3997 EXPORT_SYMBOL(dev_pick_tx_zero);
3998 
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3999 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4000 		       struct net_device *sb_dev)
4001 {
4002 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4003 }
4004 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4005 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4006 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4007 		     struct net_device *sb_dev)
4008 {
4009 	struct sock *sk = skb->sk;
4010 	int queue_index = sk_tx_queue_get(sk);
4011 
4012 	sb_dev = sb_dev ? : dev;
4013 
4014 	if (queue_index < 0 || skb->ooo_okay ||
4015 	    queue_index >= dev->real_num_tx_queues) {
4016 		int new_index = get_xps_queue(dev, sb_dev, skb);
4017 
4018 		if (new_index < 0)
4019 			new_index = skb_tx_hash(dev, sb_dev, skb);
4020 
4021 		if (queue_index != new_index && sk &&
4022 		    sk_fullsock(sk) &&
4023 		    rcu_access_pointer(sk->sk_dst_cache))
4024 			sk_tx_queue_set(sk, new_index);
4025 
4026 		queue_index = new_index;
4027 	}
4028 
4029 	return queue_index;
4030 }
4031 EXPORT_SYMBOL(netdev_pick_tx);
4032 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4033 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4034 					 struct sk_buff *skb,
4035 					 struct net_device *sb_dev)
4036 {
4037 	int queue_index = 0;
4038 
4039 #ifdef CONFIG_XPS
4040 	u32 sender_cpu = skb->sender_cpu - 1;
4041 
4042 	if (sender_cpu >= (u32)NR_CPUS)
4043 		skb->sender_cpu = raw_smp_processor_id() + 1;
4044 #endif
4045 
4046 	if (dev->real_num_tx_queues != 1) {
4047 		const struct net_device_ops *ops = dev->netdev_ops;
4048 
4049 		if (ops->ndo_select_queue)
4050 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4051 		else
4052 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4053 
4054 		queue_index = netdev_cap_txqueue(dev, queue_index);
4055 	}
4056 
4057 	skb_set_queue_mapping(skb, queue_index);
4058 	return netdev_get_tx_queue(dev, queue_index);
4059 }
4060 
4061 /**
4062  *	__dev_queue_xmit - transmit a buffer
4063  *	@skb: buffer to transmit
4064  *	@sb_dev: suboordinate device used for L2 forwarding offload
4065  *
4066  *	Queue a buffer for transmission to a network device. The caller must
4067  *	have set the device and priority and built the buffer before calling
4068  *	this function. The function can be called from an interrupt.
4069  *
4070  *	A negative errno code is returned on a failure. A success does not
4071  *	guarantee the frame will be transmitted as it may be dropped due
4072  *	to congestion or traffic shaping.
4073  *
4074  * -----------------------------------------------------------------------------------
4075  *      I notice this method can also return errors from the queue disciplines,
4076  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4077  *      be positive.
4078  *
4079  *      Regardless of the return value, the skb is consumed, so it is currently
4080  *      difficult to retry a send to this method.  (You can bump the ref count
4081  *      before sending to hold a reference for retry if you are careful.)
4082  *
4083  *      When calling this method, interrupts MUST be enabled.  This is because
4084  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4085  *          --BLG
4086  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4087 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4088 {
4089 	struct net_device *dev = skb->dev;
4090 	struct netdev_queue *txq;
4091 	struct Qdisc *q;
4092 	int rc = -ENOMEM;
4093 	bool again = false;
4094 
4095 	skb_reset_mac_header(skb);
4096 
4097 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4098 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4099 
4100 	/* Disable soft irqs for various locks below. Also
4101 	 * stops preemption for RCU.
4102 	 */
4103 	rcu_read_lock_bh();
4104 
4105 	skb_update_prio(skb);
4106 
4107 	qdisc_pkt_len_init(skb);
4108 #ifdef CONFIG_NET_CLS_ACT
4109 	skb->tc_at_ingress = 0;
4110 # ifdef CONFIG_NET_EGRESS
4111 	if (static_branch_unlikely(&egress_needed_key)) {
4112 		skb = sch_handle_egress(skb, &rc, dev);
4113 		if (!skb)
4114 			goto out;
4115 	}
4116 # endif
4117 #endif
4118 	/* If device/qdisc don't need skb->dst, release it right now while
4119 	 * its hot in this cpu cache.
4120 	 */
4121 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4122 		skb_dst_drop(skb);
4123 	else
4124 		skb_dst_force(skb);
4125 
4126 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4127 	q = rcu_dereference_bh(txq->qdisc);
4128 
4129 	trace_net_dev_queue(skb);
4130 	if (q->enqueue) {
4131 		rc = __dev_xmit_skb(skb, q, dev, txq);
4132 		goto out;
4133 	}
4134 
4135 	/* The device has no queue. Common case for software devices:
4136 	 * loopback, all the sorts of tunnels...
4137 
4138 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4139 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4140 	 * counters.)
4141 	 * However, it is possible, that they rely on protection
4142 	 * made by us here.
4143 
4144 	 * Check this and shot the lock. It is not prone from deadlocks.
4145 	 *Either shot noqueue qdisc, it is even simpler 8)
4146 	 */
4147 	if (dev->flags & IFF_UP) {
4148 		int cpu = smp_processor_id(); /* ok because BHs are off */
4149 
4150 		/* Other cpus might concurrently change txq->xmit_lock_owner
4151 		 * to -1 or to their cpu id, but not to our id.
4152 		 */
4153 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4154 			if (dev_xmit_recursion())
4155 				goto recursion_alert;
4156 
4157 			skb = validate_xmit_skb(skb, dev, &again);
4158 			if (!skb)
4159 				goto out;
4160 
4161 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4162 			HARD_TX_LOCK(dev, txq, cpu);
4163 
4164 			if (!netif_xmit_stopped(txq)) {
4165 				dev_xmit_recursion_inc();
4166 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4167 				dev_xmit_recursion_dec();
4168 				if (dev_xmit_complete(rc)) {
4169 					HARD_TX_UNLOCK(dev, txq);
4170 					goto out;
4171 				}
4172 			}
4173 			HARD_TX_UNLOCK(dev, txq);
4174 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4175 					     dev->name);
4176 		} else {
4177 			/* Recursion is detected! It is possible,
4178 			 * unfortunately
4179 			 */
4180 recursion_alert:
4181 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4182 					     dev->name);
4183 		}
4184 	}
4185 
4186 	rc = -ENETDOWN;
4187 	rcu_read_unlock_bh();
4188 
4189 	atomic_long_inc(&dev->tx_dropped);
4190 	kfree_skb_list(skb);
4191 	return rc;
4192 out:
4193 	rcu_read_unlock_bh();
4194 	return rc;
4195 }
4196 
dev_queue_xmit(struct sk_buff * skb)4197 int dev_queue_xmit(struct sk_buff *skb)
4198 {
4199 	return __dev_queue_xmit(skb, NULL);
4200 }
4201 EXPORT_SYMBOL(dev_queue_xmit);
4202 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4203 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4204 {
4205 	return __dev_queue_xmit(skb, sb_dev);
4206 }
4207 EXPORT_SYMBOL(dev_queue_xmit_accel);
4208 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4209 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4210 {
4211 	struct net_device *dev = skb->dev;
4212 	struct sk_buff *orig_skb = skb;
4213 	struct netdev_queue *txq;
4214 	int ret = NETDEV_TX_BUSY;
4215 	bool again = false;
4216 
4217 	if (unlikely(!netif_running(dev) ||
4218 		     !netif_carrier_ok(dev)))
4219 		goto drop;
4220 
4221 	skb = validate_xmit_skb_list(skb, dev, &again);
4222 	if (skb != orig_skb)
4223 		goto drop;
4224 
4225 	skb_set_queue_mapping(skb, queue_id);
4226 	txq = skb_get_tx_queue(dev, skb);
4227 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4228 
4229 	local_bh_disable();
4230 
4231 	dev_xmit_recursion_inc();
4232 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4233 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4234 		ret = netdev_start_xmit(skb, dev, txq, false);
4235 	HARD_TX_UNLOCK(dev, txq);
4236 	dev_xmit_recursion_dec();
4237 
4238 	local_bh_enable();
4239 	return ret;
4240 drop:
4241 	atomic_long_inc(&dev->tx_dropped);
4242 	kfree_skb_list(skb);
4243 	return NET_XMIT_DROP;
4244 }
4245 EXPORT_SYMBOL(__dev_direct_xmit);
4246 
4247 /*************************************************************************
4248  *			Receiver routines
4249  *************************************************************************/
4250 
4251 int netdev_max_backlog __read_mostly = 1000;
4252 EXPORT_SYMBOL(netdev_max_backlog);
4253 
4254 int netdev_tstamp_prequeue __read_mostly = 1;
4255 int netdev_budget __read_mostly = 300;
4256 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4257 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4258 int weight_p __read_mostly = 64;           /* old backlog weight */
4259 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4260 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4261 int dev_rx_weight __read_mostly = 64;
4262 int dev_tx_weight __read_mostly = 64;
4263 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4264 int gro_normal_batch __read_mostly = 8;
4265 
4266 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4267 static inline void ____napi_schedule(struct softnet_data *sd,
4268 				     struct napi_struct *napi)
4269 {
4270 	list_add_tail(&napi->poll_list, &sd->poll_list);
4271 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4272 }
4273 
4274 #ifdef CONFIG_RPS
4275 
4276 /* One global table that all flow-based protocols share. */
4277 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4278 EXPORT_SYMBOL(rps_sock_flow_table);
4279 u32 rps_cpu_mask __read_mostly;
4280 EXPORT_SYMBOL(rps_cpu_mask);
4281 
4282 struct static_key_false rps_needed __read_mostly;
4283 EXPORT_SYMBOL(rps_needed);
4284 struct static_key_false rfs_needed __read_mostly;
4285 EXPORT_SYMBOL(rfs_needed);
4286 
4287 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4288 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4289 	    struct rps_dev_flow *rflow, u16 next_cpu)
4290 {
4291 	if (next_cpu < nr_cpu_ids) {
4292 #ifdef CONFIG_RFS_ACCEL
4293 		struct netdev_rx_queue *rxqueue;
4294 		struct rps_dev_flow_table *flow_table;
4295 		struct rps_dev_flow *old_rflow;
4296 		u32 flow_id;
4297 		u16 rxq_index;
4298 		int rc;
4299 
4300 		/* Should we steer this flow to a different hardware queue? */
4301 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4302 		    !(dev->features & NETIF_F_NTUPLE))
4303 			goto out;
4304 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4305 		if (rxq_index == skb_get_rx_queue(skb))
4306 			goto out;
4307 
4308 		rxqueue = dev->_rx + rxq_index;
4309 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4310 		if (!flow_table)
4311 			goto out;
4312 		flow_id = skb_get_hash(skb) & flow_table->mask;
4313 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4314 							rxq_index, flow_id);
4315 		if (rc < 0)
4316 			goto out;
4317 		old_rflow = rflow;
4318 		rflow = &flow_table->flows[flow_id];
4319 		rflow->filter = rc;
4320 		if (old_rflow->filter == rflow->filter)
4321 			old_rflow->filter = RPS_NO_FILTER;
4322 	out:
4323 #endif
4324 		rflow->last_qtail =
4325 			per_cpu(softnet_data, next_cpu).input_queue_head;
4326 	}
4327 
4328 	rflow->cpu = next_cpu;
4329 	return rflow;
4330 }
4331 
4332 /*
4333  * get_rps_cpu is called from netif_receive_skb and returns the target
4334  * CPU from the RPS map of the receiving queue for a given skb.
4335  * rcu_read_lock must be held on entry.
4336  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4337 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4338 		       struct rps_dev_flow **rflowp)
4339 {
4340 	const struct rps_sock_flow_table *sock_flow_table;
4341 	struct netdev_rx_queue *rxqueue = dev->_rx;
4342 	struct rps_dev_flow_table *flow_table;
4343 	struct rps_map *map;
4344 	int cpu = -1;
4345 	u32 tcpu;
4346 	u32 hash;
4347 
4348 	if (skb_rx_queue_recorded(skb)) {
4349 		u16 index = skb_get_rx_queue(skb);
4350 
4351 		if (unlikely(index >= dev->real_num_rx_queues)) {
4352 			WARN_ONCE(dev->real_num_rx_queues > 1,
4353 				  "%s received packet on queue %u, but number "
4354 				  "of RX queues is %u\n",
4355 				  dev->name, index, dev->real_num_rx_queues);
4356 			goto done;
4357 		}
4358 		rxqueue += index;
4359 	}
4360 
4361 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4362 
4363 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4364 	map = rcu_dereference(rxqueue->rps_map);
4365 	if (!flow_table && !map)
4366 		goto done;
4367 
4368 	skb_reset_network_header(skb);
4369 	hash = skb_get_hash(skb);
4370 	if (!hash)
4371 		goto done;
4372 
4373 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4374 	if (flow_table && sock_flow_table) {
4375 		struct rps_dev_flow *rflow;
4376 		u32 next_cpu;
4377 		u32 ident;
4378 
4379 		/* First check into global flow table if there is a match */
4380 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4381 		if ((ident ^ hash) & ~rps_cpu_mask)
4382 			goto try_rps;
4383 
4384 		next_cpu = ident & rps_cpu_mask;
4385 
4386 		/* OK, now we know there is a match,
4387 		 * we can look at the local (per receive queue) flow table
4388 		 */
4389 		rflow = &flow_table->flows[hash & flow_table->mask];
4390 		tcpu = rflow->cpu;
4391 
4392 		/*
4393 		 * If the desired CPU (where last recvmsg was done) is
4394 		 * different from current CPU (one in the rx-queue flow
4395 		 * table entry), switch if one of the following holds:
4396 		 *   - Current CPU is unset (>= nr_cpu_ids).
4397 		 *   - Current CPU is offline.
4398 		 *   - The current CPU's queue tail has advanced beyond the
4399 		 *     last packet that was enqueued using this table entry.
4400 		 *     This guarantees that all previous packets for the flow
4401 		 *     have been dequeued, thus preserving in order delivery.
4402 		 */
4403 		if (unlikely(tcpu != next_cpu) &&
4404 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4405 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4406 		      rflow->last_qtail)) >= 0)) {
4407 			tcpu = next_cpu;
4408 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4409 		}
4410 
4411 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4412 			*rflowp = rflow;
4413 			cpu = tcpu;
4414 			goto done;
4415 		}
4416 	}
4417 
4418 try_rps:
4419 
4420 	if (map) {
4421 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4422 		if (cpu_online(tcpu)) {
4423 			cpu = tcpu;
4424 			goto done;
4425 		}
4426 	}
4427 
4428 done:
4429 	return cpu;
4430 }
4431 
4432 #ifdef CONFIG_RFS_ACCEL
4433 
4434 /**
4435  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4436  * @dev: Device on which the filter was set
4437  * @rxq_index: RX queue index
4438  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4439  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4440  *
4441  * Drivers that implement ndo_rx_flow_steer() should periodically call
4442  * this function for each installed filter and remove the filters for
4443  * which it returns %true.
4444  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4445 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4446 			 u32 flow_id, u16 filter_id)
4447 {
4448 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4449 	struct rps_dev_flow_table *flow_table;
4450 	struct rps_dev_flow *rflow;
4451 	bool expire = true;
4452 	unsigned int cpu;
4453 
4454 	rcu_read_lock();
4455 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4456 	if (flow_table && flow_id <= flow_table->mask) {
4457 		rflow = &flow_table->flows[flow_id];
4458 		cpu = READ_ONCE(rflow->cpu);
4459 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4460 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4461 			   rflow->last_qtail) <
4462 		     (int)(10 * flow_table->mask)))
4463 			expire = false;
4464 	}
4465 	rcu_read_unlock();
4466 	return expire;
4467 }
4468 EXPORT_SYMBOL(rps_may_expire_flow);
4469 
4470 #endif /* CONFIG_RFS_ACCEL */
4471 
4472 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4473 static void rps_trigger_softirq(void *data)
4474 {
4475 	struct softnet_data *sd = data;
4476 
4477 	____napi_schedule(sd, &sd->backlog);
4478 	sd->received_rps++;
4479 }
4480 
4481 #endif /* CONFIG_RPS */
4482 
4483 /*
4484  * Check if this softnet_data structure is another cpu one
4485  * If yes, queue it to our IPI list and return 1
4486  * If no, return 0
4487  */
rps_ipi_queued(struct softnet_data * sd)4488 static int rps_ipi_queued(struct softnet_data *sd)
4489 {
4490 #ifdef CONFIG_RPS
4491 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4492 
4493 	if (sd != mysd) {
4494 		sd->rps_ipi_next = mysd->rps_ipi_list;
4495 		mysd->rps_ipi_list = sd;
4496 
4497 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4498 		return 1;
4499 	}
4500 #endif /* CONFIG_RPS */
4501 	return 0;
4502 }
4503 
4504 #ifdef CONFIG_NET_FLOW_LIMIT
4505 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4506 #endif
4507 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4508 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4509 {
4510 #ifdef CONFIG_NET_FLOW_LIMIT
4511 	struct sd_flow_limit *fl;
4512 	struct softnet_data *sd;
4513 	unsigned int old_flow, new_flow;
4514 
4515 	if (qlen < (netdev_max_backlog >> 1))
4516 		return false;
4517 
4518 	sd = this_cpu_ptr(&softnet_data);
4519 
4520 	rcu_read_lock();
4521 	fl = rcu_dereference(sd->flow_limit);
4522 	if (fl) {
4523 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4524 		old_flow = fl->history[fl->history_head];
4525 		fl->history[fl->history_head] = new_flow;
4526 
4527 		fl->history_head++;
4528 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4529 
4530 		if (likely(fl->buckets[old_flow]))
4531 			fl->buckets[old_flow]--;
4532 
4533 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4534 			fl->count++;
4535 			rcu_read_unlock();
4536 			return true;
4537 		}
4538 	}
4539 	rcu_read_unlock();
4540 #endif
4541 	return false;
4542 }
4543 
4544 /*
4545  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4546  * queue (may be a remote CPU queue).
4547  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4548 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4549 			      unsigned int *qtail)
4550 {
4551 	struct softnet_data *sd;
4552 	unsigned long flags;
4553 	unsigned int qlen;
4554 
4555 	sd = &per_cpu(softnet_data, cpu);
4556 
4557 	local_irq_save(flags);
4558 
4559 	rps_lock(sd);
4560 	if (!netif_running(skb->dev))
4561 		goto drop;
4562 	qlen = skb_queue_len(&sd->input_pkt_queue);
4563 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4564 		if (qlen) {
4565 enqueue:
4566 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4567 			input_queue_tail_incr_save(sd, qtail);
4568 			rps_unlock(sd);
4569 			local_irq_restore(flags);
4570 			return NET_RX_SUCCESS;
4571 		}
4572 
4573 		/* Schedule NAPI for backlog device
4574 		 * We can use non atomic operation since we own the queue lock
4575 		 */
4576 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4577 			if (!rps_ipi_queued(sd))
4578 				____napi_schedule(sd, &sd->backlog);
4579 		}
4580 		goto enqueue;
4581 	}
4582 
4583 drop:
4584 	sd->dropped++;
4585 	rps_unlock(sd);
4586 
4587 	local_irq_restore(flags);
4588 
4589 	atomic_long_inc(&skb->dev->rx_dropped);
4590 	kfree_skb(skb);
4591 	return NET_RX_DROP;
4592 }
4593 
netif_get_rxqueue(struct sk_buff * skb)4594 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4595 {
4596 	struct net_device *dev = skb->dev;
4597 	struct netdev_rx_queue *rxqueue;
4598 
4599 	rxqueue = dev->_rx;
4600 
4601 	if (skb_rx_queue_recorded(skb)) {
4602 		u16 index = skb_get_rx_queue(skb);
4603 
4604 		if (unlikely(index >= dev->real_num_rx_queues)) {
4605 			WARN_ONCE(dev->real_num_rx_queues > 1,
4606 				  "%s received packet on queue %u, but number "
4607 				  "of RX queues is %u\n",
4608 				  dev->name, index, dev->real_num_rx_queues);
4609 
4610 			return rxqueue; /* Return first rxqueue */
4611 		}
4612 		rxqueue += index;
4613 	}
4614 	return rxqueue;
4615 }
4616 
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4617 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4618 				     struct xdp_buff *xdp,
4619 				     struct bpf_prog *xdp_prog)
4620 {
4621 	struct netdev_rx_queue *rxqueue;
4622 	void *orig_data, *orig_data_end;
4623 	u32 metalen, act = XDP_DROP;
4624 	__be16 orig_eth_type;
4625 	struct ethhdr *eth;
4626 	bool orig_bcast;
4627 	int hlen, off;
4628 	u32 mac_len;
4629 
4630 	/* Reinjected packets coming from act_mirred or similar should
4631 	 * not get XDP generic processing.
4632 	 */
4633 	if (skb_is_redirected(skb))
4634 		return XDP_PASS;
4635 
4636 	/* XDP packets must be linear and must have sufficient headroom
4637 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4638 	 * native XDP provides, thus we need to do it here as well.
4639 	 */
4640 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4641 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4642 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4643 		int troom = skb->tail + skb->data_len - skb->end;
4644 
4645 		/* In case we have to go down the path and also linearize,
4646 		 * then lets do the pskb_expand_head() work just once here.
4647 		 */
4648 		if (pskb_expand_head(skb,
4649 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4650 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4651 			goto do_drop;
4652 		if (skb_linearize(skb))
4653 			goto do_drop;
4654 	}
4655 
4656 	/* The XDP program wants to see the packet starting at the MAC
4657 	 * header.
4658 	 */
4659 	mac_len = skb->data - skb_mac_header(skb);
4660 	hlen = skb_headlen(skb) + mac_len;
4661 	xdp->data = skb->data - mac_len;
4662 	xdp->data_meta = xdp->data;
4663 	xdp->data_end = xdp->data + hlen;
4664 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4665 
4666 	/* SKB "head" area always have tailroom for skb_shared_info */
4667 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4668 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4669 
4670 	orig_data_end = xdp->data_end;
4671 	orig_data = xdp->data;
4672 	eth = (struct ethhdr *)xdp->data;
4673 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4674 	orig_eth_type = eth->h_proto;
4675 
4676 	rxqueue = netif_get_rxqueue(skb);
4677 	xdp->rxq = &rxqueue->xdp_rxq;
4678 
4679 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4680 
4681 	/* check if bpf_xdp_adjust_head was used */
4682 	off = xdp->data - orig_data;
4683 	if (off) {
4684 		if (off > 0)
4685 			__skb_pull(skb, off);
4686 		else if (off < 0)
4687 			__skb_push(skb, -off);
4688 
4689 		skb->mac_header += off;
4690 		skb_reset_network_header(skb);
4691 	}
4692 
4693 	/* check if bpf_xdp_adjust_tail was used */
4694 	off = xdp->data_end - orig_data_end;
4695 	if (off != 0) {
4696 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4697 		skb->len += off; /* positive on grow, negative on shrink */
4698 	}
4699 
4700 	/* check if XDP changed eth hdr such SKB needs update */
4701 	eth = (struct ethhdr *)xdp->data;
4702 	if ((orig_eth_type != eth->h_proto) ||
4703 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4704 		__skb_push(skb, ETH_HLEN);
4705 		skb->protocol = eth_type_trans(skb, skb->dev);
4706 	}
4707 
4708 	switch (act) {
4709 	case XDP_REDIRECT:
4710 	case XDP_TX:
4711 		__skb_push(skb, mac_len);
4712 		break;
4713 	case XDP_PASS:
4714 		metalen = xdp->data - xdp->data_meta;
4715 		if (metalen)
4716 			skb_metadata_set(skb, metalen);
4717 		break;
4718 	default:
4719 		bpf_warn_invalid_xdp_action(act);
4720 		fallthrough;
4721 	case XDP_ABORTED:
4722 		trace_xdp_exception(skb->dev, xdp_prog, act);
4723 		fallthrough;
4724 	case XDP_DROP:
4725 	do_drop:
4726 		kfree_skb(skb);
4727 		break;
4728 	}
4729 
4730 	return act;
4731 }
4732 
4733 /* When doing generic XDP we have to bypass the qdisc layer and the
4734  * network taps in order to match in-driver-XDP behavior.
4735  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4736 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4737 {
4738 	struct net_device *dev = skb->dev;
4739 	struct netdev_queue *txq;
4740 	bool free_skb = true;
4741 	int cpu, rc;
4742 
4743 	txq = netdev_core_pick_tx(dev, skb, NULL);
4744 	cpu = smp_processor_id();
4745 	HARD_TX_LOCK(dev, txq, cpu);
4746 	if (!netif_xmit_stopped(txq)) {
4747 		rc = netdev_start_xmit(skb, dev, txq, 0);
4748 		if (dev_xmit_complete(rc))
4749 			free_skb = false;
4750 	}
4751 	HARD_TX_UNLOCK(dev, txq);
4752 	if (free_skb) {
4753 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4754 		kfree_skb(skb);
4755 	}
4756 }
4757 
4758 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4759 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4760 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4761 {
4762 	if (xdp_prog) {
4763 		struct xdp_buff xdp;
4764 		u32 act;
4765 		int err;
4766 
4767 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4768 		if (act != XDP_PASS) {
4769 			switch (act) {
4770 			case XDP_REDIRECT:
4771 				err = xdp_do_generic_redirect(skb->dev, skb,
4772 							      &xdp, xdp_prog);
4773 				if (err)
4774 					goto out_redir;
4775 				break;
4776 			case XDP_TX:
4777 				generic_xdp_tx(skb, xdp_prog);
4778 				break;
4779 			}
4780 			return XDP_DROP;
4781 		}
4782 	}
4783 	return XDP_PASS;
4784 out_redir:
4785 	kfree_skb(skb);
4786 	return XDP_DROP;
4787 }
4788 EXPORT_SYMBOL_GPL(do_xdp_generic);
4789 
netif_rx_internal(struct sk_buff * skb)4790 static int netif_rx_internal(struct sk_buff *skb)
4791 {
4792 	int ret;
4793 
4794 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4795 
4796 	trace_netif_rx(skb);
4797 
4798 #ifdef CONFIG_RPS
4799 	if (static_branch_unlikely(&rps_needed)) {
4800 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4801 		int cpu;
4802 
4803 		preempt_disable();
4804 		rcu_read_lock();
4805 
4806 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4807 		if (cpu < 0)
4808 			cpu = smp_processor_id();
4809 
4810 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4811 
4812 		rcu_read_unlock();
4813 		preempt_enable();
4814 	} else
4815 #endif
4816 	{
4817 		unsigned int qtail;
4818 
4819 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4820 		put_cpu();
4821 	}
4822 	return ret;
4823 }
4824 
4825 /**
4826  *	netif_rx	-	post buffer to the network code
4827  *	@skb: buffer to post
4828  *
4829  *	This function receives a packet from a device driver and queues it for
4830  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4831  *	may be dropped during processing for congestion control or by the
4832  *	protocol layers.
4833  *
4834  *	return values:
4835  *	NET_RX_SUCCESS	(no congestion)
4836  *	NET_RX_DROP     (packet was dropped)
4837  *
4838  */
4839 
netif_rx(struct sk_buff * skb)4840 int netif_rx(struct sk_buff *skb)
4841 {
4842 	int ret;
4843 
4844 	trace_netif_rx_entry(skb);
4845 
4846 	ret = netif_rx_internal(skb);
4847 	trace_netif_rx_exit(ret);
4848 
4849 	return ret;
4850 }
4851 EXPORT_SYMBOL(netif_rx);
4852 
netif_rx_ni(struct sk_buff * skb)4853 int netif_rx_ni(struct sk_buff *skb)
4854 {
4855 	int err;
4856 
4857 	trace_netif_rx_ni_entry(skb);
4858 
4859 	preempt_disable();
4860 	err = netif_rx_internal(skb);
4861 	if (local_softirq_pending())
4862 		do_softirq();
4863 	preempt_enable();
4864 	trace_netif_rx_ni_exit(err);
4865 
4866 	return err;
4867 }
4868 EXPORT_SYMBOL(netif_rx_ni);
4869 
netif_rx_any_context(struct sk_buff * skb)4870 int netif_rx_any_context(struct sk_buff *skb)
4871 {
4872 	/*
4873 	 * If invoked from contexts which do not invoke bottom half
4874 	 * processing either at return from interrupt or when softrqs are
4875 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4876 	 * directly.
4877 	 */
4878 	if (in_interrupt())
4879 		return netif_rx(skb);
4880 	else
4881 		return netif_rx_ni(skb);
4882 }
4883 EXPORT_SYMBOL(netif_rx_any_context);
4884 
net_tx_action(struct softirq_action * h)4885 static __latent_entropy void net_tx_action(struct softirq_action *h)
4886 {
4887 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4888 
4889 	if (sd->completion_queue) {
4890 		struct sk_buff *clist;
4891 
4892 		local_irq_disable();
4893 		clist = sd->completion_queue;
4894 		sd->completion_queue = NULL;
4895 		local_irq_enable();
4896 
4897 		while (clist) {
4898 			struct sk_buff *skb = clist;
4899 
4900 			clist = clist->next;
4901 
4902 			WARN_ON(refcount_read(&skb->users));
4903 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4904 				trace_consume_skb(skb);
4905 			else
4906 				trace_kfree_skb(skb, net_tx_action);
4907 
4908 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4909 				__kfree_skb(skb);
4910 			else
4911 				__kfree_skb_defer(skb);
4912 		}
4913 
4914 		__kfree_skb_flush();
4915 	}
4916 
4917 	if (sd->output_queue) {
4918 		struct Qdisc *head;
4919 
4920 		local_irq_disable();
4921 		head = sd->output_queue;
4922 		sd->output_queue = NULL;
4923 		sd->output_queue_tailp = &sd->output_queue;
4924 		local_irq_enable();
4925 
4926 		rcu_read_lock();
4927 
4928 		while (head) {
4929 			struct Qdisc *q = head;
4930 			spinlock_t *root_lock = NULL;
4931 
4932 			head = head->next_sched;
4933 
4934 			/* We need to make sure head->next_sched is read
4935 			 * before clearing __QDISC_STATE_SCHED
4936 			 */
4937 			smp_mb__before_atomic();
4938 
4939 			if (!(q->flags & TCQ_F_NOLOCK)) {
4940 				root_lock = qdisc_lock(q);
4941 				spin_lock(root_lock);
4942 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4943 						     &q->state))) {
4944 				/* There is a synchronize_net() between
4945 				 * STATE_DEACTIVATED flag being set and
4946 				 * qdisc_reset()/some_qdisc_is_busy() in
4947 				 * dev_deactivate(), so we can safely bail out
4948 				 * early here to avoid data race between
4949 				 * qdisc_deactivate() and some_qdisc_is_busy()
4950 				 * for lockless qdisc.
4951 				 */
4952 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4953 				continue;
4954 			}
4955 
4956 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4957 			qdisc_run(q);
4958 			if (root_lock)
4959 				spin_unlock(root_lock);
4960 		}
4961 
4962 		rcu_read_unlock();
4963 	}
4964 
4965 	xfrm_dev_backlog(sd);
4966 }
4967 
4968 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4969 /* This hook is defined here for ATM LANE */
4970 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4971 			     unsigned char *addr) __read_mostly;
4972 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4973 #endif
4974 
4975 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4976 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4977 		   struct net_device *orig_dev, bool *another)
4978 {
4979 #ifdef CONFIG_NET_CLS_ACT
4980 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4981 	struct tcf_result cl_res;
4982 
4983 	/* If there's at least one ingress present somewhere (so
4984 	 * we get here via enabled static key), remaining devices
4985 	 * that are not configured with an ingress qdisc will bail
4986 	 * out here.
4987 	 */
4988 	if (!miniq)
4989 		return skb;
4990 
4991 	if (*pt_prev) {
4992 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4993 		*pt_prev = NULL;
4994 	}
4995 
4996 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4997 	qdisc_skb_cb(skb)->mru = 0;
4998 	skb->tc_at_ingress = 1;
4999 	mini_qdisc_bstats_cpu_update(miniq, skb);
5000 
5001 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5002 				     &cl_res, false)) {
5003 	case TC_ACT_OK:
5004 	case TC_ACT_RECLASSIFY:
5005 		skb->tc_index = TC_H_MIN(cl_res.classid);
5006 		break;
5007 	case TC_ACT_SHOT:
5008 		mini_qdisc_qstats_cpu_drop(miniq);
5009 		kfree_skb(skb);
5010 		return NULL;
5011 	case TC_ACT_STOLEN:
5012 	case TC_ACT_QUEUED:
5013 	case TC_ACT_TRAP:
5014 		consume_skb(skb);
5015 		return NULL;
5016 	case TC_ACT_REDIRECT:
5017 		/* skb_mac_header check was done by cls/act_bpf, so
5018 		 * we can safely push the L2 header back before
5019 		 * redirecting to another netdev
5020 		 */
5021 		__skb_push(skb, skb->mac_len);
5022 		if (skb_do_redirect(skb) == -EAGAIN) {
5023 			__skb_pull(skb, skb->mac_len);
5024 			*another = true;
5025 			break;
5026 		}
5027 		return NULL;
5028 	case TC_ACT_CONSUMED:
5029 		return NULL;
5030 	default:
5031 		break;
5032 	}
5033 #endif /* CONFIG_NET_CLS_ACT */
5034 	return skb;
5035 }
5036 
5037 /**
5038  *	netdev_is_rx_handler_busy - check if receive handler is registered
5039  *	@dev: device to check
5040  *
5041  *	Check if a receive handler is already registered for a given device.
5042  *	Return true if there one.
5043  *
5044  *	The caller must hold the rtnl_mutex.
5045  */
netdev_is_rx_handler_busy(struct net_device * dev)5046 bool netdev_is_rx_handler_busy(struct net_device *dev)
5047 {
5048 	ASSERT_RTNL();
5049 	return dev && rtnl_dereference(dev->rx_handler);
5050 }
5051 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5052 
5053 /**
5054  *	netdev_rx_handler_register - register receive handler
5055  *	@dev: device to register a handler for
5056  *	@rx_handler: receive handler to register
5057  *	@rx_handler_data: data pointer that is used by rx handler
5058  *
5059  *	Register a receive handler for a device. This handler will then be
5060  *	called from __netif_receive_skb. A negative errno code is returned
5061  *	on a failure.
5062  *
5063  *	The caller must hold the rtnl_mutex.
5064  *
5065  *	For a general description of rx_handler, see enum rx_handler_result.
5066  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5067 int netdev_rx_handler_register(struct net_device *dev,
5068 			       rx_handler_func_t *rx_handler,
5069 			       void *rx_handler_data)
5070 {
5071 	if (netdev_is_rx_handler_busy(dev))
5072 		return -EBUSY;
5073 
5074 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5075 		return -EINVAL;
5076 
5077 	/* Note: rx_handler_data must be set before rx_handler */
5078 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5079 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5080 
5081 	return 0;
5082 }
5083 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5084 
5085 /**
5086  *	netdev_rx_handler_unregister - unregister receive handler
5087  *	@dev: device to unregister a handler from
5088  *
5089  *	Unregister a receive handler from a device.
5090  *
5091  *	The caller must hold the rtnl_mutex.
5092  */
netdev_rx_handler_unregister(struct net_device * dev)5093 void netdev_rx_handler_unregister(struct net_device *dev)
5094 {
5095 
5096 	ASSERT_RTNL();
5097 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5098 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5099 	 * section has a guarantee to see a non NULL rx_handler_data
5100 	 * as well.
5101 	 */
5102 	synchronize_net();
5103 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5104 }
5105 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5106 
5107 /*
5108  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5109  * the special handling of PFMEMALLOC skbs.
5110  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5111 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5112 {
5113 	switch (skb->protocol) {
5114 	case htons(ETH_P_ARP):
5115 	case htons(ETH_P_IP):
5116 	case htons(ETH_P_IPV6):
5117 	case htons(ETH_P_8021Q):
5118 	case htons(ETH_P_8021AD):
5119 		return true;
5120 	default:
5121 		return false;
5122 	}
5123 }
5124 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5125 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5126 			     int *ret, struct net_device *orig_dev)
5127 {
5128 	if (nf_hook_ingress_active(skb)) {
5129 		int ingress_retval;
5130 
5131 		if (*pt_prev) {
5132 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5133 			*pt_prev = NULL;
5134 		}
5135 
5136 		rcu_read_lock();
5137 		ingress_retval = nf_hook_ingress(skb);
5138 		rcu_read_unlock();
5139 		return ingress_retval;
5140 	}
5141 	return 0;
5142 }
5143 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5144 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5145 				    struct packet_type **ppt_prev)
5146 {
5147 	struct packet_type *ptype, *pt_prev;
5148 	rx_handler_func_t *rx_handler;
5149 	struct sk_buff *skb = *pskb;
5150 	struct net_device *orig_dev;
5151 	bool deliver_exact = false;
5152 	int ret = NET_RX_DROP;
5153 	__be16 type;
5154 
5155 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5156 
5157 	trace_netif_receive_skb(skb);
5158 
5159 	orig_dev = skb->dev;
5160 
5161 	skb_reset_network_header(skb);
5162 	if (!skb_transport_header_was_set(skb))
5163 		skb_reset_transport_header(skb);
5164 	skb_reset_mac_len(skb);
5165 
5166 	pt_prev = NULL;
5167 
5168 another_round:
5169 	skb->skb_iif = skb->dev->ifindex;
5170 
5171 	__this_cpu_inc(softnet_data.processed);
5172 
5173 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5174 		int ret2;
5175 
5176 		preempt_disable();
5177 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5178 		preempt_enable();
5179 
5180 		if (ret2 != XDP_PASS) {
5181 			ret = NET_RX_DROP;
5182 			goto out;
5183 		}
5184 		skb_reset_mac_len(skb);
5185 	}
5186 
5187 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5188 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5189 		skb = skb_vlan_untag(skb);
5190 		if (unlikely(!skb))
5191 			goto out;
5192 	}
5193 
5194 	if (skb_skip_tc_classify(skb))
5195 		goto skip_classify;
5196 
5197 	if (pfmemalloc)
5198 		goto skip_taps;
5199 
5200 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5201 		if (pt_prev)
5202 			ret = deliver_skb(skb, pt_prev, orig_dev);
5203 		pt_prev = ptype;
5204 	}
5205 
5206 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5207 		if (pt_prev)
5208 			ret = deliver_skb(skb, pt_prev, orig_dev);
5209 		pt_prev = ptype;
5210 	}
5211 
5212 skip_taps:
5213 #ifdef CONFIG_NET_INGRESS
5214 	if (static_branch_unlikely(&ingress_needed_key)) {
5215 		bool another = false;
5216 
5217 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5218 					 &another);
5219 		if (another)
5220 			goto another_round;
5221 		if (!skb)
5222 			goto out;
5223 
5224 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5225 			goto out;
5226 	}
5227 #endif
5228 	skb_reset_redirect(skb);
5229 skip_classify:
5230 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5231 		goto drop;
5232 
5233 	if (skb_vlan_tag_present(skb)) {
5234 		if (pt_prev) {
5235 			ret = deliver_skb(skb, pt_prev, orig_dev);
5236 			pt_prev = NULL;
5237 		}
5238 		if (vlan_do_receive(&skb))
5239 			goto another_round;
5240 		else if (unlikely(!skb))
5241 			goto out;
5242 	}
5243 
5244 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5245 	if (rx_handler) {
5246 		if (pt_prev) {
5247 			ret = deliver_skb(skb, pt_prev, orig_dev);
5248 			pt_prev = NULL;
5249 		}
5250 		switch (rx_handler(&skb)) {
5251 		case RX_HANDLER_CONSUMED:
5252 			ret = NET_RX_SUCCESS;
5253 			goto out;
5254 		case RX_HANDLER_ANOTHER:
5255 			goto another_round;
5256 		case RX_HANDLER_EXACT:
5257 			deliver_exact = true;
5258 		case RX_HANDLER_PASS:
5259 			break;
5260 		default:
5261 			BUG();
5262 		}
5263 	}
5264 
5265 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5266 check_vlan_id:
5267 		if (skb_vlan_tag_get_id(skb)) {
5268 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5269 			 * find vlan device.
5270 			 */
5271 			skb->pkt_type = PACKET_OTHERHOST;
5272 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5273 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5274 			/* Outer header is 802.1P with vlan 0, inner header is
5275 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5276 			 * not find vlan dev for vlan id 0.
5277 			 */
5278 			__vlan_hwaccel_clear_tag(skb);
5279 			skb = skb_vlan_untag(skb);
5280 			if (unlikely(!skb))
5281 				goto out;
5282 			if (vlan_do_receive(&skb))
5283 				/* After stripping off 802.1P header with vlan 0
5284 				 * vlan dev is found for inner header.
5285 				 */
5286 				goto another_round;
5287 			else if (unlikely(!skb))
5288 				goto out;
5289 			else
5290 				/* We have stripped outer 802.1P vlan 0 header.
5291 				 * But could not find vlan dev.
5292 				 * check again for vlan id to set OTHERHOST.
5293 				 */
5294 				goto check_vlan_id;
5295 		}
5296 		/* Note: we might in the future use prio bits
5297 		 * and set skb->priority like in vlan_do_receive()
5298 		 * For the time being, just ignore Priority Code Point
5299 		 */
5300 		__vlan_hwaccel_clear_tag(skb);
5301 	}
5302 
5303 	type = skb->protocol;
5304 
5305 	/* deliver only exact match when indicated */
5306 	if (likely(!deliver_exact)) {
5307 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5308 				       &ptype_base[ntohs(type) &
5309 						   PTYPE_HASH_MASK]);
5310 	}
5311 
5312 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5313 			       &orig_dev->ptype_specific);
5314 
5315 	if (unlikely(skb->dev != orig_dev)) {
5316 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5317 				       &skb->dev->ptype_specific);
5318 	}
5319 
5320 	if (pt_prev) {
5321 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5322 			goto drop;
5323 		*ppt_prev = pt_prev;
5324 	} else {
5325 drop:
5326 		if (!deliver_exact)
5327 			atomic_long_inc(&skb->dev->rx_dropped);
5328 		else
5329 			atomic_long_inc(&skb->dev->rx_nohandler);
5330 		kfree_skb(skb);
5331 		/* Jamal, now you will not able to escape explaining
5332 		 * me how you were going to use this. :-)
5333 		 */
5334 		ret = NET_RX_DROP;
5335 	}
5336 
5337 out:
5338 	/* The invariant here is that if *ppt_prev is not NULL
5339 	 * then skb should also be non-NULL.
5340 	 *
5341 	 * Apparently *ppt_prev assignment above holds this invariant due to
5342 	 * skb dereferencing near it.
5343 	 */
5344 	*pskb = skb;
5345 	return ret;
5346 }
5347 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5348 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5349 {
5350 	struct net_device *orig_dev = skb->dev;
5351 	struct packet_type *pt_prev = NULL;
5352 	int ret;
5353 
5354 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5355 	if (pt_prev)
5356 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5357 					 skb->dev, pt_prev, orig_dev);
5358 	return ret;
5359 }
5360 
5361 /**
5362  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5363  *	@skb: buffer to process
5364  *
5365  *	More direct receive version of netif_receive_skb().  It should
5366  *	only be used by callers that have a need to skip RPS and Generic XDP.
5367  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5368  *
5369  *	This function may only be called from softirq context and interrupts
5370  *	should be enabled.
5371  *
5372  *	Return values (usually ignored):
5373  *	NET_RX_SUCCESS: no congestion
5374  *	NET_RX_DROP: packet was dropped
5375  */
netif_receive_skb_core(struct sk_buff * skb)5376 int netif_receive_skb_core(struct sk_buff *skb)
5377 {
5378 	int ret;
5379 
5380 	rcu_read_lock();
5381 	ret = __netif_receive_skb_one_core(skb, false);
5382 	rcu_read_unlock();
5383 
5384 	return ret;
5385 }
5386 EXPORT_SYMBOL(netif_receive_skb_core);
5387 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5388 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5389 						  struct packet_type *pt_prev,
5390 						  struct net_device *orig_dev)
5391 {
5392 	struct sk_buff *skb, *next;
5393 
5394 	if (!pt_prev)
5395 		return;
5396 	if (list_empty(head))
5397 		return;
5398 	if (pt_prev->list_func != NULL)
5399 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5400 				   ip_list_rcv, head, pt_prev, orig_dev);
5401 	else
5402 		list_for_each_entry_safe(skb, next, head, list) {
5403 			skb_list_del_init(skb);
5404 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5405 		}
5406 }
5407 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5408 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5409 {
5410 	/* Fast-path assumptions:
5411 	 * - There is no RX handler.
5412 	 * - Only one packet_type matches.
5413 	 * If either of these fails, we will end up doing some per-packet
5414 	 * processing in-line, then handling the 'last ptype' for the whole
5415 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5416 	 * because the 'last ptype' must be constant across the sublist, and all
5417 	 * other ptypes are handled per-packet.
5418 	 */
5419 	/* Current (common) ptype of sublist */
5420 	struct packet_type *pt_curr = NULL;
5421 	/* Current (common) orig_dev of sublist */
5422 	struct net_device *od_curr = NULL;
5423 	struct list_head sublist;
5424 	struct sk_buff *skb, *next;
5425 
5426 	INIT_LIST_HEAD(&sublist);
5427 	list_for_each_entry_safe(skb, next, head, list) {
5428 		struct net_device *orig_dev = skb->dev;
5429 		struct packet_type *pt_prev = NULL;
5430 
5431 		skb_list_del_init(skb);
5432 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5433 		if (!pt_prev)
5434 			continue;
5435 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5436 			/* dispatch old sublist */
5437 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5438 			/* start new sublist */
5439 			INIT_LIST_HEAD(&sublist);
5440 			pt_curr = pt_prev;
5441 			od_curr = orig_dev;
5442 		}
5443 		list_add_tail(&skb->list, &sublist);
5444 	}
5445 
5446 	/* dispatch final sublist */
5447 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5448 }
5449 
__netif_receive_skb(struct sk_buff * skb)5450 static int __netif_receive_skb(struct sk_buff *skb)
5451 {
5452 	int ret;
5453 
5454 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5455 		unsigned int noreclaim_flag;
5456 
5457 		/*
5458 		 * PFMEMALLOC skbs are special, they should
5459 		 * - be delivered to SOCK_MEMALLOC sockets only
5460 		 * - stay away from userspace
5461 		 * - have bounded memory usage
5462 		 *
5463 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5464 		 * context down to all allocation sites.
5465 		 */
5466 		noreclaim_flag = memalloc_noreclaim_save();
5467 		ret = __netif_receive_skb_one_core(skb, true);
5468 		memalloc_noreclaim_restore(noreclaim_flag);
5469 	} else
5470 		ret = __netif_receive_skb_one_core(skb, false);
5471 
5472 	return ret;
5473 }
5474 
__netif_receive_skb_list(struct list_head * head)5475 static void __netif_receive_skb_list(struct list_head *head)
5476 {
5477 	unsigned long noreclaim_flag = 0;
5478 	struct sk_buff *skb, *next;
5479 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5480 
5481 	list_for_each_entry_safe(skb, next, head, list) {
5482 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5483 			struct list_head sublist;
5484 
5485 			/* Handle the previous sublist */
5486 			list_cut_before(&sublist, head, &skb->list);
5487 			if (!list_empty(&sublist))
5488 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5489 			pfmemalloc = !pfmemalloc;
5490 			/* See comments in __netif_receive_skb */
5491 			if (pfmemalloc)
5492 				noreclaim_flag = memalloc_noreclaim_save();
5493 			else
5494 				memalloc_noreclaim_restore(noreclaim_flag);
5495 		}
5496 	}
5497 	/* Handle the remaining sublist */
5498 	if (!list_empty(head))
5499 		__netif_receive_skb_list_core(head, pfmemalloc);
5500 	/* Restore pflags */
5501 	if (pfmemalloc)
5502 		memalloc_noreclaim_restore(noreclaim_flag);
5503 }
5504 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5505 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5506 {
5507 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5508 	struct bpf_prog *new = xdp->prog;
5509 	int ret = 0;
5510 
5511 	if (new) {
5512 		u32 i;
5513 
5514 		mutex_lock(&new->aux->used_maps_mutex);
5515 
5516 		/* generic XDP does not work with DEVMAPs that can
5517 		 * have a bpf_prog installed on an entry
5518 		 */
5519 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5520 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5521 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5522 				mutex_unlock(&new->aux->used_maps_mutex);
5523 				return -EINVAL;
5524 			}
5525 		}
5526 
5527 		mutex_unlock(&new->aux->used_maps_mutex);
5528 	}
5529 
5530 	switch (xdp->command) {
5531 	case XDP_SETUP_PROG:
5532 		rcu_assign_pointer(dev->xdp_prog, new);
5533 		if (old)
5534 			bpf_prog_put(old);
5535 
5536 		if (old && !new) {
5537 			static_branch_dec(&generic_xdp_needed_key);
5538 		} else if (new && !old) {
5539 			static_branch_inc(&generic_xdp_needed_key);
5540 			dev_disable_lro(dev);
5541 			dev_disable_gro_hw(dev);
5542 		}
5543 		break;
5544 
5545 	default:
5546 		ret = -EINVAL;
5547 		break;
5548 	}
5549 
5550 	return ret;
5551 }
5552 
netif_receive_skb_internal(struct sk_buff * skb)5553 static int netif_receive_skb_internal(struct sk_buff *skb)
5554 {
5555 	int ret;
5556 
5557 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5558 
5559 	if (skb_defer_rx_timestamp(skb))
5560 		return NET_RX_SUCCESS;
5561 
5562 	rcu_read_lock();
5563 #ifdef CONFIG_RPS
5564 	if (static_branch_unlikely(&rps_needed)) {
5565 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5566 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5567 
5568 		if (cpu >= 0) {
5569 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5570 			rcu_read_unlock();
5571 			return ret;
5572 		}
5573 	}
5574 #endif
5575 	ret = __netif_receive_skb(skb);
5576 	rcu_read_unlock();
5577 	return ret;
5578 }
5579 
netif_receive_skb_list_internal(struct list_head * head)5580 static void netif_receive_skb_list_internal(struct list_head *head)
5581 {
5582 	struct sk_buff *skb, *next;
5583 	struct list_head sublist;
5584 
5585 	INIT_LIST_HEAD(&sublist);
5586 	list_for_each_entry_safe(skb, next, head, list) {
5587 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5588 		skb_list_del_init(skb);
5589 		if (!skb_defer_rx_timestamp(skb))
5590 			list_add_tail(&skb->list, &sublist);
5591 	}
5592 	list_splice_init(&sublist, head);
5593 
5594 	rcu_read_lock();
5595 #ifdef CONFIG_RPS
5596 	if (static_branch_unlikely(&rps_needed)) {
5597 		list_for_each_entry_safe(skb, next, head, list) {
5598 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5599 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5600 
5601 			if (cpu >= 0) {
5602 				/* Will be handled, remove from list */
5603 				skb_list_del_init(skb);
5604 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5605 			}
5606 		}
5607 	}
5608 #endif
5609 	__netif_receive_skb_list(head);
5610 	rcu_read_unlock();
5611 }
5612 
5613 /**
5614  *	netif_receive_skb - process receive buffer from network
5615  *	@skb: buffer to process
5616  *
5617  *	netif_receive_skb() is the main receive data processing function.
5618  *	It always succeeds. The buffer may be dropped during processing
5619  *	for congestion control or by the protocol layers.
5620  *
5621  *	This function may only be called from softirq context and interrupts
5622  *	should be enabled.
5623  *
5624  *	Return values (usually ignored):
5625  *	NET_RX_SUCCESS: no congestion
5626  *	NET_RX_DROP: packet was dropped
5627  */
netif_receive_skb(struct sk_buff * skb)5628 int netif_receive_skb(struct sk_buff *skb)
5629 {
5630 	int ret;
5631 
5632 	trace_netif_receive_skb_entry(skb);
5633 
5634 	ret = netif_receive_skb_internal(skb);
5635 	trace_netif_receive_skb_exit(ret);
5636 
5637 	return ret;
5638 }
5639 EXPORT_SYMBOL(netif_receive_skb);
5640 
5641 /**
5642  *	netif_receive_skb_list - process many receive buffers from network
5643  *	@head: list of skbs to process.
5644  *
5645  *	Since return value of netif_receive_skb() is normally ignored, and
5646  *	wouldn't be meaningful for a list, this function returns void.
5647  *
5648  *	This function may only be called from softirq context and interrupts
5649  *	should be enabled.
5650  */
netif_receive_skb_list(struct list_head * head)5651 void netif_receive_skb_list(struct list_head *head)
5652 {
5653 	struct sk_buff *skb;
5654 
5655 	if (list_empty(head))
5656 		return;
5657 	if (trace_netif_receive_skb_list_entry_enabled()) {
5658 		list_for_each_entry(skb, head, list)
5659 			trace_netif_receive_skb_list_entry(skb);
5660 	}
5661 	netif_receive_skb_list_internal(head);
5662 	trace_netif_receive_skb_list_exit(0);
5663 }
5664 EXPORT_SYMBOL(netif_receive_skb_list);
5665 
5666 static DEFINE_PER_CPU(struct work_struct, flush_works);
5667 
5668 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5669 static void flush_backlog(struct work_struct *work)
5670 {
5671 	struct sk_buff *skb, *tmp;
5672 	struct softnet_data *sd;
5673 
5674 	local_bh_disable();
5675 	sd = this_cpu_ptr(&softnet_data);
5676 
5677 	local_irq_disable();
5678 	rps_lock(sd);
5679 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5680 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5681 			__skb_unlink(skb, &sd->input_pkt_queue);
5682 			dev_kfree_skb_irq(skb);
5683 			input_queue_head_incr(sd);
5684 		}
5685 	}
5686 	rps_unlock(sd);
5687 	local_irq_enable();
5688 
5689 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5690 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5691 			__skb_unlink(skb, &sd->process_queue);
5692 			kfree_skb(skb);
5693 			input_queue_head_incr(sd);
5694 		}
5695 	}
5696 	local_bh_enable();
5697 }
5698 
flush_required(int cpu)5699 static bool flush_required(int cpu)
5700 {
5701 #if IS_ENABLED(CONFIG_RPS)
5702 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5703 	bool do_flush;
5704 
5705 	local_irq_disable();
5706 	rps_lock(sd);
5707 
5708 	/* as insertion into process_queue happens with the rps lock held,
5709 	 * process_queue access may race only with dequeue
5710 	 */
5711 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5712 		   !skb_queue_empty_lockless(&sd->process_queue);
5713 	rps_unlock(sd);
5714 	local_irq_enable();
5715 
5716 	return do_flush;
5717 #endif
5718 	/* without RPS we can't safely check input_pkt_queue: during a
5719 	 * concurrent remote skb_queue_splice() we can detect as empty both
5720 	 * input_pkt_queue and process_queue even if the latter could end-up
5721 	 * containing a lot of packets.
5722 	 */
5723 	return true;
5724 }
5725 
flush_all_backlogs(void)5726 static void flush_all_backlogs(void)
5727 {
5728 	static cpumask_t flush_cpus;
5729 	unsigned int cpu;
5730 
5731 	/* since we are under rtnl lock protection we can use static data
5732 	 * for the cpumask and avoid allocating on stack the possibly
5733 	 * large mask
5734 	 */
5735 	ASSERT_RTNL();
5736 
5737 	get_online_cpus();
5738 
5739 	cpumask_clear(&flush_cpus);
5740 	for_each_online_cpu(cpu) {
5741 		if (flush_required(cpu)) {
5742 			queue_work_on(cpu, system_highpri_wq,
5743 				      per_cpu_ptr(&flush_works, cpu));
5744 			cpumask_set_cpu(cpu, &flush_cpus);
5745 		}
5746 	}
5747 
5748 	/* we can have in flight packet[s] on the cpus we are not flushing,
5749 	 * synchronize_net() in rollback_registered_many() will take care of
5750 	 * them
5751 	 */
5752 	for_each_cpu(cpu, &flush_cpus)
5753 		flush_work(per_cpu_ptr(&flush_works, cpu));
5754 
5755 	put_online_cpus();
5756 }
5757 
5758 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5759 static void gro_normal_list(struct napi_struct *napi)
5760 {
5761 	if (!napi->rx_count)
5762 		return;
5763 	netif_receive_skb_list_internal(&napi->rx_list);
5764 	INIT_LIST_HEAD(&napi->rx_list);
5765 	napi->rx_count = 0;
5766 }
5767 
5768 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5769  * pass the whole batch up to the stack.
5770  */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5771 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5772 {
5773 	list_add_tail(&skb->list, &napi->rx_list);
5774 	napi->rx_count += segs;
5775 	if (napi->rx_count >= gro_normal_batch)
5776 		gro_normal_list(napi);
5777 }
5778 
5779 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5780 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5781 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5782 {
5783 	struct packet_offload *ptype;
5784 	__be16 type = skb->protocol;
5785 	struct list_head *head = &offload_base;
5786 	int err = -ENOENT;
5787 
5788 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5789 
5790 	if (NAPI_GRO_CB(skb)->count == 1) {
5791 		skb_shinfo(skb)->gso_size = 0;
5792 		goto out;
5793 	}
5794 
5795 	rcu_read_lock();
5796 	list_for_each_entry_rcu(ptype, head, list) {
5797 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5798 			continue;
5799 
5800 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5801 					 ipv6_gro_complete, inet_gro_complete,
5802 					 skb, 0);
5803 		break;
5804 	}
5805 	rcu_read_unlock();
5806 
5807 	if (err) {
5808 		WARN_ON(&ptype->list == head);
5809 		kfree_skb(skb);
5810 		return NET_RX_SUCCESS;
5811 	}
5812 
5813 out:
5814 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5815 	return NET_RX_SUCCESS;
5816 }
5817 
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5818 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5819 				   bool flush_old)
5820 {
5821 	struct list_head *head = &napi->gro_hash[index].list;
5822 	struct sk_buff *skb, *p;
5823 
5824 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5825 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5826 			return;
5827 		skb_list_del_init(skb);
5828 		napi_gro_complete(napi, skb);
5829 		napi->gro_hash[index].count--;
5830 	}
5831 
5832 	if (!napi->gro_hash[index].count)
5833 		__clear_bit(index, &napi->gro_bitmask);
5834 }
5835 
5836 /* napi->gro_hash[].list contains packets ordered by age.
5837  * youngest packets at the head of it.
5838  * Complete skbs in reverse order to reduce latencies.
5839  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5840 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5841 {
5842 	unsigned long bitmask = napi->gro_bitmask;
5843 	unsigned int i, base = ~0U;
5844 
5845 	while ((i = ffs(bitmask)) != 0) {
5846 		bitmask >>= i;
5847 		base += i;
5848 		__napi_gro_flush_chain(napi, base, flush_old);
5849 	}
5850 }
5851 EXPORT_SYMBOL(napi_gro_flush);
5852 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5853 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5854 					  struct sk_buff *skb)
5855 {
5856 	unsigned int maclen = skb->dev->hard_header_len;
5857 	u32 hash = skb_get_hash_raw(skb);
5858 	struct list_head *head;
5859 	struct sk_buff *p;
5860 
5861 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5862 	list_for_each_entry(p, head, list) {
5863 		unsigned long diffs;
5864 
5865 		NAPI_GRO_CB(p)->flush = 0;
5866 
5867 		if (hash != skb_get_hash_raw(p)) {
5868 			NAPI_GRO_CB(p)->same_flow = 0;
5869 			continue;
5870 		}
5871 
5872 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5873 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5874 		if (skb_vlan_tag_present(p))
5875 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5876 		diffs |= skb_metadata_dst_cmp(p, skb);
5877 		diffs |= skb_metadata_differs(p, skb);
5878 		if (maclen == ETH_HLEN)
5879 			diffs |= compare_ether_header(skb_mac_header(p),
5880 						      skb_mac_header(skb));
5881 		else if (!diffs)
5882 			diffs = memcmp(skb_mac_header(p),
5883 				       skb_mac_header(skb),
5884 				       maclen);
5885 
5886 		diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5887 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5888 		if (!diffs) {
5889 			struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5890 			struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5891 
5892 			diffs |= (!!p_ext) ^ (!!skb_ext);
5893 			if (!diffs && unlikely(skb_ext))
5894 				diffs |= p_ext->chain ^ skb_ext->chain;
5895 		}
5896 #endif
5897 
5898 		NAPI_GRO_CB(p)->same_flow = !diffs;
5899 	}
5900 
5901 	return head;
5902 }
5903 
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5904 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5905 {
5906 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5907 	const skb_frag_t *frag0 = &pinfo->frags[0];
5908 
5909 	NAPI_GRO_CB(skb)->data_offset = 0;
5910 	NAPI_GRO_CB(skb)->frag0 = NULL;
5911 	NAPI_GRO_CB(skb)->frag0_len = 0;
5912 
5913 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5914 	    !PageHighMem(skb_frag_page(frag0)) &&
5915 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5916 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5917 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5918 						    skb_frag_size(frag0),
5919 						    skb->end - skb->tail);
5920 	}
5921 }
5922 
gro_pull_from_frag0(struct sk_buff * skb,int grow)5923 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5924 {
5925 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5926 
5927 	BUG_ON(skb->end - skb->tail < grow);
5928 
5929 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5930 
5931 	skb->data_len -= grow;
5932 	skb->tail += grow;
5933 
5934 	skb_frag_off_add(&pinfo->frags[0], grow);
5935 	skb_frag_size_sub(&pinfo->frags[0], grow);
5936 
5937 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5938 		skb_frag_unref(skb, 0);
5939 		memmove(pinfo->frags, pinfo->frags + 1,
5940 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5941 	}
5942 }
5943 
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5944 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5945 {
5946 	struct sk_buff *oldest;
5947 
5948 	oldest = list_last_entry(head, struct sk_buff, list);
5949 
5950 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5951 	 * impossible.
5952 	 */
5953 	if (WARN_ON_ONCE(!oldest))
5954 		return;
5955 
5956 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5957 	 * SKB to the chain.
5958 	 */
5959 	skb_list_del_init(oldest);
5960 	napi_gro_complete(napi, oldest);
5961 }
5962 
5963 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5964 							   struct sk_buff *));
5965 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5966 							   struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5967 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5968 {
5969 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5970 	struct list_head *head = &offload_base;
5971 	struct packet_offload *ptype;
5972 	__be16 type = skb->protocol;
5973 	struct list_head *gro_head;
5974 	struct sk_buff *pp = NULL;
5975 	enum gro_result ret;
5976 	int same_flow;
5977 	int grow;
5978 
5979 	if (netif_elide_gro(skb->dev))
5980 		goto normal;
5981 
5982 	gro_head = gro_list_prepare(napi, skb);
5983 
5984 	rcu_read_lock();
5985 	list_for_each_entry_rcu(ptype, head, list) {
5986 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5987 			continue;
5988 
5989 		skb_set_network_header(skb, skb_gro_offset(skb));
5990 		skb_reset_mac_len(skb);
5991 		NAPI_GRO_CB(skb)->same_flow = 0;
5992 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5993 		NAPI_GRO_CB(skb)->free = 0;
5994 		NAPI_GRO_CB(skb)->encap_mark = 0;
5995 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5996 		NAPI_GRO_CB(skb)->is_fou = 0;
5997 		NAPI_GRO_CB(skb)->is_atomic = 1;
5998 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5999 
6000 		/* Setup for GRO checksum validation */
6001 		switch (skb->ip_summed) {
6002 		case CHECKSUM_COMPLETE:
6003 			NAPI_GRO_CB(skb)->csum = skb->csum;
6004 			NAPI_GRO_CB(skb)->csum_valid = 1;
6005 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6006 			break;
6007 		case CHECKSUM_UNNECESSARY:
6008 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6009 			NAPI_GRO_CB(skb)->csum_valid = 0;
6010 			break;
6011 		default:
6012 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6013 			NAPI_GRO_CB(skb)->csum_valid = 0;
6014 		}
6015 
6016 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6017 					ipv6_gro_receive, inet_gro_receive,
6018 					gro_head, skb);
6019 		break;
6020 	}
6021 	rcu_read_unlock();
6022 
6023 	if (&ptype->list == head)
6024 		goto normal;
6025 
6026 	if (PTR_ERR(pp) == -EINPROGRESS) {
6027 		ret = GRO_CONSUMED;
6028 		goto ok;
6029 	}
6030 
6031 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6032 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6033 
6034 	if (pp) {
6035 		skb_list_del_init(pp);
6036 		napi_gro_complete(napi, pp);
6037 		napi->gro_hash[hash].count--;
6038 	}
6039 
6040 	if (same_flow)
6041 		goto ok;
6042 
6043 	if (NAPI_GRO_CB(skb)->flush)
6044 		goto normal;
6045 
6046 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6047 		gro_flush_oldest(napi, gro_head);
6048 	} else {
6049 		napi->gro_hash[hash].count++;
6050 	}
6051 	NAPI_GRO_CB(skb)->count = 1;
6052 	NAPI_GRO_CB(skb)->age = jiffies;
6053 	NAPI_GRO_CB(skb)->last = skb;
6054 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6055 	list_add(&skb->list, gro_head);
6056 	ret = GRO_HELD;
6057 
6058 pull:
6059 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6060 	if (grow > 0)
6061 		gro_pull_from_frag0(skb, grow);
6062 ok:
6063 	if (napi->gro_hash[hash].count) {
6064 		if (!test_bit(hash, &napi->gro_bitmask))
6065 			__set_bit(hash, &napi->gro_bitmask);
6066 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6067 		__clear_bit(hash, &napi->gro_bitmask);
6068 	}
6069 
6070 	return ret;
6071 
6072 normal:
6073 	ret = GRO_NORMAL;
6074 	goto pull;
6075 }
6076 
gro_find_receive_by_type(__be16 type)6077 struct packet_offload *gro_find_receive_by_type(__be16 type)
6078 {
6079 	struct list_head *offload_head = &offload_base;
6080 	struct packet_offload *ptype;
6081 
6082 	list_for_each_entry_rcu(ptype, offload_head, list) {
6083 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6084 			continue;
6085 		return ptype;
6086 	}
6087 	return NULL;
6088 }
6089 EXPORT_SYMBOL(gro_find_receive_by_type);
6090 
gro_find_complete_by_type(__be16 type)6091 struct packet_offload *gro_find_complete_by_type(__be16 type)
6092 {
6093 	struct list_head *offload_head = &offload_base;
6094 	struct packet_offload *ptype;
6095 
6096 	list_for_each_entry_rcu(ptype, offload_head, list) {
6097 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6098 			continue;
6099 		return ptype;
6100 	}
6101 	return NULL;
6102 }
6103 EXPORT_SYMBOL(gro_find_complete_by_type);
6104 
napi_skb_free_stolen_head(struct sk_buff * skb)6105 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6106 {
6107 	skb_dst_drop(skb);
6108 	skb_ext_put(skb);
6109 	kmem_cache_free(skbuff_head_cache, skb);
6110 }
6111 
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6112 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6113 				    struct sk_buff *skb,
6114 				    gro_result_t ret)
6115 {
6116 	switch (ret) {
6117 	case GRO_NORMAL:
6118 		gro_normal_one(napi, skb, 1);
6119 		break;
6120 
6121 	case GRO_DROP:
6122 		kfree_skb(skb);
6123 		break;
6124 
6125 	case GRO_MERGED_FREE:
6126 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6127 			napi_skb_free_stolen_head(skb);
6128 		else
6129 			__kfree_skb(skb);
6130 		break;
6131 
6132 	case GRO_HELD:
6133 	case GRO_MERGED:
6134 	case GRO_CONSUMED:
6135 		break;
6136 	}
6137 
6138 	return ret;
6139 }
6140 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6141 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6142 {
6143 	gro_result_t ret;
6144 
6145 	skb_mark_napi_id(skb, napi);
6146 	trace_napi_gro_receive_entry(skb);
6147 
6148 	skb_gro_reset_offset(skb, 0);
6149 
6150 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6151 	trace_napi_gro_receive_exit(ret);
6152 
6153 	return ret;
6154 }
6155 EXPORT_SYMBOL(napi_gro_receive);
6156 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6157 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6158 {
6159 	if (unlikely(skb->pfmemalloc)) {
6160 		consume_skb(skb);
6161 		return;
6162 	}
6163 	__skb_pull(skb, skb_headlen(skb));
6164 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6165 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6166 	__vlan_hwaccel_clear_tag(skb);
6167 	skb->dev = napi->dev;
6168 	skb->skb_iif = 0;
6169 
6170 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6171 	skb->pkt_type = PACKET_HOST;
6172 
6173 	skb->encapsulation = 0;
6174 	skb_shinfo(skb)->gso_type = 0;
6175 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6176 	skb_ext_reset(skb);
6177 	nf_reset_ct(skb);
6178 
6179 	napi->skb = skb;
6180 }
6181 
napi_get_frags(struct napi_struct * napi)6182 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6183 {
6184 	struct sk_buff *skb = napi->skb;
6185 
6186 	if (!skb) {
6187 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6188 		if (skb) {
6189 			napi->skb = skb;
6190 			skb_mark_napi_id(skb, napi);
6191 		}
6192 	}
6193 	return skb;
6194 }
6195 EXPORT_SYMBOL(napi_get_frags);
6196 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6197 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6198 				      struct sk_buff *skb,
6199 				      gro_result_t ret)
6200 {
6201 	switch (ret) {
6202 	case GRO_NORMAL:
6203 	case GRO_HELD:
6204 		__skb_push(skb, ETH_HLEN);
6205 		skb->protocol = eth_type_trans(skb, skb->dev);
6206 		if (ret == GRO_NORMAL)
6207 			gro_normal_one(napi, skb, 1);
6208 		break;
6209 
6210 	case GRO_DROP:
6211 		napi_reuse_skb(napi, skb);
6212 		break;
6213 
6214 	case GRO_MERGED_FREE:
6215 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6216 			napi_skb_free_stolen_head(skb);
6217 		else
6218 			napi_reuse_skb(napi, skb);
6219 		break;
6220 
6221 	case GRO_MERGED:
6222 	case GRO_CONSUMED:
6223 		break;
6224 	}
6225 
6226 	return ret;
6227 }
6228 
6229 /* Upper GRO stack assumes network header starts at gro_offset=0
6230  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6231  * We copy ethernet header into skb->data to have a common layout.
6232  */
napi_frags_skb(struct napi_struct * napi)6233 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6234 {
6235 	struct sk_buff *skb = napi->skb;
6236 	const struct ethhdr *eth;
6237 	unsigned int hlen = sizeof(*eth);
6238 
6239 	napi->skb = NULL;
6240 
6241 	skb_reset_mac_header(skb);
6242 	skb_gro_reset_offset(skb, hlen);
6243 
6244 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6245 		eth = skb_gro_header_slow(skb, hlen, 0);
6246 		if (unlikely(!eth)) {
6247 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6248 					     __func__, napi->dev->name);
6249 			napi_reuse_skb(napi, skb);
6250 			return NULL;
6251 		}
6252 	} else {
6253 		eth = (const struct ethhdr *)skb->data;
6254 		gro_pull_from_frag0(skb, hlen);
6255 		NAPI_GRO_CB(skb)->frag0 += hlen;
6256 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6257 	}
6258 	__skb_pull(skb, hlen);
6259 
6260 	/*
6261 	 * This works because the only protocols we care about don't require
6262 	 * special handling.
6263 	 * We'll fix it up properly in napi_frags_finish()
6264 	 */
6265 	skb->protocol = eth->h_proto;
6266 
6267 	return skb;
6268 }
6269 
napi_gro_frags(struct napi_struct * napi)6270 gro_result_t napi_gro_frags(struct napi_struct *napi)
6271 {
6272 	gro_result_t ret;
6273 	struct sk_buff *skb = napi_frags_skb(napi);
6274 
6275 	if (!skb)
6276 		return GRO_DROP;
6277 
6278 	trace_napi_gro_frags_entry(skb);
6279 
6280 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6281 	trace_napi_gro_frags_exit(ret);
6282 
6283 	return ret;
6284 }
6285 EXPORT_SYMBOL(napi_gro_frags);
6286 
6287 /* Compute the checksum from gro_offset and return the folded value
6288  * after adding in any pseudo checksum.
6289  */
__skb_gro_checksum_complete(struct sk_buff * skb)6290 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6291 {
6292 	__wsum wsum;
6293 	__sum16 sum;
6294 
6295 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6296 
6297 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6298 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6299 	/* See comments in __skb_checksum_complete(). */
6300 	if (likely(!sum)) {
6301 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6302 		    !skb->csum_complete_sw)
6303 			netdev_rx_csum_fault(skb->dev, skb);
6304 	}
6305 
6306 	NAPI_GRO_CB(skb)->csum = wsum;
6307 	NAPI_GRO_CB(skb)->csum_valid = 1;
6308 
6309 	return sum;
6310 }
6311 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6312 
net_rps_send_ipi(struct softnet_data * remsd)6313 static void net_rps_send_ipi(struct softnet_data *remsd)
6314 {
6315 #ifdef CONFIG_RPS
6316 	while (remsd) {
6317 		struct softnet_data *next = remsd->rps_ipi_next;
6318 
6319 		if (cpu_online(remsd->cpu))
6320 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6321 		remsd = next;
6322 	}
6323 #endif
6324 }
6325 
6326 /*
6327  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6328  * Note: called with local irq disabled, but exits with local irq enabled.
6329  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6330 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6331 {
6332 #ifdef CONFIG_RPS
6333 	struct softnet_data *remsd = sd->rps_ipi_list;
6334 
6335 	if (remsd) {
6336 		sd->rps_ipi_list = NULL;
6337 
6338 		local_irq_enable();
6339 
6340 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6341 		net_rps_send_ipi(remsd);
6342 	} else
6343 #endif
6344 		local_irq_enable();
6345 }
6346 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6347 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6348 {
6349 #ifdef CONFIG_RPS
6350 	return sd->rps_ipi_list != NULL;
6351 #else
6352 	return false;
6353 #endif
6354 }
6355 
process_backlog(struct napi_struct * napi,int quota)6356 static int process_backlog(struct napi_struct *napi, int quota)
6357 {
6358 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6359 	bool again = true;
6360 	int work = 0;
6361 
6362 	/* Check if we have pending ipi, its better to send them now,
6363 	 * not waiting net_rx_action() end.
6364 	 */
6365 	if (sd_has_rps_ipi_waiting(sd)) {
6366 		local_irq_disable();
6367 		net_rps_action_and_irq_enable(sd);
6368 	}
6369 
6370 	napi->weight = dev_rx_weight;
6371 	while (again) {
6372 		struct sk_buff *skb;
6373 
6374 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6375 			rcu_read_lock();
6376 			__netif_receive_skb(skb);
6377 			rcu_read_unlock();
6378 			input_queue_head_incr(sd);
6379 			if (++work >= quota)
6380 				return work;
6381 
6382 		}
6383 
6384 		local_irq_disable();
6385 		rps_lock(sd);
6386 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6387 			/*
6388 			 * Inline a custom version of __napi_complete().
6389 			 * only current cpu owns and manipulates this napi,
6390 			 * and NAPI_STATE_SCHED is the only possible flag set
6391 			 * on backlog.
6392 			 * We can use a plain write instead of clear_bit(),
6393 			 * and we dont need an smp_mb() memory barrier.
6394 			 */
6395 			napi->state = 0;
6396 			again = false;
6397 		} else {
6398 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6399 						   &sd->process_queue);
6400 		}
6401 		rps_unlock(sd);
6402 		local_irq_enable();
6403 	}
6404 
6405 	return work;
6406 }
6407 
6408 /**
6409  * __napi_schedule - schedule for receive
6410  * @n: entry to schedule
6411  *
6412  * The entry's receive function will be scheduled to run.
6413  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6414  */
__napi_schedule(struct napi_struct * n)6415 void __napi_schedule(struct napi_struct *n)
6416 {
6417 	unsigned long flags;
6418 
6419 	local_irq_save(flags);
6420 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6421 	local_irq_restore(flags);
6422 }
6423 EXPORT_SYMBOL(__napi_schedule);
6424 
6425 /**
6426  *	napi_schedule_prep - check if napi can be scheduled
6427  *	@n: napi context
6428  *
6429  * Test if NAPI routine is already running, and if not mark
6430  * it as running.  This is used as a condition variable to
6431  * insure only one NAPI poll instance runs.  We also make
6432  * sure there is no pending NAPI disable.
6433  */
napi_schedule_prep(struct napi_struct * n)6434 bool napi_schedule_prep(struct napi_struct *n)
6435 {
6436 	unsigned long val, new;
6437 
6438 	do {
6439 		val = READ_ONCE(n->state);
6440 		if (unlikely(val & NAPIF_STATE_DISABLE))
6441 			return false;
6442 		new = val | NAPIF_STATE_SCHED;
6443 
6444 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6445 		 * This was suggested by Alexander Duyck, as compiler
6446 		 * emits better code than :
6447 		 * if (val & NAPIF_STATE_SCHED)
6448 		 *     new |= NAPIF_STATE_MISSED;
6449 		 */
6450 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6451 						   NAPIF_STATE_MISSED;
6452 	} while (cmpxchg(&n->state, val, new) != val);
6453 
6454 	return !(val & NAPIF_STATE_SCHED);
6455 }
6456 EXPORT_SYMBOL(napi_schedule_prep);
6457 
6458 /**
6459  * __napi_schedule_irqoff - schedule for receive
6460  * @n: entry to schedule
6461  *
6462  * Variant of __napi_schedule() assuming hard irqs are masked.
6463  *
6464  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6465  * because the interrupt disabled assumption might not be true
6466  * due to force-threaded interrupts and spinlock substitution.
6467  */
__napi_schedule_irqoff(struct napi_struct * n)6468 void __napi_schedule_irqoff(struct napi_struct *n)
6469 {
6470 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6471 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6472 	else
6473 		__napi_schedule(n);
6474 }
6475 EXPORT_SYMBOL(__napi_schedule_irqoff);
6476 
napi_complete_done(struct napi_struct * n,int work_done)6477 bool napi_complete_done(struct napi_struct *n, int work_done)
6478 {
6479 	unsigned long flags, val, new, timeout = 0;
6480 	bool ret = true;
6481 
6482 	/*
6483 	 * 1) Don't let napi dequeue from the cpu poll list
6484 	 *    just in case its running on a different cpu.
6485 	 * 2) If we are busy polling, do nothing here, we have
6486 	 *    the guarantee we will be called later.
6487 	 */
6488 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6489 				 NAPIF_STATE_IN_BUSY_POLL)))
6490 		return false;
6491 
6492 	if (work_done) {
6493 		if (n->gro_bitmask)
6494 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6495 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6496 	}
6497 	if (n->defer_hard_irqs_count > 0) {
6498 		n->defer_hard_irqs_count--;
6499 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6500 		if (timeout)
6501 			ret = false;
6502 	}
6503 	if (n->gro_bitmask) {
6504 		/* When the NAPI instance uses a timeout and keeps postponing
6505 		 * it, we need to bound somehow the time packets are kept in
6506 		 * the GRO layer
6507 		 */
6508 		napi_gro_flush(n, !!timeout);
6509 	}
6510 
6511 	gro_normal_list(n);
6512 
6513 	if (unlikely(!list_empty(&n->poll_list))) {
6514 		/* If n->poll_list is not empty, we need to mask irqs */
6515 		local_irq_save(flags);
6516 		list_del_init(&n->poll_list);
6517 		local_irq_restore(flags);
6518 	}
6519 
6520 	do {
6521 		val = READ_ONCE(n->state);
6522 
6523 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6524 
6525 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6526 
6527 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6528 		 * because we will call napi->poll() one more time.
6529 		 * This C code was suggested by Alexander Duyck to help gcc.
6530 		 */
6531 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6532 						    NAPIF_STATE_SCHED;
6533 	} while (cmpxchg(&n->state, val, new) != val);
6534 
6535 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6536 		__napi_schedule(n);
6537 		return false;
6538 	}
6539 
6540 	if (timeout)
6541 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6542 			      HRTIMER_MODE_REL_PINNED);
6543 	return ret;
6544 }
6545 EXPORT_SYMBOL(napi_complete_done);
6546 
6547 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6548 static struct napi_struct *napi_by_id(unsigned int napi_id)
6549 {
6550 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6551 	struct napi_struct *napi;
6552 
6553 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6554 		if (napi->napi_id == napi_id)
6555 			return napi;
6556 
6557 	return NULL;
6558 }
6559 
6560 #if defined(CONFIG_NET_RX_BUSY_POLL)
6561 
6562 #define BUSY_POLL_BUDGET 8
6563 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6564 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6565 {
6566 	int rc;
6567 
6568 	/* Busy polling means there is a high chance device driver hard irq
6569 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6570 	 * set in napi_schedule_prep().
6571 	 * Since we are about to call napi->poll() once more, we can safely
6572 	 * clear NAPI_STATE_MISSED.
6573 	 *
6574 	 * Note: x86 could use a single "lock and ..." instruction
6575 	 * to perform these two clear_bit()
6576 	 */
6577 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6578 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6579 
6580 	local_bh_disable();
6581 
6582 	/* All we really want here is to re-enable device interrupts.
6583 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6584 	 */
6585 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6586 	/* We can't gro_normal_list() here, because napi->poll() might have
6587 	 * rearmed the napi (napi_complete_done()) in which case it could
6588 	 * already be running on another CPU.
6589 	 */
6590 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6591 	netpoll_poll_unlock(have_poll_lock);
6592 	if (rc == BUSY_POLL_BUDGET) {
6593 		/* As the whole budget was spent, we still own the napi so can
6594 		 * safely handle the rx_list.
6595 		 */
6596 		gro_normal_list(napi);
6597 		__napi_schedule(napi);
6598 	}
6599 	local_bh_enable();
6600 }
6601 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6602 void napi_busy_loop(unsigned int napi_id,
6603 		    bool (*loop_end)(void *, unsigned long),
6604 		    void *loop_end_arg)
6605 {
6606 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6607 	int (*napi_poll)(struct napi_struct *napi, int budget);
6608 	void *have_poll_lock = NULL;
6609 	struct napi_struct *napi;
6610 
6611 restart:
6612 	napi_poll = NULL;
6613 
6614 	rcu_read_lock();
6615 
6616 	napi = napi_by_id(napi_id);
6617 	if (!napi)
6618 		goto out;
6619 
6620 	preempt_disable();
6621 	for (;;) {
6622 		int work = 0;
6623 
6624 		local_bh_disable();
6625 		if (!napi_poll) {
6626 			unsigned long val = READ_ONCE(napi->state);
6627 
6628 			/* If multiple threads are competing for this napi,
6629 			 * we avoid dirtying napi->state as much as we can.
6630 			 */
6631 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6632 				   NAPIF_STATE_IN_BUSY_POLL))
6633 				goto count;
6634 			if (cmpxchg(&napi->state, val,
6635 				    val | NAPIF_STATE_IN_BUSY_POLL |
6636 					  NAPIF_STATE_SCHED) != val)
6637 				goto count;
6638 			have_poll_lock = netpoll_poll_lock(napi);
6639 			napi_poll = napi->poll;
6640 		}
6641 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6642 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6643 		gro_normal_list(napi);
6644 count:
6645 		if (work > 0)
6646 			__NET_ADD_STATS(dev_net(napi->dev),
6647 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6648 		local_bh_enable();
6649 
6650 		if (!loop_end || loop_end(loop_end_arg, start_time))
6651 			break;
6652 
6653 		if (unlikely(need_resched())) {
6654 			if (napi_poll)
6655 				busy_poll_stop(napi, have_poll_lock);
6656 			preempt_enable();
6657 			rcu_read_unlock();
6658 			cond_resched();
6659 			if (loop_end(loop_end_arg, start_time))
6660 				return;
6661 			goto restart;
6662 		}
6663 		cpu_relax();
6664 	}
6665 	if (napi_poll)
6666 		busy_poll_stop(napi, have_poll_lock);
6667 	preempt_enable();
6668 out:
6669 	rcu_read_unlock();
6670 }
6671 EXPORT_SYMBOL(napi_busy_loop);
6672 
6673 #endif /* CONFIG_NET_RX_BUSY_POLL */
6674 
napi_hash_add(struct napi_struct * napi)6675 static void napi_hash_add(struct napi_struct *napi)
6676 {
6677 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6678 		return;
6679 
6680 	spin_lock(&napi_hash_lock);
6681 
6682 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6683 	do {
6684 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6685 			napi_gen_id = MIN_NAPI_ID;
6686 	} while (napi_by_id(napi_gen_id));
6687 	napi->napi_id = napi_gen_id;
6688 
6689 	hlist_add_head_rcu(&napi->napi_hash_node,
6690 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6691 
6692 	spin_unlock(&napi_hash_lock);
6693 }
6694 
6695 /* Warning : caller is responsible to make sure rcu grace period
6696  * is respected before freeing memory containing @napi
6697  */
napi_hash_del(struct napi_struct * napi)6698 static void napi_hash_del(struct napi_struct *napi)
6699 {
6700 	spin_lock(&napi_hash_lock);
6701 
6702 	hlist_del_init_rcu(&napi->napi_hash_node);
6703 
6704 	spin_unlock(&napi_hash_lock);
6705 }
6706 
napi_watchdog(struct hrtimer * timer)6707 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6708 {
6709 	struct napi_struct *napi;
6710 
6711 	napi = container_of(timer, struct napi_struct, timer);
6712 
6713 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6714 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6715 	 */
6716 	if (!napi_disable_pending(napi) &&
6717 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6718 		__napi_schedule_irqoff(napi);
6719 
6720 	return HRTIMER_NORESTART;
6721 }
6722 
init_gro_hash(struct napi_struct * napi)6723 static void init_gro_hash(struct napi_struct *napi)
6724 {
6725 	int i;
6726 
6727 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6728 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6729 		napi->gro_hash[i].count = 0;
6730 	}
6731 	napi->gro_bitmask = 0;
6732 }
6733 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6734 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6735 		    int (*poll)(struct napi_struct *, int), int weight)
6736 {
6737 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6738 		return;
6739 
6740 	INIT_LIST_HEAD(&napi->poll_list);
6741 	INIT_HLIST_NODE(&napi->napi_hash_node);
6742 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6743 	napi->timer.function = napi_watchdog;
6744 	init_gro_hash(napi);
6745 	napi->skb = NULL;
6746 	INIT_LIST_HEAD(&napi->rx_list);
6747 	napi->rx_count = 0;
6748 	napi->poll = poll;
6749 	if (weight > NAPI_POLL_WEIGHT)
6750 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6751 				weight);
6752 	napi->weight = weight;
6753 	napi->dev = dev;
6754 #ifdef CONFIG_NETPOLL
6755 	napi->poll_owner = -1;
6756 #endif
6757 	set_bit(NAPI_STATE_SCHED, &napi->state);
6758 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6759 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6760 	napi_hash_add(napi);
6761 }
6762 EXPORT_SYMBOL(netif_napi_add);
6763 
napi_disable(struct napi_struct * n)6764 void napi_disable(struct napi_struct *n)
6765 {
6766 	might_sleep();
6767 	set_bit(NAPI_STATE_DISABLE, &n->state);
6768 
6769 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6770 		msleep(1);
6771 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6772 		msleep(1);
6773 
6774 	hrtimer_cancel(&n->timer);
6775 
6776 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6777 }
6778 EXPORT_SYMBOL(napi_disable);
6779 
flush_gro_hash(struct napi_struct * napi)6780 static void flush_gro_hash(struct napi_struct *napi)
6781 {
6782 	int i;
6783 
6784 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6785 		struct sk_buff *skb, *n;
6786 
6787 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6788 			kfree_skb(skb);
6789 		napi->gro_hash[i].count = 0;
6790 	}
6791 }
6792 
6793 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6794 void __netif_napi_del(struct napi_struct *napi)
6795 {
6796 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6797 		return;
6798 
6799 	napi_hash_del(napi);
6800 	list_del_rcu(&napi->dev_list);
6801 	napi_free_frags(napi);
6802 
6803 	flush_gro_hash(napi);
6804 	napi->gro_bitmask = 0;
6805 }
6806 EXPORT_SYMBOL(__netif_napi_del);
6807 
napi_poll(struct napi_struct * n,struct list_head * repoll)6808 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6809 {
6810 	void *have;
6811 	int work, weight;
6812 
6813 	list_del_init(&n->poll_list);
6814 
6815 	have = netpoll_poll_lock(n);
6816 
6817 	weight = n->weight;
6818 
6819 	/* This NAPI_STATE_SCHED test is for avoiding a race
6820 	 * with netpoll's poll_napi().  Only the entity which
6821 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6822 	 * actually make the ->poll() call.  Therefore we avoid
6823 	 * accidentally calling ->poll() when NAPI is not scheduled.
6824 	 */
6825 	work = 0;
6826 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6827 		work = n->poll(n, weight);
6828 		trace_napi_poll(n, work, weight);
6829 	}
6830 
6831 	if (unlikely(work > weight))
6832 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6833 			    n->poll, work, weight);
6834 
6835 	if (likely(work < weight))
6836 		goto out_unlock;
6837 
6838 	/* Drivers must not modify the NAPI state if they
6839 	 * consume the entire weight.  In such cases this code
6840 	 * still "owns" the NAPI instance and therefore can
6841 	 * move the instance around on the list at-will.
6842 	 */
6843 	if (unlikely(napi_disable_pending(n))) {
6844 		napi_complete(n);
6845 		goto out_unlock;
6846 	}
6847 
6848 	if (n->gro_bitmask) {
6849 		/* flush too old packets
6850 		 * If HZ < 1000, flush all packets.
6851 		 */
6852 		napi_gro_flush(n, HZ >= 1000);
6853 	}
6854 
6855 	gro_normal_list(n);
6856 
6857 	/* Some drivers may have called napi_schedule
6858 	 * prior to exhausting their budget.
6859 	 */
6860 	if (unlikely(!list_empty(&n->poll_list))) {
6861 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6862 			     n->dev ? n->dev->name : "backlog");
6863 		goto out_unlock;
6864 	}
6865 
6866 	list_add_tail(&n->poll_list, repoll);
6867 
6868 out_unlock:
6869 	netpoll_poll_unlock(have);
6870 
6871 	return work;
6872 }
6873 
net_rx_action(struct softirq_action * h)6874 static __latent_entropy void net_rx_action(struct softirq_action *h)
6875 {
6876 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6877 	unsigned long time_limit = jiffies +
6878 		usecs_to_jiffies(netdev_budget_usecs);
6879 	int budget = netdev_budget;
6880 	LIST_HEAD(list);
6881 	LIST_HEAD(repoll);
6882 
6883 	local_irq_disable();
6884 	list_splice_init(&sd->poll_list, &list);
6885 	local_irq_enable();
6886 
6887 	for (;;) {
6888 		struct napi_struct *n;
6889 
6890 		if (list_empty(&list)) {
6891 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6892 				goto out;
6893 			break;
6894 		}
6895 
6896 		n = list_first_entry(&list, struct napi_struct, poll_list);
6897 		budget -= napi_poll(n, &repoll);
6898 
6899 		/* If softirq window is exhausted then punt.
6900 		 * Allow this to run for 2 jiffies since which will allow
6901 		 * an average latency of 1.5/HZ.
6902 		 */
6903 		if (unlikely(budget <= 0 ||
6904 			     time_after_eq(jiffies, time_limit))) {
6905 			sd->time_squeeze++;
6906 			break;
6907 		}
6908 	}
6909 
6910 	local_irq_disable();
6911 
6912 	list_splice_tail_init(&sd->poll_list, &list);
6913 	list_splice_tail(&repoll, &list);
6914 	list_splice(&list, &sd->poll_list);
6915 	if (!list_empty(&sd->poll_list))
6916 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6917 
6918 	net_rps_action_and_irq_enable(sd);
6919 out:
6920 	__kfree_skb_flush();
6921 }
6922 
6923 struct netdev_adjacent {
6924 	struct net_device *dev;
6925 
6926 	/* upper master flag, there can only be one master device per list */
6927 	bool master;
6928 
6929 	/* lookup ignore flag */
6930 	bool ignore;
6931 
6932 	/* counter for the number of times this device was added to us */
6933 	u16 ref_nr;
6934 
6935 	/* private field for the users */
6936 	void *private;
6937 
6938 	struct list_head list;
6939 	struct rcu_head rcu;
6940 };
6941 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6942 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6943 						 struct list_head *adj_list)
6944 {
6945 	struct netdev_adjacent *adj;
6946 
6947 	list_for_each_entry(adj, adj_list, list) {
6948 		if (adj->dev == adj_dev)
6949 			return adj;
6950 	}
6951 	return NULL;
6952 }
6953 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6954 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6955 				    struct netdev_nested_priv *priv)
6956 {
6957 	struct net_device *dev = (struct net_device *)priv->data;
6958 
6959 	return upper_dev == dev;
6960 }
6961 
6962 /**
6963  * netdev_has_upper_dev - Check if device is linked to an upper device
6964  * @dev: device
6965  * @upper_dev: upper device to check
6966  *
6967  * Find out if a device is linked to specified upper device and return true
6968  * in case it is. Note that this checks only immediate upper device,
6969  * not through a complete stack of devices. The caller must hold the RTNL lock.
6970  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6971 bool netdev_has_upper_dev(struct net_device *dev,
6972 			  struct net_device *upper_dev)
6973 {
6974 	struct netdev_nested_priv priv = {
6975 		.data = (void *)upper_dev,
6976 	};
6977 
6978 	ASSERT_RTNL();
6979 
6980 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6981 					     &priv);
6982 }
6983 EXPORT_SYMBOL(netdev_has_upper_dev);
6984 
6985 /**
6986  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6987  * @dev: device
6988  * @upper_dev: upper device to check
6989  *
6990  * Find out if a device is linked to specified upper device and return true
6991  * in case it is. Note that this checks the entire upper device chain.
6992  * The caller must hold rcu lock.
6993  */
6994 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6995 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6996 				  struct net_device *upper_dev)
6997 {
6998 	struct netdev_nested_priv priv = {
6999 		.data = (void *)upper_dev,
7000 	};
7001 
7002 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7003 					       &priv);
7004 }
7005 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7006 
7007 /**
7008  * netdev_has_any_upper_dev - Check if device is linked to some device
7009  * @dev: device
7010  *
7011  * Find out if a device is linked to an upper device and return true in case
7012  * it is. The caller must hold the RTNL lock.
7013  */
netdev_has_any_upper_dev(struct net_device * dev)7014 bool netdev_has_any_upper_dev(struct net_device *dev)
7015 {
7016 	ASSERT_RTNL();
7017 
7018 	return !list_empty(&dev->adj_list.upper);
7019 }
7020 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7021 
7022 /**
7023  * netdev_master_upper_dev_get - Get master upper device
7024  * @dev: device
7025  *
7026  * Find a master upper device and return pointer to it or NULL in case
7027  * it's not there. The caller must hold the RTNL lock.
7028  */
netdev_master_upper_dev_get(struct net_device * dev)7029 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7030 {
7031 	struct netdev_adjacent *upper;
7032 
7033 	ASSERT_RTNL();
7034 
7035 	if (list_empty(&dev->adj_list.upper))
7036 		return NULL;
7037 
7038 	upper = list_first_entry(&dev->adj_list.upper,
7039 				 struct netdev_adjacent, list);
7040 	if (likely(upper->master))
7041 		return upper->dev;
7042 	return NULL;
7043 }
7044 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7045 
__netdev_master_upper_dev_get(struct net_device * dev)7046 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7047 {
7048 	struct netdev_adjacent *upper;
7049 
7050 	ASSERT_RTNL();
7051 
7052 	if (list_empty(&dev->adj_list.upper))
7053 		return NULL;
7054 
7055 	upper = list_first_entry(&dev->adj_list.upper,
7056 				 struct netdev_adjacent, list);
7057 	if (likely(upper->master) && !upper->ignore)
7058 		return upper->dev;
7059 	return NULL;
7060 }
7061 
7062 /**
7063  * netdev_has_any_lower_dev - Check if device is linked to some device
7064  * @dev: device
7065  *
7066  * Find out if a device is linked to a lower device and return true in case
7067  * it is. The caller must hold the RTNL lock.
7068  */
netdev_has_any_lower_dev(struct net_device * dev)7069 static bool netdev_has_any_lower_dev(struct net_device *dev)
7070 {
7071 	ASSERT_RTNL();
7072 
7073 	return !list_empty(&dev->adj_list.lower);
7074 }
7075 
netdev_adjacent_get_private(struct list_head * adj_list)7076 void *netdev_adjacent_get_private(struct list_head *adj_list)
7077 {
7078 	struct netdev_adjacent *adj;
7079 
7080 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7081 
7082 	return adj->private;
7083 }
7084 EXPORT_SYMBOL(netdev_adjacent_get_private);
7085 
7086 /**
7087  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7088  * @dev: device
7089  * @iter: list_head ** of the current position
7090  *
7091  * Gets the next device from the dev's upper list, starting from iter
7092  * position. The caller must hold RCU read lock.
7093  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7094 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7095 						 struct list_head **iter)
7096 {
7097 	struct netdev_adjacent *upper;
7098 
7099 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7100 
7101 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7102 
7103 	if (&upper->list == &dev->adj_list.upper)
7104 		return NULL;
7105 
7106 	*iter = &upper->list;
7107 
7108 	return upper->dev;
7109 }
7110 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7111 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7112 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7113 						  struct list_head **iter,
7114 						  bool *ignore)
7115 {
7116 	struct netdev_adjacent *upper;
7117 
7118 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7119 
7120 	if (&upper->list == &dev->adj_list.upper)
7121 		return NULL;
7122 
7123 	*iter = &upper->list;
7124 	*ignore = upper->ignore;
7125 
7126 	return upper->dev;
7127 }
7128 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7129 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7130 						    struct list_head **iter)
7131 {
7132 	struct netdev_adjacent *upper;
7133 
7134 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7135 
7136 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7137 
7138 	if (&upper->list == &dev->adj_list.upper)
7139 		return NULL;
7140 
7141 	*iter = &upper->list;
7142 
7143 	return upper->dev;
7144 }
7145 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7146 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7147 				       int (*fn)(struct net_device *dev,
7148 					 struct netdev_nested_priv *priv),
7149 				       struct netdev_nested_priv *priv)
7150 {
7151 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7152 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7153 	int ret, cur = 0;
7154 	bool ignore;
7155 
7156 	now = dev;
7157 	iter = &dev->adj_list.upper;
7158 
7159 	while (1) {
7160 		if (now != dev) {
7161 			ret = fn(now, priv);
7162 			if (ret)
7163 				return ret;
7164 		}
7165 
7166 		next = NULL;
7167 		while (1) {
7168 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7169 			if (!udev)
7170 				break;
7171 			if (ignore)
7172 				continue;
7173 
7174 			next = udev;
7175 			niter = &udev->adj_list.upper;
7176 			dev_stack[cur] = now;
7177 			iter_stack[cur++] = iter;
7178 			break;
7179 		}
7180 
7181 		if (!next) {
7182 			if (!cur)
7183 				return 0;
7184 			next = dev_stack[--cur];
7185 			niter = iter_stack[cur];
7186 		}
7187 
7188 		now = next;
7189 		iter = niter;
7190 	}
7191 
7192 	return 0;
7193 }
7194 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7195 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7196 				  int (*fn)(struct net_device *dev,
7197 					    struct netdev_nested_priv *priv),
7198 				  struct netdev_nested_priv *priv)
7199 {
7200 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7201 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7202 	int ret, cur = 0;
7203 
7204 	now = dev;
7205 	iter = &dev->adj_list.upper;
7206 
7207 	while (1) {
7208 		if (now != dev) {
7209 			ret = fn(now, priv);
7210 			if (ret)
7211 				return ret;
7212 		}
7213 
7214 		next = NULL;
7215 		while (1) {
7216 			udev = netdev_next_upper_dev_rcu(now, &iter);
7217 			if (!udev)
7218 				break;
7219 
7220 			next = udev;
7221 			niter = &udev->adj_list.upper;
7222 			dev_stack[cur] = now;
7223 			iter_stack[cur++] = iter;
7224 			break;
7225 		}
7226 
7227 		if (!next) {
7228 			if (!cur)
7229 				return 0;
7230 			next = dev_stack[--cur];
7231 			niter = iter_stack[cur];
7232 		}
7233 
7234 		now = next;
7235 		iter = niter;
7236 	}
7237 
7238 	return 0;
7239 }
7240 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7241 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7242 static bool __netdev_has_upper_dev(struct net_device *dev,
7243 				   struct net_device *upper_dev)
7244 {
7245 	struct netdev_nested_priv priv = {
7246 		.flags = 0,
7247 		.data = (void *)upper_dev,
7248 	};
7249 
7250 	ASSERT_RTNL();
7251 
7252 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7253 					   &priv);
7254 }
7255 
7256 /**
7257  * netdev_lower_get_next_private - Get the next ->private from the
7258  *				   lower neighbour list
7259  * @dev: device
7260  * @iter: list_head ** of the current position
7261  *
7262  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7263  * list, starting from iter position. The caller must hold either hold the
7264  * RTNL lock or its own locking that guarantees that the neighbour lower
7265  * list will remain unchanged.
7266  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7267 void *netdev_lower_get_next_private(struct net_device *dev,
7268 				    struct list_head **iter)
7269 {
7270 	struct netdev_adjacent *lower;
7271 
7272 	lower = list_entry(*iter, struct netdev_adjacent, list);
7273 
7274 	if (&lower->list == &dev->adj_list.lower)
7275 		return NULL;
7276 
7277 	*iter = lower->list.next;
7278 
7279 	return lower->private;
7280 }
7281 EXPORT_SYMBOL(netdev_lower_get_next_private);
7282 
7283 /**
7284  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7285  *				       lower neighbour list, RCU
7286  *				       variant
7287  * @dev: device
7288  * @iter: list_head ** of the current position
7289  *
7290  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7291  * list, starting from iter position. The caller must hold RCU read lock.
7292  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7293 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7294 					struct list_head **iter)
7295 {
7296 	struct netdev_adjacent *lower;
7297 
7298 	WARN_ON_ONCE(!rcu_read_lock_held());
7299 
7300 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7301 
7302 	if (&lower->list == &dev->adj_list.lower)
7303 		return NULL;
7304 
7305 	*iter = &lower->list;
7306 
7307 	return lower->private;
7308 }
7309 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7310 
7311 /**
7312  * netdev_lower_get_next - Get the next device from the lower neighbour
7313  *                         list
7314  * @dev: device
7315  * @iter: list_head ** of the current position
7316  *
7317  * Gets the next netdev_adjacent from the dev's lower neighbour
7318  * list, starting from iter position. The caller must hold RTNL lock or
7319  * its own locking that guarantees that the neighbour lower
7320  * list will remain unchanged.
7321  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7322 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7323 {
7324 	struct netdev_adjacent *lower;
7325 
7326 	lower = list_entry(*iter, struct netdev_adjacent, list);
7327 
7328 	if (&lower->list == &dev->adj_list.lower)
7329 		return NULL;
7330 
7331 	*iter = lower->list.next;
7332 
7333 	return lower->dev;
7334 }
7335 EXPORT_SYMBOL(netdev_lower_get_next);
7336 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7337 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7338 						struct list_head **iter)
7339 {
7340 	struct netdev_adjacent *lower;
7341 
7342 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7343 
7344 	if (&lower->list == &dev->adj_list.lower)
7345 		return NULL;
7346 
7347 	*iter = &lower->list;
7348 
7349 	return lower->dev;
7350 }
7351 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7352 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7353 						  struct list_head **iter,
7354 						  bool *ignore)
7355 {
7356 	struct netdev_adjacent *lower;
7357 
7358 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7359 
7360 	if (&lower->list == &dev->adj_list.lower)
7361 		return NULL;
7362 
7363 	*iter = &lower->list;
7364 	*ignore = lower->ignore;
7365 
7366 	return lower->dev;
7367 }
7368 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7369 int netdev_walk_all_lower_dev(struct net_device *dev,
7370 			      int (*fn)(struct net_device *dev,
7371 					struct netdev_nested_priv *priv),
7372 			      struct netdev_nested_priv *priv)
7373 {
7374 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7375 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7376 	int ret, cur = 0;
7377 
7378 	now = dev;
7379 	iter = &dev->adj_list.lower;
7380 
7381 	while (1) {
7382 		if (now != dev) {
7383 			ret = fn(now, priv);
7384 			if (ret)
7385 				return ret;
7386 		}
7387 
7388 		next = NULL;
7389 		while (1) {
7390 			ldev = netdev_next_lower_dev(now, &iter);
7391 			if (!ldev)
7392 				break;
7393 
7394 			next = ldev;
7395 			niter = &ldev->adj_list.lower;
7396 			dev_stack[cur] = now;
7397 			iter_stack[cur++] = iter;
7398 			break;
7399 		}
7400 
7401 		if (!next) {
7402 			if (!cur)
7403 				return 0;
7404 			next = dev_stack[--cur];
7405 			niter = iter_stack[cur];
7406 		}
7407 
7408 		now = next;
7409 		iter = niter;
7410 	}
7411 
7412 	return 0;
7413 }
7414 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7415 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7416 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7417 				       int (*fn)(struct net_device *dev,
7418 					 struct netdev_nested_priv *priv),
7419 				       struct netdev_nested_priv *priv)
7420 {
7421 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7422 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7423 	int ret, cur = 0;
7424 	bool ignore;
7425 
7426 	now = dev;
7427 	iter = &dev->adj_list.lower;
7428 
7429 	while (1) {
7430 		if (now != dev) {
7431 			ret = fn(now, priv);
7432 			if (ret)
7433 				return ret;
7434 		}
7435 
7436 		next = NULL;
7437 		while (1) {
7438 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7439 			if (!ldev)
7440 				break;
7441 			if (ignore)
7442 				continue;
7443 
7444 			next = ldev;
7445 			niter = &ldev->adj_list.lower;
7446 			dev_stack[cur] = now;
7447 			iter_stack[cur++] = iter;
7448 			break;
7449 		}
7450 
7451 		if (!next) {
7452 			if (!cur)
7453 				return 0;
7454 			next = dev_stack[--cur];
7455 			niter = iter_stack[cur];
7456 		}
7457 
7458 		now = next;
7459 		iter = niter;
7460 	}
7461 
7462 	return 0;
7463 }
7464 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7465 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7466 					     struct list_head **iter)
7467 {
7468 	struct netdev_adjacent *lower;
7469 
7470 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7471 	if (&lower->list == &dev->adj_list.lower)
7472 		return NULL;
7473 
7474 	*iter = &lower->list;
7475 
7476 	return lower->dev;
7477 }
7478 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7479 
__netdev_upper_depth(struct net_device * dev)7480 static u8 __netdev_upper_depth(struct net_device *dev)
7481 {
7482 	struct net_device *udev;
7483 	struct list_head *iter;
7484 	u8 max_depth = 0;
7485 	bool ignore;
7486 
7487 	for (iter = &dev->adj_list.upper,
7488 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7489 	     udev;
7490 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7491 		if (ignore)
7492 			continue;
7493 		if (max_depth < udev->upper_level)
7494 			max_depth = udev->upper_level;
7495 	}
7496 
7497 	return max_depth;
7498 }
7499 
__netdev_lower_depth(struct net_device * dev)7500 static u8 __netdev_lower_depth(struct net_device *dev)
7501 {
7502 	struct net_device *ldev;
7503 	struct list_head *iter;
7504 	u8 max_depth = 0;
7505 	bool ignore;
7506 
7507 	for (iter = &dev->adj_list.lower,
7508 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7509 	     ldev;
7510 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7511 		if (ignore)
7512 			continue;
7513 		if (max_depth < ldev->lower_level)
7514 			max_depth = ldev->lower_level;
7515 	}
7516 
7517 	return max_depth;
7518 }
7519 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7520 static int __netdev_update_upper_level(struct net_device *dev,
7521 				       struct netdev_nested_priv *__unused)
7522 {
7523 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7524 	return 0;
7525 }
7526 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7527 static int __netdev_update_lower_level(struct net_device *dev,
7528 				       struct netdev_nested_priv *priv)
7529 {
7530 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7531 
7532 #ifdef CONFIG_LOCKDEP
7533 	if (!priv)
7534 		return 0;
7535 
7536 	if (priv->flags & NESTED_SYNC_IMM)
7537 		dev->nested_level = dev->lower_level - 1;
7538 	if (priv->flags & NESTED_SYNC_TODO)
7539 		net_unlink_todo(dev);
7540 #endif
7541 	return 0;
7542 }
7543 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7544 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7545 				  int (*fn)(struct net_device *dev,
7546 					    struct netdev_nested_priv *priv),
7547 				  struct netdev_nested_priv *priv)
7548 {
7549 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7550 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7551 	int ret, cur = 0;
7552 
7553 	now = dev;
7554 	iter = &dev->adj_list.lower;
7555 
7556 	while (1) {
7557 		if (now != dev) {
7558 			ret = fn(now, priv);
7559 			if (ret)
7560 				return ret;
7561 		}
7562 
7563 		next = NULL;
7564 		while (1) {
7565 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7566 			if (!ldev)
7567 				break;
7568 
7569 			next = ldev;
7570 			niter = &ldev->adj_list.lower;
7571 			dev_stack[cur] = now;
7572 			iter_stack[cur++] = iter;
7573 			break;
7574 		}
7575 
7576 		if (!next) {
7577 			if (!cur)
7578 				return 0;
7579 			next = dev_stack[--cur];
7580 			niter = iter_stack[cur];
7581 		}
7582 
7583 		now = next;
7584 		iter = niter;
7585 	}
7586 
7587 	return 0;
7588 }
7589 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7590 
7591 /**
7592  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7593  *				       lower neighbour list, RCU
7594  *				       variant
7595  * @dev: device
7596  *
7597  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7598  * list. The caller must hold RCU read lock.
7599  */
netdev_lower_get_first_private_rcu(struct net_device * dev)7600 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7601 {
7602 	struct netdev_adjacent *lower;
7603 
7604 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7605 			struct netdev_adjacent, list);
7606 	if (lower)
7607 		return lower->private;
7608 	return NULL;
7609 }
7610 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7611 
7612 /**
7613  * netdev_master_upper_dev_get_rcu - Get master upper device
7614  * @dev: device
7615  *
7616  * Find a master upper device and return pointer to it or NULL in case
7617  * it's not there. The caller must hold the RCU read lock.
7618  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7619 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7620 {
7621 	struct netdev_adjacent *upper;
7622 
7623 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7624 				       struct netdev_adjacent, list);
7625 	if (upper && likely(upper->master))
7626 		return upper->dev;
7627 	return NULL;
7628 }
7629 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7630 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7631 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7632 			      struct net_device *adj_dev,
7633 			      struct list_head *dev_list)
7634 {
7635 	char linkname[IFNAMSIZ+7];
7636 
7637 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7638 		"upper_%s" : "lower_%s", adj_dev->name);
7639 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7640 				 linkname);
7641 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7642 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7643 			       char *name,
7644 			       struct list_head *dev_list)
7645 {
7646 	char linkname[IFNAMSIZ+7];
7647 
7648 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7649 		"upper_%s" : "lower_%s", name);
7650 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7651 }
7652 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7653 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7654 						 struct net_device *adj_dev,
7655 						 struct list_head *dev_list)
7656 {
7657 	return (dev_list == &dev->adj_list.upper ||
7658 		dev_list == &dev->adj_list.lower) &&
7659 		net_eq(dev_net(dev), dev_net(adj_dev));
7660 }
7661 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7662 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7663 					struct net_device *adj_dev,
7664 					struct list_head *dev_list,
7665 					void *private, bool master)
7666 {
7667 	struct netdev_adjacent *adj;
7668 	int ret;
7669 
7670 	adj = __netdev_find_adj(adj_dev, dev_list);
7671 
7672 	if (adj) {
7673 		adj->ref_nr += 1;
7674 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7675 			 dev->name, adj_dev->name, adj->ref_nr);
7676 
7677 		return 0;
7678 	}
7679 
7680 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7681 	if (!adj)
7682 		return -ENOMEM;
7683 
7684 	adj->dev = adj_dev;
7685 	adj->master = master;
7686 	adj->ref_nr = 1;
7687 	adj->private = private;
7688 	adj->ignore = false;
7689 	dev_hold(adj_dev);
7690 
7691 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7692 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7693 
7694 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7695 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7696 		if (ret)
7697 			goto free_adj;
7698 	}
7699 
7700 	/* Ensure that master link is always the first item in list. */
7701 	if (master) {
7702 		ret = sysfs_create_link(&(dev->dev.kobj),
7703 					&(adj_dev->dev.kobj), "master");
7704 		if (ret)
7705 			goto remove_symlinks;
7706 
7707 		list_add_rcu(&adj->list, dev_list);
7708 	} else {
7709 		list_add_tail_rcu(&adj->list, dev_list);
7710 	}
7711 
7712 	return 0;
7713 
7714 remove_symlinks:
7715 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7716 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7717 free_adj:
7718 	kfree(adj);
7719 	dev_put(adj_dev);
7720 
7721 	return ret;
7722 }
7723 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7724 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7725 					 struct net_device *adj_dev,
7726 					 u16 ref_nr,
7727 					 struct list_head *dev_list)
7728 {
7729 	struct netdev_adjacent *adj;
7730 
7731 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7732 		 dev->name, adj_dev->name, ref_nr);
7733 
7734 	adj = __netdev_find_adj(adj_dev, dev_list);
7735 
7736 	if (!adj) {
7737 		pr_err("Adjacency does not exist for device %s from %s\n",
7738 		       dev->name, adj_dev->name);
7739 		WARN_ON(1);
7740 		return;
7741 	}
7742 
7743 	if (adj->ref_nr > ref_nr) {
7744 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7745 			 dev->name, adj_dev->name, ref_nr,
7746 			 adj->ref_nr - ref_nr);
7747 		adj->ref_nr -= ref_nr;
7748 		return;
7749 	}
7750 
7751 	if (adj->master)
7752 		sysfs_remove_link(&(dev->dev.kobj), "master");
7753 
7754 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7755 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7756 
7757 	list_del_rcu(&adj->list);
7758 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7759 		 adj_dev->name, dev->name, adj_dev->name);
7760 	dev_put(adj_dev);
7761 	kfree_rcu(adj, rcu);
7762 }
7763 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7764 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7765 					    struct net_device *upper_dev,
7766 					    struct list_head *up_list,
7767 					    struct list_head *down_list,
7768 					    void *private, bool master)
7769 {
7770 	int ret;
7771 
7772 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7773 					   private, master);
7774 	if (ret)
7775 		return ret;
7776 
7777 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7778 					   private, false);
7779 	if (ret) {
7780 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7781 		return ret;
7782 	}
7783 
7784 	return 0;
7785 }
7786 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7787 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7788 					       struct net_device *upper_dev,
7789 					       u16 ref_nr,
7790 					       struct list_head *up_list,
7791 					       struct list_head *down_list)
7792 {
7793 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7794 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7795 }
7796 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7797 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7798 						struct net_device *upper_dev,
7799 						void *private, bool master)
7800 {
7801 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7802 						&dev->adj_list.upper,
7803 						&upper_dev->adj_list.lower,
7804 						private, master);
7805 }
7806 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7807 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7808 						   struct net_device *upper_dev)
7809 {
7810 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7811 					   &dev->adj_list.upper,
7812 					   &upper_dev->adj_list.lower);
7813 }
7814 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7815 static int __netdev_upper_dev_link(struct net_device *dev,
7816 				   struct net_device *upper_dev, bool master,
7817 				   void *upper_priv, void *upper_info,
7818 				   struct netdev_nested_priv *priv,
7819 				   struct netlink_ext_ack *extack)
7820 {
7821 	struct netdev_notifier_changeupper_info changeupper_info = {
7822 		.info = {
7823 			.dev = dev,
7824 			.extack = extack,
7825 		},
7826 		.upper_dev = upper_dev,
7827 		.master = master,
7828 		.linking = true,
7829 		.upper_info = upper_info,
7830 	};
7831 	struct net_device *master_dev;
7832 	int ret = 0;
7833 
7834 	ASSERT_RTNL();
7835 
7836 	if (dev == upper_dev)
7837 		return -EBUSY;
7838 
7839 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7840 	if (__netdev_has_upper_dev(upper_dev, dev))
7841 		return -EBUSY;
7842 
7843 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7844 		return -EMLINK;
7845 
7846 	if (!master) {
7847 		if (__netdev_has_upper_dev(dev, upper_dev))
7848 			return -EEXIST;
7849 	} else {
7850 		master_dev = __netdev_master_upper_dev_get(dev);
7851 		if (master_dev)
7852 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7853 	}
7854 
7855 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7856 					    &changeupper_info.info);
7857 	ret = notifier_to_errno(ret);
7858 	if (ret)
7859 		return ret;
7860 
7861 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7862 						   master);
7863 	if (ret)
7864 		return ret;
7865 
7866 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7867 					    &changeupper_info.info);
7868 	ret = notifier_to_errno(ret);
7869 	if (ret)
7870 		goto rollback;
7871 
7872 	__netdev_update_upper_level(dev, NULL);
7873 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7874 
7875 	__netdev_update_lower_level(upper_dev, priv);
7876 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7877 				    priv);
7878 
7879 	return 0;
7880 
7881 rollback:
7882 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7883 
7884 	return ret;
7885 }
7886 
7887 /**
7888  * netdev_upper_dev_link - Add a link to the upper device
7889  * @dev: device
7890  * @upper_dev: new upper device
7891  * @extack: netlink extended ack
7892  *
7893  * Adds a link to device which is upper to this one. The caller must hold
7894  * the RTNL lock. On a failure a negative errno code is returned.
7895  * On success the reference counts are adjusted and the function
7896  * returns zero.
7897  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7898 int netdev_upper_dev_link(struct net_device *dev,
7899 			  struct net_device *upper_dev,
7900 			  struct netlink_ext_ack *extack)
7901 {
7902 	struct netdev_nested_priv priv = {
7903 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7904 		.data = NULL,
7905 	};
7906 
7907 	return __netdev_upper_dev_link(dev, upper_dev, false,
7908 				       NULL, NULL, &priv, extack);
7909 }
7910 EXPORT_SYMBOL(netdev_upper_dev_link);
7911 
7912 /**
7913  * netdev_master_upper_dev_link - Add a master link to the upper device
7914  * @dev: device
7915  * @upper_dev: new upper device
7916  * @upper_priv: upper device private
7917  * @upper_info: upper info to be passed down via notifier
7918  * @extack: netlink extended ack
7919  *
7920  * Adds a link to device which is upper to this one. In this case, only
7921  * one master upper device can be linked, although other non-master devices
7922  * might be linked as well. The caller must hold the RTNL lock.
7923  * On a failure a negative errno code is returned. On success the reference
7924  * counts are adjusted and the function returns zero.
7925  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7926 int netdev_master_upper_dev_link(struct net_device *dev,
7927 				 struct net_device *upper_dev,
7928 				 void *upper_priv, void *upper_info,
7929 				 struct netlink_ext_ack *extack)
7930 {
7931 	struct netdev_nested_priv priv = {
7932 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7933 		.data = NULL,
7934 	};
7935 
7936 	return __netdev_upper_dev_link(dev, upper_dev, true,
7937 				       upper_priv, upper_info, &priv, extack);
7938 }
7939 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7940 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7941 static void __netdev_upper_dev_unlink(struct net_device *dev,
7942 				      struct net_device *upper_dev,
7943 				      struct netdev_nested_priv *priv)
7944 {
7945 	struct netdev_notifier_changeupper_info changeupper_info = {
7946 		.info = {
7947 			.dev = dev,
7948 		},
7949 		.upper_dev = upper_dev,
7950 		.linking = false,
7951 	};
7952 
7953 	ASSERT_RTNL();
7954 
7955 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7956 
7957 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7958 				      &changeupper_info.info);
7959 
7960 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7961 
7962 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7963 				      &changeupper_info.info);
7964 
7965 	__netdev_update_upper_level(dev, NULL);
7966 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7967 
7968 	__netdev_update_lower_level(upper_dev, priv);
7969 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7970 				    priv);
7971 }
7972 
7973 /**
7974  * netdev_upper_dev_unlink - Removes a link to upper device
7975  * @dev: device
7976  * @upper_dev: new upper device
7977  *
7978  * Removes a link to device which is upper to this one. The caller must hold
7979  * the RTNL lock.
7980  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7981 void netdev_upper_dev_unlink(struct net_device *dev,
7982 			     struct net_device *upper_dev)
7983 {
7984 	struct netdev_nested_priv priv = {
7985 		.flags = NESTED_SYNC_TODO,
7986 		.data = NULL,
7987 	};
7988 
7989 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7990 }
7991 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7992 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7993 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7994 				      struct net_device *lower_dev,
7995 				      bool val)
7996 {
7997 	struct netdev_adjacent *adj;
7998 
7999 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8000 	if (adj)
8001 		adj->ignore = val;
8002 
8003 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8004 	if (adj)
8005 		adj->ignore = val;
8006 }
8007 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8008 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8009 					struct net_device *lower_dev)
8010 {
8011 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8012 }
8013 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8014 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8015 				       struct net_device *lower_dev)
8016 {
8017 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8018 }
8019 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8020 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8021 				   struct net_device *new_dev,
8022 				   struct net_device *dev,
8023 				   struct netlink_ext_ack *extack)
8024 {
8025 	struct netdev_nested_priv priv = {
8026 		.flags = 0,
8027 		.data = NULL,
8028 	};
8029 	int err;
8030 
8031 	if (!new_dev)
8032 		return 0;
8033 
8034 	if (old_dev && new_dev != old_dev)
8035 		netdev_adjacent_dev_disable(dev, old_dev);
8036 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8037 				      extack);
8038 	if (err) {
8039 		if (old_dev && new_dev != old_dev)
8040 			netdev_adjacent_dev_enable(dev, old_dev);
8041 		return err;
8042 	}
8043 
8044 	return 0;
8045 }
8046 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8047 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8048 void netdev_adjacent_change_commit(struct net_device *old_dev,
8049 				   struct net_device *new_dev,
8050 				   struct net_device *dev)
8051 {
8052 	struct netdev_nested_priv priv = {
8053 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8054 		.data = NULL,
8055 	};
8056 
8057 	if (!new_dev || !old_dev)
8058 		return;
8059 
8060 	if (new_dev == old_dev)
8061 		return;
8062 
8063 	netdev_adjacent_dev_enable(dev, old_dev);
8064 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8065 }
8066 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8067 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8068 void netdev_adjacent_change_abort(struct net_device *old_dev,
8069 				  struct net_device *new_dev,
8070 				  struct net_device *dev)
8071 {
8072 	struct netdev_nested_priv priv = {
8073 		.flags = 0,
8074 		.data = NULL,
8075 	};
8076 
8077 	if (!new_dev)
8078 		return;
8079 
8080 	if (old_dev && new_dev != old_dev)
8081 		netdev_adjacent_dev_enable(dev, old_dev);
8082 
8083 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8084 }
8085 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8086 
8087 /**
8088  * netdev_bonding_info_change - Dispatch event about slave change
8089  * @dev: device
8090  * @bonding_info: info to dispatch
8091  *
8092  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8093  * The caller must hold the RTNL lock.
8094  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8095 void netdev_bonding_info_change(struct net_device *dev,
8096 				struct netdev_bonding_info *bonding_info)
8097 {
8098 	struct netdev_notifier_bonding_info info = {
8099 		.info.dev = dev,
8100 	};
8101 
8102 	memcpy(&info.bonding_info, bonding_info,
8103 	       sizeof(struct netdev_bonding_info));
8104 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8105 				      &info.info);
8106 }
8107 EXPORT_SYMBOL(netdev_bonding_info_change);
8108 
8109 /**
8110  * netdev_get_xmit_slave - Get the xmit slave of master device
8111  * @dev: device
8112  * @skb: The packet
8113  * @all_slaves: assume all the slaves are active
8114  *
8115  * The reference counters are not incremented so the caller must be
8116  * careful with locks. The caller must hold RCU lock.
8117  * %NULL is returned if no slave is found.
8118  */
8119 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8120 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8121 					 struct sk_buff *skb,
8122 					 bool all_slaves)
8123 {
8124 	const struct net_device_ops *ops = dev->netdev_ops;
8125 
8126 	if (!ops->ndo_get_xmit_slave)
8127 		return NULL;
8128 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8129 }
8130 EXPORT_SYMBOL(netdev_get_xmit_slave);
8131 
netdev_adjacent_add_links(struct net_device * dev)8132 static void netdev_adjacent_add_links(struct net_device *dev)
8133 {
8134 	struct netdev_adjacent *iter;
8135 
8136 	struct net *net = dev_net(dev);
8137 
8138 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8139 		if (!net_eq(net, dev_net(iter->dev)))
8140 			continue;
8141 		netdev_adjacent_sysfs_add(iter->dev, dev,
8142 					  &iter->dev->adj_list.lower);
8143 		netdev_adjacent_sysfs_add(dev, iter->dev,
8144 					  &dev->adj_list.upper);
8145 	}
8146 
8147 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8148 		if (!net_eq(net, dev_net(iter->dev)))
8149 			continue;
8150 		netdev_adjacent_sysfs_add(iter->dev, dev,
8151 					  &iter->dev->adj_list.upper);
8152 		netdev_adjacent_sysfs_add(dev, iter->dev,
8153 					  &dev->adj_list.lower);
8154 	}
8155 }
8156 
netdev_adjacent_del_links(struct net_device * dev)8157 static void netdev_adjacent_del_links(struct net_device *dev)
8158 {
8159 	struct netdev_adjacent *iter;
8160 
8161 	struct net *net = dev_net(dev);
8162 
8163 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8164 		if (!net_eq(net, dev_net(iter->dev)))
8165 			continue;
8166 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8167 					  &iter->dev->adj_list.lower);
8168 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8169 					  &dev->adj_list.upper);
8170 	}
8171 
8172 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8173 		if (!net_eq(net, dev_net(iter->dev)))
8174 			continue;
8175 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8176 					  &iter->dev->adj_list.upper);
8177 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8178 					  &dev->adj_list.lower);
8179 	}
8180 }
8181 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8182 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8183 {
8184 	struct netdev_adjacent *iter;
8185 
8186 	struct net *net = dev_net(dev);
8187 
8188 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8189 		if (!net_eq(net, dev_net(iter->dev)))
8190 			continue;
8191 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8192 					  &iter->dev->adj_list.lower);
8193 		netdev_adjacent_sysfs_add(iter->dev, dev,
8194 					  &iter->dev->adj_list.lower);
8195 	}
8196 
8197 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8198 		if (!net_eq(net, dev_net(iter->dev)))
8199 			continue;
8200 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8201 					  &iter->dev->adj_list.upper);
8202 		netdev_adjacent_sysfs_add(iter->dev, dev,
8203 					  &iter->dev->adj_list.upper);
8204 	}
8205 }
8206 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8207 void *netdev_lower_dev_get_private(struct net_device *dev,
8208 				   struct net_device *lower_dev)
8209 {
8210 	struct netdev_adjacent *lower;
8211 
8212 	if (!lower_dev)
8213 		return NULL;
8214 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8215 	if (!lower)
8216 		return NULL;
8217 
8218 	return lower->private;
8219 }
8220 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8221 
8222 
8223 /**
8224  * netdev_lower_change - Dispatch event about lower device state change
8225  * @lower_dev: device
8226  * @lower_state_info: state to dispatch
8227  *
8228  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8229  * The caller must hold the RTNL lock.
8230  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8231 void netdev_lower_state_changed(struct net_device *lower_dev,
8232 				void *lower_state_info)
8233 {
8234 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8235 		.info.dev = lower_dev,
8236 	};
8237 
8238 	ASSERT_RTNL();
8239 	changelowerstate_info.lower_state_info = lower_state_info;
8240 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8241 				      &changelowerstate_info.info);
8242 }
8243 EXPORT_SYMBOL(netdev_lower_state_changed);
8244 
dev_change_rx_flags(struct net_device * dev,int flags)8245 static void dev_change_rx_flags(struct net_device *dev, int flags)
8246 {
8247 	const struct net_device_ops *ops = dev->netdev_ops;
8248 
8249 	if (ops->ndo_change_rx_flags)
8250 		ops->ndo_change_rx_flags(dev, flags);
8251 }
8252 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8253 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8254 {
8255 	unsigned int old_flags = dev->flags;
8256 	kuid_t uid;
8257 	kgid_t gid;
8258 
8259 	ASSERT_RTNL();
8260 
8261 	dev->flags |= IFF_PROMISC;
8262 	dev->promiscuity += inc;
8263 	if (dev->promiscuity == 0) {
8264 		/*
8265 		 * Avoid overflow.
8266 		 * If inc causes overflow, untouch promisc and return error.
8267 		 */
8268 		if (inc < 0)
8269 			dev->flags &= ~IFF_PROMISC;
8270 		else {
8271 			dev->promiscuity -= inc;
8272 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8273 				dev->name);
8274 			return -EOVERFLOW;
8275 		}
8276 	}
8277 	if (dev->flags != old_flags) {
8278 		pr_info("device %s %s promiscuous mode\n",
8279 			dev->name,
8280 			dev->flags & IFF_PROMISC ? "entered" : "left");
8281 		if (audit_enabled) {
8282 			current_uid_gid(&uid, &gid);
8283 			audit_log(audit_context(), GFP_ATOMIC,
8284 				  AUDIT_ANOM_PROMISCUOUS,
8285 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8286 				  dev->name, (dev->flags & IFF_PROMISC),
8287 				  (old_flags & IFF_PROMISC),
8288 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8289 				  from_kuid(&init_user_ns, uid),
8290 				  from_kgid(&init_user_ns, gid),
8291 				  audit_get_sessionid(current));
8292 		}
8293 
8294 		dev_change_rx_flags(dev, IFF_PROMISC);
8295 	}
8296 	if (notify)
8297 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8298 	return 0;
8299 }
8300 
8301 /**
8302  *	dev_set_promiscuity	- update promiscuity count on a device
8303  *	@dev: device
8304  *	@inc: modifier
8305  *
8306  *	Add or remove promiscuity from a device. While the count in the device
8307  *	remains above zero the interface remains promiscuous. Once it hits zero
8308  *	the device reverts back to normal filtering operation. A negative inc
8309  *	value is used to drop promiscuity on the device.
8310  *	Return 0 if successful or a negative errno code on error.
8311  */
dev_set_promiscuity(struct net_device * dev,int inc)8312 int dev_set_promiscuity(struct net_device *dev, int inc)
8313 {
8314 	unsigned int old_flags = dev->flags;
8315 	int err;
8316 
8317 	err = __dev_set_promiscuity(dev, inc, true);
8318 	if (err < 0)
8319 		return err;
8320 	if (dev->flags != old_flags)
8321 		dev_set_rx_mode(dev);
8322 	return err;
8323 }
8324 EXPORT_SYMBOL(dev_set_promiscuity);
8325 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8326 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8327 {
8328 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8329 
8330 	ASSERT_RTNL();
8331 
8332 	dev->flags |= IFF_ALLMULTI;
8333 	dev->allmulti += inc;
8334 	if (dev->allmulti == 0) {
8335 		/*
8336 		 * Avoid overflow.
8337 		 * If inc causes overflow, untouch allmulti and return error.
8338 		 */
8339 		if (inc < 0)
8340 			dev->flags &= ~IFF_ALLMULTI;
8341 		else {
8342 			dev->allmulti -= inc;
8343 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8344 				dev->name);
8345 			return -EOVERFLOW;
8346 		}
8347 	}
8348 	if (dev->flags ^ old_flags) {
8349 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8350 		dev_set_rx_mode(dev);
8351 		if (notify)
8352 			__dev_notify_flags(dev, old_flags,
8353 					   dev->gflags ^ old_gflags);
8354 	}
8355 	return 0;
8356 }
8357 
8358 /**
8359  *	dev_set_allmulti	- update allmulti count on a device
8360  *	@dev: device
8361  *	@inc: modifier
8362  *
8363  *	Add or remove reception of all multicast frames to a device. While the
8364  *	count in the device remains above zero the interface remains listening
8365  *	to all interfaces. Once it hits zero the device reverts back to normal
8366  *	filtering operation. A negative @inc value is used to drop the counter
8367  *	when releasing a resource needing all multicasts.
8368  *	Return 0 if successful or a negative errno code on error.
8369  */
8370 
dev_set_allmulti(struct net_device * dev,int inc)8371 int dev_set_allmulti(struct net_device *dev, int inc)
8372 {
8373 	return __dev_set_allmulti(dev, inc, true);
8374 }
8375 EXPORT_SYMBOL(dev_set_allmulti);
8376 
8377 /*
8378  *	Upload unicast and multicast address lists to device and
8379  *	configure RX filtering. When the device doesn't support unicast
8380  *	filtering it is put in promiscuous mode while unicast addresses
8381  *	are present.
8382  */
__dev_set_rx_mode(struct net_device * dev)8383 void __dev_set_rx_mode(struct net_device *dev)
8384 {
8385 	const struct net_device_ops *ops = dev->netdev_ops;
8386 
8387 	/* dev_open will call this function so the list will stay sane. */
8388 	if (!(dev->flags&IFF_UP))
8389 		return;
8390 
8391 	if (!netif_device_present(dev))
8392 		return;
8393 
8394 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8395 		/* Unicast addresses changes may only happen under the rtnl,
8396 		 * therefore calling __dev_set_promiscuity here is safe.
8397 		 */
8398 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8399 			__dev_set_promiscuity(dev, 1, false);
8400 			dev->uc_promisc = true;
8401 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8402 			__dev_set_promiscuity(dev, -1, false);
8403 			dev->uc_promisc = false;
8404 		}
8405 	}
8406 
8407 	if (ops->ndo_set_rx_mode)
8408 		ops->ndo_set_rx_mode(dev);
8409 }
8410 
dev_set_rx_mode(struct net_device * dev)8411 void dev_set_rx_mode(struct net_device *dev)
8412 {
8413 	netif_addr_lock_bh(dev);
8414 	__dev_set_rx_mode(dev);
8415 	netif_addr_unlock_bh(dev);
8416 }
8417 
8418 /**
8419  *	dev_get_flags - get flags reported to userspace
8420  *	@dev: device
8421  *
8422  *	Get the combination of flag bits exported through APIs to userspace.
8423  */
dev_get_flags(const struct net_device * dev)8424 unsigned int dev_get_flags(const struct net_device *dev)
8425 {
8426 	unsigned int flags;
8427 
8428 	flags = (dev->flags & ~(IFF_PROMISC |
8429 				IFF_ALLMULTI |
8430 				IFF_RUNNING |
8431 				IFF_LOWER_UP |
8432 				IFF_DORMANT)) |
8433 		(dev->gflags & (IFF_PROMISC |
8434 				IFF_ALLMULTI));
8435 
8436 	if (netif_running(dev)) {
8437 		if (netif_oper_up(dev))
8438 			flags |= IFF_RUNNING;
8439 		if (netif_carrier_ok(dev))
8440 			flags |= IFF_LOWER_UP;
8441 		if (netif_dormant(dev))
8442 			flags |= IFF_DORMANT;
8443 	}
8444 
8445 	return flags;
8446 }
8447 EXPORT_SYMBOL(dev_get_flags);
8448 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8449 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8450 		       struct netlink_ext_ack *extack)
8451 {
8452 	unsigned int old_flags = dev->flags;
8453 	int ret;
8454 
8455 	ASSERT_RTNL();
8456 
8457 	/*
8458 	 *	Set the flags on our device.
8459 	 */
8460 
8461 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8462 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8463 			       IFF_AUTOMEDIA)) |
8464 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8465 				    IFF_ALLMULTI));
8466 
8467 	/*
8468 	 *	Load in the correct multicast list now the flags have changed.
8469 	 */
8470 
8471 	if ((old_flags ^ flags) & IFF_MULTICAST)
8472 		dev_change_rx_flags(dev, IFF_MULTICAST);
8473 
8474 	dev_set_rx_mode(dev);
8475 
8476 	/*
8477 	 *	Have we downed the interface. We handle IFF_UP ourselves
8478 	 *	according to user attempts to set it, rather than blindly
8479 	 *	setting it.
8480 	 */
8481 
8482 	ret = 0;
8483 	if ((old_flags ^ flags) & IFF_UP) {
8484 		if (old_flags & IFF_UP)
8485 			__dev_close(dev);
8486 		else
8487 			ret = __dev_open(dev, extack);
8488 	}
8489 
8490 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8491 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8492 		unsigned int old_flags = dev->flags;
8493 
8494 		dev->gflags ^= IFF_PROMISC;
8495 
8496 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8497 			if (dev->flags != old_flags)
8498 				dev_set_rx_mode(dev);
8499 	}
8500 
8501 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8502 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8503 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8504 	 */
8505 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8506 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8507 
8508 		dev->gflags ^= IFF_ALLMULTI;
8509 		__dev_set_allmulti(dev, inc, false);
8510 	}
8511 
8512 	return ret;
8513 }
8514 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8515 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8516 			unsigned int gchanges)
8517 {
8518 	unsigned int changes = dev->flags ^ old_flags;
8519 
8520 	if (gchanges)
8521 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8522 
8523 	if (changes & IFF_UP) {
8524 		if (dev->flags & IFF_UP)
8525 			call_netdevice_notifiers(NETDEV_UP, dev);
8526 		else
8527 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8528 	}
8529 
8530 	if (dev->flags & IFF_UP &&
8531 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8532 		struct netdev_notifier_change_info change_info = {
8533 			.info = {
8534 				.dev = dev,
8535 			},
8536 			.flags_changed = changes,
8537 		};
8538 
8539 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8540 	}
8541 }
8542 
8543 /**
8544  *	dev_change_flags - change device settings
8545  *	@dev: device
8546  *	@flags: device state flags
8547  *	@extack: netlink extended ack
8548  *
8549  *	Change settings on device based state flags. The flags are
8550  *	in the userspace exported format.
8551  */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8552 int dev_change_flags(struct net_device *dev, unsigned int flags,
8553 		     struct netlink_ext_ack *extack)
8554 {
8555 	int ret;
8556 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8557 
8558 	ret = __dev_change_flags(dev, flags, extack);
8559 	if (ret < 0)
8560 		return ret;
8561 
8562 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8563 	__dev_notify_flags(dev, old_flags, changes);
8564 	return ret;
8565 }
8566 EXPORT_SYMBOL(dev_change_flags);
8567 
__dev_set_mtu(struct net_device * dev,int new_mtu)8568 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8569 {
8570 	const struct net_device_ops *ops = dev->netdev_ops;
8571 
8572 	if (ops->ndo_change_mtu)
8573 		return ops->ndo_change_mtu(dev, new_mtu);
8574 
8575 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8576 	WRITE_ONCE(dev->mtu, new_mtu);
8577 	return 0;
8578 }
8579 EXPORT_SYMBOL(__dev_set_mtu);
8580 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8581 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8582 		     struct netlink_ext_ack *extack)
8583 {
8584 	/* MTU must be positive, and in range */
8585 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8586 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8587 		return -EINVAL;
8588 	}
8589 
8590 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8591 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8592 		return -EINVAL;
8593 	}
8594 	return 0;
8595 }
8596 
8597 /**
8598  *	dev_set_mtu_ext - Change maximum transfer unit
8599  *	@dev: device
8600  *	@new_mtu: new transfer unit
8601  *	@extack: netlink extended ack
8602  *
8603  *	Change the maximum transfer size of the network device.
8604  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8605 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8606 		    struct netlink_ext_ack *extack)
8607 {
8608 	int err, orig_mtu;
8609 
8610 	if (new_mtu == dev->mtu)
8611 		return 0;
8612 
8613 	err = dev_validate_mtu(dev, new_mtu, extack);
8614 	if (err)
8615 		return err;
8616 
8617 	if (!netif_device_present(dev))
8618 		return -ENODEV;
8619 
8620 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8621 	err = notifier_to_errno(err);
8622 	if (err)
8623 		return err;
8624 
8625 	orig_mtu = dev->mtu;
8626 	err = __dev_set_mtu(dev, new_mtu);
8627 
8628 	if (!err) {
8629 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8630 						   orig_mtu);
8631 		err = notifier_to_errno(err);
8632 		if (err) {
8633 			/* setting mtu back and notifying everyone again,
8634 			 * so that they have a chance to revert changes.
8635 			 */
8636 			__dev_set_mtu(dev, orig_mtu);
8637 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8638 						     new_mtu);
8639 		}
8640 	}
8641 	return err;
8642 }
8643 
dev_set_mtu(struct net_device * dev,int new_mtu)8644 int dev_set_mtu(struct net_device *dev, int new_mtu)
8645 {
8646 	struct netlink_ext_ack extack;
8647 	int err;
8648 
8649 	memset(&extack, 0, sizeof(extack));
8650 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8651 	if (err && extack._msg)
8652 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8653 	return err;
8654 }
8655 EXPORT_SYMBOL(dev_set_mtu);
8656 
8657 /**
8658  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8659  *	@dev: device
8660  *	@new_len: new tx queue length
8661  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8662 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8663 {
8664 	unsigned int orig_len = dev->tx_queue_len;
8665 	int res;
8666 
8667 	if (new_len != (unsigned int)new_len)
8668 		return -ERANGE;
8669 
8670 	if (new_len != orig_len) {
8671 		dev->tx_queue_len = new_len;
8672 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8673 		res = notifier_to_errno(res);
8674 		if (res)
8675 			goto err_rollback;
8676 		res = dev_qdisc_change_tx_queue_len(dev);
8677 		if (res)
8678 			goto err_rollback;
8679 	}
8680 
8681 	return 0;
8682 
8683 err_rollback:
8684 	netdev_err(dev, "refused to change device tx_queue_len\n");
8685 	dev->tx_queue_len = orig_len;
8686 	return res;
8687 }
8688 
8689 /**
8690  *	dev_set_group - Change group this device belongs to
8691  *	@dev: device
8692  *	@new_group: group this device should belong to
8693  */
dev_set_group(struct net_device * dev,int new_group)8694 void dev_set_group(struct net_device *dev, int new_group)
8695 {
8696 	dev->group = new_group;
8697 }
8698 EXPORT_SYMBOL(dev_set_group);
8699 
8700 /**
8701  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8702  *	@dev: device
8703  *	@addr: new address
8704  *	@extack: netlink extended ack
8705  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8706 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8707 			      struct netlink_ext_ack *extack)
8708 {
8709 	struct netdev_notifier_pre_changeaddr_info info = {
8710 		.info.dev = dev,
8711 		.info.extack = extack,
8712 		.dev_addr = addr,
8713 	};
8714 	int rc;
8715 
8716 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8717 	return notifier_to_errno(rc);
8718 }
8719 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8720 
8721 /**
8722  *	dev_set_mac_address - Change Media Access Control Address
8723  *	@dev: device
8724  *	@sa: new address
8725  *	@extack: netlink extended ack
8726  *
8727  *	Change the hardware (MAC) address of the device
8728  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8729 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8730 			struct netlink_ext_ack *extack)
8731 {
8732 	const struct net_device_ops *ops = dev->netdev_ops;
8733 	int err;
8734 
8735 	if (!ops->ndo_set_mac_address)
8736 		return -EOPNOTSUPP;
8737 	if (sa->sa_family != dev->type)
8738 		return -EINVAL;
8739 	if (!netif_device_present(dev))
8740 		return -ENODEV;
8741 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8742 	if (err)
8743 		return err;
8744 	err = ops->ndo_set_mac_address(dev, sa);
8745 	if (err)
8746 		return err;
8747 	dev->addr_assign_type = NET_ADDR_SET;
8748 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8749 	add_device_randomness(dev->dev_addr, dev->addr_len);
8750 	return 0;
8751 }
8752 EXPORT_SYMBOL(dev_set_mac_address);
8753 
8754 static DECLARE_RWSEM(dev_addr_sem);
8755 
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8756 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8757 			     struct netlink_ext_ack *extack)
8758 {
8759 	int ret;
8760 
8761 	down_write(&dev_addr_sem);
8762 	ret = dev_set_mac_address(dev, sa, extack);
8763 	up_write(&dev_addr_sem);
8764 	return ret;
8765 }
8766 EXPORT_SYMBOL(dev_set_mac_address_user);
8767 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8768 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8769 {
8770 	size_t size = sizeof(sa->sa_data);
8771 	struct net_device *dev;
8772 	int ret = 0;
8773 
8774 	down_read(&dev_addr_sem);
8775 	rcu_read_lock();
8776 
8777 	dev = dev_get_by_name_rcu(net, dev_name);
8778 	if (!dev) {
8779 		ret = -ENODEV;
8780 		goto unlock;
8781 	}
8782 	if (!dev->addr_len)
8783 		memset(sa->sa_data, 0, size);
8784 	else
8785 		memcpy(sa->sa_data, dev->dev_addr,
8786 		       min_t(size_t, size, dev->addr_len));
8787 	sa->sa_family = dev->type;
8788 
8789 unlock:
8790 	rcu_read_unlock();
8791 	up_read(&dev_addr_sem);
8792 	return ret;
8793 }
8794 EXPORT_SYMBOL(dev_get_mac_address);
8795 
8796 /**
8797  *	dev_change_carrier - Change device carrier
8798  *	@dev: device
8799  *	@new_carrier: new value
8800  *
8801  *	Change device carrier
8802  */
dev_change_carrier(struct net_device * dev,bool new_carrier)8803 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8804 {
8805 	const struct net_device_ops *ops = dev->netdev_ops;
8806 
8807 	if (!ops->ndo_change_carrier)
8808 		return -EOPNOTSUPP;
8809 	if (!netif_device_present(dev))
8810 		return -ENODEV;
8811 	return ops->ndo_change_carrier(dev, new_carrier);
8812 }
8813 EXPORT_SYMBOL(dev_change_carrier);
8814 
8815 /**
8816  *	dev_get_phys_port_id - Get device physical port ID
8817  *	@dev: device
8818  *	@ppid: port ID
8819  *
8820  *	Get device physical port ID
8821  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8822 int dev_get_phys_port_id(struct net_device *dev,
8823 			 struct netdev_phys_item_id *ppid)
8824 {
8825 	const struct net_device_ops *ops = dev->netdev_ops;
8826 
8827 	if (!ops->ndo_get_phys_port_id)
8828 		return -EOPNOTSUPP;
8829 	return ops->ndo_get_phys_port_id(dev, ppid);
8830 }
8831 EXPORT_SYMBOL(dev_get_phys_port_id);
8832 
8833 /**
8834  *	dev_get_phys_port_name - Get device physical port name
8835  *	@dev: device
8836  *	@name: port name
8837  *	@len: limit of bytes to copy to name
8838  *
8839  *	Get device physical port name
8840  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8841 int dev_get_phys_port_name(struct net_device *dev,
8842 			   char *name, size_t len)
8843 {
8844 	const struct net_device_ops *ops = dev->netdev_ops;
8845 	int err;
8846 
8847 	if (ops->ndo_get_phys_port_name) {
8848 		err = ops->ndo_get_phys_port_name(dev, name, len);
8849 		if (err != -EOPNOTSUPP)
8850 			return err;
8851 	}
8852 	return devlink_compat_phys_port_name_get(dev, name, len);
8853 }
8854 EXPORT_SYMBOL(dev_get_phys_port_name);
8855 
8856 /**
8857  *	dev_get_port_parent_id - Get the device's port parent identifier
8858  *	@dev: network device
8859  *	@ppid: pointer to a storage for the port's parent identifier
8860  *	@recurse: allow/disallow recursion to lower devices
8861  *
8862  *	Get the devices's port parent identifier
8863  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8864 int dev_get_port_parent_id(struct net_device *dev,
8865 			   struct netdev_phys_item_id *ppid,
8866 			   bool recurse)
8867 {
8868 	const struct net_device_ops *ops = dev->netdev_ops;
8869 	struct netdev_phys_item_id first = { };
8870 	struct net_device *lower_dev;
8871 	struct list_head *iter;
8872 	int err;
8873 
8874 	if (ops->ndo_get_port_parent_id) {
8875 		err = ops->ndo_get_port_parent_id(dev, ppid);
8876 		if (err != -EOPNOTSUPP)
8877 			return err;
8878 	}
8879 
8880 	err = devlink_compat_switch_id_get(dev, ppid);
8881 	if (!err || err != -EOPNOTSUPP)
8882 		return err;
8883 
8884 	if (!recurse)
8885 		return -EOPNOTSUPP;
8886 
8887 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8888 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8889 		if (err)
8890 			break;
8891 		if (!first.id_len)
8892 			first = *ppid;
8893 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8894 			return -EOPNOTSUPP;
8895 	}
8896 
8897 	return err;
8898 }
8899 EXPORT_SYMBOL(dev_get_port_parent_id);
8900 
8901 /**
8902  *	netdev_port_same_parent_id - Indicate if two network devices have
8903  *	the same port parent identifier
8904  *	@a: first network device
8905  *	@b: second network device
8906  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8907 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8908 {
8909 	struct netdev_phys_item_id a_id = { };
8910 	struct netdev_phys_item_id b_id = { };
8911 
8912 	if (dev_get_port_parent_id(a, &a_id, true) ||
8913 	    dev_get_port_parent_id(b, &b_id, true))
8914 		return false;
8915 
8916 	return netdev_phys_item_id_same(&a_id, &b_id);
8917 }
8918 EXPORT_SYMBOL(netdev_port_same_parent_id);
8919 
8920 /**
8921  *	dev_change_proto_down - update protocol port state information
8922  *	@dev: device
8923  *	@proto_down: new value
8924  *
8925  *	This info can be used by switch drivers to set the phys state of the
8926  *	port.
8927  */
dev_change_proto_down(struct net_device * dev,bool proto_down)8928 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8929 {
8930 	const struct net_device_ops *ops = dev->netdev_ops;
8931 
8932 	if (!ops->ndo_change_proto_down)
8933 		return -EOPNOTSUPP;
8934 	if (!netif_device_present(dev))
8935 		return -ENODEV;
8936 	return ops->ndo_change_proto_down(dev, proto_down);
8937 }
8938 EXPORT_SYMBOL(dev_change_proto_down);
8939 
8940 /**
8941  *	dev_change_proto_down_generic - generic implementation for
8942  * 	ndo_change_proto_down that sets carrier according to
8943  * 	proto_down.
8944  *
8945  *	@dev: device
8946  *	@proto_down: new value
8947  */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8948 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8949 {
8950 	if (proto_down)
8951 		netif_carrier_off(dev);
8952 	else
8953 		netif_carrier_on(dev);
8954 	dev->proto_down = proto_down;
8955 	return 0;
8956 }
8957 EXPORT_SYMBOL(dev_change_proto_down_generic);
8958 
8959 /**
8960  *	dev_change_proto_down_reason - proto down reason
8961  *
8962  *	@dev: device
8963  *	@mask: proto down mask
8964  *	@value: proto down value
8965  */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)8966 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8967 				  u32 value)
8968 {
8969 	int b;
8970 
8971 	if (!mask) {
8972 		dev->proto_down_reason = value;
8973 	} else {
8974 		for_each_set_bit(b, &mask, 32) {
8975 			if (value & (1 << b))
8976 				dev->proto_down_reason |= BIT(b);
8977 			else
8978 				dev->proto_down_reason &= ~BIT(b);
8979 		}
8980 	}
8981 }
8982 EXPORT_SYMBOL(dev_change_proto_down_reason);
8983 
8984 struct bpf_xdp_link {
8985 	struct bpf_link link;
8986 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8987 	int flags;
8988 };
8989 
dev_xdp_mode(struct net_device * dev,u32 flags)8990 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8991 {
8992 	if (flags & XDP_FLAGS_HW_MODE)
8993 		return XDP_MODE_HW;
8994 	if (flags & XDP_FLAGS_DRV_MODE)
8995 		return XDP_MODE_DRV;
8996 	if (flags & XDP_FLAGS_SKB_MODE)
8997 		return XDP_MODE_SKB;
8998 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8999 }
9000 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9001 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9002 {
9003 	switch (mode) {
9004 	case XDP_MODE_SKB:
9005 		return generic_xdp_install;
9006 	case XDP_MODE_DRV:
9007 	case XDP_MODE_HW:
9008 		return dev->netdev_ops->ndo_bpf;
9009 	default:
9010 		return NULL;
9011 	};
9012 }
9013 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9014 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9015 					 enum bpf_xdp_mode mode)
9016 {
9017 	return dev->xdp_state[mode].link;
9018 }
9019 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9020 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9021 				     enum bpf_xdp_mode mode)
9022 {
9023 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9024 
9025 	if (link)
9026 		return link->link.prog;
9027 	return dev->xdp_state[mode].prog;
9028 }
9029 
dev_xdp_prog_count(struct net_device * dev)9030 static u8 dev_xdp_prog_count(struct net_device *dev)
9031 {
9032 	u8 count = 0;
9033 	int i;
9034 
9035 	for (i = 0; i < __MAX_XDP_MODE; i++)
9036 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9037 			count++;
9038 	return count;
9039 }
9040 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9041 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9042 {
9043 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9044 
9045 	return prog ? prog->aux->id : 0;
9046 }
9047 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9048 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9049 			     struct bpf_xdp_link *link)
9050 {
9051 	dev->xdp_state[mode].link = link;
9052 	dev->xdp_state[mode].prog = NULL;
9053 }
9054 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9055 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9056 			     struct bpf_prog *prog)
9057 {
9058 	dev->xdp_state[mode].link = NULL;
9059 	dev->xdp_state[mode].prog = prog;
9060 }
9061 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9062 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9063 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9064 			   u32 flags, struct bpf_prog *prog)
9065 {
9066 	struct netdev_bpf xdp;
9067 	int err;
9068 
9069 	memset(&xdp, 0, sizeof(xdp));
9070 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9071 	xdp.extack = extack;
9072 	xdp.flags = flags;
9073 	xdp.prog = prog;
9074 
9075 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9076 	 * "moved" into driver), so they don't increment it on their own, but
9077 	 * they do decrement refcnt when program is detached or replaced.
9078 	 * Given net_device also owns link/prog, we need to bump refcnt here
9079 	 * to prevent drivers from underflowing it.
9080 	 */
9081 	if (prog)
9082 		bpf_prog_inc(prog);
9083 	err = bpf_op(dev, &xdp);
9084 	if (err) {
9085 		if (prog)
9086 			bpf_prog_put(prog);
9087 		return err;
9088 	}
9089 
9090 	if (mode != XDP_MODE_HW)
9091 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9092 
9093 	return 0;
9094 }
9095 
dev_xdp_uninstall(struct net_device * dev)9096 static void dev_xdp_uninstall(struct net_device *dev)
9097 {
9098 	struct bpf_xdp_link *link;
9099 	struct bpf_prog *prog;
9100 	enum bpf_xdp_mode mode;
9101 	bpf_op_t bpf_op;
9102 
9103 	ASSERT_RTNL();
9104 
9105 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9106 		prog = dev_xdp_prog(dev, mode);
9107 		if (!prog)
9108 			continue;
9109 
9110 		bpf_op = dev_xdp_bpf_op(dev, mode);
9111 		if (!bpf_op)
9112 			continue;
9113 
9114 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9115 
9116 		/* auto-detach link from net device */
9117 		link = dev_xdp_link(dev, mode);
9118 		if (link)
9119 			link->dev = NULL;
9120 		else
9121 			bpf_prog_put(prog);
9122 
9123 		dev_xdp_set_link(dev, mode, NULL);
9124 	}
9125 }
9126 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9127 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9128 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9129 			  struct bpf_prog *old_prog, u32 flags)
9130 {
9131 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9132 	struct bpf_prog *cur_prog;
9133 	enum bpf_xdp_mode mode;
9134 	bpf_op_t bpf_op;
9135 	int err;
9136 
9137 	ASSERT_RTNL();
9138 
9139 	/* either link or prog attachment, never both */
9140 	if (link && (new_prog || old_prog))
9141 		return -EINVAL;
9142 	/* link supports only XDP mode flags */
9143 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9144 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9145 		return -EINVAL;
9146 	}
9147 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9148 	if (num_modes > 1) {
9149 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9150 		return -EINVAL;
9151 	}
9152 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9153 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9154 		NL_SET_ERR_MSG(extack,
9155 			       "More than one program loaded, unset mode is ambiguous");
9156 		return -EINVAL;
9157 	}
9158 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9159 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9160 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9161 		return -EINVAL;
9162 	}
9163 
9164 	mode = dev_xdp_mode(dev, flags);
9165 	/* can't replace attached link */
9166 	if (dev_xdp_link(dev, mode)) {
9167 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9168 		return -EBUSY;
9169 	}
9170 
9171 	cur_prog = dev_xdp_prog(dev, mode);
9172 	/* can't replace attached prog with link */
9173 	if (link && cur_prog) {
9174 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9175 		return -EBUSY;
9176 	}
9177 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9178 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9179 		return -EEXIST;
9180 	}
9181 
9182 	/* put effective new program into new_prog */
9183 	if (link)
9184 		new_prog = link->link.prog;
9185 
9186 	if (new_prog) {
9187 		bool offload = mode == XDP_MODE_HW;
9188 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9189 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9190 
9191 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9192 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9193 			return -EBUSY;
9194 		}
9195 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9196 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9197 			return -EEXIST;
9198 		}
9199 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9200 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9201 			return -EINVAL;
9202 		}
9203 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9204 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9205 			return -EINVAL;
9206 		}
9207 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9208 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9209 			return -EINVAL;
9210 		}
9211 	}
9212 
9213 	/* don't call drivers if the effective program didn't change */
9214 	if (new_prog != cur_prog) {
9215 		bpf_op = dev_xdp_bpf_op(dev, mode);
9216 		if (!bpf_op) {
9217 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9218 			return -EOPNOTSUPP;
9219 		}
9220 
9221 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9222 		if (err)
9223 			return err;
9224 	}
9225 
9226 	if (link)
9227 		dev_xdp_set_link(dev, mode, link);
9228 	else
9229 		dev_xdp_set_prog(dev, mode, new_prog);
9230 	if (cur_prog)
9231 		bpf_prog_put(cur_prog);
9232 
9233 	return 0;
9234 }
9235 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9236 static int dev_xdp_attach_link(struct net_device *dev,
9237 			       struct netlink_ext_ack *extack,
9238 			       struct bpf_xdp_link *link)
9239 {
9240 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9241 }
9242 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9243 static int dev_xdp_detach_link(struct net_device *dev,
9244 			       struct netlink_ext_ack *extack,
9245 			       struct bpf_xdp_link *link)
9246 {
9247 	enum bpf_xdp_mode mode;
9248 	bpf_op_t bpf_op;
9249 
9250 	ASSERT_RTNL();
9251 
9252 	mode = dev_xdp_mode(dev, link->flags);
9253 	if (dev_xdp_link(dev, mode) != link)
9254 		return -EINVAL;
9255 
9256 	bpf_op = dev_xdp_bpf_op(dev, mode);
9257 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9258 	dev_xdp_set_link(dev, mode, NULL);
9259 	return 0;
9260 }
9261 
bpf_xdp_link_release(struct bpf_link * link)9262 static void bpf_xdp_link_release(struct bpf_link *link)
9263 {
9264 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9265 
9266 	rtnl_lock();
9267 
9268 	/* if racing with net_device's tear down, xdp_link->dev might be
9269 	 * already NULL, in which case link was already auto-detached
9270 	 */
9271 	if (xdp_link->dev) {
9272 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9273 		xdp_link->dev = NULL;
9274 	}
9275 
9276 	rtnl_unlock();
9277 }
9278 
bpf_xdp_link_detach(struct bpf_link * link)9279 static int bpf_xdp_link_detach(struct bpf_link *link)
9280 {
9281 	bpf_xdp_link_release(link);
9282 	return 0;
9283 }
9284 
bpf_xdp_link_dealloc(struct bpf_link * link)9285 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9286 {
9287 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9288 
9289 	kfree(xdp_link);
9290 }
9291 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9292 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9293 				     struct seq_file *seq)
9294 {
9295 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9296 	u32 ifindex = 0;
9297 
9298 	rtnl_lock();
9299 	if (xdp_link->dev)
9300 		ifindex = xdp_link->dev->ifindex;
9301 	rtnl_unlock();
9302 
9303 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9304 }
9305 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9306 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9307 				       struct bpf_link_info *info)
9308 {
9309 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9310 	u32 ifindex = 0;
9311 
9312 	rtnl_lock();
9313 	if (xdp_link->dev)
9314 		ifindex = xdp_link->dev->ifindex;
9315 	rtnl_unlock();
9316 
9317 	info->xdp.ifindex = ifindex;
9318 	return 0;
9319 }
9320 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9321 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9322 			       struct bpf_prog *old_prog)
9323 {
9324 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9325 	enum bpf_xdp_mode mode;
9326 	bpf_op_t bpf_op;
9327 	int err = 0;
9328 
9329 	rtnl_lock();
9330 
9331 	/* link might have been auto-released already, so fail */
9332 	if (!xdp_link->dev) {
9333 		err = -ENOLINK;
9334 		goto out_unlock;
9335 	}
9336 
9337 	if (old_prog && link->prog != old_prog) {
9338 		err = -EPERM;
9339 		goto out_unlock;
9340 	}
9341 	old_prog = link->prog;
9342 	if (old_prog->type != new_prog->type ||
9343 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9344 		err = -EINVAL;
9345 		goto out_unlock;
9346 	}
9347 
9348 	if (old_prog == new_prog) {
9349 		/* no-op, don't disturb drivers */
9350 		bpf_prog_put(new_prog);
9351 		goto out_unlock;
9352 	}
9353 
9354 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9355 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9356 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9357 			      xdp_link->flags, new_prog);
9358 	if (err)
9359 		goto out_unlock;
9360 
9361 	old_prog = xchg(&link->prog, new_prog);
9362 	bpf_prog_put(old_prog);
9363 
9364 out_unlock:
9365 	rtnl_unlock();
9366 	return err;
9367 }
9368 
9369 static const struct bpf_link_ops bpf_xdp_link_lops = {
9370 	.release = bpf_xdp_link_release,
9371 	.dealloc = bpf_xdp_link_dealloc,
9372 	.detach = bpf_xdp_link_detach,
9373 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9374 	.fill_link_info = bpf_xdp_link_fill_link_info,
9375 	.update_prog = bpf_xdp_link_update,
9376 };
9377 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9378 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9379 {
9380 	struct net *net = current->nsproxy->net_ns;
9381 	struct bpf_link_primer link_primer;
9382 	struct bpf_xdp_link *link;
9383 	struct net_device *dev;
9384 	int err, fd;
9385 
9386 	rtnl_lock();
9387 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9388 	if (!dev) {
9389 		rtnl_unlock();
9390 		return -EINVAL;
9391 	}
9392 
9393 	link = kzalloc(sizeof(*link), GFP_USER);
9394 	if (!link) {
9395 		err = -ENOMEM;
9396 		goto unlock;
9397 	}
9398 
9399 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9400 	link->dev = dev;
9401 	link->flags = attr->link_create.flags;
9402 
9403 	err = bpf_link_prime(&link->link, &link_primer);
9404 	if (err) {
9405 		kfree(link);
9406 		goto unlock;
9407 	}
9408 
9409 	err = dev_xdp_attach_link(dev, NULL, link);
9410 	rtnl_unlock();
9411 
9412 	if (err) {
9413 		link->dev = NULL;
9414 		bpf_link_cleanup(&link_primer);
9415 		goto out_put_dev;
9416 	}
9417 
9418 	fd = bpf_link_settle(&link_primer);
9419 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9420 	dev_put(dev);
9421 	return fd;
9422 
9423 unlock:
9424 	rtnl_unlock();
9425 
9426 out_put_dev:
9427 	dev_put(dev);
9428 	return err;
9429 }
9430 
9431 /**
9432  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9433  *	@dev: device
9434  *	@extack: netlink extended ack
9435  *	@fd: new program fd or negative value to clear
9436  *	@expected_fd: old program fd that userspace expects to replace or clear
9437  *	@flags: xdp-related flags
9438  *
9439  *	Set or clear a bpf program for a device
9440  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9441 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9442 		      int fd, int expected_fd, u32 flags)
9443 {
9444 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9445 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9446 	int err;
9447 
9448 	ASSERT_RTNL();
9449 
9450 	if (fd >= 0) {
9451 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9452 						 mode != XDP_MODE_SKB);
9453 		if (IS_ERR(new_prog))
9454 			return PTR_ERR(new_prog);
9455 	}
9456 
9457 	if (expected_fd >= 0) {
9458 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9459 						 mode != XDP_MODE_SKB);
9460 		if (IS_ERR(old_prog)) {
9461 			err = PTR_ERR(old_prog);
9462 			old_prog = NULL;
9463 			goto err_out;
9464 		}
9465 	}
9466 
9467 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9468 
9469 err_out:
9470 	if (err && new_prog)
9471 		bpf_prog_put(new_prog);
9472 	if (old_prog)
9473 		bpf_prog_put(old_prog);
9474 	return err;
9475 }
9476 
9477 /**
9478  *	dev_new_index	-	allocate an ifindex
9479  *	@net: the applicable net namespace
9480  *
9481  *	Returns a suitable unique value for a new device interface
9482  *	number.  The caller must hold the rtnl semaphore or the
9483  *	dev_base_lock to be sure it remains unique.
9484  */
dev_new_index(struct net * net)9485 static int dev_new_index(struct net *net)
9486 {
9487 	int ifindex = net->ifindex;
9488 
9489 	for (;;) {
9490 		if (++ifindex <= 0)
9491 			ifindex = 1;
9492 		if (!__dev_get_by_index(net, ifindex))
9493 			return net->ifindex = ifindex;
9494 	}
9495 }
9496 
9497 /* Delayed registration/unregisteration */
9498 static LIST_HEAD(net_todo_list);
9499 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9500 
net_set_todo(struct net_device * dev)9501 static void net_set_todo(struct net_device *dev)
9502 {
9503 	list_add_tail(&dev->todo_list, &net_todo_list);
9504 	dev_net(dev)->dev_unreg_count++;
9505 }
9506 
rollback_registered_many(struct list_head * head)9507 static void rollback_registered_many(struct list_head *head)
9508 {
9509 	struct net_device *dev, *tmp;
9510 	LIST_HEAD(close_head);
9511 
9512 	BUG_ON(dev_boot_phase);
9513 	ASSERT_RTNL();
9514 
9515 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9516 		/* Some devices call without registering
9517 		 * for initialization unwind. Remove those
9518 		 * devices and proceed with the remaining.
9519 		 */
9520 		if (dev->reg_state == NETREG_UNINITIALIZED) {
9521 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9522 				 dev->name, dev);
9523 
9524 			WARN_ON(1);
9525 			list_del(&dev->unreg_list);
9526 			continue;
9527 		}
9528 		dev->dismantle = true;
9529 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
9530 	}
9531 
9532 	/* If device is running, close it first. */
9533 	list_for_each_entry(dev, head, unreg_list)
9534 		list_add_tail(&dev->close_list, &close_head);
9535 	dev_close_many(&close_head, true);
9536 
9537 	list_for_each_entry(dev, head, unreg_list) {
9538 		/* And unlink it from device chain. */
9539 		unlist_netdevice(dev);
9540 
9541 		dev->reg_state = NETREG_UNREGISTERING;
9542 	}
9543 	flush_all_backlogs();
9544 
9545 	synchronize_net();
9546 
9547 	list_for_each_entry(dev, head, unreg_list) {
9548 		struct sk_buff *skb = NULL;
9549 
9550 		/* Shutdown queueing discipline. */
9551 		dev_shutdown(dev);
9552 
9553 		dev_xdp_uninstall(dev);
9554 
9555 		/* Notify protocols, that we are about to destroy
9556 		 * this device. They should clean all the things.
9557 		 */
9558 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9559 
9560 		if (!dev->rtnl_link_ops ||
9561 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9562 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9563 						     GFP_KERNEL, NULL, 0);
9564 
9565 		/*
9566 		 *	Flush the unicast and multicast chains
9567 		 */
9568 		dev_uc_flush(dev);
9569 		dev_mc_flush(dev);
9570 
9571 		netdev_name_node_alt_flush(dev);
9572 		netdev_name_node_free(dev->name_node);
9573 
9574 		if (dev->netdev_ops->ndo_uninit)
9575 			dev->netdev_ops->ndo_uninit(dev);
9576 
9577 		if (skb)
9578 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9579 
9580 		/* Notifier chain MUST detach us all upper devices. */
9581 		WARN_ON(netdev_has_any_upper_dev(dev));
9582 		WARN_ON(netdev_has_any_lower_dev(dev));
9583 
9584 		/* Remove entries from kobject tree */
9585 		netdev_unregister_kobject(dev);
9586 #ifdef CONFIG_XPS
9587 		/* Remove XPS queueing entries */
9588 		netif_reset_xps_queues_gt(dev, 0);
9589 #endif
9590 	}
9591 
9592 	synchronize_net();
9593 
9594 	list_for_each_entry(dev, head, unreg_list)
9595 		dev_put(dev);
9596 }
9597 
rollback_registered(struct net_device * dev)9598 static void rollback_registered(struct net_device *dev)
9599 {
9600 	LIST_HEAD(single);
9601 
9602 	list_add(&dev->unreg_list, &single);
9603 	rollback_registered_many(&single);
9604 	list_del(&single);
9605 }
9606 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9607 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9608 	struct net_device *upper, netdev_features_t features)
9609 {
9610 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9611 	netdev_features_t feature;
9612 	int feature_bit;
9613 
9614 	for_each_netdev_feature(upper_disables, feature_bit) {
9615 		feature = __NETIF_F_BIT(feature_bit);
9616 		if (!(upper->wanted_features & feature)
9617 		    && (features & feature)) {
9618 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9619 				   &feature, upper->name);
9620 			features &= ~feature;
9621 		}
9622 	}
9623 
9624 	return features;
9625 }
9626 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9627 static void netdev_sync_lower_features(struct net_device *upper,
9628 	struct net_device *lower, netdev_features_t features)
9629 {
9630 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9631 	netdev_features_t feature;
9632 	int feature_bit;
9633 
9634 	for_each_netdev_feature(upper_disables, feature_bit) {
9635 		feature = __NETIF_F_BIT(feature_bit);
9636 		if (!(features & feature) && (lower->features & feature)) {
9637 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9638 				   &feature, lower->name);
9639 			lower->wanted_features &= ~feature;
9640 			__netdev_update_features(lower);
9641 
9642 			if (unlikely(lower->features & feature))
9643 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9644 					    &feature, lower->name);
9645 			else
9646 				netdev_features_change(lower);
9647 		}
9648 	}
9649 }
9650 
netdev_fix_features(struct net_device * dev,netdev_features_t features)9651 static netdev_features_t netdev_fix_features(struct net_device *dev,
9652 	netdev_features_t features)
9653 {
9654 	/* Fix illegal checksum combinations */
9655 	if ((features & NETIF_F_HW_CSUM) &&
9656 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9657 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9658 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9659 	}
9660 
9661 	/* TSO requires that SG is present as well. */
9662 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9663 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9664 		features &= ~NETIF_F_ALL_TSO;
9665 	}
9666 
9667 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9668 					!(features & NETIF_F_IP_CSUM)) {
9669 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9670 		features &= ~NETIF_F_TSO;
9671 		features &= ~NETIF_F_TSO_ECN;
9672 	}
9673 
9674 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9675 					 !(features & NETIF_F_IPV6_CSUM)) {
9676 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9677 		features &= ~NETIF_F_TSO6;
9678 	}
9679 
9680 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9681 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9682 		features &= ~NETIF_F_TSO_MANGLEID;
9683 
9684 	/* TSO ECN requires that TSO is present as well. */
9685 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9686 		features &= ~NETIF_F_TSO_ECN;
9687 
9688 	/* Software GSO depends on SG. */
9689 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9690 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9691 		features &= ~NETIF_F_GSO;
9692 	}
9693 
9694 	/* GSO partial features require GSO partial be set */
9695 	if ((features & dev->gso_partial_features) &&
9696 	    !(features & NETIF_F_GSO_PARTIAL)) {
9697 		netdev_dbg(dev,
9698 			   "Dropping partially supported GSO features since no GSO partial.\n");
9699 		features &= ~dev->gso_partial_features;
9700 	}
9701 
9702 	if (!(features & NETIF_F_RXCSUM)) {
9703 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9704 		 * successfully merged by hardware must also have the
9705 		 * checksum verified by hardware.  If the user does not
9706 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9707 		 */
9708 		if (features & NETIF_F_GRO_HW) {
9709 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9710 			features &= ~NETIF_F_GRO_HW;
9711 		}
9712 	}
9713 
9714 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9715 	if (features & NETIF_F_RXFCS) {
9716 		if (features & NETIF_F_LRO) {
9717 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9718 			features &= ~NETIF_F_LRO;
9719 		}
9720 
9721 		if (features & NETIF_F_GRO_HW) {
9722 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9723 			features &= ~NETIF_F_GRO_HW;
9724 		}
9725 	}
9726 
9727 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9728 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9729 		features &= ~NETIF_F_HW_TLS_RX;
9730 	}
9731 
9732 	return features;
9733 }
9734 
__netdev_update_features(struct net_device * dev)9735 int __netdev_update_features(struct net_device *dev)
9736 {
9737 	struct net_device *upper, *lower;
9738 	netdev_features_t features;
9739 	struct list_head *iter;
9740 	int err = -1;
9741 
9742 	ASSERT_RTNL();
9743 
9744 	features = netdev_get_wanted_features(dev);
9745 
9746 	if (dev->netdev_ops->ndo_fix_features)
9747 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9748 
9749 	/* driver might be less strict about feature dependencies */
9750 	features = netdev_fix_features(dev, features);
9751 
9752 	/* some features can't be enabled if they're off on an upper device */
9753 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9754 		features = netdev_sync_upper_features(dev, upper, features);
9755 
9756 	if (dev->features == features)
9757 		goto sync_lower;
9758 
9759 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9760 		&dev->features, &features);
9761 
9762 	if (dev->netdev_ops->ndo_set_features)
9763 		err = dev->netdev_ops->ndo_set_features(dev, features);
9764 	else
9765 		err = 0;
9766 
9767 	if (unlikely(err < 0)) {
9768 		netdev_err(dev,
9769 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9770 			err, &features, &dev->features);
9771 		/* return non-0 since some features might have changed and
9772 		 * it's better to fire a spurious notification than miss it
9773 		 */
9774 		return -1;
9775 	}
9776 
9777 sync_lower:
9778 	/* some features must be disabled on lower devices when disabled
9779 	 * on an upper device (think: bonding master or bridge)
9780 	 */
9781 	netdev_for_each_lower_dev(dev, lower, iter)
9782 		netdev_sync_lower_features(dev, lower, features);
9783 
9784 	if (!err) {
9785 		netdev_features_t diff = features ^ dev->features;
9786 
9787 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9788 			/* udp_tunnel_{get,drop}_rx_info both need
9789 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9790 			 * device, or they won't do anything.
9791 			 * Thus we need to update dev->features
9792 			 * *before* calling udp_tunnel_get_rx_info,
9793 			 * but *after* calling udp_tunnel_drop_rx_info.
9794 			 */
9795 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9796 				dev->features = features;
9797 				udp_tunnel_get_rx_info(dev);
9798 			} else {
9799 				udp_tunnel_drop_rx_info(dev);
9800 			}
9801 		}
9802 
9803 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9804 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9805 				dev->features = features;
9806 				err |= vlan_get_rx_ctag_filter_info(dev);
9807 			} else {
9808 				vlan_drop_rx_ctag_filter_info(dev);
9809 			}
9810 		}
9811 
9812 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9813 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9814 				dev->features = features;
9815 				err |= vlan_get_rx_stag_filter_info(dev);
9816 			} else {
9817 				vlan_drop_rx_stag_filter_info(dev);
9818 			}
9819 		}
9820 
9821 		dev->features = features;
9822 	}
9823 
9824 	return err < 0 ? 0 : 1;
9825 }
9826 
9827 /**
9828  *	netdev_update_features - recalculate device features
9829  *	@dev: the device to check
9830  *
9831  *	Recalculate dev->features set and send notifications if it
9832  *	has changed. Should be called after driver or hardware dependent
9833  *	conditions might have changed that influence the features.
9834  */
netdev_update_features(struct net_device * dev)9835 void netdev_update_features(struct net_device *dev)
9836 {
9837 	if (__netdev_update_features(dev))
9838 		netdev_features_change(dev);
9839 }
9840 EXPORT_SYMBOL(netdev_update_features);
9841 
9842 /**
9843  *	netdev_change_features - recalculate device features
9844  *	@dev: the device to check
9845  *
9846  *	Recalculate dev->features set and send notifications even
9847  *	if they have not changed. Should be called instead of
9848  *	netdev_update_features() if also dev->vlan_features might
9849  *	have changed to allow the changes to be propagated to stacked
9850  *	VLAN devices.
9851  */
netdev_change_features(struct net_device * dev)9852 void netdev_change_features(struct net_device *dev)
9853 {
9854 	__netdev_update_features(dev);
9855 	netdev_features_change(dev);
9856 }
9857 EXPORT_SYMBOL(netdev_change_features);
9858 
9859 /**
9860  *	netif_stacked_transfer_operstate -	transfer operstate
9861  *	@rootdev: the root or lower level device to transfer state from
9862  *	@dev: the device to transfer operstate to
9863  *
9864  *	Transfer operational state from root to device. This is normally
9865  *	called when a stacking relationship exists between the root
9866  *	device and the device(a leaf device).
9867  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9868 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9869 					struct net_device *dev)
9870 {
9871 	if (rootdev->operstate == IF_OPER_DORMANT)
9872 		netif_dormant_on(dev);
9873 	else
9874 		netif_dormant_off(dev);
9875 
9876 	if (rootdev->operstate == IF_OPER_TESTING)
9877 		netif_testing_on(dev);
9878 	else
9879 		netif_testing_off(dev);
9880 
9881 	if (netif_carrier_ok(rootdev))
9882 		netif_carrier_on(dev);
9883 	else
9884 		netif_carrier_off(dev);
9885 }
9886 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9887 
netif_alloc_rx_queues(struct net_device * dev)9888 static int netif_alloc_rx_queues(struct net_device *dev)
9889 {
9890 	unsigned int i, count = dev->num_rx_queues;
9891 	struct netdev_rx_queue *rx;
9892 	size_t sz = count * sizeof(*rx);
9893 	int err = 0;
9894 
9895 	BUG_ON(count < 1);
9896 
9897 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9898 	if (!rx)
9899 		return -ENOMEM;
9900 
9901 	dev->_rx = rx;
9902 
9903 	for (i = 0; i < count; i++) {
9904 		rx[i].dev = dev;
9905 
9906 		/* XDP RX-queue setup */
9907 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9908 		if (err < 0)
9909 			goto err_rxq_info;
9910 	}
9911 	return 0;
9912 
9913 err_rxq_info:
9914 	/* Rollback successful reg's and free other resources */
9915 	while (i--)
9916 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9917 	kvfree(dev->_rx);
9918 	dev->_rx = NULL;
9919 	return err;
9920 }
9921 
netif_free_rx_queues(struct net_device * dev)9922 static void netif_free_rx_queues(struct net_device *dev)
9923 {
9924 	unsigned int i, count = dev->num_rx_queues;
9925 
9926 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9927 	if (!dev->_rx)
9928 		return;
9929 
9930 	for (i = 0; i < count; i++)
9931 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9932 
9933 	kvfree(dev->_rx);
9934 }
9935 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9936 static void netdev_init_one_queue(struct net_device *dev,
9937 				  struct netdev_queue *queue, void *_unused)
9938 {
9939 	/* Initialize queue lock */
9940 	spin_lock_init(&queue->_xmit_lock);
9941 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9942 	queue->xmit_lock_owner = -1;
9943 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9944 	queue->dev = dev;
9945 #ifdef CONFIG_BQL
9946 	dql_init(&queue->dql, HZ);
9947 #endif
9948 }
9949 
netif_free_tx_queues(struct net_device * dev)9950 static void netif_free_tx_queues(struct net_device *dev)
9951 {
9952 	kvfree(dev->_tx);
9953 }
9954 
netif_alloc_netdev_queues(struct net_device * dev)9955 static int netif_alloc_netdev_queues(struct net_device *dev)
9956 {
9957 	unsigned int count = dev->num_tx_queues;
9958 	struct netdev_queue *tx;
9959 	size_t sz = count * sizeof(*tx);
9960 
9961 	if (count < 1 || count > 0xffff)
9962 		return -EINVAL;
9963 
9964 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9965 	if (!tx)
9966 		return -ENOMEM;
9967 
9968 	dev->_tx = tx;
9969 
9970 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9971 	spin_lock_init(&dev->tx_global_lock);
9972 
9973 	return 0;
9974 }
9975 
netif_tx_stop_all_queues(struct net_device * dev)9976 void netif_tx_stop_all_queues(struct net_device *dev)
9977 {
9978 	unsigned int i;
9979 
9980 	for (i = 0; i < dev->num_tx_queues; i++) {
9981 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9982 
9983 		netif_tx_stop_queue(txq);
9984 	}
9985 }
9986 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9987 
9988 /**
9989  *	register_netdevice	- register a network device
9990  *	@dev: device to register
9991  *
9992  *	Take a completed network device structure and add it to the kernel
9993  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9994  *	chain. 0 is returned on success. A negative errno code is returned
9995  *	on a failure to set up the device, or if the name is a duplicate.
9996  *
9997  *	Callers must hold the rtnl semaphore. You may want
9998  *	register_netdev() instead of this.
9999  *
10000  *	BUGS:
10001  *	The locking appears insufficient to guarantee two parallel registers
10002  *	will not get the same name.
10003  */
10004 
register_netdevice(struct net_device * dev)10005 int register_netdevice(struct net_device *dev)
10006 {
10007 	int ret;
10008 	struct net *net = dev_net(dev);
10009 
10010 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10011 		     NETDEV_FEATURE_COUNT);
10012 	BUG_ON(dev_boot_phase);
10013 	ASSERT_RTNL();
10014 
10015 	might_sleep();
10016 
10017 	/* When net_device's are persistent, this will be fatal. */
10018 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10019 	BUG_ON(!net);
10020 
10021 	ret = ethtool_check_ops(dev->ethtool_ops);
10022 	if (ret)
10023 		return ret;
10024 
10025 	spin_lock_init(&dev->addr_list_lock);
10026 	netdev_set_addr_lockdep_class(dev);
10027 
10028 	ret = dev_get_valid_name(net, dev, dev->name);
10029 	if (ret < 0)
10030 		goto out;
10031 
10032 	ret = -ENOMEM;
10033 	dev->name_node = netdev_name_node_head_alloc(dev);
10034 	if (!dev->name_node)
10035 		goto out;
10036 
10037 	/* Init, if this function is available */
10038 	if (dev->netdev_ops->ndo_init) {
10039 		ret = dev->netdev_ops->ndo_init(dev);
10040 		if (ret) {
10041 			if (ret > 0)
10042 				ret = -EIO;
10043 			goto err_free_name;
10044 		}
10045 	}
10046 
10047 	if (((dev->hw_features | dev->features) &
10048 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10049 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10050 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10051 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10052 		ret = -EINVAL;
10053 		goto err_uninit;
10054 	}
10055 
10056 	ret = -EBUSY;
10057 	if (!dev->ifindex)
10058 		dev->ifindex = dev_new_index(net);
10059 	else if (__dev_get_by_index(net, dev->ifindex))
10060 		goto err_uninit;
10061 
10062 	/* Transfer changeable features to wanted_features and enable
10063 	 * software offloads (GSO and GRO).
10064 	 */
10065 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10066 	dev->features |= NETIF_F_SOFT_FEATURES;
10067 
10068 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
10069 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10070 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10071 	}
10072 
10073 	dev->wanted_features = dev->features & dev->hw_features;
10074 
10075 	if (!(dev->flags & IFF_LOOPBACK))
10076 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10077 
10078 	/* If IPv4 TCP segmentation offload is supported we should also
10079 	 * allow the device to enable segmenting the frame with the option
10080 	 * of ignoring a static IP ID value.  This doesn't enable the
10081 	 * feature itself but allows the user to enable it later.
10082 	 */
10083 	if (dev->hw_features & NETIF_F_TSO)
10084 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10085 	if (dev->vlan_features & NETIF_F_TSO)
10086 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10087 	if (dev->mpls_features & NETIF_F_TSO)
10088 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10089 	if (dev->hw_enc_features & NETIF_F_TSO)
10090 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10091 
10092 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10093 	 */
10094 	dev->vlan_features |= NETIF_F_HIGHDMA;
10095 
10096 	/* Make NETIF_F_SG inheritable to tunnel devices.
10097 	 */
10098 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10099 
10100 	/* Make NETIF_F_SG inheritable to MPLS.
10101 	 */
10102 	dev->mpls_features |= NETIF_F_SG;
10103 
10104 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10105 	ret = notifier_to_errno(ret);
10106 	if (ret)
10107 		goto err_uninit;
10108 
10109 	ret = netdev_register_kobject(dev);
10110 	if (ret) {
10111 		dev->reg_state = NETREG_UNREGISTERED;
10112 		goto err_uninit;
10113 	}
10114 	dev->reg_state = NETREG_REGISTERED;
10115 
10116 	__netdev_update_features(dev);
10117 
10118 	/*
10119 	 *	Default initial state at registry is that the
10120 	 *	device is present.
10121 	 */
10122 
10123 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10124 
10125 	linkwatch_init_dev(dev);
10126 
10127 	dev_init_scheduler(dev);
10128 	dev_hold(dev);
10129 	list_netdevice(dev);
10130 	add_device_randomness(dev->dev_addr, dev->addr_len);
10131 
10132 	/* If the device has permanent device address, driver should
10133 	 * set dev_addr and also addr_assign_type should be set to
10134 	 * NET_ADDR_PERM (default value).
10135 	 */
10136 	if (dev->addr_assign_type == NET_ADDR_PERM)
10137 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10138 
10139 	/* Notify protocols, that a new device appeared. */
10140 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10141 	ret = notifier_to_errno(ret);
10142 	if (ret) {
10143 		/* Expect explicit free_netdev() on failure */
10144 		dev->needs_free_netdev = false;
10145 		rollback_registered(dev);
10146 		net_set_todo(dev);
10147 		goto out;
10148 	}
10149 	/*
10150 	 *	Prevent userspace races by waiting until the network
10151 	 *	device is fully setup before sending notifications.
10152 	 */
10153 	if (!dev->rtnl_link_ops ||
10154 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10155 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10156 
10157 out:
10158 	return ret;
10159 
10160 err_uninit:
10161 	if (dev->netdev_ops->ndo_uninit)
10162 		dev->netdev_ops->ndo_uninit(dev);
10163 	if (dev->priv_destructor)
10164 		dev->priv_destructor(dev);
10165 err_free_name:
10166 	netdev_name_node_free(dev->name_node);
10167 	goto out;
10168 }
10169 EXPORT_SYMBOL(register_netdevice);
10170 
10171 /**
10172  *	init_dummy_netdev	- init a dummy network device for NAPI
10173  *	@dev: device to init
10174  *
10175  *	This takes a network device structure and initialize the minimum
10176  *	amount of fields so it can be used to schedule NAPI polls without
10177  *	registering a full blown interface. This is to be used by drivers
10178  *	that need to tie several hardware interfaces to a single NAPI
10179  *	poll scheduler due to HW limitations.
10180  */
init_dummy_netdev(struct net_device * dev)10181 int init_dummy_netdev(struct net_device *dev)
10182 {
10183 	/* Clear everything. Note we don't initialize spinlocks
10184 	 * are they aren't supposed to be taken by any of the
10185 	 * NAPI code and this dummy netdev is supposed to be
10186 	 * only ever used for NAPI polls
10187 	 */
10188 	memset(dev, 0, sizeof(struct net_device));
10189 
10190 	/* make sure we BUG if trying to hit standard
10191 	 * register/unregister code path
10192 	 */
10193 	dev->reg_state = NETREG_DUMMY;
10194 
10195 	/* NAPI wants this */
10196 	INIT_LIST_HEAD(&dev->napi_list);
10197 
10198 	/* a dummy interface is started by default */
10199 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10200 	set_bit(__LINK_STATE_START, &dev->state);
10201 
10202 	/* napi_busy_loop stats accounting wants this */
10203 	dev_net_set(dev, &init_net);
10204 
10205 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10206 	 * because users of this 'device' dont need to change
10207 	 * its refcount.
10208 	 */
10209 
10210 	return 0;
10211 }
10212 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10213 
10214 
10215 /**
10216  *	register_netdev	- register a network device
10217  *	@dev: device to register
10218  *
10219  *	Take a completed network device structure and add it to the kernel
10220  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10221  *	chain. 0 is returned on success. A negative errno code is returned
10222  *	on a failure to set up the device, or if the name is a duplicate.
10223  *
10224  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10225  *	and expands the device name if you passed a format string to
10226  *	alloc_netdev.
10227  */
register_netdev(struct net_device * dev)10228 int register_netdev(struct net_device *dev)
10229 {
10230 	int err;
10231 
10232 	if (rtnl_lock_killable())
10233 		return -EINTR;
10234 	err = register_netdevice(dev);
10235 	rtnl_unlock();
10236 	return err;
10237 }
10238 EXPORT_SYMBOL(register_netdev);
10239 
netdev_refcnt_read(const struct net_device * dev)10240 int netdev_refcnt_read(const struct net_device *dev)
10241 {
10242 	int i, refcnt = 0;
10243 
10244 	for_each_possible_cpu(i)
10245 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10246 	return refcnt;
10247 }
10248 EXPORT_SYMBOL(netdev_refcnt_read);
10249 
10250 #define WAIT_REFS_MIN_MSECS 1
10251 #define WAIT_REFS_MAX_MSECS 250
10252 /**
10253  * netdev_wait_allrefs - wait until all references are gone.
10254  * @dev: target net_device
10255  *
10256  * This is called when unregistering network devices.
10257  *
10258  * Any protocol or device that holds a reference should register
10259  * for netdevice notification, and cleanup and put back the
10260  * reference if they receive an UNREGISTER event.
10261  * We can get stuck here if buggy protocols don't correctly
10262  * call dev_put.
10263  */
netdev_wait_allrefs(struct net_device * dev)10264 static void netdev_wait_allrefs(struct net_device *dev)
10265 {
10266 	unsigned long rebroadcast_time, warning_time;
10267 	int wait = 0, refcnt;
10268 
10269 	linkwatch_forget_dev(dev);
10270 
10271 	rebroadcast_time = warning_time = jiffies;
10272 	refcnt = netdev_refcnt_read(dev);
10273 
10274 	while (refcnt != 0) {
10275 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10276 			rtnl_lock();
10277 
10278 			/* Rebroadcast unregister notification */
10279 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10280 
10281 			__rtnl_unlock();
10282 			rcu_barrier();
10283 			rtnl_lock();
10284 
10285 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10286 				     &dev->state)) {
10287 				/* We must not have linkwatch events
10288 				 * pending on unregister. If this
10289 				 * happens, we simply run the queue
10290 				 * unscheduled, resulting in a noop
10291 				 * for this device.
10292 				 */
10293 				linkwatch_run_queue();
10294 			}
10295 
10296 			__rtnl_unlock();
10297 
10298 			rebroadcast_time = jiffies;
10299 		}
10300 
10301 		if (!wait) {
10302 			rcu_barrier();
10303 			wait = WAIT_REFS_MIN_MSECS;
10304 		} else {
10305 			msleep(wait);
10306 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10307 		}
10308 
10309 		refcnt = netdev_refcnt_read(dev);
10310 
10311 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10312 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10313 				 dev->name, refcnt);
10314 			warning_time = jiffies;
10315 		}
10316 	}
10317 }
10318 
10319 /* The sequence is:
10320  *
10321  *	rtnl_lock();
10322  *	...
10323  *	register_netdevice(x1);
10324  *	register_netdevice(x2);
10325  *	...
10326  *	unregister_netdevice(y1);
10327  *	unregister_netdevice(y2);
10328  *      ...
10329  *	rtnl_unlock();
10330  *	free_netdev(y1);
10331  *	free_netdev(y2);
10332  *
10333  * We are invoked by rtnl_unlock().
10334  * This allows us to deal with problems:
10335  * 1) We can delete sysfs objects which invoke hotplug
10336  *    without deadlocking with linkwatch via keventd.
10337  * 2) Since we run with the RTNL semaphore not held, we can sleep
10338  *    safely in order to wait for the netdev refcnt to drop to zero.
10339  *
10340  * We must not return until all unregister events added during
10341  * the interval the lock was held have been completed.
10342  */
netdev_run_todo(void)10343 void netdev_run_todo(void)
10344 {
10345 	struct list_head list;
10346 #ifdef CONFIG_LOCKDEP
10347 	struct list_head unlink_list;
10348 
10349 	list_replace_init(&net_unlink_list, &unlink_list);
10350 
10351 	while (!list_empty(&unlink_list)) {
10352 		struct net_device *dev = list_first_entry(&unlink_list,
10353 							  struct net_device,
10354 							  unlink_list);
10355 		list_del_init(&dev->unlink_list);
10356 		dev->nested_level = dev->lower_level - 1;
10357 	}
10358 #endif
10359 
10360 	/* Snapshot list, allow later requests */
10361 	list_replace_init(&net_todo_list, &list);
10362 
10363 	__rtnl_unlock();
10364 
10365 
10366 	/* Wait for rcu callbacks to finish before next phase */
10367 	if (!list_empty(&list))
10368 		rcu_barrier();
10369 
10370 	while (!list_empty(&list)) {
10371 		struct net_device *dev
10372 			= list_first_entry(&list, struct net_device, todo_list);
10373 		list_del(&dev->todo_list);
10374 
10375 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10376 			pr_err("network todo '%s' but state %d\n",
10377 			       dev->name, dev->reg_state);
10378 			dump_stack();
10379 			continue;
10380 		}
10381 
10382 		dev->reg_state = NETREG_UNREGISTERED;
10383 
10384 		netdev_wait_allrefs(dev);
10385 
10386 		/* paranoia */
10387 		BUG_ON(netdev_refcnt_read(dev));
10388 		BUG_ON(!list_empty(&dev->ptype_all));
10389 		BUG_ON(!list_empty(&dev->ptype_specific));
10390 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10391 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10392 #if IS_ENABLED(CONFIG_DECNET)
10393 		WARN_ON(dev->dn_ptr);
10394 #endif
10395 		if (dev->priv_destructor)
10396 			dev->priv_destructor(dev);
10397 		if (dev->needs_free_netdev)
10398 			free_netdev(dev);
10399 
10400 		/* Report a network device has been unregistered */
10401 		rtnl_lock();
10402 		dev_net(dev)->dev_unreg_count--;
10403 		__rtnl_unlock();
10404 		wake_up(&netdev_unregistering_wq);
10405 
10406 		/* Free network device */
10407 		kobject_put(&dev->dev.kobj);
10408 	}
10409 }
10410 
10411 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10412  * all the same fields in the same order as net_device_stats, with only
10413  * the type differing, but rtnl_link_stats64 may have additional fields
10414  * at the end for newer counters.
10415  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10416 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10417 			     const struct net_device_stats *netdev_stats)
10418 {
10419 #if BITS_PER_LONG == 64
10420 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10421 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10422 	/* zero out counters that only exist in rtnl_link_stats64 */
10423 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10424 	       sizeof(*stats64) - sizeof(*netdev_stats));
10425 #else
10426 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10427 	const unsigned long *src = (const unsigned long *)netdev_stats;
10428 	u64 *dst = (u64 *)stats64;
10429 
10430 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10431 	for (i = 0; i < n; i++)
10432 		dst[i] = src[i];
10433 	/* zero out counters that only exist in rtnl_link_stats64 */
10434 	memset((char *)stats64 + n * sizeof(u64), 0,
10435 	       sizeof(*stats64) - n * sizeof(u64));
10436 #endif
10437 }
10438 EXPORT_SYMBOL(netdev_stats_to_stats64);
10439 
10440 /**
10441  *	dev_get_stats	- get network device statistics
10442  *	@dev: device to get statistics from
10443  *	@storage: place to store stats
10444  *
10445  *	Get network statistics from device. Return @storage.
10446  *	The device driver may provide its own method by setting
10447  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10448  *	otherwise the internal statistics structure is used.
10449  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10450 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10451 					struct rtnl_link_stats64 *storage)
10452 {
10453 	const struct net_device_ops *ops = dev->netdev_ops;
10454 
10455 	if (ops->ndo_get_stats64) {
10456 		memset(storage, 0, sizeof(*storage));
10457 		ops->ndo_get_stats64(dev, storage);
10458 	} else if (ops->ndo_get_stats) {
10459 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10460 	} else {
10461 		netdev_stats_to_stats64(storage, &dev->stats);
10462 	}
10463 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10464 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10465 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10466 	return storage;
10467 }
10468 EXPORT_SYMBOL(dev_get_stats);
10469 
10470 /**
10471  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10472  *	@s: place to store stats
10473  *	@netstats: per-cpu network stats to read from
10474  *
10475  *	Read per-cpu network statistics and populate the related fields in @s.
10476  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10477 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10478 			   const struct pcpu_sw_netstats __percpu *netstats)
10479 {
10480 	int cpu;
10481 
10482 	for_each_possible_cpu(cpu) {
10483 		const struct pcpu_sw_netstats *stats;
10484 		struct pcpu_sw_netstats tmp;
10485 		unsigned int start;
10486 
10487 		stats = per_cpu_ptr(netstats, cpu);
10488 		do {
10489 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10490 			tmp.rx_packets = stats->rx_packets;
10491 			tmp.rx_bytes   = stats->rx_bytes;
10492 			tmp.tx_packets = stats->tx_packets;
10493 			tmp.tx_bytes   = stats->tx_bytes;
10494 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10495 
10496 		s->rx_packets += tmp.rx_packets;
10497 		s->rx_bytes   += tmp.rx_bytes;
10498 		s->tx_packets += tmp.tx_packets;
10499 		s->tx_bytes   += tmp.tx_bytes;
10500 	}
10501 }
10502 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10503 
dev_ingress_queue_create(struct net_device * dev)10504 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10505 {
10506 	struct netdev_queue *queue = dev_ingress_queue(dev);
10507 
10508 #ifdef CONFIG_NET_CLS_ACT
10509 	if (queue)
10510 		return queue;
10511 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10512 	if (!queue)
10513 		return NULL;
10514 	netdev_init_one_queue(dev, queue, NULL);
10515 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10516 	queue->qdisc_sleeping = &noop_qdisc;
10517 	rcu_assign_pointer(dev->ingress_queue, queue);
10518 #endif
10519 	return queue;
10520 }
10521 
10522 static const struct ethtool_ops default_ethtool_ops;
10523 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10524 void netdev_set_default_ethtool_ops(struct net_device *dev,
10525 				    const struct ethtool_ops *ops)
10526 {
10527 	if (dev->ethtool_ops == &default_ethtool_ops)
10528 		dev->ethtool_ops = ops;
10529 }
10530 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10531 
netdev_freemem(struct net_device * dev)10532 void netdev_freemem(struct net_device *dev)
10533 {
10534 	char *addr = (char *)dev - dev->padded;
10535 
10536 	kvfree(addr);
10537 }
10538 
10539 /**
10540  * alloc_netdev_mqs - allocate network device
10541  * @sizeof_priv: size of private data to allocate space for
10542  * @name: device name format string
10543  * @name_assign_type: origin of device name
10544  * @setup: callback to initialize device
10545  * @txqs: the number of TX subqueues to allocate
10546  * @rxqs: the number of RX subqueues to allocate
10547  *
10548  * Allocates a struct net_device with private data area for driver use
10549  * and performs basic initialization.  Also allocates subqueue structs
10550  * for each queue on the device.
10551  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10552 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10553 		unsigned char name_assign_type,
10554 		void (*setup)(struct net_device *),
10555 		unsigned int txqs, unsigned int rxqs)
10556 {
10557 	struct net_device *dev;
10558 	unsigned int alloc_size;
10559 	struct net_device *p;
10560 
10561 	BUG_ON(strlen(name) >= sizeof(dev->name));
10562 
10563 	if (txqs < 1) {
10564 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10565 		return NULL;
10566 	}
10567 
10568 	if (rxqs < 1) {
10569 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10570 		return NULL;
10571 	}
10572 
10573 	alloc_size = sizeof(struct net_device);
10574 	if (sizeof_priv) {
10575 		/* ensure 32-byte alignment of private area */
10576 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10577 		alloc_size += sizeof_priv;
10578 	}
10579 	/* ensure 32-byte alignment of whole construct */
10580 	alloc_size += NETDEV_ALIGN - 1;
10581 
10582 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10583 	if (!p)
10584 		return NULL;
10585 
10586 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10587 	dev->padded = (char *)dev - (char *)p;
10588 
10589 	dev->pcpu_refcnt = alloc_percpu(int);
10590 	if (!dev->pcpu_refcnt)
10591 		goto free_dev;
10592 
10593 	if (dev_addr_init(dev))
10594 		goto free_pcpu;
10595 
10596 	dev_mc_init(dev);
10597 	dev_uc_init(dev);
10598 
10599 	dev_net_set(dev, &init_net);
10600 
10601 	dev->gso_max_size = GSO_MAX_SIZE;
10602 	dev->gso_max_segs = GSO_MAX_SEGS;
10603 	dev->upper_level = 1;
10604 	dev->lower_level = 1;
10605 #ifdef CONFIG_LOCKDEP
10606 	dev->nested_level = 0;
10607 	INIT_LIST_HEAD(&dev->unlink_list);
10608 #endif
10609 
10610 	INIT_LIST_HEAD(&dev->napi_list);
10611 	INIT_LIST_HEAD(&dev->unreg_list);
10612 	INIT_LIST_HEAD(&dev->close_list);
10613 	INIT_LIST_HEAD(&dev->link_watch_list);
10614 	INIT_LIST_HEAD(&dev->adj_list.upper);
10615 	INIT_LIST_HEAD(&dev->adj_list.lower);
10616 	INIT_LIST_HEAD(&dev->ptype_all);
10617 	INIT_LIST_HEAD(&dev->ptype_specific);
10618 	INIT_LIST_HEAD(&dev->net_notifier_list);
10619 #ifdef CONFIG_NET_SCHED
10620 	hash_init(dev->qdisc_hash);
10621 #endif
10622 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10623 	setup(dev);
10624 
10625 	if (!dev->tx_queue_len) {
10626 		dev->priv_flags |= IFF_NO_QUEUE;
10627 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10628 	}
10629 
10630 	dev->num_tx_queues = txqs;
10631 	dev->real_num_tx_queues = txqs;
10632 	if (netif_alloc_netdev_queues(dev))
10633 		goto free_all;
10634 
10635 	dev->num_rx_queues = rxqs;
10636 	dev->real_num_rx_queues = rxqs;
10637 	if (netif_alloc_rx_queues(dev))
10638 		goto free_all;
10639 
10640 	strcpy(dev->name, name);
10641 	dev->name_assign_type = name_assign_type;
10642 	dev->group = INIT_NETDEV_GROUP;
10643 	if (!dev->ethtool_ops)
10644 		dev->ethtool_ops = &default_ethtool_ops;
10645 
10646 	nf_hook_ingress_init(dev);
10647 
10648 	return dev;
10649 
10650 free_all:
10651 	free_netdev(dev);
10652 	return NULL;
10653 
10654 free_pcpu:
10655 	free_percpu(dev->pcpu_refcnt);
10656 free_dev:
10657 	netdev_freemem(dev);
10658 	return NULL;
10659 }
10660 EXPORT_SYMBOL(alloc_netdev_mqs);
10661 
10662 /**
10663  * free_netdev - free network device
10664  * @dev: device
10665  *
10666  * This function does the last stage of destroying an allocated device
10667  * interface. The reference to the device object is released. If this
10668  * is the last reference then it will be freed.Must be called in process
10669  * context.
10670  */
free_netdev(struct net_device * dev)10671 void free_netdev(struct net_device *dev)
10672 {
10673 	struct napi_struct *p, *n;
10674 
10675 	might_sleep();
10676 
10677 	/* When called immediately after register_netdevice() failed the unwind
10678 	 * handling may still be dismantling the device. Handle that case by
10679 	 * deferring the free.
10680 	 */
10681 	if (dev->reg_state == NETREG_UNREGISTERING) {
10682 		ASSERT_RTNL();
10683 		dev->needs_free_netdev = true;
10684 		return;
10685 	}
10686 
10687 	netif_free_tx_queues(dev);
10688 	netif_free_rx_queues(dev);
10689 
10690 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10691 
10692 	/* Flush device addresses */
10693 	dev_addr_flush(dev);
10694 
10695 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10696 		netif_napi_del(p);
10697 
10698 	free_percpu(dev->pcpu_refcnt);
10699 	dev->pcpu_refcnt = NULL;
10700 	free_percpu(dev->xdp_bulkq);
10701 	dev->xdp_bulkq = NULL;
10702 
10703 	/*  Compatibility with error handling in drivers */
10704 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10705 		netdev_freemem(dev);
10706 		return;
10707 	}
10708 
10709 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10710 	dev->reg_state = NETREG_RELEASED;
10711 
10712 	/* will free via device release */
10713 	put_device(&dev->dev);
10714 }
10715 EXPORT_SYMBOL(free_netdev);
10716 
10717 /**
10718  *	synchronize_net -  Synchronize with packet receive processing
10719  *
10720  *	Wait for packets currently being received to be done.
10721  *	Does not block later packets from starting.
10722  */
synchronize_net(void)10723 void synchronize_net(void)
10724 {
10725 	might_sleep();
10726 	if (rtnl_is_locked())
10727 		synchronize_rcu_expedited();
10728 	else
10729 		synchronize_rcu();
10730 }
10731 EXPORT_SYMBOL(synchronize_net);
10732 
10733 /**
10734  *	unregister_netdevice_queue - remove device from the kernel
10735  *	@dev: device
10736  *	@head: list
10737  *
10738  *	This function shuts down a device interface and removes it
10739  *	from the kernel tables.
10740  *	If head not NULL, device is queued to be unregistered later.
10741  *
10742  *	Callers must hold the rtnl semaphore.  You may want
10743  *	unregister_netdev() instead of this.
10744  */
10745 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10746 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10747 {
10748 	ASSERT_RTNL();
10749 
10750 	if (head) {
10751 		list_move_tail(&dev->unreg_list, head);
10752 	} else {
10753 		rollback_registered(dev);
10754 		/* Finish processing unregister after unlock */
10755 		net_set_todo(dev);
10756 	}
10757 }
10758 EXPORT_SYMBOL(unregister_netdevice_queue);
10759 
10760 /**
10761  *	unregister_netdevice_many - unregister many devices
10762  *	@head: list of devices
10763  *
10764  *  Note: As most callers use a stack allocated list_head,
10765  *  we force a list_del() to make sure stack wont be corrupted later.
10766  */
unregister_netdevice_many(struct list_head * head)10767 void unregister_netdevice_many(struct list_head *head)
10768 {
10769 	struct net_device *dev;
10770 
10771 	if (!list_empty(head)) {
10772 		rollback_registered_many(head);
10773 		list_for_each_entry(dev, head, unreg_list)
10774 			net_set_todo(dev);
10775 		list_del(head);
10776 	}
10777 }
10778 EXPORT_SYMBOL(unregister_netdevice_many);
10779 
10780 /**
10781  *	unregister_netdev - remove device from the kernel
10782  *	@dev: device
10783  *
10784  *	This function shuts down a device interface and removes it
10785  *	from the kernel tables.
10786  *
10787  *	This is just a wrapper for unregister_netdevice that takes
10788  *	the rtnl semaphore.  In general you want to use this and not
10789  *	unregister_netdevice.
10790  */
unregister_netdev(struct net_device * dev)10791 void unregister_netdev(struct net_device *dev)
10792 {
10793 	rtnl_lock();
10794 	unregister_netdevice(dev);
10795 	rtnl_unlock();
10796 }
10797 EXPORT_SYMBOL(unregister_netdev);
10798 
10799 /**
10800  *	dev_change_net_namespace - move device to different nethost namespace
10801  *	@dev: device
10802  *	@net: network namespace
10803  *	@pat: If not NULL name pattern to try if the current device name
10804  *	      is already taken in the destination network namespace.
10805  *
10806  *	This function shuts down a device interface and moves it
10807  *	to a new network namespace. On success 0 is returned, on
10808  *	a failure a netagive errno code is returned.
10809  *
10810  *	Callers must hold the rtnl semaphore.
10811  */
10812 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)10813 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10814 {
10815 	struct net *net_old = dev_net(dev);
10816 	int err, new_nsid, new_ifindex;
10817 
10818 	ASSERT_RTNL();
10819 
10820 	/* Don't allow namespace local devices to be moved. */
10821 	err = -EINVAL;
10822 	if (dev->features & NETIF_F_NETNS_LOCAL)
10823 		goto out;
10824 
10825 	/* Ensure the device has been registrered */
10826 	if (dev->reg_state != NETREG_REGISTERED)
10827 		goto out;
10828 
10829 	/* Get out if there is nothing todo */
10830 	err = 0;
10831 	if (net_eq(net_old, net))
10832 		goto out;
10833 
10834 	/* Pick the destination device name, and ensure
10835 	 * we can use it in the destination network namespace.
10836 	 */
10837 	err = -EEXIST;
10838 	if (__dev_get_by_name(net, dev->name)) {
10839 		/* We get here if we can't use the current device name */
10840 		if (!pat)
10841 			goto out;
10842 		err = dev_get_valid_name(net, dev, pat);
10843 		if (err < 0)
10844 			goto out;
10845 	}
10846 
10847 	/*
10848 	 * And now a mini version of register_netdevice unregister_netdevice.
10849 	 */
10850 
10851 	/* If device is running close it first. */
10852 	dev_close(dev);
10853 
10854 	/* And unlink it from device chain */
10855 	unlist_netdevice(dev);
10856 
10857 	synchronize_net();
10858 
10859 	/* Shutdown queueing discipline. */
10860 	dev_shutdown(dev);
10861 
10862 	/* Notify protocols, that we are about to destroy
10863 	 * this device. They should clean all the things.
10864 	 *
10865 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10866 	 * This is wanted because this way 8021q and macvlan know
10867 	 * the device is just moving and can keep their slaves up.
10868 	 */
10869 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10870 	rcu_barrier();
10871 
10872 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10873 	/* If there is an ifindex conflict assign a new one */
10874 	if (__dev_get_by_index(net, dev->ifindex))
10875 		new_ifindex = dev_new_index(net);
10876 	else
10877 		new_ifindex = dev->ifindex;
10878 
10879 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10880 			    new_ifindex);
10881 
10882 	/*
10883 	 *	Flush the unicast and multicast chains
10884 	 */
10885 	dev_uc_flush(dev);
10886 	dev_mc_flush(dev);
10887 
10888 	/* Send a netdev-removed uevent to the old namespace */
10889 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10890 	netdev_adjacent_del_links(dev);
10891 
10892 	/* Move per-net netdevice notifiers that are following the netdevice */
10893 	move_netdevice_notifiers_dev_net(dev, net);
10894 
10895 	/* Actually switch the network namespace */
10896 	dev_net_set(dev, net);
10897 	dev->ifindex = new_ifindex;
10898 
10899 	/* Send a netdev-add uevent to the new namespace */
10900 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10901 	netdev_adjacent_add_links(dev);
10902 
10903 	/* Fixup kobjects */
10904 	err = device_rename(&dev->dev, dev->name);
10905 	WARN_ON(err);
10906 
10907 	/* Adapt owner in case owning user namespace of target network
10908 	 * namespace is different from the original one.
10909 	 */
10910 	err = netdev_change_owner(dev, net_old, net);
10911 	WARN_ON(err);
10912 
10913 	/* Add the device back in the hashes */
10914 	list_netdevice(dev);
10915 
10916 	/* Notify protocols, that a new device appeared. */
10917 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10918 
10919 	/*
10920 	 *	Prevent userspace races by waiting until the network
10921 	 *	device is fully setup before sending notifications.
10922 	 */
10923 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10924 
10925 	synchronize_net();
10926 	err = 0;
10927 out:
10928 	return err;
10929 }
10930 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10931 
dev_cpu_dead(unsigned int oldcpu)10932 static int dev_cpu_dead(unsigned int oldcpu)
10933 {
10934 	struct sk_buff **list_skb;
10935 	struct sk_buff *skb;
10936 	unsigned int cpu;
10937 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10938 
10939 	local_irq_disable();
10940 	cpu = smp_processor_id();
10941 	sd = &per_cpu(softnet_data, cpu);
10942 	oldsd = &per_cpu(softnet_data, oldcpu);
10943 
10944 	/* Find end of our completion_queue. */
10945 	list_skb = &sd->completion_queue;
10946 	while (*list_skb)
10947 		list_skb = &(*list_skb)->next;
10948 	/* Append completion queue from offline CPU. */
10949 	*list_skb = oldsd->completion_queue;
10950 	oldsd->completion_queue = NULL;
10951 
10952 	/* Append output queue from offline CPU. */
10953 	if (oldsd->output_queue) {
10954 		*sd->output_queue_tailp = oldsd->output_queue;
10955 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10956 		oldsd->output_queue = NULL;
10957 		oldsd->output_queue_tailp = &oldsd->output_queue;
10958 	}
10959 	/* Append NAPI poll list from offline CPU, with one exception :
10960 	 * process_backlog() must be called by cpu owning percpu backlog.
10961 	 * We properly handle process_queue & input_pkt_queue later.
10962 	 */
10963 	while (!list_empty(&oldsd->poll_list)) {
10964 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10965 							    struct napi_struct,
10966 							    poll_list);
10967 
10968 		list_del_init(&napi->poll_list);
10969 		if (napi->poll == process_backlog)
10970 			napi->state = 0;
10971 		else
10972 			____napi_schedule(sd, napi);
10973 	}
10974 
10975 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10976 	local_irq_enable();
10977 
10978 #ifdef CONFIG_RPS
10979 	remsd = oldsd->rps_ipi_list;
10980 	oldsd->rps_ipi_list = NULL;
10981 #endif
10982 	/* send out pending IPI's on offline CPU */
10983 	net_rps_send_ipi(remsd);
10984 
10985 	/* Process offline CPU's input_pkt_queue */
10986 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10987 		netif_rx_ni(skb);
10988 		input_queue_head_incr(oldsd);
10989 	}
10990 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10991 		netif_rx_ni(skb);
10992 		input_queue_head_incr(oldsd);
10993 	}
10994 
10995 	return 0;
10996 }
10997 
10998 /**
10999  *	netdev_increment_features - increment feature set by one
11000  *	@all: current feature set
11001  *	@one: new feature set
11002  *	@mask: mask feature set
11003  *
11004  *	Computes a new feature set after adding a device with feature set
11005  *	@one to the master device with current feature set @all.  Will not
11006  *	enable anything that is off in @mask. Returns the new feature set.
11007  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11008 netdev_features_t netdev_increment_features(netdev_features_t all,
11009 	netdev_features_t one, netdev_features_t mask)
11010 {
11011 	if (mask & NETIF_F_HW_CSUM)
11012 		mask |= NETIF_F_CSUM_MASK;
11013 	mask |= NETIF_F_VLAN_CHALLENGED;
11014 
11015 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11016 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11017 
11018 	/* If one device supports hw checksumming, set for all. */
11019 	if (all & NETIF_F_HW_CSUM)
11020 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11021 
11022 	return all;
11023 }
11024 EXPORT_SYMBOL(netdev_increment_features);
11025 
netdev_create_hash(void)11026 static struct hlist_head * __net_init netdev_create_hash(void)
11027 {
11028 	int i;
11029 	struct hlist_head *hash;
11030 
11031 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11032 	if (hash != NULL)
11033 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11034 			INIT_HLIST_HEAD(&hash[i]);
11035 
11036 	return hash;
11037 }
11038 
11039 /* Initialize per network namespace state */
netdev_init(struct net * net)11040 static int __net_init netdev_init(struct net *net)
11041 {
11042 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11043 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11044 
11045 	if (net != &init_net)
11046 		INIT_LIST_HEAD(&net->dev_base_head);
11047 
11048 	net->dev_name_head = netdev_create_hash();
11049 	if (net->dev_name_head == NULL)
11050 		goto err_name;
11051 
11052 	net->dev_index_head = netdev_create_hash();
11053 	if (net->dev_index_head == NULL)
11054 		goto err_idx;
11055 
11056 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11057 
11058 	return 0;
11059 
11060 err_idx:
11061 	kfree(net->dev_name_head);
11062 err_name:
11063 	return -ENOMEM;
11064 }
11065 
11066 /**
11067  *	netdev_drivername - network driver for the device
11068  *	@dev: network device
11069  *
11070  *	Determine network driver for device.
11071  */
netdev_drivername(const struct net_device * dev)11072 const char *netdev_drivername(const struct net_device *dev)
11073 {
11074 	const struct device_driver *driver;
11075 	const struct device *parent;
11076 	const char *empty = "";
11077 
11078 	parent = dev->dev.parent;
11079 	if (!parent)
11080 		return empty;
11081 
11082 	driver = parent->driver;
11083 	if (driver && driver->name)
11084 		return driver->name;
11085 	return empty;
11086 }
11087 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11088 static void __netdev_printk(const char *level, const struct net_device *dev,
11089 			    struct va_format *vaf)
11090 {
11091 	if (dev && dev->dev.parent) {
11092 		dev_printk_emit(level[1] - '0',
11093 				dev->dev.parent,
11094 				"%s %s %s%s: %pV",
11095 				dev_driver_string(dev->dev.parent),
11096 				dev_name(dev->dev.parent),
11097 				netdev_name(dev), netdev_reg_state(dev),
11098 				vaf);
11099 	} else if (dev) {
11100 		printk("%s%s%s: %pV",
11101 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11102 	} else {
11103 		printk("%s(NULL net_device): %pV", level, vaf);
11104 	}
11105 }
11106 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11107 void netdev_printk(const char *level, const struct net_device *dev,
11108 		   const char *format, ...)
11109 {
11110 	struct va_format vaf;
11111 	va_list args;
11112 
11113 	va_start(args, format);
11114 
11115 	vaf.fmt = format;
11116 	vaf.va = &args;
11117 
11118 	__netdev_printk(level, dev, &vaf);
11119 
11120 	va_end(args);
11121 }
11122 EXPORT_SYMBOL(netdev_printk);
11123 
11124 #define define_netdev_printk_level(func, level)			\
11125 void func(const struct net_device *dev, const char *fmt, ...)	\
11126 {								\
11127 	struct va_format vaf;					\
11128 	va_list args;						\
11129 								\
11130 	va_start(args, fmt);					\
11131 								\
11132 	vaf.fmt = fmt;						\
11133 	vaf.va = &args;						\
11134 								\
11135 	__netdev_printk(level, dev, &vaf);			\
11136 								\
11137 	va_end(args);						\
11138 }								\
11139 EXPORT_SYMBOL(func);
11140 
11141 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11142 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11143 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11144 define_netdev_printk_level(netdev_err, KERN_ERR);
11145 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11146 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11147 define_netdev_printk_level(netdev_info, KERN_INFO);
11148 
netdev_exit(struct net * net)11149 static void __net_exit netdev_exit(struct net *net)
11150 {
11151 	kfree(net->dev_name_head);
11152 	kfree(net->dev_index_head);
11153 	if (net != &init_net)
11154 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11155 }
11156 
11157 static struct pernet_operations __net_initdata netdev_net_ops = {
11158 	.init = netdev_init,
11159 	.exit = netdev_exit,
11160 };
11161 
default_device_exit(struct net * net)11162 static void __net_exit default_device_exit(struct net *net)
11163 {
11164 	struct net_device *dev, *aux;
11165 	/*
11166 	 * Push all migratable network devices back to the
11167 	 * initial network namespace
11168 	 */
11169 	rtnl_lock();
11170 	for_each_netdev_safe(net, dev, aux) {
11171 		int err;
11172 		char fb_name[IFNAMSIZ];
11173 
11174 		/* Ignore unmoveable devices (i.e. loopback) */
11175 		if (dev->features & NETIF_F_NETNS_LOCAL)
11176 			continue;
11177 
11178 		/* Leave virtual devices for the generic cleanup */
11179 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11180 			continue;
11181 
11182 		/* Push remaining network devices to init_net */
11183 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11184 		if (__dev_get_by_name(&init_net, fb_name))
11185 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11186 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11187 		if (err) {
11188 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11189 				 __func__, dev->name, err);
11190 			BUG();
11191 		}
11192 	}
11193 	rtnl_unlock();
11194 }
11195 
rtnl_lock_unregistering(struct list_head * net_list)11196 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11197 {
11198 	/* Return with the rtnl_lock held when there are no network
11199 	 * devices unregistering in any network namespace in net_list.
11200 	 */
11201 	struct net *net;
11202 	bool unregistering;
11203 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11204 
11205 	add_wait_queue(&netdev_unregistering_wq, &wait);
11206 	for (;;) {
11207 		unregistering = false;
11208 		rtnl_lock();
11209 		list_for_each_entry(net, net_list, exit_list) {
11210 			if (net->dev_unreg_count > 0) {
11211 				unregistering = true;
11212 				break;
11213 			}
11214 		}
11215 		if (!unregistering)
11216 			break;
11217 		__rtnl_unlock();
11218 
11219 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11220 	}
11221 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11222 }
11223 
default_device_exit_batch(struct list_head * net_list)11224 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11225 {
11226 	/* At exit all network devices most be removed from a network
11227 	 * namespace.  Do this in the reverse order of registration.
11228 	 * Do this across as many network namespaces as possible to
11229 	 * improve batching efficiency.
11230 	 */
11231 	struct net_device *dev;
11232 	struct net *net;
11233 	LIST_HEAD(dev_kill_list);
11234 
11235 	/* To prevent network device cleanup code from dereferencing
11236 	 * loopback devices or network devices that have been freed
11237 	 * wait here for all pending unregistrations to complete,
11238 	 * before unregistring the loopback device and allowing the
11239 	 * network namespace be freed.
11240 	 *
11241 	 * The netdev todo list containing all network devices
11242 	 * unregistrations that happen in default_device_exit_batch
11243 	 * will run in the rtnl_unlock() at the end of
11244 	 * default_device_exit_batch.
11245 	 */
11246 	rtnl_lock_unregistering(net_list);
11247 	list_for_each_entry(net, net_list, exit_list) {
11248 		for_each_netdev_reverse(net, dev) {
11249 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11250 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11251 			else
11252 				unregister_netdevice_queue(dev, &dev_kill_list);
11253 		}
11254 	}
11255 	unregister_netdevice_many(&dev_kill_list);
11256 	rtnl_unlock();
11257 }
11258 
11259 static struct pernet_operations __net_initdata default_device_ops = {
11260 	.exit = default_device_exit,
11261 	.exit_batch = default_device_exit_batch,
11262 };
11263 
11264 /*
11265  *	Initialize the DEV module. At boot time this walks the device list and
11266  *	unhooks any devices that fail to initialise (normally hardware not
11267  *	present) and leaves us with a valid list of present and active devices.
11268  *
11269  */
11270 
11271 /*
11272  *       This is called single threaded during boot, so no need
11273  *       to take the rtnl semaphore.
11274  */
net_dev_init(void)11275 static int __init net_dev_init(void)
11276 {
11277 	int i, rc = -ENOMEM;
11278 
11279 	BUG_ON(!dev_boot_phase);
11280 
11281 	if (dev_proc_init())
11282 		goto out;
11283 
11284 	if (netdev_kobject_init())
11285 		goto out;
11286 
11287 	INIT_LIST_HEAD(&ptype_all);
11288 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11289 		INIT_LIST_HEAD(&ptype_base[i]);
11290 
11291 	INIT_LIST_HEAD(&offload_base);
11292 
11293 	if (register_pernet_subsys(&netdev_net_ops))
11294 		goto out;
11295 
11296 	/*
11297 	 *	Initialise the packet receive queues.
11298 	 */
11299 
11300 	for_each_possible_cpu(i) {
11301 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11302 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11303 
11304 		INIT_WORK(flush, flush_backlog);
11305 
11306 		skb_queue_head_init(&sd->input_pkt_queue);
11307 		skb_queue_head_init(&sd->process_queue);
11308 #ifdef CONFIG_XFRM_OFFLOAD
11309 		skb_queue_head_init(&sd->xfrm_backlog);
11310 #endif
11311 		INIT_LIST_HEAD(&sd->poll_list);
11312 		sd->output_queue_tailp = &sd->output_queue;
11313 #ifdef CONFIG_RPS
11314 		sd->csd.func = rps_trigger_softirq;
11315 		sd->csd.info = sd;
11316 		sd->cpu = i;
11317 #endif
11318 
11319 		init_gro_hash(&sd->backlog);
11320 		sd->backlog.poll = process_backlog;
11321 		sd->backlog.weight = weight_p;
11322 	}
11323 
11324 	dev_boot_phase = 0;
11325 
11326 	/* The loopback device is special if any other network devices
11327 	 * is present in a network namespace the loopback device must
11328 	 * be present. Since we now dynamically allocate and free the
11329 	 * loopback device ensure this invariant is maintained by
11330 	 * keeping the loopback device as the first device on the
11331 	 * list of network devices.  Ensuring the loopback devices
11332 	 * is the first device that appears and the last network device
11333 	 * that disappears.
11334 	 */
11335 	if (register_pernet_device(&loopback_net_ops))
11336 		goto out;
11337 
11338 	if (register_pernet_device(&default_device_ops))
11339 		goto out;
11340 
11341 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11342 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11343 
11344 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11345 				       NULL, dev_cpu_dead);
11346 	WARN_ON(rc < 0);
11347 	rc = 0;
11348 out:
11349 	return rc;
11350 }
11351 
11352 subsys_initcall(net_dev_init);
11353