• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007 VMware, Inc.
4  * All Rights Reserved.
5  * Copyright 2009 VMware, Inc.  All Rights Reserved.
6  * Copyright © 2010-2011 Intel Corporation
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  **************************************************************************/
29 
30 #include "main/glheader.h"
31 #include "main/context.h"
32 
33 #include "main/macros.h"
34 #include "main/samplerobj.h"
35 #include "main/shaderobj.h"
36 #include "main/state.h"
37 #include "main/texenvprogram.h"
38 #include "main/texobj.h"
39 #include "main/uniforms.h"
40 #include "compiler/glsl/ir_builder.h"
41 #include "compiler/glsl/ir_optimization.h"
42 #include "compiler/glsl/glsl_parser_extras.h"
43 #include "compiler/glsl/glsl_symbol_table.h"
44 #include "compiler/glsl_types.h"
45 #include "program/ir_to_mesa.h"
46 #include "program/program.h"
47 #include "program/programopt.h"
48 #include "program/prog_cache.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_parameter.h"
51 #include "program/prog_print.h"
52 #include "program/prog_statevars.h"
53 #include "util/bitscan.h"
54 
55 using namespace ir_builder;
56 
57 /*
58  * Note on texture units:
59  *
60  * The number of texture units supported by fixed-function fragment
61  * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
62  * That's because there's a one-to-one correspondence between texture
63  * coordinates and samplers in fixed-function processing.
64  *
65  * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
66  * sets of texcoords, so is fixed-function fragment processing.
67  *
68  * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
69  */
70 
71 
72 static GLboolean
texenv_doing_secondary_color(struct gl_context * ctx)73 texenv_doing_secondary_color(struct gl_context *ctx)
74 {
75    if (ctx->Light.Enabled &&
76        (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
77       return GL_TRUE;
78 
79    if (ctx->Fog.ColorSumEnabled)
80       return GL_TRUE;
81 
82    return GL_FALSE;
83 }
84 
85 struct state_key {
86    GLuint nr_enabled_units:4;
87    GLuint separate_specular:1;
88    GLuint fog_mode:2;          /**< FOG_x */
89    GLuint inputs_available:12;
90    GLuint num_draw_buffers:4;
91 
92    /* NOTE: This array of structs must be last! (see "keySize" below) */
93    struct {
94       GLuint enabled:1;
95       GLuint source_index:4;   /**< TEXTURE_x_INDEX */
96       GLuint shadow:1;
97 
98       /***
99        * These are taken from struct gl_tex_env_combine_packed
100        * @{
101        */
102       GLuint ModeRGB:4;
103       GLuint ModeA:4;
104       GLuint ScaleShiftRGB:2;
105       GLuint ScaleShiftA:2;
106       GLuint NumArgsRGB:3;
107       GLuint NumArgsA:3;
108       struct gl_tex_env_argument ArgsRGB[MAX_COMBINER_TERMS];
109       struct gl_tex_env_argument ArgsA[MAX_COMBINER_TERMS];
110       /** @} */
111    } unit[MAX_TEXTURE_COORD_UNITS];
112 };
113 
114 
115 /**
116  * Do we need to clamp the results of the given texture env/combine mode?
117  * If the inputs to the mode are in [0,1] we don't always have to clamp
118  * the results.
119  */
120 static GLboolean
need_saturate(GLuint mode)121 need_saturate( GLuint mode )
122 {
123    switch (mode) {
124    case TEXENV_MODE_REPLACE:
125    case TEXENV_MODE_MODULATE:
126    case TEXENV_MODE_INTERPOLATE:
127       return GL_FALSE;
128    case TEXENV_MODE_ADD:
129    case TEXENV_MODE_ADD_SIGNED:
130    case TEXENV_MODE_SUBTRACT:
131    case TEXENV_MODE_DOT3_RGB:
132    case TEXENV_MODE_DOT3_RGB_EXT:
133    case TEXENV_MODE_DOT3_RGBA:
134    case TEXENV_MODE_DOT3_RGBA_EXT:
135    case TEXENV_MODE_MODULATE_ADD_ATI:
136    case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
137    case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
138    case TEXENV_MODE_ADD_PRODUCTS_NV:
139    case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
140       return GL_TRUE;
141    default:
142       assert(0);
143       return GL_FALSE;
144    }
145 }
146 
147 #define VERT_BIT_TEX_ANY    (0xff << VERT_ATTRIB_TEX0)
148 
149 /**
150  * Identify all possible varying inputs.  The fragment program will
151  * never reference non-varying inputs, but will track them via state
152  * constants instead.
153  *
154  * This function figures out all the inputs that the fragment program
155  * has access to and filters input bitmask.
156  */
filter_fp_input_mask(GLbitfield fp_inputs,struct gl_context * ctx)157 static GLbitfield filter_fp_input_mask( GLbitfield fp_inputs,
158 		    struct gl_context *ctx )
159 {
160    if (ctx->VertexProgram._Overriden) {
161       /* Somebody's messing with the vertex program and we don't have
162        * a clue what's happening.  Assume that it could be producing
163        * all possible outputs.
164        */
165       return fp_inputs;
166    }
167 
168    if (ctx->RenderMode == GL_FEEDBACK) {
169       /* _NEW_RENDERMODE */
170       return fp_inputs & (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
171    }
172 
173    /* _NEW_PROGRAM */
174    const GLboolean vertexShader =
175          ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] != NULL;
176    const GLboolean vertexProgram = _mesa_arb_vertex_program_enabled(ctx);
177 
178    if (!(vertexProgram || vertexShader)) {
179       /* Fixed function vertex logic */
180       GLbitfield possible_inputs = 0;
181 
182       GLbitfield varying_inputs = ctx->VertexProgram._VaryingInputs;
183       /* We only update ctx->VertexProgram._VaryingInputs when in VP_MODE_FF _VPMode */
184       assert(VP_MODE_FF == ctx->VertexProgram._VPMode);
185 
186       /* These get generated in the setup routine regardless of the
187        * vertex program:
188        */
189       /* _NEW_POINT */
190       if (ctx->Point.PointSprite) {
191          /* All texture varyings are possible to use */
192          possible_inputs = VARYING_BITS_TEX_ANY;
193       }
194       else {
195          const GLbitfield possible_tex_inputs =
196                ctx->Texture._TexGenEnabled |
197                ctx->Texture._TexMatEnabled |
198                ((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0);
199 
200          possible_inputs = (possible_tex_inputs << VARYING_SLOT_TEX0);
201       }
202 
203       /* First look at what values may be computed by the generated
204        * vertex program:
205        */
206       if (ctx->Light.Enabled) {
207          possible_inputs |= VARYING_BIT_COL0;
208 
209          if (texenv_doing_secondary_color(ctx))
210             possible_inputs |= VARYING_BIT_COL1;
211       }
212 
213       /* Then look at what might be varying as a result of enabled
214        * arrays, etc:
215        */
216       if (varying_inputs & VERT_BIT_COLOR0)
217          possible_inputs |= VARYING_BIT_COL0;
218       if (varying_inputs & VERT_BIT_COLOR1)
219          possible_inputs |= VARYING_BIT_COL1;
220 
221       return fp_inputs & possible_inputs;
222    }
223 
224    /* calculate from vp->outputs */
225    struct gl_program *vprog;
226 
227    /* Choose GLSL vertex shader over ARB vertex program.  Need this
228     * since vertex shader state validation comes after fragment state
229     * validation (see additional comments in state.c).
230     */
231    if (ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY] != NULL)
232       vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY];
233    else if (ctx->_Shader->CurrentProgram[MESA_SHADER_TESS_EVAL] != NULL)
234       vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_TESS_EVAL];
235    else if (vertexShader)
236       vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX];
237    else
238       vprog = ctx->VertexProgram.Current;
239 
240    GLbitfield possible_inputs = vprog->info.outputs_written;
241 
242    /* These get generated in the setup routine regardless of the
243     * vertex program:
244     */
245    /* _NEW_POINT */
246    if (ctx->Point.PointSprite) {
247       /* All texture varyings are possible to use */
248       possible_inputs |= VARYING_BITS_TEX_ANY;
249    }
250 
251    return fp_inputs & possible_inputs;
252 }
253 
254 
255 /**
256  * Examine current texture environment state and generate a unique
257  * key to identify it.
258  */
make_state_key(struct gl_context * ctx,struct state_key * key)259 static GLuint make_state_key( struct gl_context *ctx,  struct state_key *key )
260 {
261    GLbitfield inputs_referenced = VARYING_BIT_COL0;
262    GLbitfield mask;
263    GLuint keySize;
264 
265    memset(key, 0, sizeof(*key));
266 
267    /* _NEW_TEXTURE_OBJECT | _NEW_TEXTURE_STATE */
268    mask = ctx->Texture._EnabledCoordUnits;
269    int i = -1;
270    while (mask) {
271       i = u_bit_scan(&mask);
272       const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
273       const struct gl_texture_object *texObj = texUnit->_Current;
274       const struct gl_tex_env_combine_packed *comb =
275          &ctx->Texture.FixedFuncUnit[i]._CurrentCombinePacked;
276 
277       if (!texObj)
278          continue;
279 
280       key->unit[i].enabled = 1;
281       inputs_referenced |= VARYING_BIT_TEX(i);
282 
283       key->unit[i].source_index = texObj->TargetIndex;
284 
285       const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, i);
286       if (samp->Attrib.CompareMode == GL_COMPARE_R_TO_TEXTURE) {
287          const GLenum format = _mesa_texture_base_format(texObj);
288          key->unit[i].shadow = (format == GL_DEPTH_COMPONENT ||
289 				format == GL_DEPTH_STENCIL_EXT);
290       }
291 
292       key->unit[i].ModeRGB = comb->ModeRGB;
293       key->unit[i].ModeA = comb->ModeA;
294       key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
295       key->unit[i].ScaleShiftA = comb->ScaleShiftA;
296       key->unit[i].NumArgsRGB = comb->NumArgsRGB;
297       key->unit[i].NumArgsA = comb->NumArgsA;
298 
299       memcpy(key->unit[i].ArgsRGB, comb->ArgsRGB, sizeof comb->ArgsRGB);
300       memcpy(key->unit[i].ArgsA, comb->ArgsA, sizeof comb->ArgsA);
301    }
302 
303    key->nr_enabled_units = i + 1;
304 
305    /* _NEW_FOG */
306    if (texenv_doing_secondary_color(ctx)) {
307       key->separate_specular = 1;
308       inputs_referenced |= VARYING_BIT_COL1;
309    }
310 
311    /* _NEW_FOG */
312    key->fog_mode = ctx->Fog._PackedEnabledMode;
313 
314    /* _NEW_BUFFERS */
315    key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
316 
317    /* _NEW_COLOR */
318    if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
319       /* if alpha test is enabled we need to emit at least one color */
320       key->num_draw_buffers = 1;
321    }
322 
323    key->inputs_available = filter_fp_input_mask(inputs_referenced, ctx);
324 
325    /* compute size of state key, ignoring unused texture units */
326    keySize = sizeof(*key) - sizeof(key->unit)
327       + key->nr_enabled_units * sizeof(key->unit[0]);
328 
329    return keySize;
330 }
331 
332 
333 /** State used to build the fragment program:
334  */
335 class texenv_fragment_program : public ir_factory {
336 public:
337    struct gl_shader_program *shader_program;
338    struct gl_shader *shader;
339    exec_list *top_instructions;
340    struct state_key *state;
341 
342    ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
343    /* Reg containing each texture unit's sampled texture color,
344     * else undef.
345     */
346 
347    ir_rvalue *src_previous;	/**< Reg containing color from previous
348 				 * stage.  May need to be decl'd.
349 				 */
350 };
351 
352 static ir_rvalue *
get_current_attrib(texenv_fragment_program * p,GLuint attrib)353 get_current_attrib(texenv_fragment_program *p, GLuint attrib)
354 {
355    ir_variable *current;
356    char name[128];
357 
358    snprintf(name, sizeof(name), "gl_CurrentAttribFrag%uMESA", attrib);
359 
360    current = p->shader->symbols->get_variable(name);
361    assert(current);
362    return new(p->mem_ctx) ir_dereference_variable(current);
363 }
364 
365 static ir_rvalue *
get_gl_Color(texenv_fragment_program * p)366 get_gl_Color(texenv_fragment_program *p)
367 {
368    if (p->state->inputs_available & VARYING_BIT_COL0) {
369       ir_variable *var = p->shader->symbols->get_variable("gl_Color");
370       assert(var);
371       return new(p->mem_ctx) ir_dereference_variable(var);
372    } else {
373       return get_current_attrib(p, VERT_ATTRIB_COLOR0);
374    }
375 }
376 
377 static ir_rvalue *
get_source(texenv_fragment_program * p,GLuint src,GLuint unit)378 get_source(texenv_fragment_program *p,
379 	   GLuint src, GLuint unit)
380 {
381    ir_variable *var;
382    ir_dereference *deref;
383 
384    switch (src) {
385    case TEXENV_SRC_TEXTURE:
386       return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
387 
388    case TEXENV_SRC_TEXTURE0:
389    case TEXENV_SRC_TEXTURE1:
390    case TEXENV_SRC_TEXTURE2:
391    case TEXENV_SRC_TEXTURE3:
392    case TEXENV_SRC_TEXTURE4:
393    case TEXENV_SRC_TEXTURE5:
394    case TEXENV_SRC_TEXTURE6:
395    case TEXENV_SRC_TEXTURE7:
396       return new(p->mem_ctx)
397 	 ir_dereference_variable(p->src_texture[src - TEXENV_SRC_TEXTURE0]);
398 
399    case TEXENV_SRC_CONSTANT:
400       var = p->shader->symbols->get_variable("gl_TextureEnvColor");
401       assert(var);
402       deref = new(p->mem_ctx) ir_dereference_variable(var);
403       var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit);
404       return new(p->mem_ctx) ir_dereference_array(deref,
405 						  new(p->mem_ctx) ir_constant(unit));
406 
407    case TEXENV_SRC_PRIMARY_COLOR:
408       var = p->shader->symbols->get_variable("gl_Color");
409       assert(var);
410       return new(p->mem_ctx) ir_dereference_variable(var);
411 
412    case TEXENV_SRC_ZERO:
413       return new(p->mem_ctx) ir_constant(0.0f);
414 
415    case TEXENV_SRC_ONE:
416       return new(p->mem_ctx) ir_constant(1.0f);
417 
418    case TEXENV_SRC_PREVIOUS:
419       if (!p->src_previous) {
420 	 return get_gl_Color(p);
421       } else {
422 	 return p->src_previous->clone(p->mem_ctx, NULL);
423       }
424 
425    default:
426       assert(0);
427       return NULL;
428    }
429 }
430 
431 static ir_rvalue *
emit_combine_source(texenv_fragment_program * p,GLuint unit,GLuint source,GLuint operand)432 emit_combine_source(texenv_fragment_program *p,
433 		    GLuint unit,
434 		    GLuint source,
435 		    GLuint operand)
436 {
437    ir_rvalue *src;
438 
439    src = get_source(p, source, unit);
440 
441    switch (operand) {
442    case TEXENV_OPR_ONE_MINUS_COLOR:
443       return sub(new(p->mem_ctx) ir_constant(1.0f), src);
444 
445    case TEXENV_OPR_ALPHA:
446       return src->type->is_scalar() ? src : swizzle_w(src);
447 
448    case TEXENV_OPR_ONE_MINUS_ALPHA: {
449       ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
450 
451       return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
452    }
453 
454    case TEXENV_OPR_COLOR:
455       return src;
456 
457    default:
458       assert(0);
459       return src;
460    }
461 }
462 
463 /**
464  * Check if the RGB and Alpha sources and operands match for the given
465  * texture unit's combinder state.  When the RGB and A sources and
466  * operands match, we can emit fewer instructions.
467  */
args_match(const struct state_key * key,GLuint unit)468 static GLboolean args_match( const struct state_key *key, GLuint unit )
469 {
470    GLuint i, numArgs = key->unit[unit].NumArgsRGB;
471 
472    for (i = 0; i < numArgs; i++) {
473       if (key->unit[unit].ArgsA[i].Source != key->unit[unit].ArgsRGB[i].Source)
474 	 return GL_FALSE;
475 
476       switch (key->unit[unit].ArgsA[i].Operand) {
477       case TEXENV_OPR_ALPHA:
478 	 switch (key->unit[unit].ArgsRGB[i].Operand) {
479 	 case TEXENV_OPR_COLOR:
480 	 case TEXENV_OPR_ALPHA:
481 	    break;
482 	 default:
483 	    return GL_FALSE;
484 	 }
485 	 break;
486       case TEXENV_OPR_ONE_MINUS_ALPHA:
487 	 switch (key->unit[unit].ArgsRGB[i].Operand) {
488 	 case TEXENV_OPR_ONE_MINUS_COLOR:
489 	 case TEXENV_OPR_ONE_MINUS_ALPHA:
490 	    break;
491 	 default:
492 	    return GL_FALSE;
493 	 }
494 	 break;
495       default:
496 	 return GL_FALSE;	/* impossible */
497       }
498    }
499 
500    return GL_TRUE;
501 }
502 
503 static ir_rvalue *
smear(ir_rvalue * val)504 smear(ir_rvalue *val)
505 {
506    if (!val->type->is_scalar())
507       return val;
508 
509    return swizzle_xxxx(val);
510 }
511 
512 static ir_rvalue *
emit_combine(texenv_fragment_program * p,GLuint unit,GLuint nr,GLuint mode,const struct gl_tex_env_argument * opt)513 emit_combine(texenv_fragment_program *p,
514 	     GLuint unit,
515 	     GLuint nr,
516 	     GLuint mode,
517 	     const struct gl_tex_env_argument *opt)
518 {
519    ir_rvalue *src[MAX_COMBINER_TERMS];
520    ir_rvalue *tmp0, *tmp1;
521    GLuint i;
522 
523    assert(nr <= MAX_COMBINER_TERMS);
524 
525    for (i = 0; i < nr; i++)
526       src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
527 
528    switch (mode) {
529    case TEXENV_MODE_REPLACE:
530       return src[0];
531 
532    case TEXENV_MODE_MODULATE:
533       return mul(src[0], src[1]);
534 
535    case TEXENV_MODE_ADD:
536       return add(src[0], src[1]);
537 
538    case TEXENV_MODE_ADD_SIGNED:
539       return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
540 
541    case TEXENV_MODE_INTERPOLATE:
542       /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
543       tmp0 = mul(src[0], src[2]);
544       tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
545 			     src[2]->clone(p->mem_ctx, NULL)));
546       return add(tmp0, tmp1);
547 
548    case TEXENV_MODE_SUBTRACT:
549       return sub(src[0], src[1]);
550 
551    case TEXENV_MODE_DOT3_RGBA:
552    case TEXENV_MODE_DOT3_RGBA_EXT:
553    case TEXENV_MODE_DOT3_RGB_EXT:
554    case TEXENV_MODE_DOT3_RGB: {
555       tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
556       tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
557 
558       tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
559       tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
560 
561       return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
562    }
563    case TEXENV_MODE_MODULATE_ADD_ATI:
564       return add(mul(src[0], src[2]), src[1]);
565 
566    case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
567       return add(add(mul(src[0], src[2]), src[1]),
568 		 new(p->mem_ctx) ir_constant(-0.5f));
569 
570    case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
571       return sub(mul(src[0], src[2]), src[1]);
572 
573    case TEXENV_MODE_ADD_PRODUCTS_NV:
574       return add(mul(src[0], src[1]), mul(src[2], src[3]));
575 
576    case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
577       return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
578 		 new(p->mem_ctx) ir_constant(-0.5f));
579    default:
580       assert(0);
581       return src[0];
582    }
583 }
584 
585 /**
586  * Generate instructions for one texture unit's env/combiner mode.
587  */
588 static ir_rvalue *
emit_texenv(texenv_fragment_program * p,GLuint unit)589 emit_texenv(texenv_fragment_program *p, GLuint unit)
590 {
591    const struct state_key *key = p->state;
592    GLboolean rgb_saturate, alpha_saturate;
593    GLuint rgb_shift, alpha_shift;
594 
595    if (!key->unit[unit].enabled) {
596       return get_source(p, TEXENV_SRC_PREVIOUS, 0);
597    }
598 
599    switch (key->unit[unit].ModeRGB) {
600    case TEXENV_MODE_DOT3_RGB_EXT:
601       alpha_shift = key->unit[unit].ScaleShiftA;
602       rgb_shift = 0;
603       break;
604    case TEXENV_MODE_DOT3_RGBA_EXT:
605       alpha_shift = 0;
606       rgb_shift = 0;
607       break;
608    default:
609       rgb_shift = key->unit[unit].ScaleShiftRGB;
610       alpha_shift = key->unit[unit].ScaleShiftA;
611       break;
612    }
613 
614    /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
615     * We don't want to clamp twice.
616     */
617    if (rgb_shift)
618       rgb_saturate = GL_FALSE;  /* saturate after rgb shift */
619    else if (need_saturate(key->unit[unit].ModeRGB))
620       rgb_saturate = GL_TRUE;
621    else
622       rgb_saturate = GL_FALSE;
623 
624    if (alpha_shift)
625       alpha_saturate = GL_FALSE;  /* saturate after alpha shift */
626    else if (need_saturate(key->unit[unit].ModeA))
627       alpha_saturate = GL_TRUE;
628    else
629       alpha_saturate = GL_FALSE;
630 
631    ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
632    ir_dereference *deref;
633    ir_rvalue *val;
634 
635    /* Emit the RGB and A combine ops
636     */
637    if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
638        args_match(key, unit)) {
639       val = emit_combine(p, unit,
640 			 key->unit[unit].NumArgsRGB,
641 			 key->unit[unit].ModeRGB,
642 			 key->unit[unit].ArgsRGB);
643       val = smear(val);
644       if (rgb_saturate)
645 	 val = saturate(val);
646 
647       p->emit(assign(temp_var, val));
648    }
649    else if (key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA_EXT ||
650 	    key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA) {
651       ir_rvalue *val = emit_combine(p, unit,
652 				    key->unit[unit].NumArgsRGB,
653 				    key->unit[unit].ModeRGB,
654 				    key->unit[unit].ArgsRGB);
655       val = smear(val);
656       if (rgb_saturate)
657 	 val = saturate(val);
658       p->emit(assign(temp_var, val));
659    }
660    else {
661       /* Need to do something to stop from re-emitting identical
662        * argument calculations here:
663        */
664       val = emit_combine(p, unit,
665 			 key->unit[unit].NumArgsRGB,
666 			 key->unit[unit].ModeRGB,
667 			 key->unit[unit].ArgsRGB);
668       val = swizzle_xyz(smear(val));
669       if (rgb_saturate)
670 	 val = saturate(val);
671       p->emit(assign(temp_var, val, WRITEMASK_XYZ));
672 
673       val = emit_combine(p, unit,
674 			 key->unit[unit].NumArgsA,
675 			 key->unit[unit].ModeA,
676 			 key->unit[unit].ArgsA);
677       val = swizzle_w(smear(val));
678       if (alpha_saturate)
679 	 val = saturate(val);
680       p->emit(assign(temp_var, val, WRITEMASK_W));
681    }
682 
683    deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
684 
685    /* Deal with the final shift:
686     */
687    if (alpha_shift || rgb_shift) {
688       ir_constant *shift;
689 
690       if (rgb_shift == alpha_shift) {
691 	 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
692       }
693       else {
694          ir_constant_data const_data;
695 
696          const_data.f[0] = float(1 << rgb_shift);
697          const_data.f[1] = float(1 << rgb_shift);
698          const_data.f[2] = float(1 << rgb_shift);
699          const_data.f[3] = float(1 << alpha_shift);
700 
701          shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
702                                              &const_data);
703       }
704 
705       return saturate(mul(deref, shift));
706    }
707    else
708       return deref;
709 }
710 
711 
712 /**
713  * Generate instruction for getting a texture source term.
714  */
load_texture(texenv_fragment_program * p,GLuint unit)715 static void load_texture( texenv_fragment_program *p, GLuint unit )
716 {
717    ir_dereference *deref;
718 
719    if (p->src_texture[unit])
720       return;
721 
722    const GLuint texTarget = p->state->unit[unit].source_index;
723    ir_rvalue *texcoord;
724 
725    if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
726       texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
727    } else {
728       ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
729       assert(tc_array);
730       texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
731       ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
732       texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
733       tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit);
734    }
735 
736    if (!p->state->unit[unit].enabled) {
737       p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
738 					  "dummy_tex");
739       p->emit(p->src_texture[unit]);
740 
741       p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
742       return ;
743    }
744 
745    const glsl_type *sampler_type = NULL;
746    int coords = 0;
747 
748    switch (texTarget) {
749    case TEXTURE_1D_INDEX:
750       if (p->state->unit[unit].shadow)
751 	 sampler_type = glsl_type::sampler1DShadow_type;
752       else
753 	 sampler_type = glsl_type::sampler1D_type;
754       coords = 1;
755       break;
756    case TEXTURE_1D_ARRAY_INDEX:
757       if (p->state->unit[unit].shadow)
758 	 sampler_type = glsl_type::sampler1DArrayShadow_type;
759       else
760 	 sampler_type = glsl_type::sampler1DArray_type;
761       coords = 2;
762       break;
763    case TEXTURE_2D_INDEX:
764       if (p->state->unit[unit].shadow)
765 	 sampler_type = glsl_type::sampler2DShadow_type;
766       else
767 	 sampler_type = glsl_type::sampler2D_type;
768       coords = 2;
769       break;
770    case TEXTURE_2D_ARRAY_INDEX:
771       if (p->state->unit[unit].shadow)
772 	 sampler_type = glsl_type::sampler2DArrayShadow_type;
773       else
774 	 sampler_type = glsl_type::sampler2DArray_type;
775       coords = 3;
776       break;
777    case TEXTURE_RECT_INDEX:
778       if (p->state->unit[unit].shadow)
779 	 sampler_type = glsl_type::sampler2DRectShadow_type;
780       else
781 	 sampler_type = glsl_type::sampler2DRect_type;
782       coords = 2;
783       break;
784    case TEXTURE_3D_INDEX:
785       assert(!p->state->unit[unit].shadow);
786       sampler_type = glsl_type::sampler3D_type;
787       coords = 3;
788       break;
789    case TEXTURE_CUBE_INDEX:
790       if (p->state->unit[unit].shadow)
791 	 sampler_type = glsl_type::samplerCubeShadow_type;
792       else
793 	 sampler_type = glsl_type::samplerCube_type;
794       coords = 3;
795       break;
796    case TEXTURE_EXTERNAL_INDEX:
797       assert(!p->state->unit[unit].shadow);
798       sampler_type = glsl_type::samplerExternalOES_type;
799       coords = 2;
800       break;
801    }
802 
803    p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
804 				       "tex");
805 
806    ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
807 
808 
809    char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
810    ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
811 						      sampler_name,
812 						      ir_var_uniform);
813    p->top_instructions->push_head(sampler);
814 
815    /* Set the texture unit for this sampler in the same way that
816     * layout(binding=X) would.
817     */
818    sampler->data.explicit_binding = true;
819    sampler->data.binding = unit;
820 
821    deref = new(p->mem_ctx) ir_dereference_variable(sampler);
822    tex->set_sampler(deref, glsl_type::vec4_type);
823 
824    tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
825 
826    if (p->state->unit[unit].shadow) {
827       texcoord = texcoord->clone(p->mem_ctx, NULL);
828       tex->shadow_comparator = new(p->mem_ctx) ir_swizzle(texcoord,
829 							  coords, 0, 0, 0,
830 							  1);
831       coords++;
832    }
833 
834    texcoord = texcoord->clone(p->mem_ctx, NULL);
835    tex->projector = swizzle_w(texcoord);
836 
837    p->emit(assign(p->src_texture[unit], tex));
838 }
839 
840 static void
load_texenv_source(texenv_fragment_program * p,GLuint src,GLuint unit)841 load_texenv_source(texenv_fragment_program *p,
842 		   GLuint src, GLuint unit)
843 {
844    switch (src) {
845    case TEXENV_SRC_TEXTURE:
846       load_texture(p, unit);
847       break;
848 
849    case TEXENV_SRC_TEXTURE0:
850    case TEXENV_SRC_TEXTURE1:
851    case TEXENV_SRC_TEXTURE2:
852    case TEXENV_SRC_TEXTURE3:
853    case TEXENV_SRC_TEXTURE4:
854    case TEXENV_SRC_TEXTURE5:
855    case TEXENV_SRC_TEXTURE6:
856    case TEXENV_SRC_TEXTURE7:
857       load_texture(p, src - TEXENV_SRC_TEXTURE0);
858       break;
859 
860    default:
861       /* not a texture src - do nothing */
862       break;
863    }
864 }
865 
866 
867 /**
868  * Generate instructions for loading all texture source terms.
869  */
870 static GLboolean
load_texunit_sources(texenv_fragment_program * p,GLuint unit)871 load_texunit_sources( texenv_fragment_program *p, GLuint unit )
872 {
873    const struct state_key *key = p->state;
874    GLuint i;
875 
876    for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
877       load_texenv_source( p, key->unit[unit].ArgsRGB[i].Source, unit );
878    }
879 
880    for (i = 0; i < key->unit[unit].NumArgsA; i++) {
881       load_texenv_source( p, key->unit[unit].ArgsA[i].Source, unit );
882    }
883 
884    return GL_TRUE;
885 }
886 
887 /**
888  * Applies the fog calculations.
889  *
890  * This is basically like the ARB_fragment_prorgam fog options.  Note
891  * that ffvertex_prog.c produces fogcoord for us when
892  * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
893  */
894 static ir_rvalue *
emit_fog_instructions(texenv_fragment_program * p,ir_rvalue * fragcolor)895 emit_fog_instructions(texenv_fragment_program *p,
896 		      ir_rvalue *fragcolor)
897 {
898    struct state_key *key = p->state;
899    ir_rvalue *f, *temp;
900    ir_variable *params, *oparams;
901    ir_variable *fogcoord;
902 
903    /* Temporary storage for the whole fog result.  Fog calculations
904     * only affect rgb so we're hanging on to the .a value of fragcolor
905     * this way.
906     */
907    ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
908    p->emit(assign(fog_result, fragcolor));
909 
910    fragcolor = swizzle_xyz(fog_result);
911 
912    oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
913    assert(oparams);
914    fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
915    assert(fogcoord);
916    params = p->shader->symbols->get_variable("gl_Fog");
917    assert(params);
918    f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
919 
920    ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
921 
922    switch (key->fog_mode) {
923    case FOG_LINEAR:
924       /* f = (end - z) / (end - start)
925        *
926        * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
927        * (end / (end - start)) so we can generate a single MAD.
928        */
929       f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
930       break;
931    case FOG_EXP:
932       /* f = e^(-(density * fogcoord))
933        *
934        * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
935        * use EXP2 which is generally the native instruction without
936        * having to do any further math on the fog density uniform.
937        */
938       f = mul(f, swizzle_z(oparams));
939       f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
940       f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
941       break;
942    case FOG_EXP2:
943       /* f = e^(-(density * fogcoord)^2)
944        *
945        * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
946        * can do this like FOG_EXP but with a squaring after the
947        * multiply by density.
948        */
949       ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
950       p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
951 
952       f = mul(temp_var, temp_var);
953       f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
954       f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
955       break;
956    }
957 
958    p->emit(assign(f_var, saturate(f)));
959 
960    f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
961    temp = new(p->mem_ctx) ir_dereference_variable(params);
962    temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
963    temp = mul(swizzle_xyz(temp), f);
964 
965    p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
966 
967    return new(p->mem_ctx) ir_dereference_variable(fog_result);
968 }
969 
970 static void
emit_instructions(texenv_fragment_program * p)971 emit_instructions(texenv_fragment_program *p)
972 {
973    struct state_key *key = p->state;
974    GLuint unit;
975 
976    if (key->nr_enabled_units) {
977       /* First pass - to support texture_env_crossbar, first identify
978        * all referenced texture sources and emit texld instructions
979        * for each:
980        */
981       for (unit = 0; unit < key->nr_enabled_units; unit++)
982 	 if (key->unit[unit].enabled) {
983 	    load_texunit_sources(p, unit);
984 	 }
985 
986       /* Second pass - emit combine instructions to build final color:
987        */
988       for (unit = 0; unit < key->nr_enabled_units; unit++) {
989 	 if (key->unit[unit].enabled) {
990 	    p->src_previous = emit_texenv(p, unit);
991 	 }
992       }
993    }
994 
995    ir_rvalue *cf = get_source(p, TEXENV_SRC_PREVIOUS, 0);
996 
997    if (key->separate_specular) {
998       ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
999 					      "specular_add");
1000       p->emit(assign(spec_result, cf));
1001 
1002       ir_rvalue *secondary;
1003       if (p->state->inputs_available & VARYING_BIT_COL1) {
1004 	 ir_variable *var =
1005 	    p->shader->symbols->get_variable("gl_SecondaryColor");
1006 	 assert(var);
1007 	 secondary = swizzle_xyz(var);
1008       } else {
1009 	 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1010       }
1011 
1012       p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1013 		     WRITEMASK_XYZ));
1014 
1015       cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1016    }
1017 
1018    if (key->fog_mode) {
1019       cf = emit_fog_instructions(p, cf);
1020    }
1021 
1022    ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1023    assert(frag_color);
1024    p->emit(assign(frag_color, cf));
1025 }
1026 
1027 /**
1028  * Generate a new fragment program which implements the context's
1029  * current texture env/combine mode.
1030  */
1031 static struct gl_shader_program *
create_new_program(struct gl_context * ctx,struct state_key * key)1032 create_new_program(struct gl_context *ctx, struct state_key *key)
1033 {
1034    texenv_fragment_program p;
1035    unsigned int unit;
1036    _mesa_glsl_parse_state *state;
1037 
1038    p.mem_ctx = ralloc_context(NULL);
1039    p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT);
1040 #ifdef DEBUG
1041    p.shader->SourceChecksum = 0xf18ed; /* fixed */
1042 #endif
1043    p.shader->ir = new(p.shader) exec_list;
1044    state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
1045 						p.shader);
1046    p.shader->symbols = state->symbols;
1047    p.top_instructions = p.shader->ir;
1048    p.instructions = p.shader->ir;
1049    p.state = key;
1050    p.shader_program = _mesa_new_shader_program(0);
1051 
1052    /* Tell the linker to ignore the fact that we're building a
1053     * separate shader, in case we're in a GLES2 context that would
1054     * normally reject that.  The real problem is that we're building a
1055     * fixed function program in a GLES2 context at all, but that's a
1056     * big mess to clean up.
1057     */
1058    p.shader_program->SeparateShader = GL_TRUE;
1059 
1060    /* The legacy GLSL shadow functions follow the depth texture
1061     * mode and return vec4. The GLSL 1.30 shadow functions return float and
1062     * ignore the depth texture mode. That's a shader and state dependency
1063     * that's difficult to deal with. st/mesa uses a simple but not
1064     * completely correct solution: if the shader declares GLSL >= 1.30 and
1065     * the depth texture mode is GL_ALPHA (000X), it sets the XXXX swizzle
1066     * instead. Thus, the GLSL 1.30 shadow function will get the result in .x
1067     * and legacy shadow functions will get it in .w as expected.
1068     * For the fixed-function fragment shader, use 120 to get correct behavior
1069     * for GL_ALPHA.
1070     */
1071    state->language_version = 120;
1072 
1073    state->es_shader = false;
1074    if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
1075       state->OES_EGL_image_external_enable = true;
1076    _mesa_glsl_initialize_types(state);
1077    _mesa_glsl_initialize_variables(p.instructions, state);
1078 
1079    for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++)
1080       p.src_texture[unit] = NULL;
1081 
1082    p.src_previous = NULL;
1083 
1084    ir_function *main_f = new(p.mem_ctx) ir_function("main");
1085    p.emit(main_f);
1086    state->symbols->add_function(main_f);
1087 
1088    ir_function_signature *main_sig =
1089       new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
1090    main_sig->is_defined = true;
1091    main_f->add_signature(main_sig);
1092 
1093    p.instructions = &main_sig->body;
1094    if (key->num_draw_buffers)
1095       emit_instructions(&p);
1096 
1097    validate_ir_tree(p.shader->ir);
1098 
1099    const struct gl_shader_compiler_options *options =
1100       &ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
1101 
1102    /* Conservative approach: Don't optimize here, the linker does it too. */
1103    if (!ctx->Const.GLSLOptimizeConservatively) {
1104       while (do_common_optimization(p.shader->ir, false, false, options,
1105                                     ctx->Const.NativeIntegers))
1106          ;
1107    }
1108 
1109    reparent_ir(p.shader->ir, p.shader->ir);
1110 
1111    p.shader->CompileStatus = COMPILE_SUCCESS;
1112    p.shader->Version = state->language_version;
1113    p.shader_program->Shaders =
1114       (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1115    p.shader_program->Shaders[0] = p.shader;
1116    p.shader_program->NumShaders = 1;
1117 
1118    _mesa_glsl_link_shader(ctx, p.shader_program);
1119 
1120    if (!p.shader_program->data->LinkStatus)
1121       _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1122                     p.shader_program->data->InfoLog);
1123 
1124    ralloc_free(p.mem_ctx);
1125    return p.shader_program;
1126 }
1127 
1128 extern "C" {
1129 
1130 /**
1131  * Return a fragment program which implements the current
1132  * fixed-function texture, fog and color-sum operations.
1133  */
1134 struct gl_shader_program *
_mesa_get_fixed_func_fragment_program(struct gl_context * ctx)1135 _mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1136 {
1137    struct gl_shader_program *shader_program;
1138    struct state_key key;
1139    GLuint keySize;
1140 
1141    keySize = make_state_key(ctx, &key);
1142 
1143    shader_program = (struct gl_shader_program *)
1144       _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1145                                  &key, keySize);
1146 
1147    if (!shader_program) {
1148       shader_program = create_new_program(ctx, &key);
1149 
1150       _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1151 				&key, keySize, shader_program);
1152    }
1153 
1154    return shader_program;
1155 }
1156 
1157 }
1158