1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30 #include "main/glheader.h"
31 #include "main/context.h"
32
33 #include "main/macros.h"
34 #include "main/samplerobj.h"
35 #include "main/shaderobj.h"
36 #include "main/state.h"
37 #include "main/texenvprogram.h"
38 #include "main/texobj.h"
39 #include "main/uniforms.h"
40 #include "compiler/glsl/ir_builder.h"
41 #include "compiler/glsl/ir_optimization.h"
42 #include "compiler/glsl/glsl_parser_extras.h"
43 #include "compiler/glsl/glsl_symbol_table.h"
44 #include "compiler/glsl_types.h"
45 #include "program/ir_to_mesa.h"
46 #include "program/program.h"
47 #include "program/programopt.h"
48 #include "program/prog_cache.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_parameter.h"
51 #include "program/prog_print.h"
52 #include "program/prog_statevars.h"
53 #include "util/bitscan.h"
54
55 using namespace ir_builder;
56
57 /*
58 * Note on texture units:
59 *
60 * The number of texture units supported by fixed-function fragment
61 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
62 * That's because there's a one-to-one correspondence between texture
63 * coordinates and samplers in fixed-function processing.
64 *
65 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
66 * sets of texcoords, so is fixed-function fragment processing.
67 *
68 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
69 */
70
71
72 static GLboolean
texenv_doing_secondary_color(struct gl_context * ctx)73 texenv_doing_secondary_color(struct gl_context *ctx)
74 {
75 if (ctx->Light.Enabled &&
76 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
77 return GL_TRUE;
78
79 if (ctx->Fog.ColorSumEnabled)
80 return GL_TRUE;
81
82 return GL_FALSE;
83 }
84
85 struct state_key {
86 GLuint nr_enabled_units:4;
87 GLuint separate_specular:1;
88 GLuint fog_mode:2; /**< FOG_x */
89 GLuint inputs_available:12;
90 GLuint num_draw_buffers:4;
91
92 /* NOTE: This array of structs must be last! (see "keySize" below) */
93 struct {
94 GLuint enabled:1;
95 GLuint source_index:4; /**< TEXTURE_x_INDEX */
96 GLuint shadow:1;
97
98 /***
99 * These are taken from struct gl_tex_env_combine_packed
100 * @{
101 */
102 GLuint ModeRGB:4;
103 GLuint ModeA:4;
104 GLuint ScaleShiftRGB:2;
105 GLuint ScaleShiftA:2;
106 GLuint NumArgsRGB:3;
107 GLuint NumArgsA:3;
108 struct gl_tex_env_argument ArgsRGB[MAX_COMBINER_TERMS];
109 struct gl_tex_env_argument ArgsA[MAX_COMBINER_TERMS];
110 /** @} */
111 } unit[MAX_TEXTURE_COORD_UNITS];
112 };
113
114
115 /**
116 * Do we need to clamp the results of the given texture env/combine mode?
117 * If the inputs to the mode are in [0,1] we don't always have to clamp
118 * the results.
119 */
120 static GLboolean
need_saturate(GLuint mode)121 need_saturate( GLuint mode )
122 {
123 switch (mode) {
124 case TEXENV_MODE_REPLACE:
125 case TEXENV_MODE_MODULATE:
126 case TEXENV_MODE_INTERPOLATE:
127 return GL_FALSE;
128 case TEXENV_MODE_ADD:
129 case TEXENV_MODE_ADD_SIGNED:
130 case TEXENV_MODE_SUBTRACT:
131 case TEXENV_MODE_DOT3_RGB:
132 case TEXENV_MODE_DOT3_RGB_EXT:
133 case TEXENV_MODE_DOT3_RGBA:
134 case TEXENV_MODE_DOT3_RGBA_EXT:
135 case TEXENV_MODE_MODULATE_ADD_ATI:
136 case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
137 case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
138 case TEXENV_MODE_ADD_PRODUCTS_NV:
139 case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
140 return GL_TRUE;
141 default:
142 assert(0);
143 return GL_FALSE;
144 }
145 }
146
147 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
148
149 /**
150 * Identify all possible varying inputs. The fragment program will
151 * never reference non-varying inputs, but will track them via state
152 * constants instead.
153 *
154 * This function figures out all the inputs that the fragment program
155 * has access to and filters input bitmask.
156 */
filter_fp_input_mask(GLbitfield fp_inputs,struct gl_context * ctx)157 static GLbitfield filter_fp_input_mask( GLbitfield fp_inputs,
158 struct gl_context *ctx )
159 {
160 if (ctx->VertexProgram._Overriden) {
161 /* Somebody's messing with the vertex program and we don't have
162 * a clue what's happening. Assume that it could be producing
163 * all possible outputs.
164 */
165 return fp_inputs;
166 }
167
168 if (ctx->RenderMode == GL_FEEDBACK) {
169 /* _NEW_RENDERMODE */
170 return fp_inputs & (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
171 }
172
173 /* _NEW_PROGRAM */
174 const GLboolean vertexShader =
175 ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] != NULL;
176 const GLboolean vertexProgram = _mesa_arb_vertex_program_enabled(ctx);
177
178 if (!(vertexProgram || vertexShader)) {
179 /* Fixed function vertex logic */
180 GLbitfield possible_inputs = 0;
181
182 GLbitfield varying_inputs = ctx->VertexProgram._VaryingInputs;
183 /* We only update ctx->VertexProgram._VaryingInputs when in VP_MODE_FF _VPMode */
184 assert(VP_MODE_FF == ctx->VertexProgram._VPMode);
185
186 /* These get generated in the setup routine regardless of the
187 * vertex program:
188 */
189 /* _NEW_POINT */
190 if (ctx->Point.PointSprite) {
191 /* All texture varyings are possible to use */
192 possible_inputs = VARYING_BITS_TEX_ANY;
193 }
194 else {
195 const GLbitfield possible_tex_inputs =
196 ctx->Texture._TexGenEnabled |
197 ctx->Texture._TexMatEnabled |
198 ((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0);
199
200 possible_inputs = (possible_tex_inputs << VARYING_SLOT_TEX0);
201 }
202
203 /* First look at what values may be computed by the generated
204 * vertex program:
205 */
206 if (ctx->Light.Enabled) {
207 possible_inputs |= VARYING_BIT_COL0;
208
209 if (texenv_doing_secondary_color(ctx))
210 possible_inputs |= VARYING_BIT_COL1;
211 }
212
213 /* Then look at what might be varying as a result of enabled
214 * arrays, etc:
215 */
216 if (varying_inputs & VERT_BIT_COLOR0)
217 possible_inputs |= VARYING_BIT_COL0;
218 if (varying_inputs & VERT_BIT_COLOR1)
219 possible_inputs |= VARYING_BIT_COL1;
220
221 return fp_inputs & possible_inputs;
222 }
223
224 /* calculate from vp->outputs */
225 struct gl_program *vprog;
226
227 /* Choose GLSL vertex shader over ARB vertex program. Need this
228 * since vertex shader state validation comes after fragment state
229 * validation (see additional comments in state.c).
230 */
231 if (ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY] != NULL)
232 vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY];
233 else if (ctx->_Shader->CurrentProgram[MESA_SHADER_TESS_EVAL] != NULL)
234 vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_TESS_EVAL];
235 else if (vertexShader)
236 vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX];
237 else
238 vprog = ctx->VertexProgram.Current;
239
240 GLbitfield possible_inputs = vprog->info.outputs_written;
241
242 /* These get generated in the setup routine regardless of the
243 * vertex program:
244 */
245 /* _NEW_POINT */
246 if (ctx->Point.PointSprite) {
247 /* All texture varyings are possible to use */
248 possible_inputs |= VARYING_BITS_TEX_ANY;
249 }
250
251 return fp_inputs & possible_inputs;
252 }
253
254
255 /**
256 * Examine current texture environment state and generate a unique
257 * key to identify it.
258 */
make_state_key(struct gl_context * ctx,struct state_key * key)259 static GLuint make_state_key( struct gl_context *ctx, struct state_key *key )
260 {
261 GLbitfield inputs_referenced = VARYING_BIT_COL0;
262 GLbitfield mask;
263 GLuint keySize;
264
265 memset(key, 0, sizeof(*key));
266
267 /* _NEW_TEXTURE_OBJECT | _NEW_TEXTURE_STATE */
268 mask = ctx->Texture._EnabledCoordUnits;
269 int i = -1;
270 while (mask) {
271 i = u_bit_scan(&mask);
272 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
273 const struct gl_texture_object *texObj = texUnit->_Current;
274 const struct gl_tex_env_combine_packed *comb =
275 &ctx->Texture.FixedFuncUnit[i]._CurrentCombinePacked;
276
277 if (!texObj)
278 continue;
279
280 key->unit[i].enabled = 1;
281 inputs_referenced |= VARYING_BIT_TEX(i);
282
283 key->unit[i].source_index = texObj->TargetIndex;
284
285 const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, i);
286 if (samp->Attrib.CompareMode == GL_COMPARE_R_TO_TEXTURE) {
287 const GLenum format = _mesa_texture_base_format(texObj);
288 key->unit[i].shadow = (format == GL_DEPTH_COMPONENT ||
289 format == GL_DEPTH_STENCIL_EXT);
290 }
291
292 key->unit[i].ModeRGB = comb->ModeRGB;
293 key->unit[i].ModeA = comb->ModeA;
294 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
295 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
296 key->unit[i].NumArgsRGB = comb->NumArgsRGB;
297 key->unit[i].NumArgsA = comb->NumArgsA;
298
299 memcpy(key->unit[i].ArgsRGB, comb->ArgsRGB, sizeof comb->ArgsRGB);
300 memcpy(key->unit[i].ArgsA, comb->ArgsA, sizeof comb->ArgsA);
301 }
302
303 key->nr_enabled_units = i + 1;
304
305 /* _NEW_FOG */
306 if (texenv_doing_secondary_color(ctx)) {
307 key->separate_specular = 1;
308 inputs_referenced |= VARYING_BIT_COL1;
309 }
310
311 /* _NEW_FOG */
312 key->fog_mode = ctx->Fog._PackedEnabledMode;
313
314 /* _NEW_BUFFERS */
315 key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
316
317 /* _NEW_COLOR */
318 if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
319 /* if alpha test is enabled we need to emit at least one color */
320 key->num_draw_buffers = 1;
321 }
322
323 key->inputs_available = filter_fp_input_mask(inputs_referenced, ctx);
324
325 /* compute size of state key, ignoring unused texture units */
326 keySize = sizeof(*key) - sizeof(key->unit)
327 + key->nr_enabled_units * sizeof(key->unit[0]);
328
329 return keySize;
330 }
331
332
333 /** State used to build the fragment program:
334 */
335 class texenv_fragment_program : public ir_factory {
336 public:
337 struct gl_shader_program *shader_program;
338 struct gl_shader *shader;
339 exec_list *top_instructions;
340 struct state_key *state;
341
342 ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
343 /* Reg containing each texture unit's sampled texture color,
344 * else undef.
345 */
346
347 ir_rvalue *src_previous; /**< Reg containing color from previous
348 * stage. May need to be decl'd.
349 */
350 };
351
352 static ir_rvalue *
get_current_attrib(texenv_fragment_program * p,GLuint attrib)353 get_current_attrib(texenv_fragment_program *p, GLuint attrib)
354 {
355 ir_variable *current;
356 char name[128];
357
358 snprintf(name, sizeof(name), "gl_CurrentAttribFrag%uMESA", attrib);
359
360 current = p->shader->symbols->get_variable(name);
361 assert(current);
362 return new(p->mem_ctx) ir_dereference_variable(current);
363 }
364
365 static ir_rvalue *
get_gl_Color(texenv_fragment_program * p)366 get_gl_Color(texenv_fragment_program *p)
367 {
368 if (p->state->inputs_available & VARYING_BIT_COL0) {
369 ir_variable *var = p->shader->symbols->get_variable("gl_Color");
370 assert(var);
371 return new(p->mem_ctx) ir_dereference_variable(var);
372 } else {
373 return get_current_attrib(p, VERT_ATTRIB_COLOR0);
374 }
375 }
376
377 static ir_rvalue *
get_source(texenv_fragment_program * p,GLuint src,GLuint unit)378 get_source(texenv_fragment_program *p,
379 GLuint src, GLuint unit)
380 {
381 ir_variable *var;
382 ir_dereference *deref;
383
384 switch (src) {
385 case TEXENV_SRC_TEXTURE:
386 return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
387
388 case TEXENV_SRC_TEXTURE0:
389 case TEXENV_SRC_TEXTURE1:
390 case TEXENV_SRC_TEXTURE2:
391 case TEXENV_SRC_TEXTURE3:
392 case TEXENV_SRC_TEXTURE4:
393 case TEXENV_SRC_TEXTURE5:
394 case TEXENV_SRC_TEXTURE6:
395 case TEXENV_SRC_TEXTURE7:
396 return new(p->mem_ctx)
397 ir_dereference_variable(p->src_texture[src - TEXENV_SRC_TEXTURE0]);
398
399 case TEXENV_SRC_CONSTANT:
400 var = p->shader->symbols->get_variable("gl_TextureEnvColor");
401 assert(var);
402 deref = new(p->mem_ctx) ir_dereference_variable(var);
403 var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit);
404 return new(p->mem_ctx) ir_dereference_array(deref,
405 new(p->mem_ctx) ir_constant(unit));
406
407 case TEXENV_SRC_PRIMARY_COLOR:
408 var = p->shader->symbols->get_variable("gl_Color");
409 assert(var);
410 return new(p->mem_ctx) ir_dereference_variable(var);
411
412 case TEXENV_SRC_ZERO:
413 return new(p->mem_ctx) ir_constant(0.0f);
414
415 case TEXENV_SRC_ONE:
416 return new(p->mem_ctx) ir_constant(1.0f);
417
418 case TEXENV_SRC_PREVIOUS:
419 if (!p->src_previous) {
420 return get_gl_Color(p);
421 } else {
422 return p->src_previous->clone(p->mem_ctx, NULL);
423 }
424
425 default:
426 assert(0);
427 return NULL;
428 }
429 }
430
431 static ir_rvalue *
emit_combine_source(texenv_fragment_program * p,GLuint unit,GLuint source,GLuint operand)432 emit_combine_source(texenv_fragment_program *p,
433 GLuint unit,
434 GLuint source,
435 GLuint operand)
436 {
437 ir_rvalue *src;
438
439 src = get_source(p, source, unit);
440
441 switch (operand) {
442 case TEXENV_OPR_ONE_MINUS_COLOR:
443 return sub(new(p->mem_ctx) ir_constant(1.0f), src);
444
445 case TEXENV_OPR_ALPHA:
446 return src->type->is_scalar() ? src : swizzle_w(src);
447
448 case TEXENV_OPR_ONE_MINUS_ALPHA: {
449 ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
450
451 return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
452 }
453
454 case TEXENV_OPR_COLOR:
455 return src;
456
457 default:
458 assert(0);
459 return src;
460 }
461 }
462
463 /**
464 * Check if the RGB and Alpha sources and operands match for the given
465 * texture unit's combinder state. When the RGB and A sources and
466 * operands match, we can emit fewer instructions.
467 */
args_match(const struct state_key * key,GLuint unit)468 static GLboolean args_match( const struct state_key *key, GLuint unit )
469 {
470 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
471
472 for (i = 0; i < numArgs; i++) {
473 if (key->unit[unit].ArgsA[i].Source != key->unit[unit].ArgsRGB[i].Source)
474 return GL_FALSE;
475
476 switch (key->unit[unit].ArgsA[i].Operand) {
477 case TEXENV_OPR_ALPHA:
478 switch (key->unit[unit].ArgsRGB[i].Operand) {
479 case TEXENV_OPR_COLOR:
480 case TEXENV_OPR_ALPHA:
481 break;
482 default:
483 return GL_FALSE;
484 }
485 break;
486 case TEXENV_OPR_ONE_MINUS_ALPHA:
487 switch (key->unit[unit].ArgsRGB[i].Operand) {
488 case TEXENV_OPR_ONE_MINUS_COLOR:
489 case TEXENV_OPR_ONE_MINUS_ALPHA:
490 break;
491 default:
492 return GL_FALSE;
493 }
494 break;
495 default:
496 return GL_FALSE; /* impossible */
497 }
498 }
499
500 return GL_TRUE;
501 }
502
503 static ir_rvalue *
smear(ir_rvalue * val)504 smear(ir_rvalue *val)
505 {
506 if (!val->type->is_scalar())
507 return val;
508
509 return swizzle_xxxx(val);
510 }
511
512 static ir_rvalue *
emit_combine(texenv_fragment_program * p,GLuint unit,GLuint nr,GLuint mode,const struct gl_tex_env_argument * opt)513 emit_combine(texenv_fragment_program *p,
514 GLuint unit,
515 GLuint nr,
516 GLuint mode,
517 const struct gl_tex_env_argument *opt)
518 {
519 ir_rvalue *src[MAX_COMBINER_TERMS];
520 ir_rvalue *tmp0, *tmp1;
521 GLuint i;
522
523 assert(nr <= MAX_COMBINER_TERMS);
524
525 for (i = 0; i < nr; i++)
526 src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
527
528 switch (mode) {
529 case TEXENV_MODE_REPLACE:
530 return src[0];
531
532 case TEXENV_MODE_MODULATE:
533 return mul(src[0], src[1]);
534
535 case TEXENV_MODE_ADD:
536 return add(src[0], src[1]);
537
538 case TEXENV_MODE_ADD_SIGNED:
539 return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
540
541 case TEXENV_MODE_INTERPOLATE:
542 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
543 tmp0 = mul(src[0], src[2]);
544 tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
545 src[2]->clone(p->mem_ctx, NULL)));
546 return add(tmp0, tmp1);
547
548 case TEXENV_MODE_SUBTRACT:
549 return sub(src[0], src[1]);
550
551 case TEXENV_MODE_DOT3_RGBA:
552 case TEXENV_MODE_DOT3_RGBA_EXT:
553 case TEXENV_MODE_DOT3_RGB_EXT:
554 case TEXENV_MODE_DOT3_RGB: {
555 tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
556 tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
557
558 tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
559 tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
560
561 return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
562 }
563 case TEXENV_MODE_MODULATE_ADD_ATI:
564 return add(mul(src[0], src[2]), src[1]);
565
566 case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
567 return add(add(mul(src[0], src[2]), src[1]),
568 new(p->mem_ctx) ir_constant(-0.5f));
569
570 case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
571 return sub(mul(src[0], src[2]), src[1]);
572
573 case TEXENV_MODE_ADD_PRODUCTS_NV:
574 return add(mul(src[0], src[1]), mul(src[2], src[3]));
575
576 case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
577 return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
578 new(p->mem_ctx) ir_constant(-0.5f));
579 default:
580 assert(0);
581 return src[0];
582 }
583 }
584
585 /**
586 * Generate instructions for one texture unit's env/combiner mode.
587 */
588 static ir_rvalue *
emit_texenv(texenv_fragment_program * p,GLuint unit)589 emit_texenv(texenv_fragment_program *p, GLuint unit)
590 {
591 const struct state_key *key = p->state;
592 GLboolean rgb_saturate, alpha_saturate;
593 GLuint rgb_shift, alpha_shift;
594
595 if (!key->unit[unit].enabled) {
596 return get_source(p, TEXENV_SRC_PREVIOUS, 0);
597 }
598
599 switch (key->unit[unit].ModeRGB) {
600 case TEXENV_MODE_DOT3_RGB_EXT:
601 alpha_shift = key->unit[unit].ScaleShiftA;
602 rgb_shift = 0;
603 break;
604 case TEXENV_MODE_DOT3_RGBA_EXT:
605 alpha_shift = 0;
606 rgb_shift = 0;
607 break;
608 default:
609 rgb_shift = key->unit[unit].ScaleShiftRGB;
610 alpha_shift = key->unit[unit].ScaleShiftA;
611 break;
612 }
613
614 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
615 * We don't want to clamp twice.
616 */
617 if (rgb_shift)
618 rgb_saturate = GL_FALSE; /* saturate after rgb shift */
619 else if (need_saturate(key->unit[unit].ModeRGB))
620 rgb_saturate = GL_TRUE;
621 else
622 rgb_saturate = GL_FALSE;
623
624 if (alpha_shift)
625 alpha_saturate = GL_FALSE; /* saturate after alpha shift */
626 else if (need_saturate(key->unit[unit].ModeA))
627 alpha_saturate = GL_TRUE;
628 else
629 alpha_saturate = GL_FALSE;
630
631 ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
632 ir_dereference *deref;
633 ir_rvalue *val;
634
635 /* Emit the RGB and A combine ops
636 */
637 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
638 args_match(key, unit)) {
639 val = emit_combine(p, unit,
640 key->unit[unit].NumArgsRGB,
641 key->unit[unit].ModeRGB,
642 key->unit[unit].ArgsRGB);
643 val = smear(val);
644 if (rgb_saturate)
645 val = saturate(val);
646
647 p->emit(assign(temp_var, val));
648 }
649 else if (key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA_EXT ||
650 key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA) {
651 ir_rvalue *val = emit_combine(p, unit,
652 key->unit[unit].NumArgsRGB,
653 key->unit[unit].ModeRGB,
654 key->unit[unit].ArgsRGB);
655 val = smear(val);
656 if (rgb_saturate)
657 val = saturate(val);
658 p->emit(assign(temp_var, val));
659 }
660 else {
661 /* Need to do something to stop from re-emitting identical
662 * argument calculations here:
663 */
664 val = emit_combine(p, unit,
665 key->unit[unit].NumArgsRGB,
666 key->unit[unit].ModeRGB,
667 key->unit[unit].ArgsRGB);
668 val = swizzle_xyz(smear(val));
669 if (rgb_saturate)
670 val = saturate(val);
671 p->emit(assign(temp_var, val, WRITEMASK_XYZ));
672
673 val = emit_combine(p, unit,
674 key->unit[unit].NumArgsA,
675 key->unit[unit].ModeA,
676 key->unit[unit].ArgsA);
677 val = swizzle_w(smear(val));
678 if (alpha_saturate)
679 val = saturate(val);
680 p->emit(assign(temp_var, val, WRITEMASK_W));
681 }
682
683 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
684
685 /* Deal with the final shift:
686 */
687 if (alpha_shift || rgb_shift) {
688 ir_constant *shift;
689
690 if (rgb_shift == alpha_shift) {
691 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
692 }
693 else {
694 ir_constant_data const_data;
695
696 const_data.f[0] = float(1 << rgb_shift);
697 const_data.f[1] = float(1 << rgb_shift);
698 const_data.f[2] = float(1 << rgb_shift);
699 const_data.f[3] = float(1 << alpha_shift);
700
701 shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
702 &const_data);
703 }
704
705 return saturate(mul(deref, shift));
706 }
707 else
708 return deref;
709 }
710
711
712 /**
713 * Generate instruction for getting a texture source term.
714 */
load_texture(texenv_fragment_program * p,GLuint unit)715 static void load_texture( texenv_fragment_program *p, GLuint unit )
716 {
717 ir_dereference *deref;
718
719 if (p->src_texture[unit])
720 return;
721
722 const GLuint texTarget = p->state->unit[unit].source_index;
723 ir_rvalue *texcoord;
724
725 if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
726 texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
727 } else {
728 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
729 assert(tc_array);
730 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
731 ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
732 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
733 tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit);
734 }
735
736 if (!p->state->unit[unit].enabled) {
737 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
738 "dummy_tex");
739 p->emit(p->src_texture[unit]);
740
741 p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
742 return ;
743 }
744
745 const glsl_type *sampler_type = NULL;
746 int coords = 0;
747
748 switch (texTarget) {
749 case TEXTURE_1D_INDEX:
750 if (p->state->unit[unit].shadow)
751 sampler_type = glsl_type::sampler1DShadow_type;
752 else
753 sampler_type = glsl_type::sampler1D_type;
754 coords = 1;
755 break;
756 case TEXTURE_1D_ARRAY_INDEX:
757 if (p->state->unit[unit].shadow)
758 sampler_type = glsl_type::sampler1DArrayShadow_type;
759 else
760 sampler_type = glsl_type::sampler1DArray_type;
761 coords = 2;
762 break;
763 case TEXTURE_2D_INDEX:
764 if (p->state->unit[unit].shadow)
765 sampler_type = glsl_type::sampler2DShadow_type;
766 else
767 sampler_type = glsl_type::sampler2D_type;
768 coords = 2;
769 break;
770 case TEXTURE_2D_ARRAY_INDEX:
771 if (p->state->unit[unit].shadow)
772 sampler_type = glsl_type::sampler2DArrayShadow_type;
773 else
774 sampler_type = glsl_type::sampler2DArray_type;
775 coords = 3;
776 break;
777 case TEXTURE_RECT_INDEX:
778 if (p->state->unit[unit].shadow)
779 sampler_type = glsl_type::sampler2DRectShadow_type;
780 else
781 sampler_type = glsl_type::sampler2DRect_type;
782 coords = 2;
783 break;
784 case TEXTURE_3D_INDEX:
785 assert(!p->state->unit[unit].shadow);
786 sampler_type = glsl_type::sampler3D_type;
787 coords = 3;
788 break;
789 case TEXTURE_CUBE_INDEX:
790 if (p->state->unit[unit].shadow)
791 sampler_type = glsl_type::samplerCubeShadow_type;
792 else
793 sampler_type = glsl_type::samplerCube_type;
794 coords = 3;
795 break;
796 case TEXTURE_EXTERNAL_INDEX:
797 assert(!p->state->unit[unit].shadow);
798 sampler_type = glsl_type::samplerExternalOES_type;
799 coords = 2;
800 break;
801 }
802
803 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
804 "tex");
805
806 ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
807
808
809 char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
810 ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
811 sampler_name,
812 ir_var_uniform);
813 p->top_instructions->push_head(sampler);
814
815 /* Set the texture unit for this sampler in the same way that
816 * layout(binding=X) would.
817 */
818 sampler->data.explicit_binding = true;
819 sampler->data.binding = unit;
820
821 deref = new(p->mem_ctx) ir_dereference_variable(sampler);
822 tex->set_sampler(deref, glsl_type::vec4_type);
823
824 tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
825
826 if (p->state->unit[unit].shadow) {
827 texcoord = texcoord->clone(p->mem_ctx, NULL);
828 tex->shadow_comparator = new(p->mem_ctx) ir_swizzle(texcoord,
829 coords, 0, 0, 0,
830 1);
831 coords++;
832 }
833
834 texcoord = texcoord->clone(p->mem_ctx, NULL);
835 tex->projector = swizzle_w(texcoord);
836
837 p->emit(assign(p->src_texture[unit], tex));
838 }
839
840 static void
load_texenv_source(texenv_fragment_program * p,GLuint src,GLuint unit)841 load_texenv_source(texenv_fragment_program *p,
842 GLuint src, GLuint unit)
843 {
844 switch (src) {
845 case TEXENV_SRC_TEXTURE:
846 load_texture(p, unit);
847 break;
848
849 case TEXENV_SRC_TEXTURE0:
850 case TEXENV_SRC_TEXTURE1:
851 case TEXENV_SRC_TEXTURE2:
852 case TEXENV_SRC_TEXTURE3:
853 case TEXENV_SRC_TEXTURE4:
854 case TEXENV_SRC_TEXTURE5:
855 case TEXENV_SRC_TEXTURE6:
856 case TEXENV_SRC_TEXTURE7:
857 load_texture(p, src - TEXENV_SRC_TEXTURE0);
858 break;
859
860 default:
861 /* not a texture src - do nothing */
862 break;
863 }
864 }
865
866
867 /**
868 * Generate instructions for loading all texture source terms.
869 */
870 static GLboolean
load_texunit_sources(texenv_fragment_program * p,GLuint unit)871 load_texunit_sources( texenv_fragment_program *p, GLuint unit )
872 {
873 const struct state_key *key = p->state;
874 GLuint i;
875
876 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
877 load_texenv_source( p, key->unit[unit].ArgsRGB[i].Source, unit );
878 }
879
880 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
881 load_texenv_source( p, key->unit[unit].ArgsA[i].Source, unit );
882 }
883
884 return GL_TRUE;
885 }
886
887 /**
888 * Applies the fog calculations.
889 *
890 * This is basically like the ARB_fragment_prorgam fog options. Note
891 * that ffvertex_prog.c produces fogcoord for us when
892 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
893 */
894 static ir_rvalue *
emit_fog_instructions(texenv_fragment_program * p,ir_rvalue * fragcolor)895 emit_fog_instructions(texenv_fragment_program *p,
896 ir_rvalue *fragcolor)
897 {
898 struct state_key *key = p->state;
899 ir_rvalue *f, *temp;
900 ir_variable *params, *oparams;
901 ir_variable *fogcoord;
902
903 /* Temporary storage for the whole fog result. Fog calculations
904 * only affect rgb so we're hanging on to the .a value of fragcolor
905 * this way.
906 */
907 ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
908 p->emit(assign(fog_result, fragcolor));
909
910 fragcolor = swizzle_xyz(fog_result);
911
912 oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
913 assert(oparams);
914 fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
915 assert(fogcoord);
916 params = p->shader->symbols->get_variable("gl_Fog");
917 assert(params);
918 f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
919
920 ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
921
922 switch (key->fog_mode) {
923 case FOG_LINEAR:
924 /* f = (end - z) / (end - start)
925 *
926 * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
927 * (end / (end - start)) so we can generate a single MAD.
928 */
929 f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
930 break;
931 case FOG_EXP:
932 /* f = e^(-(density * fogcoord))
933 *
934 * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
935 * use EXP2 which is generally the native instruction without
936 * having to do any further math on the fog density uniform.
937 */
938 f = mul(f, swizzle_z(oparams));
939 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
940 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
941 break;
942 case FOG_EXP2:
943 /* f = e^(-(density * fogcoord)^2)
944 *
945 * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
946 * can do this like FOG_EXP but with a squaring after the
947 * multiply by density.
948 */
949 ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
950 p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
951
952 f = mul(temp_var, temp_var);
953 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
954 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
955 break;
956 }
957
958 p->emit(assign(f_var, saturate(f)));
959
960 f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
961 temp = new(p->mem_ctx) ir_dereference_variable(params);
962 temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
963 temp = mul(swizzle_xyz(temp), f);
964
965 p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
966
967 return new(p->mem_ctx) ir_dereference_variable(fog_result);
968 }
969
970 static void
emit_instructions(texenv_fragment_program * p)971 emit_instructions(texenv_fragment_program *p)
972 {
973 struct state_key *key = p->state;
974 GLuint unit;
975
976 if (key->nr_enabled_units) {
977 /* First pass - to support texture_env_crossbar, first identify
978 * all referenced texture sources and emit texld instructions
979 * for each:
980 */
981 for (unit = 0; unit < key->nr_enabled_units; unit++)
982 if (key->unit[unit].enabled) {
983 load_texunit_sources(p, unit);
984 }
985
986 /* Second pass - emit combine instructions to build final color:
987 */
988 for (unit = 0; unit < key->nr_enabled_units; unit++) {
989 if (key->unit[unit].enabled) {
990 p->src_previous = emit_texenv(p, unit);
991 }
992 }
993 }
994
995 ir_rvalue *cf = get_source(p, TEXENV_SRC_PREVIOUS, 0);
996
997 if (key->separate_specular) {
998 ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
999 "specular_add");
1000 p->emit(assign(spec_result, cf));
1001
1002 ir_rvalue *secondary;
1003 if (p->state->inputs_available & VARYING_BIT_COL1) {
1004 ir_variable *var =
1005 p->shader->symbols->get_variable("gl_SecondaryColor");
1006 assert(var);
1007 secondary = swizzle_xyz(var);
1008 } else {
1009 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1010 }
1011
1012 p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1013 WRITEMASK_XYZ));
1014
1015 cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1016 }
1017
1018 if (key->fog_mode) {
1019 cf = emit_fog_instructions(p, cf);
1020 }
1021
1022 ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1023 assert(frag_color);
1024 p->emit(assign(frag_color, cf));
1025 }
1026
1027 /**
1028 * Generate a new fragment program which implements the context's
1029 * current texture env/combine mode.
1030 */
1031 static struct gl_shader_program *
create_new_program(struct gl_context * ctx,struct state_key * key)1032 create_new_program(struct gl_context *ctx, struct state_key *key)
1033 {
1034 texenv_fragment_program p;
1035 unsigned int unit;
1036 _mesa_glsl_parse_state *state;
1037
1038 p.mem_ctx = ralloc_context(NULL);
1039 p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT);
1040 #ifdef DEBUG
1041 p.shader->SourceChecksum = 0xf18ed; /* fixed */
1042 #endif
1043 p.shader->ir = new(p.shader) exec_list;
1044 state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
1045 p.shader);
1046 p.shader->symbols = state->symbols;
1047 p.top_instructions = p.shader->ir;
1048 p.instructions = p.shader->ir;
1049 p.state = key;
1050 p.shader_program = _mesa_new_shader_program(0);
1051
1052 /* Tell the linker to ignore the fact that we're building a
1053 * separate shader, in case we're in a GLES2 context that would
1054 * normally reject that. The real problem is that we're building a
1055 * fixed function program in a GLES2 context at all, but that's a
1056 * big mess to clean up.
1057 */
1058 p.shader_program->SeparateShader = GL_TRUE;
1059
1060 /* The legacy GLSL shadow functions follow the depth texture
1061 * mode and return vec4. The GLSL 1.30 shadow functions return float and
1062 * ignore the depth texture mode. That's a shader and state dependency
1063 * that's difficult to deal with. st/mesa uses a simple but not
1064 * completely correct solution: if the shader declares GLSL >= 1.30 and
1065 * the depth texture mode is GL_ALPHA (000X), it sets the XXXX swizzle
1066 * instead. Thus, the GLSL 1.30 shadow function will get the result in .x
1067 * and legacy shadow functions will get it in .w as expected.
1068 * For the fixed-function fragment shader, use 120 to get correct behavior
1069 * for GL_ALPHA.
1070 */
1071 state->language_version = 120;
1072
1073 state->es_shader = false;
1074 if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
1075 state->OES_EGL_image_external_enable = true;
1076 _mesa_glsl_initialize_types(state);
1077 _mesa_glsl_initialize_variables(p.instructions, state);
1078
1079 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++)
1080 p.src_texture[unit] = NULL;
1081
1082 p.src_previous = NULL;
1083
1084 ir_function *main_f = new(p.mem_ctx) ir_function("main");
1085 p.emit(main_f);
1086 state->symbols->add_function(main_f);
1087
1088 ir_function_signature *main_sig =
1089 new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
1090 main_sig->is_defined = true;
1091 main_f->add_signature(main_sig);
1092
1093 p.instructions = &main_sig->body;
1094 if (key->num_draw_buffers)
1095 emit_instructions(&p);
1096
1097 validate_ir_tree(p.shader->ir);
1098
1099 const struct gl_shader_compiler_options *options =
1100 &ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
1101
1102 /* Conservative approach: Don't optimize here, the linker does it too. */
1103 if (!ctx->Const.GLSLOptimizeConservatively) {
1104 while (do_common_optimization(p.shader->ir, false, false, options,
1105 ctx->Const.NativeIntegers))
1106 ;
1107 }
1108
1109 reparent_ir(p.shader->ir, p.shader->ir);
1110
1111 p.shader->CompileStatus = COMPILE_SUCCESS;
1112 p.shader->Version = state->language_version;
1113 p.shader_program->Shaders =
1114 (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1115 p.shader_program->Shaders[0] = p.shader;
1116 p.shader_program->NumShaders = 1;
1117
1118 _mesa_glsl_link_shader(ctx, p.shader_program);
1119
1120 if (!p.shader_program->data->LinkStatus)
1121 _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1122 p.shader_program->data->InfoLog);
1123
1124 ralloc_free(p.mem_ctx);
1125 return p.shader_program;
1126 }
1127
1128 extern "C" {
1129
1130 /**
1131 * Return a fragment program which implements the current
1132 * fixed-function texture, fog and color-sum operations.
1133 */
1134 struct gl_shader_program *
_mesa_get_fixed_func_fragment_program(struct gl_context * ctx)1135 _mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1136 {
1137 struct gl_shader_program *shader_program;
1138 struct state_key key;
1139 GLuint keySize;
1140
1141 keySize = make_state_key(ctx, &key);
1142
1143 shader_program = (struct gl_shader_program *)
1144 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1145 &key, keySize);
1146
1147 if (!shader_program) {
1148 shader_program = create_new_program(ctx, &key);
1149
1150 _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1151 &key, keySize, shader_program);
1152 }
1153
1154 return shader_program;
1155 }
1156
1157 }
1158