• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2000 SuSE, Inc.
3  * Copyright © 2007 Red Hat, Inc.
4  *
5  * Permission to use, copy, modify, distribute, and sell this software and its
6  * documentation for any purpose is hereby granted without fee, provided that
7  * the above copyright notice appear in all copies and that both that
8  * copyright notice and this permission notice appear in supporting
9  * documentation, and that the name of SuSE not be used in advertising or
10  * publicity pertaining to distribution of the software without specific,
11  * written prior permission.  SuSE makes no representations about the
12  * suitability of this software for any purpose.  It is provided "as is"
13  * without express or implied warranty.
14  *
15  * SuSE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE
17  * BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
19  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
20  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #ifdef HAVE_CONFIG_H
24 #include <config.h>
25 #endif
26 
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <string.h>
30 #include <assert.h>
31 
32 #include "pixman-private.h"
33 
34 static const pixman_color_t transparent_black = { 0, 0, 0, 0 };
35 
36 static void
gradient_property_changed(pixman_image_t * image)37 gradient_property_changed (pixman_image_t *image)
38 {
39     gradient_t *gradient = &image->gradient;
40     int n = gradient->n_stops;
41     pixman_gradient_stop_t *stops = gradient->stops;
42     pixman_gradient_stop_t *begin = &(gradient->stops[-1]);
43     pixman_gradient_stop_t *end = &(gradient->stops[n]);
44 
45     switch (gradient->common.repeat)
46     {
47     default:
48     case PIXMAN_REPEAT_NONE:
49 	begin->x = INT32_MIN;
50 	begin->color = transparent_black;
51 	end->x = INT32_MAX;
52 	end->color = transparent_black;
53 	break;
54 
55     case PIXMAN_REPEAT_NORMAL:
56 	begin->x = stops[n - 1].x - pixman_fixed_1;
57 	begin->color = stops[n - 1].color;
58 	end->x = stops[0].x + pixman_fixed_1;
59 	end->color = stops[0].color;
60 	break;
61 
62     case PIXMAN_REPEAT_REFLECT:
63 	begin->x = - stops[0].x;
64 	begin->color = stops[0].color;
65 	end->x = pixman_int_to_fixed (2) - stops[n - 1].x;
66 	end->color = stops[n - 1].color;
67 	break;
68 
69     case PIXMAN_REPEAT_PAD:
70 	begin->x = INT32_MIN;
71 	begin->color = stops[0].color;
72 	end->x = INT32_MAX;
73 	end->color = stops[n - 1].color;
74 	break;
75     }
76 }
77 
78 pixman_bool_t
_pixman_init_gradient(gradient_t * gradient,const pixman_gradient_stop_t * stops,int n_stops)79 _pixman_init_gradient (gradient_t *                  gradient,
80                        const pixman_gradient_stop_t *stops,
81                        int                           n_stops)
82 {
83     return_val_if_fail (n_stops > 0, FALSE);
84 
85     /* We allocate two extra stops, one before the beginning of the stop list,
86      * and one after the end. These stops are initialized to whatever color
87      * would be used for positions outside the range of the stop list.
88      *
89      * This saves a bit of computation in the gradient walker.
90      *
91      * The pointer we store in the gradient_t struct still points to the
92      * first user-supplied struct, so when freeing, we will have to
93      * subtract one.
94      */
95     gradient->stops =
96 	pixman_malloc_ab (n_stops + 2, sizeof (pixman_gradient_stop_t));
97     if (!gradient->stops)
98 	return FALSE;
99 
100     gradient->stops += 1;
101     memcpy (gradient->stops, stops, n_stops * sizeof (pixman_gradient_stop_t));
102     gradient->n_stops = n_stops;
103 
104     gradient->common.property_changed = gradient_property_changed;
105 
106     return TRUE;
107 }
108 
109 void
_pixman_image_init(pixman_image_t * image)110 _pixman_image_init (pixman_image_t *image)
111 {
112     image_common_t *common = &image->common;
113 
114     pixman_region32_init (&common->clip_region);
115 
116     common->alpha_count = 0;
117     common->have_clip_region = FALSE;
118     common->clip_sources = FALSE;
119     common->transform = NULL;
120     common->repeat = PIXMAN_REPEAT_NONE;
121     common->filter = PIXMAN_FILTER_NEAREST;
122     common->filter_params = NULL;
123     common->n_filter_params = 0;
124     common->alpha_map = NULL;
125     common->component_alpha = FALSE;
126     common->ref_count = 1;
127     common->property_changed = NULL;
128     common->client_clip = FALSE;
129     common->destroy_func = NULL;
130     common->destroy_data = NULL;
131     common->dirty = TRUE;
132 }
133 
134 pixman_bool_t
_pixman_image_fini(pixman_image_t * image)135 _pixman_image_fini (pixman_image_t *image)
136 {
137     image_common_t *common = (image_common_t *)image;
138 
139     common->ref_count--;
140 
141     if (common->ref_count == 0)
142     {
143 	if (image->common.destroy_func)
144 	    image->common.destroy_func (image, image->common.destroy_data);
145 
146 	pixman_region32_fini (&common->clip_region);
147 
148 	free (common->transform);
149 	free (common->filter_params);
150 
151 	if (common->alpha_map)
152 	    pixman_image_unref ((pixman_image_t *)common->alpha_map);
153 
154 	if (image->type == LINEAR ||
155 	    image->type == RADIAL ||
156 	    image->type == CONICAL)
157 	{
158 	    if (image->gradient.stops)
159 	    {
160 		/* See _pixman_init_gradient() for an explanation of the - 1 */
161 		free (image->gradient.stops - 1);
162 	    }
163 
164 	    /* This will trigger if someone adds a property_changed
165 	     * method to the linear/radial/conical gradient overwriting
166 	     * the general one.
167 	     */
168 	    assert (
169 		image->common.property_changed == gradient_property_changed);
170 	}
171 
172 	if (image->type == BITS && image->bits.free_me)
173 	    free (image->bits.free_me);
174 
175 	return TRUE;
176     }
177 
178     return FALSE;
179 }
180 
181 pixman_image_t *
_pixman_image_allocate(void)182 _pixman_image_allocate (void)
183 {
184     pixman_image_t *image = malloc (sizeof (pixman_image_t));
185 
186     if (image)
187 	_pixman_image_init (image);
188 
189     return image;
190 }
191 
192 static void
image_property_changed(pixman_image_t * image)193 image_property_changed (pixman_image_t *image)
194 {
195     image->common.dirty = TRUE;
196 }
197 
198 /* Ref Counting */
199 PIXMAN_EXPORT pixman_image_t *
pixman_image_ref(pixman_image_t * image)200 pixman_image_ref (pixman_image_t *image)
201 {
202     image->common.ref_count++;
203 
204     return image;
205 }
206 
207 /* returns TRUE when the image is freed */
208 PIXMAN_EXPORT pixman_bool_t
pixman_image_unref(pixman_image_t * image)209 pixman_image_unref (pixman_image_t *image)
210 {
211     if (_pixman_image_fini (image))
212     {
213 	free (image);
214 	return TRUE;
215     }
216 
217     return FALSE;
218 }
219 
220 PIXMAN_EXPORT void
pixman_image_set_destroy_function(pixman_image_t * image,pixman_image_destroy_func_t func,void * data)221 pixman_image_set_destroy_function (pixman_image_t *            image,
222                                    pixman_image_destroy_func_t func,
223                                    void *                      data)
224 {
225     image->common.destroy_func = func;
226     image->common.destroy_data = data;
227 }
228 
229 PIXMAN_EXPORT void *
pixman_image_get_destroy_data(pixman_image_t * image)230 pixman_image_get_destroy_data (pixman_image_t *image)
231 {
232   return image->common.destroy_data;
233 }
234 
235 void
_pixman_image_reset_clip_region(pixman_image_t * image)236 _pixman_image_reset_clip_region (pixman_image_t *image)
237 {
238     image->common.have_clip_region = FALSE;
239 }
240 
241 /* Executive Summary: This function is a no-op that only exists
242  * for historical reasons.
243  *
244  * There used to be a bug in the X server where it would rely on
245  * out-of-bounds accesses when it was asked to composite with a
246  * window as the source. It would create a pixman image pointing
247  * to some bogus position in memory, but then set a clip region
248  * to the position where the actual bits were.
249  *
250  * Due to a bug in old versions of pixman, where it would not clip
251  * against the image bounds when a clip region was set, this would
252  * actually work. So when the pixman bug was fixed, a workaround was
253  * added to allow certain out-of-bound accesses. This function disabled
254  * those workarounds.
255  *
256  * Since 0.21.2, pixman doesn't do these workarounds anymore, so now
257  * this function is a no-op.
258  */
259 PIXMAN_EXPORT void
pixman_disable_out_of_bounds_workaround(void)260 pixman_disable_out_of_bounds_workaround (void)
261 {
262 }
263 
264 static void
compute_image_info(pixman_image_t * image)265 compute_image_info (pixman_image_t *image)
266 {
267     pixman_format_code_t code;
268     uint32_t flags = 0;
269 
270     /* Transform */
271     if (!image->common.transform)
272     {
273 	flags |= (FAST_PATH_ID_TRANSFORM	|
274 		  FAST_PATH_X_UNIT_POSITIVE	|
275 		  FAST_PATH_Y_UNIT_ZERO		|
276 		  FAST_PATH_AFFINE_TRANSFORM);
277     }
278     else
279     {
280 	flags |= FAST_PATH_HAS_TRANSFORM;
281 
282 	if (image->common.transform->matrix[2][0] == 0			&&
283 	    image->common.transform->matrix[2][1] == 0			&&
284 	    image->common.transform->matrix[2][2] == pixman_fixed_1)
285 	{
286 	    flags |= FAST_PATH_AFFINE_TRANSFORM;
287 
288 	    if (image->common.transform->matrix[0][1] == 0 &&
289 		image->common.transform->matrix[1][0] == 0)
290 	    {
291 		if (image->common.transform->matrix[0][0] == -pixman_fixed_1 &&
292 		    image->common.transform->matrix[1][1] == -pixman_fixed_1)
293 		{
294 		    flags |= FAST_PATH_ROTATE_180_TRANSFORM;
295 		}
296 		flags |= FAST_PATH_SCALE_TRANSFORM;
297 	    }
298 	    else if (image->common.transform->matrix[0][0] == 0 &&
299 	             image->common.transform->matrix[1][1] == 0)
300 	    {
301 		pixman_fixed_t m01 = image->common.transform->matrix[0][1];
302 		pixman_fixed_t m10 = image->common.transform->matrix[1][0];
303 
304 		if (m01 == -pixman_fixed_1 && m10 == pixman_fixed_1)
305 		    flags |= FAST_PATH_ROTATE_90_TRANSFORM;
306 		else if (m01 == pixman_fixed_1 && m10 == -pixman_fixed_1)
307 		    flags |= FAST_PATH_ROTATE_270_TRANSFORM;
308 	    }
309 	}
310 
311 	if (image->common.transform->matrix[0][0] > 0)
312 	    flags |= FAST_PATH_X_UNIT_POSITIVE;
313 
314 	if (image->common.transform->matrix[1][0] == 0)
315 	    flags |= FAST_PATH_Y_UNIT_ZERO;
316     }
317 
318     /* Filter */
319     switch (image->common.filter)
320     {
321     case PIXMAN_FILTER_NEAREST:
322     case PIXMAN_FILTER_FAST:
323 	flags |= (FAST_PATH_NEAREST_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
324 	break;
325 
326     case PIXMAN_FILTER_BILINEAR:
327     case PIXMAN_FILTER_GOOD:
328     case PIXMAN_FILTER_BEST:
329 	flags |= (FAST_PATH_BILINEAR_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
330 
331 	/* Here we have a chance to optimize BILINEAR filter to NEAREST if
332 	 * they are equivalent for the currently used transformation matrix.
333 	 */
334 	if (flags & FAST_PATH_ID_TRANSFORM)
335 	{
336 	    flags |= FAST_PATH_NEAREST_FILTER;
337 	}
338 	else if (flags & FAST_PATH_AFFINE_TRANSFORM)
339 	{
340 	    /* Suppose the transform is
341 	     *
342 	     *    [ t00, t01, t02 ]
343 	     *    [ t10, t11, t12 ]
344 	     *    [   0,   0,   1 ]
345 	     *
346 	     * and the destination coordinates are (n + 0.5, m + 0.5). Then
347 	     * the transformed x coordinate is:
348 	     *
349 	     *     tx = t00 * (n + 0.5) + t01 * (m + 0.5) + t02
350 	     *        = t00 * n + t01 * m + t02 + (t00 + t01) * 0.5
351 	     *
352 	     * which implies that if t00, t01 and t02 are all integers
353 	     * and (t00 + t01) is odd, then tx will be an integer plus 0.5,
354 	     * which means a BILINEAR filter will reduce to NEAREST. The same
355 	     * applies in the y direction
356 	     */
357 	    pixman_fixed_t (*t)[3] = image->common.transform->matrix;
358 
359 	    if ((pixman_fixed_frac (
360 		     t[0][0] | t[0][1] | t[0][2] |
361 		     t[1][0] | t[1][1] | t[1][2]) == 0)			&&
362 		(pixman_fixed_to_int (
363 		    (t[0][0] + t[0][1]) & (t[1][0] + t[1][1])) % 2) == 1)
364 	    {
365 		/* FIXME: there are some affine-test failures, showing that
366 		 * handling of BILINEAR and NEAREST filter is not quite
367 		 * equivalent when getting close to 32K for the translation
368 		 * components of the matrix. That's likely some bug, but for
369 		 * now just skip BILINEAR->NEAREST optimization in this case.
370 		 */
371 		pixman_fixed_t magic_limit = pixman_int_to_fixed (30000);
372 		if (image->common.transform->matrix[0][2] <= magic_limit  &&
373 		    image->common.transform->matrix[1][2] <= magic_limit  &&
374 		    image->common.transform->matrix[0][2] >= -magic_limit &&
375 		    image->common.transform->matrix[1][2] >= -magic_limit)
376 		{
377 		    flags |= FAST_PATH_NEAREST_FILTER;
378 		}
379 	    }
380 	}
381 	break;
382 
383     case PIXMAN_FILTER_CONVOLUTION:
384 	break;
385 
386     case PIXMAN_FILTER_SEPARABLE_CONVOLUTION:
387 	flags |= FAST_PATH_SEPARABLE_CONVOLUTION_FILTER;
388 	break;
389 
390     default:
391 	flags |= FAST_PATH_NO_CONVOLUTION_FILTER;
392 	break;
393     }
394 
395     /* Repeat mode */
396     switch (image->common.repeat)
397     {
398     case PIXMAN_REPEAT_NONE:
399 	flags |=
400 	    FAST_PATH_NO_REFLECT_REPEAT		|
401 	    FAST_PATH_NO_PAD_REPEAT		|
402 	    FAST_PATH_NO_NORMAL_REPEAT;
403 	break;
404 
405     case PIXMAN_REPEAT_REFLECT:
406 	flags |=
407 	    FAST_PATH_NO_PAD_REPEAT		|
408 	    FAST_PATH_NO_NONE_REPEAT		|
409 	    FAST_PATH_NO_NORMAL_REPEAT;
410 	break;
411 
412     case PIXMAN_REPEAT_PAD:
413 	flags |=
414 	    FAST_PATH_NO_REFLECT_REPEAT		|
415 	    FAST_PATH_NO_NONE_REPEAT		|
416 	    FAST_PATH_NO_NORMAL_REPEAT;
417 	break;
418 
419     default:
420 	flags |=
421 	    FAST_PATH_NO_REFLECT_REPEAT		|
422 	    FAST_PATH_NO_PAD_REPEAT		|
423 	    FAST_PATH_NO_NONE_REPEAT;
424 	break;
425     }
426 
427     /* Component alpha */
428     if (image->common.component_alpha)
429 	flags |= FAST_PATH_COMPONENT_ALPHA;
430     else
431 	flags |= FAST_PATH_UNIFIED_ALPHA;
432 
433     flags |= (FAST_PATH_NO_ACCESSORS | FAST_PATH_NARROW_FORMAT);
434 
435     /* Type specific checks */
436     switch (image->type)
437     {
438     case SOLID:
439 	code = PIXMAN_solid;
440 
441 	if (image->solid.color.alpha == 0xffff)
442 	    flags |= FAST_PATH_IS_OPAQUE;
443 	break;
444 
445     case BITS:
446 	if (image->bits.width == 1	&&
447 	    image->bits.height == 1	&&
448 	    image->common.repeat != PIXMAN_REPEAT_NONE)
449 	{
450 	    code = PIXMAN_solid;
451 	}
452 	else
453 	{
454 	    code = image->bits.format;
455 	    flags |= FAST_PATH_BITS_IMAGE;
456 	}
457 
458 	if (!PIXMAN_FORMAT_A (image->bits.format)				&&
459 	    PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_GRAY		&&
460 	    PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_COLOR)
461 	{
462 	    flags |= FAST_PATH_SAMPLES_OPAQUE;
463 
464 	    if (image->common.repeat != PIXMAN_REPEAT_NONE)
465 		flags |= FAST_PATH_IS_OPAQUE;
466 	}
467 
468 	if (image->bits.read_func || image->bits.write_func)
469 	    flags &= ~FAST_PATH_NO_ACCESSORS;
470 
471 	if (PIXMAN_FORMAT_IS_WIDE (image->bits.format))
472 	    flags &= ~FAST_PATH_NARROW_FORMAT;
473 	break;
474 
475     case RADIAL:
476 	code = PIXMAN_unknown;
477 
478 	/*
479 	 * As explained in pixman-radial-gradient.c, every point of
480 	 * the plane has a valid associated radius (and thus will be
481 	 * colored) if and only if a is negative (i.e. one of the two
482 	 * circles contains the other one).
483 	 */
484 
485         if (image->radial.a >= 0)
486 	    break;
487 
488 	/* Fall through */
489 
490     case CONICAL:
491     case LINEAR:
492 	code = PIXMAN_unknown;
493 
494 	if (image->common.repeat != PIXMAN_REPEAT_NONE)
495 	{
496 	    int i;
497 
498 	    flags |= FAST_PATH_IS_OPAQUE;
499 	    for (i = 0; i < image->gradient.n_stops; ++i)
500 	    {
501 		if (image->gradient.stops[i].color.alpha != 0xffff)
502 		{
503 		    flags &= ~FAST_PATH_IS_OPAQUE;
504 		    break;
505 		}
506 	    }
507 	}
508 	break;
509 
510     default:
511 	code = PIXMAN_unknown;
512 	break;
513     }
514 
515     /* Alpha maps are only supported for BITS images, so it's always
516      * safe to ignore their presense for non-BITS images
517      */
518     if (!image->common.alpha_map || image->type != BITS)
519     {
520 	flags |= FAST_PATH_NO_ALPHA_MAP;
521     }
522     else
523     {
524 	if (PIXMAN_FORMAT_IS_WIDE (image->common.alpha_map->format))
525 	    flags &= ~FAST_PATH_NARROW_FORMAT;
526     }
527 
528     /* Both alpha maps and convolution filters can introduce
529      * non-opaqueness in otherwise opaque images. Also
530      * an image with component alpha turned on is only opaque
531      * if all channels are opaque, so we simply turn it off
532      * unconditionally for those images.
533      */
534     if (image->common.alpha_map						||
535 	image->common.filter == PIXMAN_FILTER_CONVOLUTION		||
536         image->common.filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION     ||
537 	image->common.component_alpha)
538     {
539 	flags &= ~(FAST_PATH_IS_OPAQUE | FAST_PATH_SAMPLES_OPAQUE);
540     }
541 
542     image->common.flags = flags;
543     image->common.extended_format_code = code;
544 }
545 
546 void
_pixman_image_validate(pixman_image_t * image)547 _pixman_image_validate (pixman_image_t *image)
548 {
549     if (image->common.dirty)
550     {
551 	compute_image_info (image);
552 
553 	/* It is important that property_changed is
554 	 * called *after* compute_image_info() because
555 	 * property_changed() can make use of the flags
556 	 * to set up accessors etc.
557 	 */
558 	if (image->common.property_changed)
559 	    image->common.property_changed (image);
560 
561 	image->common.dirty = FALSE;
562     }
563 
564     if (image->common.alpha_map)
565 	_pixman_image_validate ((pixman_image_t *)image->common.alpha_map);
566 }
567 
568 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region32(pixman_image_t * image,pixman_region32_t * region)569 pixman_image_set_clip_region32 (pixman_image_t *   image,
570                                 pixman_region32_t *region)
571 {
572     image_common_t *common = (image_common_t *)image;
573     pixman_bool_t result;
574 
575     if (region)
576     {
577 	if ((result = pixman_region32_copy (&common->clip_region, region)))
578 	    image->common.have_clip_region = TRUE;
579     }
580     else
581     {
582 	_pixman_image_reset_clip_region (image);
583 
584 	result = TRUE;
585     }
586 
587     image_property_changed (image);
588 
589     return result;
590 }
591 
592 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region(pixman_image_t * image,pixman_region16_t * region)593 pixman_image_set_clip_region (pixman_image_t *   image,
594                               pixman_region16_t *region)
595 {
596     image_common_t *common = (image_common_t *)image;
597     pixman_bool_t result;
598 
599     if (region)
600     {
601 	if ((result = pixman_region32_copy_from_region16 (&common->clip_region, region)))
602 	    image->common.have_clip_region = TRUE;
603     }
604     else
605     {
606 	_pixman_image_reset_clip_region (image);
607 
608 	result = TRUE;
609     }
610 
611     image_property_changed (image);
612 
613     return result;
614 }
615 
616 PIXMAN_EXPORT void
pixman_image_set_has_client_clip(pixman_image_t * image,pixman_bool_t client_clip)617 pixman_image_set_has_client_clip (pixman_image_t *image,
618                                   pixman_bool_t   client_clip)
619 {
620     image->common.client_clip = client_clip;
621 }
622 
623 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_transform(pixman_image_t * image,const pixman_transform_t * transform)624 pixman_image_set_transform (pixman_image_t *          image,
625                             const pixman_transform_t *transform)
626 {
627     static const pixman_transform_t id =
628     {
629 	{ { pixman_fixed_1, 0, 0 },
630 	  { 0, pixman_fixed_1, 0 },
631 	  { 0, 0, pixman_fixed_1 } }
632     };
633 
634     image_common_t *common = (image_common_t *)image;
635     pixman_bool_t result;
636 
637     if (common->transform == transform)
638 	return TRUE;
639 
640     if (!transform || memcmp (&id, transform, sizeof (pixman_transform_t)) == 0)
641     {
642 	free (common->transform);
643 	common->transform = NULL;
644 	result = TRUE;
645 
646 	goto out;
647     }
648 
649     if (common->transform &&
650 	memcmp (common->transform, transform, sizeof (pixman_transform_t)) == 0)
651     {
652 	return TRUE;
653     }
654 
655     if (common->transform == NULL)
656 	common->transform = malloc (sizeof (pixman_transform_t));
657 
658     if (common->transform == NULL)
659     {
660 	result = FALSE;
661 
662 	goto out;
663     }
664 
665     memcpy (common->transform, transform, sizeof(pixman_transform_t));
666 
667     result = TRUE;
668 
669 out:
670     image_property_changed (image);
671 
672     return result;
673 }
674 
675 PIXMAN_EXPORT void
pixman_image_set_repeat(pixman_image_t * image,pixman_repeat_t repeat)676 pixman_image_set_repeat (pixman_image_t *image,
677                          pixman_repeat_t repeat)
678 {
679     if (image->common.repeat == repeat)
680 	return;
681 
682     image->common.repeat = repeat;
683 
684     image_property_changed (image);
685 }
686 
687 PIXMAN_EXPORT void
pixman_image_set_dither(pixman_image_t * image,pixman_dither_t dither)688 pixman_image_set_dither (pixman_image_t *image,
689 			 pixman_dither_t dither)
690 {
691     if (image->type == BITS)
692     {
693 	if (image->bits.dither == dither)
694 	    return;
695 
696 	image->bits.dither = dither;
697 
698 	image_property_changed (image);
699     }
700 }
701 
702 PIXMAN_EXPORT void
pixman_image_set_dither_offset(pixman_image_t * image,int offset_x,int offset_y)703 pixman_image_set_dither_offset (pixman_image_t *image,
704 				int             offset_x,
705 				int             offset_y)
706 {
707     if (image->type == BITS)
708     {
709 	if (image->bits.dither_offset_x == offset_x &&
710 	    image->bits.dither_offset_y == offset_y)
711 	{
712 	    return;
713 	}
714 
715 	image->bits.dither_offset_x = offset_x;
716 	image->bits.dither_offset_y = offset_y;
717 
718 	image_property_changed (image);
719     }
720 }
721 
722 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_filter(pixman_image_t * image,pixman_filter_t filter,const pixman_fixed_t * params,int n_params)723 pixman_image_set_filter (pixman_image_t *      image,
724                          pixman_filter_t       filter,
725                          const pixman_fixed_t *params,
726                          int                   n_params)
727 {
728     image_common_t *common = (image_common_t *)image;
729     pixman_fixed_t *new_params;
730 
731     if (params == common->filter_params && filter == common->filter)
732 	return TRUE;
733 
734     if (filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION)
735     {
736 	int width = pixman_fixed_to_int (params[0]);
737 	int height = pixman_fixed_to_int (params[1]);
738 	int x_phase_bits = pixman_fixed_to_int (params[2]);
739 	int y_phase_bits = pixman_fixed_to_int (params[3]);
740 	int n_x_phases = (1 << x_phase_bits);
741 	int n_y_phases = (1 << y_phase_bits);
742 
743 	return_val_if_fail (
744 	    n_params == 4 + n_x_phases * width + n_y_phases * height, FALSE);
745     }
746 
747     new_params = NULL;
748     if (params)
749     {
750 	new_params = pixman_malloc_ab (n_params, sizeof (pixman_fixed_t));
751 	if (!new_params)
752 	    return FALSE;
753 
754 	memcpy (new_params,
755 	        params, n_params * sizeof (pixman_fixed_t));
756     }
757 
758     common->filter = filter;
759 
760     if (common->filter_params)
761 	free (common->filter_params);
762 
763     common->filter_params = new_params;
764     common->n_filter_params = n_params;
765 
766     image_property_changed (image);
767     return TRUE;
768 }
769 
770 PIXMAN_EXPORT void
pixman_image_set_source_clipping(pixman_image_t * image,pixman_bool_t clip_sources)771 pixman_image_set_source_clipping (pixman_image_t *image,
772                                   pixman_bool_t   clip_sources)
773 {
774     if (image->common.clip_sources == clip_sources)
775 	return;
776 
777     image->common.clip_sources = clip_sources;
778 
779     image_property_changed (image);
780 }
781 
782 /* Unlike all the other property setters, this function does not
783  * copy the content of indexed. Doing this copying is simply
784  * way, way too expensive.
785  */
786 PIXMAN_EXPORT void
pixman_image_set_indexed(pixman_image_t * image,const pixman_indexed_t * indexed)787 pixman_image_set_indexed (pixman_image_t *        image,
788                           const pixman_indexed_t *indexed)
789 {
790     bits_image_t *bits = (bits_image_t *)image;
791 
792     if (bits->indexed == indexed)
793 	return;
794 
795     bits->indexed = indexed;
796 
797     image_property_changed (image);
798 }
799 
800 PIXMAN_EXPORT void
pixman_image_set_alpha_map(pixman_image_t * image,pixman_image_t * alpha_map,int16_t x,int16_t y)801 pixman_image_set_alpha_map (pixman_image_t *image,
802                             pixman_image_t *alpha_map,
803                             int16_t         x,
804                             int16_t         y)
805 {
806     image_common_t *common = (image_common_t *)image;
807 
808     return_if_fail (!alpha_map || alpha_map->type == BITS);
809 
810     if (alpha_map && common->alpha_count > 0)
811     {
812 	/* If this image is being used as an alpha map itself,
813 	 * then you can't give it an alpha map of its own.
814 	 */
815 	return;
816     }
817 
818     if (alpha_map && alpha_map->common.alpha_map)
819     {
820 	/* If the image has an alpha map of its own,
821 	 * then it can't be used as an alpha map itself
822 	 */
823 	return;
824     }
825 
826     if (common->alpha_map != (bits_image_t *)alpha_map)
827     {
828 	if (common->alpha_map)
829 	{
830 	    common->alpha_map->common.alpha_count--;
831 
832 	    pixman_image_unref ((pixman_image_t *)common->alpha_map);
833 	}
834 
835 	if (alpha_map)
836 	{
837 	    common->alpha_map = (bits_image_t *)pixman_image_ref (alpha_map);
838 
839 	    common->alpha_map->common.alpha_count++;
840 	}
841 	else
842 	{
843 	    common->alpha_map = NULL;
844 	}
845     }
846 
847     common->alpha_origin_x = x;
848     common->alpha_origin_y = y;
849 
850     image_property_changed (image);
851 }
852 
853 PIXMAN_EXPORT void
pixman_image_set_component_alpha(pixman_image_t * image,pixman_bool_t component_alpha)854 pixman_image_set_component_alpha   (pixman_image_t *image,
855                                     pixman_bool_t   component_alpha)
856 {
857     if (image->common.component_alpha == component_alpha)
858 	return;
859 
860     image->common.component_alpha = component_alpha;
861 
862     image_property_changed (image);
863 }
864 
865 PIXMAN_EXPORT pixman_bool_t
pixman_image_get_component_alpha(pixman_image_t * image)866 pixman_image_get_component_alpha   (pixman_image_t       *image)
867 {
868     return image->common.component_alpha;
869 }
870 
871 PIXMAN_EXPORT void
pixman_image_set_accessors(pixman_image_t * image,pixman_read_memory_func_t read_func,pixman_write_memory_func_t write_func)872 pixman_image_set_accessors (pixman_image_t *           image,
873                             pixman_read_memory_func_t  read_func,
874                             pixman_write_memory_func_t write_func)
875 {
876     return_if_fail (image != NULL);
877 
878     if (image->type == BITS)
879     {
880 	/* Accessors only work for <= 32 bpp. */
881 	if (PIXMAN_FORMAT_BPP(image->bits.format) > 32)
882 	    return_if_fail (!read_func && !write_func);
883 
884 	image->bits.read_func = read_func;
885 	image->bits.write_func = write_func;
886 
887 	image_property_changed (image);
888     }
889 }
890 
891 PIXMAN_EXPORT uint32_t *
pixman_image_get_data(pixman_image_t * image)892 pixman_image_get_data (pixman_image_t *image)
893 {
894     if (image->type == BITS)
895 	return image->bits.bits;
896 
897     return NULL;
898 }
899 
900 PIXMAN_EXPORT int
pixman_image_get_width(pixman_image_t * image)901 pixman_image_get_width (pixman_image_t *image)
902 {
903     if (image->type == BITS)
904 	return image->bits.width;
905 
906     return 0;
907 }
908 
909 PIXMAN_EXPORT int
pixman_image_get_height(pixman_image_t * image)910 pixman_image_get_height (pixman_image_t *image)
911 {
912     if (image->type == BITS)
913 	return image->bits.height;
914 
915     return 0;
916 }
917 
918 PIXMAN_EXPORT int
pixman_image_get_stride(pixman_image_t * image)919 pixman_image_get_stride (pixman_image_t *image)
920 {
921     if (image->type == BITS)
922 	return image->bits.rowstride * (int) sizeof (uint32_t);
923 
924     return 0;
925 }
926 
927 PIXMAN_EXPORT int
pixman_image_get_depth(pixman_image_t * image)928 pixman_image_get_depth (pixman_image_t *image)
929 {
930     if (image->type == BITS)
931 	return PIXMAN_FORMAT_DEPTH (image->bits.format);
932 
933     return 0;
934 }
935 
936 PIXMAN_EXPORT pixman_format_code_t
pixman_image_get_format(pixman_image_t * image)937 pixman_image_get_format (pixman_image_t *image)
938 {
939     if (image->type == BITS)
940 	return image->bits.format;
941 
942     return PIXMAN_null;
943 }
944 
945 uint32_t
_pixman_image_get_solid(pixman_implementation_t * imp,pixman_image_t * image,pixman_format_code_t format)946 _pixman_image_get_solid (pixman_implementation_t *imp,
947 			 pixman_image_t *         image,
948                          pixman_format_code_t     format)
949 {
950     uint32_t result;
951 
952     if (image->type == SOLID)
953     {
954 	result = image->solid.color_32;
955     }
956     else if (image->type == BITS)
957     {
958 	if (image->bits.format == PIXMAN_a8r8g8b8)
959 	    result = image->bits.bits[0];
960 	else if (image->bits.format == PIXMAN_x8r8g8b8)
961 	    result = image->bits.bits[0] | 0xff000000;
962 	else if (image->bits.format == PIXMAN_a8)
963 	    result = (uint32_t)(*(uint8_t *)image->bits.bits) << 24;
964 	else
965 	    goto otherwise;
966     }
967     else
968     {
969 	pixman_iter_t iter;
970 
971     otherwise:
972 	_pixman_implementation_iter_init (
973 	    imp, &iter, image, 0, 0, 1, 1,
974 	    (uint8_t *)&result,
975 	    ITER_NARROW | ITER_SRC, image->common.flags);
976 
977 	result = *iter.get_scanline (&iter, NULL);
978 
979 	if (iter.fini)
980 	    iter.fini (&iter);
981     }
982 
983     /* If necessary, convert RGB <--> BGR. */
984     if (PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB
985 	&& PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB_SRGB)
986     {
987 	result = (((result & 0xff000000) >>  0) |
988 	          ((result & 0x00ff0000) >> 16) |
989 	          ((result & 0x0000ff00) >>  0) |
990 	          ((result & 0x000000ff) << 16));
991     }
992 
993     return result;
994 }
995