1 /*
2 * Copyright © 2000 SuSE, Inc.
3 * Copyright © 2007 Red Hat, Inc.
4 *
5 * Permission to use, copy, modify, distribute, and sell this software and its
6 * documentation for any purpose is hereby granted without fee, provided that
7 * the above copyright notice appear in all copies and that both that
8 * copyright notice and this permission notice appear in supporting
9 * documentation, and that the name of SuSE not be used in advertising or
10 * publicity pertaining to distribution of the software without specific,
11 * written prior permission. SuSE makes no representations about the
12 * suitability of this software for any purpose. It is provided "as is"
13 * without express or implied warranty.
14 *
15 * SuSE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE
17 * BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
19 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
20 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23 #ifdef HAVE_CONFIG_H
24 #include <config.h>
25 #endif
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <string.h>
30 #include <assert.h>
31
32 #include "pixman-private.h"
33
34 static const pixman_color_t transparent_black = { 0, 0, 0, 0 };
35
36 static void
gradient_property_changed(pixman_image_t * image)37 gradient_property_changed (pixman_image_t *image)
38 {
39 gradient_t *gradient = &image->gradient;
40 int n = gradient->n_stops;
41 pixman_gradient_stop_t *stops = gradient->stops;
42 pixman_gradient_stop_t *begin = &(gradient->stops[-1]);
43 pixman_gradient_stop_t *end = &(gradient->stops[n]);
44
45 switch (gradient->common.repeat)
46 {
47 default:
48 case PIXMAN_REPEAT_NONE:
49 begin->x = INT32_MIN;
50 begin->color = transparent_black;
51 end->x = INT32_MAX;
52 end->color = transparent_black;
53 break;
54
55 case PIXMAN_REPEAT_NORMAL:
56 begin->x = stops[n - 1].x - pixman_fixed_1;
57 begin->color = stops[n - 1].color;
58 end->x = stops[0].x + pixman_fixed_1;
59 end->color = stops[0].color;
60 break;
61
62 case PIXMAN_REPEAT_REFLECT:
63 begin->x = - stops[0].x;
64 begin->color = stops[0].color;
65 end->x = pixman_int_to_fixed (2) - stops[n - 1].x;
66 end->color = stops[n - 1].color;
67 break;
68
69 case PIXMAN_REPEAT_PAD:
70 begin->x = INT32_MIN;
71 begin->color = stops[0].color;
72 end->x = INT32_MAX;
73 end->color = stops[n - 1].color;
74 break;
75 }
76 }
77
78 pixman_bool_t
_pixman_init_gradient(gradient_t * gradient,const pixman_gradient_stop_t * stops,int n_stops)79 _pixman_init_gradient (gradient_t * gradient,
80 const pixman_gradient_stop_t *stops,
81 int n_stops)
82 {
83 return_val_if_fail (n_stops > 0, FALSE);
84
85 /* We allocate two extra stops, one before the beginning of the stop list,
86 * and one after the end. These stops are initialized to whatever color
87 * would be used for positions outside the range of the stop list.
88 *
89 * This saves a bit of computation in the gradient walker.
90 *
91 * The pointer we store in the gradient_t struct still points to the
92 * first user-supplied struct, so when freeing, we will have to
93 * subtract one.
94 */
95 gradient->stops =
96 pixman_malloc_ab (n_stops + 2, sizeof (pixman_gradient_stop_t));
97 if (!gradient->stops)
98 return FALSE;
99
100 gradient->stops += 1;
101 memcpy (gradient->stops, stops, n_stops * sizeof (pixman_gradient_stop_t));
102 gradient->n_stops = n_stops;
103
104 gradient->common.property_changed = gradient_property_changed;
105
106 return TRUE;
107 }
108
109 void
_pixman_image_init(pixman_image_t * image)110 _pixman_image_init (pixman_image_t *image)
111 {
112 image_common_t *common = &image->common;
113
114 pixman_region32_init (&common->clip_region);
115
116 common->alpha_count = 0;
117 common->have_clip_region = FALSE;
118 common->clip_sources = FALSE;
119 common->transform = NULL;
120 common->repeat = PIXMAN_REPEAT_NONE;
121 common->filter = PIXMAN_FILTER_NEAREST;
122 common->filter_params = NULL;
123 common->n_filter_params = 0;
124 common->alpha_map = NULL;
125 common->component_alpha = FALSE;
126 common->ref_count = 1;
127 common->property_changed = NULL;
128 common->client_clip = FALSE;
129 common->destroy_func = NULL;
130 common->destroy_data = NULL;
131 common->dirty = TRUE;
132 }
133
134 pixman_bool_t
_pixman_image_fini(pixman_image_t * image)135 _pixman_image_fini (pixman_image_t *image)
136 {
137 image_common_t *common = (image_common_t *)image;
138
139 common->ref_count--;
140
141 if (common->ref_count == 0)
142 {
143 if (image->common.destroy_func)
144 image->common.destroy_func (image, image->common.destroy_data);
145
146 pixman_region32_fini (&common->clip_region);
147
148 free (common->transform);
149 free (common->filter_params);
150
151 if (common->alpha_map)
152 pixman_image_unref ((pixman_image_t *)common->alpha_map);
153
154 if (image->type == LINEAR ||
155 image->type == RADIAL ||
156 image->type == CONICAL)
157 {
158 if (image->gradient.stops)
159 {
160 /* See _pixman_init_gradient() for an explanation of the - 1 */
161 free (image->gradient.stops - 1);
162 }
163
164 /* This will trigger if someone adds a property_changed
165 * method to the linear/radial/conical gradient overwriting
166 * the general one.
167 */
168 assert (
169 image->common.property_changed == gradient_property_changed);
170 }
171
172 if (image->type == BITS && image->bits.free_me)
173 free (image->bits.free_me);
174
175 return TRUE;
176 }
177
178 return FALSE;
179 }
180
181 pixman_image_t *
_pixman_image_allocate(void)182 _pixman_image_allocate (void)
183 {
184 pixman_image_t *image = malloc (sizeof (pixman_image_t));
185
186 if (image)
187 _pixman_image_init (image);
188
189 return image;
190 }
191
192 static void
image_property_changed(pixman_image_t * image)193 image_property_changed (pixman_image_t *image)
194 {
195 image->common.dirty = TRUE;
196 }
197
198 /* Ref Counting */
199 PIXMAN_EXPORT pixman_image_t *
pixman_image_ref(pixman_image_t * image)200 pixman_image_ref (pixman_image_t *image)
201 {
202 image->common.ref_count++;
203
204 return image;
205 }
206
207 /* returns TRUE when the image is freed */
208 PIXMAN_EXPORT pixman_bool_t
pixman_image_unref(pixman_image_t * image)209 pixman_image_unref (pixman_image_t *image)
210 {
211 if (_pixman_image_fini (image))
212 {
213 free (image);
214 return TRUE;
215 }
216
217 return FALSE;
218 }
219
220 PIXMAN_EXPORT void
pixman_image_set_destroy_function(pixman_image_t * image,pixman_image_destroy_func_t func,void * data)221 pixman_image_set_destroy_function (pixman_image_t * image,
222 pixman_image_destroy_func_t func,
223 void * data)
224 {
225 image->common.destroy_func = func;
226 image->common.destroy_data = data;
227 }
228
229 PIXMAN_EXPORT void *
pixman_image_get_destroy_data(pixman_image_t * image)230 pixman_image_get_destroy_data (pixman_image_t *image)
231 {
232 return image->common.destroy_data;
233 }
234
235 void
_pixman_image_reset_clip_region(pixman_image_t * image)236 _pixman_image_reset_clip_region (pixman_image_t *image)
237 {
238 image->common.have_clip_region = FALSE;
239 }
240
241 /* Executive Summary: This function is a no-op that only exists
242 * for historical reasons.
243 *
244 * There used to be a bug in the X server where it would rely on
245 * out-of-bounds accesses when it was asked to composite with a
246 * window as the source. It would create a pixman image pointing
247 * to some bogus position in memory, but then set a clip region
248 * to the position where the actual bits were.
249 *
250 * Due to a bug in old versions of pixman, where it would not clip
251 * against the image bounds when a clip region was set, this would
252 * actually work. So when the pixman bug was fixed, a workaround was
253 * added to allow certain out-of-bound accesses. This function disabled
254 * those workarounds.
255 *
256 * Since 0.21.2, pixman doesn't do these workarounds anymore, so now
257 * this function is a no-op.
258 */
259 PIXMAN_EXPORT void
pixman_disable_out_of_bounds_workaround(void)260 pixman_disable_out_of_bounds_workaround (void)
261 {
262 }
263
264 static void
compute_image_info(pixman_image_t * image)265 compute_image_info (pixman_image_t *image)
266 {
267 pixman_format_code_t code;
268 uint32_t flags = 0;
269
270 /* Transform */
271 if (!image->common.transform)
272 {
273 flags |= (FAST_PATH_ID_TRANSFORM |
274 FAST_PATH_X_UNIT_POSITIVE |
275 FAST_PATH_Y_UNIT_ZERO |
276 FAST_PATH_AFFINE_TRANSFORM);
277 }
278 else
279 {
280 flags |= FAST_PATH_HAS_TRANSFORM;
281
282 if (image->common.transform->matrix[2][0] == 0 &&
283 image->common.transform->matrix[2][1] == 0 &&
284 image->common.transform->matrix[2][2] == pixman_fixed_1)
285 {
286 flags |= FAST_PATH_AFFINE_TRANSFORM;
287
288 if (image->common.transform->matrix[0][1] == 0 &&
289 image->common.transform->matrix[1][0] == 0)
290 {
291 if (image->common.transform->matrix[0][0] == -pixman_fixed_1 &&
292 image->common.transform->matrix[1][1] == -pixman_fixed_1)
293 {
294 flags |= FAST_PATH_ROTATE_180_TRANSFORM;
295 }
296 flags |= FAST_PATH_SCALE_TRANSFORM;
297 }
298 else if (image->common.transform->matrix[0][0] == 0 &&
299 image->common.transform->matrix[1][1] == 0)
300 {
301 pixman_fixed_t m01 = image->common.transform->matrix[0][1];
302 pixman_fixed_t m10 = image->common.transform->matrix[1][0];
303
304 if (m01 == -pixman_fixed_1 && m10 == pixman_fixed_1)
305 flags |= FAST_PATH_ROTATE_90_TRANSFORM;
306 else if (m01 == pixman_fixed_1 && m10 == -pixman_fixed_1)
307 flags |= FAST_PATH_ROTATE_270_TRANSFORM;
308 }
309 }
310
311 if (image->common.transform->matrix[0][0] > 0)
312 flags |= FAST_PATH_X_UNIT_POSITIVE;
313
314 if (image->common.transform->matrix[1][0] == 0)
315 flags |= FAST_PATH_Y_UNIT_ZERO;
316 }
317
318 /* Filter */
319 switch (image->common.filter)
320 {
321 case PIXMAN_FILTER_NEAREST:
322 case PIXMAN_FILTER_FAST:
323 flags |= (FAST_PATH_NEAREST_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
324 break;
325
326 case PIXMAN_FILTER_BILINEAR:
327 case PIXMAN_FILTER_GOOD:
328 case PIXMAN_FILTER_BEST:
329 flags |= (FAST_PATH_BILINEAR_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
330
331 /* Here we have a chance to optimize BILINEAR filter to NEAREST if
332 * they are equivalent for the currently used transformation matrix.
333 */
334 if (flags & FAST_PATH_ID_TRANSFORM)
335 {
336 flags |= FAST_PATH_NEAREST_FILTER;
337 }
338 else if (flags & FAST_PATH_AFFINE_TRANSFORM)
339 {
340 /* Suppose the transform is
341 *
342 * [ t00, t01, t02 ]
343 * [ t10, t11, t12 ]
344 * [ 0, 0, 1 ]
345 *
346 * and the destination coordinates are (n + 0.5, m + 0.5). Then
347 * the transformed x coordinate is:
348 *
349 * tx = t00 * (n + 0.5) + t01 * (m + 0.5) + t02
350 * = t00 * n + t01 * m + t02 + (t00 + t01) * 0.5
351 *
352 * which implies that if t00, t01 and t02 are all integers
353 * and (t00 + t01) is odd, then tx will be an integer plus 0.5,
354 * which means a BILINEAR filter will reduce to NEAREST. The same
355 * applies in the y direction
356 */
357 pixman_fixed_t (*t)[3] = image->common.transform->matrix;
358
359 if ((pixman_fixed_frac (
360 t[0][0] | t[0][1] | t[0][2] |
361 t[1][0] | t[1][1] | t[1][2]) == 0) &&
362 (pixman_fixed_to_int (
363 (t[0][0] + t[0][1]) & (t[1][0] + t[1][1])) % 2) == 1)
364 {
365 /* FIXME: there are some affine-test failures, showing that
366 * handling of BILINEAR and NEAREST filter is not quite
367 * equivalent when getting close to 32K for the translation
368 * components of the matrix. That's likely some bug, but for
369 * now just skip BILINEAR->NEAREST optimization in this case.
370 */
371 pixman_fixed_t magic_limit = pixman_int_to_fixed (30000);
372 if (image->common.transform->matrix[0][2] <= magic_limit &&
373 image->common.transform->matrix[1][2] <= magic_limit &&
374 image->common.transform->matrix[0][2] >= -magic_limit &&
375 image->common.transform->matrix[1][2] >= -magic_limit)
376 {
377 flags |= FAST_PATH_NEAREST_FILTER;
378 }
379 }
380 }
381 break;
382
383 case PIXMAN_FILTER_CONVOLUTION:
384 break;
385
386 case PIXMAN_FILTER_SEPARABLE_CONVOLUTION:
387 flags |= FAST_PATH_SEPARABLE_CONVOLUTION_FILTER;
388 break;
389
390 default:
391 flags |= FAST_PATH_NO_CONVOLUTION_FILTER;
392 break;
393 }
394
395 /* Repeat mode */
396 switch (image->common.repeat)
397 {
398 case PIXMAN_REPEAT_NONE:
399 flags |=
400 FAST_PATH_NO_REFLECT_REPEAT |
401 FAST_PATH_NO_PAD_REPEAT |
402 FAST_PATH_NO_NORMAL_REPEAT;
403 break;
404
405 case PIXMAN_REPEAT_REFLECT:
406 flags |=
407 FAST_PATH_NO_PAD_REPEAT |
408 FAST_PATH_NO_NONE_REPEAT |
409 FAST_PATH_NO_NORMAL_REPEAT;
410 break;
411
412 case PIXMAN_REPEAT_PAD:
413 flags |=
414 FAST_PATH_NO_REFLECT_REPEAT |
415 FAST_PATH_NO_NONE_REPEAT |
416 FAST_PATH_NO_NORMAL_REPEAT;
417 break;
418
419 default:
420 flags |=
421 FAST_PATH_NO_REFLECT_REPEAT |
422 FAST_PATH_NO_PAD_REPEAT |
423 FAST_PATH_NO_NONE_REPEAT;
424 break;
425 }
426
427 /* Component alpha */
428 if (image->common.component_alpha)
429 flags |= FAST_PATH_COMPONENT_ALPHA;
430 else
431 flags |= FAST_PATH_UNIFIED_ALPHA;
432
433 flags |= (FAST_PATH_NO_ACCESSORS | FAST_PATH_NARROW_FORMAT);
434
435 /* Type specific checks */
436 switch (image->type)
437 {
438 case SOLID:
439 code = PIXMAN_solid;
440
441 if (image->solid.color.alpha == 0xffff)
442 flags |= FAST_PATH_IS_OPAQUE;
443 break;
444
445 case BITS:
446 if (image->bits.width == 1 &&
447 image->bits.height == 1 &&
448 image->common.repeat != PIXMAN_REPEAT_NONE)
449 {
450 code = PIXMAN_solid;
451 }
452 else
453 {
454 code = image->bits.format;
455 flags |= FAST_PATH_BITS_IMAGE;
456 }
457
458 if (!PIXMAN_FORMAT_A (image->bits.format) &&
459 PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_GRAY &&
460 PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_COLOR)
461 {
462 flags |= FAST_PATH_SAMPLES_OPAQUE;
463
464 if (image->common.repeat != PIXMAN_REPEAT_NONE)
465 flags |= FAST_PATH_IS_OPAQUE;
466 }
467
468 if (image->bits.read_func || image->bits.write_func)
469 flags &= ~FAST_PATH_NO_ACCESSORS;
470
471 if (PIXMAN_FORMAT_IS_WIDE (image->bits.format))
472 flags &= ~FAST_PATH_NARROW_FORMAT;
473 break;
474
475 case RADIAL:
476 code = PIXMAN_unknown;
477
478 /*
479 * As explained in pixman-radial-gradient.c, every point of
480 * the plane has a valid associated radius (and thus will be
481 * colored) if and only if a is negative (i.e. one of the two
482 * circles contains the other one).
483 */
484
485 if (image->radial.a >= 0)
486 break;
487
488 /* Fall through */
489
490 case CONICAL:
491 case LINEAR:
492 code = PIXMAN_unknown;
493
494 if (image->common.repeat != PIXMAN_REPEAT_NONE)
495 {
496 int i;
497
498 flags |= FAST_PATH_IS_OPAQUE;
499 for (i = 0; i < image->gradient.n_stops; ++i)
500 {
501 if (image->gradient.stops[i].color.alpha != 0xffff)
502 {
503 flags &= ~FAST_PATH_IS_OPAQUE;
504 break;
505 }
506 }
507 }
508 break;
509
510 default:
511 code = PIXMAN_unknown;
512 break;
513 }
514
515 /* Alpha maps are only supported for BITS images, so it's always
516 * safe to ignore their presense for non-BITS images
517 */
518 if (!image->common.alpha_map || image->type != BITS)
519 {
520 flags |= FAST_PATH_NO_ALPHA_MAP;
521 }
522 else
523 {
524 if (PIXMAN_FORMAT_IS_WIDE (image->common.alpha_map->format))
525 flags &= ~FAST_PATH_NARROW_FORMAT;
526 }
527
528 /* Both alpha maps and convolution filters can introduce
529 * non-opaqueness in otherwise opaque images. Also
530 * an image with component alpha turned on is only opaque
531 * if all channels are opaque, so we simply turn it off
532 * unconditionally for those images.
533 */
534 if (image->common.alpha_map ||
535 image->common.filter == PIXMAN_FILTER_CONVOLUTION ||
536 image->common.filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION ||
537 image->common.component_alpha)
538 {
539 flags &= ~(FAST_PATH_IS_OPAQUE | FAST_PATH_SAMPLES_OPAQUE);
540 }
541
542 image->common.flags = flags;
543 image->common.extended_format_code = code;
544 }
545
546 void
_pixman_image_validate(pixman_image_t * image)547 _pixman_image_validate (pixman_image_t *image)
548 {
549 if (image->common.dirty)
550 {
551 compute_image_info (image);
552
553 /* It is important that property_changed is
554 * called *after* compute_image_info() because
555 * property_changed() can make use of the flags
556 * to set up accessors etc.
557 */
558 if (image->common.property_changed)
559 image->common.property_changed (image);
560
561 image->common.dirty = FALSE;
562 }
563
564 if (image->common.alpha_map)
565 _pixman_image_validate ((pixman_image_t *)image->common.alpha_map);
566 }
567
568 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region32(pixman_image_t * image,pixman_region32_t * region)569 pixman_image_set_clip_region32 (pixman_image_t * image,
570 pixman_region32_t *region)
571 {
572 image_common_t *common = (image_common_t *)image;
573 pixman_bool_t result;
574
575 if (region)
576 {
577 if ((result = pixman_region32_copy (&common->clip_region, region)))
578 image->common.have_clip_region = TRUE;
579 }
580 else
581 {
582 _pixman_image_reset_clip_region (image);
583
584 result = TRUE;
585 }
586
587 image_property_changed (image);
588
589 return result;
590 }
591
592 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region(pixman_image_t * image,pixman_region16_t * region)593 pixman_image_set_clip_region (pixman_image_t * image,
594 pixman_region16_t *region)
595 {
596 image_common_t *common = (image_common_t *)image;
597 pixman_bool_t result;
598
599 if (region)
600 {
601 if ((result = pixman_region32_copy_from_region16 (&common->clip_region, region)))
602 image->common.have_clip_region = TRUE;
603 }
604 else
605 {
606 _pixman_image_reset_clip_region (image);
607
608 result = TRUE;
609 }
610
611 image_property_changed (image);
612
613 return result;
614 }
615
616 PIXMAN_EXPORT void
pixman_image_set_has_client_clip(pixman_image_t * image,pixman_bool_t client_clip)617 pixman_image_set_has_client_clip (pixman_image_t *image,
618 pixman_bool_t client_clip)
619 {
620 image->common.client_clip = client_clip;
621 }
622
623 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_transform(pixman_image_t * image,const pixman_transform_t * transform)624 pixman_image_set_transform (pixman_image_t * image,
625 const pixman_transform_t *transform)
626 {
627 static const pixman_transform_t id =
628 {
629 { { pixman_fixed_1, 0, 0 },
630 { 0, pixman_fixed_1, 0 },
631 { 0, 0, pixman_fixed_1 } }
632 };
633
634 image_common_t *common = (image_common_t *)image;
635 pixman_bool_t result;
636
637 if (common->transform == transform)
638 return TRUE;
639
640 if (!transform || memcmp (&id, transform, sizeof (pixman_transform_t)) == 0)
641 {
642 free (common->transform);
643 common->transform = NULL;
644 result = TRUE;
645
646 goto out;
647 }
648
649 if (common->transform &&
650 memcmp (common->transform, transform, sizeof (pixman_transform_t)) == 0)
651 {
652 return TRUE;
653 }
654
655 if (common->transform == NULL)
656 common->transform = malloc (sizeof (pixman_transform_t));
657
658 if (common->transform == NULL)
659 {
660 result = FALSE;
661
662 goto out;
663 }
664
665 memcpy (common->transform, transform, sizeof(pixman_transform_t));
666
667 result = TRUE;
668
669 out:
670 image_property_changed (image);
671
672 return result;
673 }
674
675 PIXMAN_EXPORT void
pixman_image_set_repeat(pixman_image_t * image,pixman_repeat_t repeat)676 pixman_image_set_repeat (pixman_image_t *image,
677 pixman_repeat_t repeat)
678 {
679 if (image->common.repeat == repeat)
680 return;
681
682 image->common.repeat = repeat;
683
684 image_property_changed (image);
685 }
686
687 PIXMAN_EXPORT void
pixman_image_set_dither(pixman_image_t * image,pixman_dither_t dither)688 pixman_image_set_dither (pixman_image_t *image,
689 pixman_dither_t dither)
690 {
691 if (image->type == BITS)
692 {
693 if (image->bits.dither == dither)
694 return;
695
696 image->bits.dither = dither;
697
698 image_property_changed (image);
699 }
700 }
701
702 PIXMAN_EXPORT void
pixman_image_set_dither_offset(pixman_image_t * image,int offset_x,int offset_y)703 pixman_image_set_dither_offset (pixman_image_t *image,
704 int offset_x,
705 int offset_y)
706 {
707 if (image->type == BITS)
708 {
709 if (image->bits.dither_offset_x == offset_x &&
710 image->bits.dither_offset_y == offset_y)
711 {
712 return;
713 }
714
715 image->bits.dither_offset_x = offset_x;
716 image->bits.dither_offset_y = offset_y;
717
718 image_property_changed (image);
719 }
720 }
721
722 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_filter(pixman_image_t * image,pixman_filter_t filter,const pixman_fixed_t * params,int n_params)723 pixman_image_set_filter (pixman_image_t * image,
724 pixman_filter_t filter,
725 const pixman_fixed_t *params,
726 int n_params)
727 {
728 image_common_t *common = (image_common_t *)image;
729 pixman_fixed_t *new_params;
730
731 if (params == common->filter_params && filter == common->filter)
732 return TRUE;
733
734 if (filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION)
735 {
736 int width = pixman_fixed_to_int (params[0]);
737 int height = pixman_fixed_to_int (params[1]);
738 int x_phase_bits = pixman_fixed_to_int (params[2]);
739 int y_phase_bits = pixman_fixed_to_int (params[3]);
740 int n_x_phases = (1 << x_phase_bits);
741 int n_y_phases = (1 << y_phase_bits);
742
743 return_val_if_fail (
744 n_params == 4 + n_x_phases * width + n_y_phases * height, FALSE);
745 }
746
747 new_params = NULL;
748 if (params)
749 {
750 new_params = pixman_malloc_ab (n_params, sizeof (pixman_fixed_t));
751 if (!new_params)
752 return FALSE;
753
754 memcpy (new_params,
755 params, n_params * sizeof (pixman_fixed_t));
756 }
757
758 common->filter = filter;
759
760 if (common->filter_params)
761 free (common->filter_params);
762
763 common->filter_params = new_params;
764 common->n_filter_params = n_params;
765
766 image_property_changed (image);
767 return TRUE;
768 }
769
770 PIXMAN_EXPORT void
pixman_image_set_source_clipping(pixman_image_t * image,pixman_bool_t clip_sources)771 pixman_image_set_source_clipping (pixman_image_t *image,
772 pixman_bool_t clip_sources)
773 {
774 if (image->common.clip_sources == clip_sources)
775 return;
776
777 image->common.clip_sources = clip_sources;
778
779 image_property_changed (image);
780 }
781
782 /* Unlike all the other property setters, this function does not
783 * copy the content of indexed. Doing this copying is simply
784 * way, way too expensive.
785 */
786 PIXMAN_EXPORT void
pixman_image_set_indexed(pixman_image_t * image,const pixman_indexed_t * indexed)787 pixman_image_set_indexed (pixman_image_t * image,
788 const pixman_indexed_t *indexed)
789 {
790 bits_image_t *bits = (bits_image_t *)image;
791
792 if (bits->indexed == indexed)
793 return;
794
795 bits->indexed = indexed;
796
797 image_property_changed (image);
798 }
799
800 PIXMAN_EXPORT void
pixman_image_set_alpha_map(pixman_image_t * image,pixman_image_t * alpha_map,int16_t x,int16_t y)801 pixman_image_set_alpha_map (pixman_image_t *image,
802 pixman_image_t *alpha_map,
803 int16_t x,
804 int16_t y)
805 {
806 image_common_t *common = (image_common_t *)image;
807
808 return_if_fail (!alpha_map || alpha_map->type == BITS);
809
810 if (alpha_map && common->alpha_count > 0)
811 {
812 /* If this image is being used as an alpha map itself,
813 * then you can't give it an alpha map of its own.
814 */
815 return;
816 }
817
818 if (alpha_map && alpha_map->common.alpha_map)
819 {
820 /* If the image has an alpha map of its own,
821 * then it can't be used as an alpha map itself
822 */
823 return;
824 }
825
826 if (common->alpha_map != (bits_image_t *)alpha_map)
827 {
828 if (common->alpha_map)
829 {
830 common->alpha_map->common.alpha_count--;
831
832 pixman_image_unref ((pixman_image_t *)common->alpha_map);
833 }
834
835 if (alpha_map)
836 {
837 common->alpha_map = (bits_image_t *)pixman_image_ref (alpha_map);
838
839 common->alpha_map->common.alpha_count++;
840 }
841 else
842 {
843 common->alpha_map = NULL;
844 }
845 }
846
847 common->alpha_origin_x = x;
848 common->alpha_origin_y = y;
849
850 image_property_changed (image);
851 }
852
853 PIXMAN_EXPORT void
pixman_image_set_component_alpha(pixman_image_t * image,pixman_bool_t component_alpha)854 pixman_image_set_component_alpha (pixman_image_t *image,
855 pixman_bool_t component_alpha)
856 {
857 if (image->common.component_alpha == component_alpha)
858 return;
859
860 image->common.component_alpha = component_alpha;
861
862 image_property_changed (image);
863 }
864
865 PIXMAN_EXPORT pixman_bool_t
pixman_image_get_component_alpha(pixman_image_t * image)866 pixman_image_get_component_alpha (pixman_image_t *image)
867 {
868 return image->common.component_alpha;
869 }
870
871 PIXMAN_EXPORT void
pixman_image_set_accessors(pixman_image_t * image,pixman_read_memory_func_t read_func,pixman_write_memory_func_t write_func)872 pixman_image_set_accessors (pixman_image_t * image,
873 pixman_read_memory_func_t read_func,
874 pixman_write_memory_func_t write_func)
875 {
876 return_if_fail (image != NULL);
877
878 if (image->type == BITS)
879 {
880 /* Accessors only work for <= 32 bpp. */
881 if (PIXMAN_FORMAT_BPP(image->bits.format) > 32)
882 return_if_fail (!read_func && !write_func);
883
884 image->bits.read_func = read_func;
885 image->bits.write_func = write_func;
886
887 image_property_changed (image);
888 }
889 }
890
891 PIXMAN_EXPORT uint32_t *
pixman_image_get_data(pixman_image_t * image)892 pixman_image_get_data (pixman_image_t *image)
893 {
894 if (image->type == BITS)
895 return image->bits.bits;
896
897 return NULL;
898 }
899
900 PIXMAN_EXPORT int
pixman_image_get_width(pixman_image_t * image)901 pixman_image_get_width (pixman_image_t *image)
902 {
903 if (image->type == BITS)
904 return image->bits.width;
905
906 return 0;
907 }
908
909 PIXMAN_EXPORT int
pixman_image_get_height(pixman_image_t * image)910 pixman_image_get_height (pixman_image_t *image)
911 {
912 if (image->type == BITS)
913 return image->bits.height;
914
915 return 0;
916 }
917
918 PIXMAN_EXPORT int
pixman_image_get_stride(pixman_image_t * image)919 pixman_image_get_stride (pixman_image_t *image)
920 {
921 if (image->type == BITS)
922 return image->bits.rowstride * (int) sizeof (uint32_t);
923
924 return 0;
925 }
926
927 PIXMAN_EXPORT int
pixman_image_get_depth(pixman_image_t * image)928 pixman_image_get_depth (pixman_image_t *image)
929 {
930 if (image->type == BITS)
931 return PIXMAN_FORMAT_DEPTH (image->bits.format);
932
933 return 0;
934 }
935
936 PIXMAN_EXPORT pixman_format_code_t
pixman_image_get_format(pixman_image_t * image)937 pixman_image_get_format (pixman_image_t *image)
938 {
939 if (image->type == BITS)
940 return image->bits.format;
941
942 return PIXMAN_null;
943 }
944
945 uint32_t
_pixman_image_get_solid(pixman_implementation_t * imp,pixman_image_t * image,pixman_format_code_t format)946 _pixman_image_get_solid (pixman_implementation_t *imp,
947 pixman_image_t * image,
948 pixman_format_code_t format)
949 {
950 uint32_t result;
951
952 if (image->type == SOLID)
953 {
954 result = image->solid.color_32;
955 }
956 else if (image->type == BITS)
957 {
958 if (image->bits.format == PIXMAN_a8r8g8b8)
959 result = image->bits.bits[0];
960 else if (image->bits.format == PIXMAN_x8r8g8b8)
961 result = image->bits.bits[0] | 0xff000000;
962 else if (image->bits.format == PIXMAN_a8)
963 result = (uint32_t)(*(uint8_t *)image->bits.bits) << 24;
964 else
965 goto otherwise;
966 }
967 else
968 {
969 pixman_iter_t iter;
970
971 otherwise:
972 _pixman_implementation_iter_init (
973 imp, &iter, image, 0, 0, 1, 1,
974 (uint8_t *)&result,
975 ITER_NARROW | ITER_SRC, image->common.flags);
976
977 result = *iter.get_scanline (&iter, NULL);
978
979 if (iter.fini)
980 iter.fini (&iter);
981 }
982
983 /* If necessary, convert RGB <--> BGR. */
984 if (PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB
985 && PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB_SRGB)
986 {
987 result = (((result & 0xff000000) >> 0) |
988 ((result & 0x00ff0000) >> 16) |
989 ((result & 0x0000ff00) >> 0) |
990 ((result & 0x000000ff) << 16));
991 }
992
993 return result;
994 }
995