• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Contains generic JIT-linker types.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
14 #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
15 
16 #include "JITLinkMemoryManager.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/ExecutionEngine/JITSymbol.h"
22 #include "llvm/Support/Allocator.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Support/FormatVariadic.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/Memory.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 
30 #include <map>
31 #include <string>
32 #include <system_error>
33 
34 namespace llvm {
35 namespace jitlink {
36 
37 class Symbol;
38 class Section;
39 
40 /// Base class for errors originating in JIT linker, e.g. missing relocation
41 /// support.
42 class JITLinkError : public ErrorInfo<JITLinkError> {
43 public:
44   static char ID;
45 
JITLinkError(Twine ErrMsg)46   JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
47 
48   void log(raw_ostream &OS) const override;
getErrorMessage()49   const std::string &getErrorMessage() const { return ErrMsg; }
50   std::error_code convertToErrorCode() const override;
51 
52 private:
53   std::string ErrMsg;
54 };
55 
56 /// Represents fixups and constraints in the LinkGraph.
57 class Edge {
58 public:
59   using Kind = uint8_t;
60 
61   enum GenericEdgeKind : Kind {
62     Invalid,                    // Invalid edge value.
63     FirstKeepAlive,             // Keeps target alive. Offset/addend zero.
64     KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
65     FirstRelocation             // First architecture specific relocation.
66   };
67 
68   using OffsetT = uint32_t;
69   using AddendT = int64_t;
70 
Edge(Kind K,OffsetT Offset,Symbol & Target,AddendT Addend)71   Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
72       : Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
73 
getOffset()74   OffsetT getOffset() const { return Offset; }
setOffset(OffsetT Offset)75   void setOffset(OffsetT Offset) { this->Offset = Offset; }
getKind()76   Kind getKind() const { return K; }
setKind(Kind K)77   void setKind(Kind K) { this->K = K; }
isRelocation()78   bool isRelocation() const { return K >= FirstRelocation; }
getRelocation()79   Kind getRelocation() const {
80     assert(isRelocation() && "Not a relocation edge");
81     return K - FirstRelocation;
82   }
isKeepAlive()83   bool isKeepAlive() const { return K >= FirstKeepAlive; }
getTarget()84   Symbol &getTarget() const { return *Target; }
setTarget(Symbol & Target)85   void setTarget(Symbol &Target) { this->Target = &Target; }
getAddend()86   AddendT getAddend() const { return Addend; }
setAddend(AddendT Addend)87   void setAddend(AddendT Addend) { this->Addend = Addend; }
88 
89 private:
90   Symbol *Target = nullptr;
91   OffsetT Offset = 0;
92   AddendT Addend = 0;
93   Kind K = 0;
94 };
95 
96 /// Returns the string name of the given generic edge kind, or "unknown"
97 /// otherwise. Useful for debugging.
98 const char *getGenericEdgeKindName(Edge::Kind K);
99 
100 /// Base class for Addressable entities (externals, absolutes, blocks).
101 class Addressable {
102   friend class LinkGraph;
103 
104 protected:
Addressable(JITTargetAddress Address,bool IsDefined)105   Addressable(JITTargetAddress Address, bool IsDefined)
106       : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
107 
Addressable(JITTargetAddress Address)108   Addressable(JITTargetAddress Address)
109       : Address(Address), IsDefined(false), IsAbsolute(true) {
110     assert(!(IsDefined && IsAbsolute) &&
111            "Block cannot be both defined and absolute");
112   }
113 
114 public:
115   Addressable(const Addressable &) = delete;
116   Addressable &operator=(const Addressable &) = default;
117   Addressable(Addressable &&) = delete;
118   Addressable &operator=(Addressable &&) = default;
119 
getAddress()120   JITTargetAddress getAddress() const { return Address; }
setAddress(JITTargetAddress Address)121   void setAddress(JITTargetAddress Address) { this->Address = Address; }
122 
123   /// Returns true if this is a defined addressable, in which case you
124   /// can downcast this to a .
isDefined()125   bool isDefined() const { return static_cast<bool>(IsDefined); }
isAbsolute()126   bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
127 
128 private:
129   JITTargetAddress Address = 0;
130   uint64_t IsDefined : 1;
131   uint64_t IsAbsolute : 1;
132 };
133 
134 using SectionOrdinal = unsigned;
135 
136 /// An Addressable with content and edges.
137 class Block : public Addressable {
138   friend class LinkGraph;
139 
140 private:
141   /// Create a zero-fill defined addressable.
Block(Section & Parent,JITTargetAddress Size,JITTargetAddress Address,uint64_t Alignment,uint64_t AlignmentOffset)142   Block(Section &Parent, JITTargetAddress Size, JITTargetAddress Address,
143         uint64_t Alignment, uint64_t AlignmentOffset)
144       : Addressable(Address, true), Parent(Parent), Size(Size) {
145     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
146     assert(AlignmentOffset < Alignment &&
147            "Alignment offset cannot exceed alignment");
148     assert(AlignmentOffset <= MaxAlignmentOffset &&
149            "Alignment offset exceeds maximum");
150     P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
151     this->AlignmentOffset = AlignmentOffset;
152   }
153 
154   /// Create a defined addressable for the given content.
Block(Section & Parent,StringRef Content,JITTargetAddress Address,uint64_t Alignment,uint64_t AlignmentOffset)155   Block(Section &Parent, StringRef Content, JITTargetAddress Address,
156         uint64_t Alignment, uint64_t AlignmentOffset)
157       : Addressable(Address, true), Parent(Parent), Data(Content.data()),
158         Size(Content.size()) {
159     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
160     assert(AlignmentOffset < Alignment &&
161            "Alignment offset cannot exceed alignment");
162     assert(AlignmentOffset <= MaxAlignmentOffset &&
163            "Alignment offset exceeds maximum");
164     P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
165     this->AlignmentOffset = AlignmentOffset;
166   }
167 
168 public:
169   using EdgeVector = std::vector<Edge>;
170   using edge_iterator = EdgeVector::iterator;
171   using const_edge_iterator = EdgeVector::const_iterator;
172 
173   Block(const Block &) = delete;
174   Block &operator=(const Block &) = delete;
175   Block(Block &&) = delete;
176   Block &operator=(Block &&) = delete;
177 
178   /// Return the parent section for this block.
getSection()179   Section &getSection() const { return Parent; }
180 
181   /// Returns true if this is a zero-fill block.
182   ///
183   /// If true, getSize is callable but getContent is not (the content is
184   /// defined to be a sequence of zero bytes of length Size).
isZeroFill()185   bool isZeroFill() const { return !Data; }
186 
187   /// Returns the size of this defined addressable.
getSize()188   size_t getSize() const { return Size; }
189 
190   /// Get the content for this block. Block must not be a zero-fill block.
getContent()191   StringRef getContent() const {
192     assert(Data && "Section does not contain content");
193     return StringRef(Data, Size);
194   }
195 
196   /// Set the content for this block.
197   /// Caller is responsible for ensuring the underlying bytes are not
198   /// deallocated while pointed to by this block.
setContent(StringRef Content)199   void setContent(StringRef Content) {
200     Data = Content.data();
201     Size = Content.size();
202   }
203 
204   /// Get the alignment for this content.
getAlignment()205   uint64_t getAlignment() const { return 1ull << P2Align; }
206 
207   /// Set the alignment for this content.
setAlignment(uint64_t Alignment)208   void setAlignment(uint64_t Alignment) {
209     assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two");
210     P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
211   }
212 
213   /// Get the alignment offset for this content.
getAlignmentOffset()214   uint64_t getAlignmentOffset() const { return AlignmentOffset; }
215 
216   /// Set the alignment offset for this content.
setAlignmentOffset(uint64_t AlignmentOffset)217   void setAlignmentOffset(uint64_t AlignmentOffset) {
218     assert(AlignmentOffset < (1ull << P2Align) &&
219            "Alignment offset can't exceed alignment");
220     this->AlignmentOffset = AlignmentOffset;
221   }
222 
223   /// Add an edge to this block.
addEdge(Edge::Kind K,Edge::OffsetT Offset,Symbol & Target,Edge::AddendT Addend)224   void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target,
225                Edge::AddendT Addend) {
226     Edges.push_back(Edge(K, Offset, Target, Addend));
227   }
228 
229   /// Add an edge by copying an existing one. This is typically used when
230   /// moving edges between blocks.
addEdge(const Edge & E)231   void addEdge(const Edge &E) { Edges.push_back(E); }
232 
233   /// Return the list of edges attached to this content.
edges()234   iterator_range<edge_iterator> edges() {
235     return make_range(Edges.begin(), Edges.end());
236   }
237 
238   /// Returns the list of edges attached to this content.
edges()239   iterator_range<const_edge_iterator> edges() const {
240     return make_range(Edges.begin(), Edges.end());
241   }
242 
243   /// Return the size of the edges list.
edges_size()244   size_t edges_size() const { return Edges.size(); }
245 
246   /// Returns true if the list of edges is empty.
edges_empty()247   bool edges_empty() const { return Edges.empty(); }
248 
249   /// Remove the edge pointed to by the given iterator.
250   /// Invalidates all iterators that point to or past the given one.
removeEdge(const_edge_iterator I)251   void removeEdge(const_edge_iterator I) { Edges.erase(I); }
252 
253 private:
254   static constexpr uint64_t MaxAlignmentOffset = (1ULL << 57) - 1;
255 
256   uint64_t P2Align : 5;
257   uint64_t AlignmentOffset : 57;
258   Section &Parent;
259   const char *Data = nullptr;
260   size_t Size = 0;
261   std::vector<Edge> Edges;
262 };
263 
264 /// Describes symbol linkage. This can be used to make resolve definition
265 /// clashes.
266 enum class Linkage : uint8_t {
267   Strong,
268   Weak,
269 };
270 
271 /// For errors and debugging output.
272 const char *getLinkageName(Linkage L);
273 
274 /// Defines the scope in which this symbol should be visible:
275 ///   Default -- Visible in the public interface of the linkage unit.
276 ///   Hidden -- Visible within the linkage unit, but not exported from it.
277 ///   Local -- Visible only within the LinkGraph.
278 enum class Scope : uint8_t { Default, Hidden, Local };
279 
280 /// For debugging output.
281 const char *getScopeName(Scope S);
282 
283 raw_ostream &operator<<(raw_ostream &OS, const Block &B);
284 
285 /// Symbol representation.
286 ///
287 /// Symbols represent locations within Addressable objects.
288 /// They can be either Named or Anonymous.
289 /// Anonymous symbols have neither linkage nor visibility, and must point at
290 /// ContentBlocks.
291 /// Named symbols may be in one of four states:
292 ///   - Null: Default initialized. Assignable, but otherwise unusable.
293 ///   - Defined: Has both linkage and visibility and points to a ContentBlock
294 ///   - Common: Has both linkage and visibility, points to a null Addressable.
295 ///   - External: Has neither linkage nor visibility, points to an external
296 ///     Addressable.
297 ///
298 class Symbol {
299   friend class LinkGraph;
300 
301 private:
Symbol(Addressable & Base,JITTargetAddress Offset,StringRef Name,JITTargetAddress Size,Linkage L,Scope S,bool IsLive,bool IsCallable)302   Symbol(Addressable &Base, JITTargetAddress Offset, StringRef Name,
303          JITTargetAddress Size, Linkage L, Scope S, bool IsLive,
304          bool IsCallable)
305       : Name(Name), Base(&Base), Offset(Offset), Size(Size) {
306     assert(Offset <= MaxOffset && "Offset out of range");
307     setLinkage(L);
308     setScope(S);
309     setLive(IsLive);
310     setCallable(IsCallable);
311   }
312 
constructCommon(void * SymStorage,Block & Base,StringRef Name,JITTargetAddress Size,Scope S,bool IsLive)313   static Symbol &constructCommon(void *SymStorage, Block &Base, StringRef Name,
314                                  JITTargetAddress Size, Scope S, bool IsLive) {
315     assert(SymStorage && "Storage cannot be null");
316     assert(!Name.empty() && "Common symbol name cannot be empty");
317     assert(Base.isDefined() &&
318            "Cannot create common symbol from undefined block");
319     assert(static_cast<Block &>(Base).getSize() == Size &&
320            "Common symbol size should match underlying block size");
321     auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
322     new (Sym) Symbol(Base, 0, Name, Size, Linkage::Weak, S, IsLive, false);
323     return *Sym;
324   }
325 
constructExternal(void * SymStorage,Addressable & Base,StringRef Name,JITTargetAddress Size,Linkage L)326   static Symbol &constructExternal(void *SymStorage, Addressable &Base,
327                                    StringRef Name, JITTargetAddress Size,
328                                    Linkage L) {
329     assert(SymStorage && "Storage cannot be null");
330     assert(!Base.isDefined() &&
331            "Cannot create external symbol from defined block");
332     assert(!Name.empty() && "External symbol name cannot be empty");
333     auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
334     new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false);
335     return *Sym;
336   }
337 
constructAbsolute(void * SymStorage,Addressable & Base,StringRef Name,JITTargetAddress Size,Linkage L,Scope S,bool IsLive)338   static Symbol &constructAbsolute(void *SymStorage, Addressable &Base,
339                                    StringRef Name, JITTargetAddress Size,
340                                    Linkage L, Scope S, bool IsLive) {
341     assert(SymStorage && "Storage cannot be null");
342     assert(!Base.isDefined() &&
343            "Cannot create absolute symbol from a defined block");
344     auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
345     new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false);
346     return *Sym;
347   }
348 
constructAnonDef(void * SymStorage,Block & Base,JITTargetAddress Offset,JITTargetAddress Size,bool IsCallable,bool IsLive)349   static Symbol &constructAnonDef(void *SymStorage, Block &Base,
350                                   JITTargetAddress Offset,
351                                   JITTargetAddress Size, bool IsCallable,
352                                   bool IsLive) {
353     assert(SymStorage && "Storage cannot be null");
354     assert(Offset < Base.getSize() && "Symbol offset is outside block");
355     auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
356     new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong,
357                      Scope::Local, IsLive, IsCallable);
358     return *Sym;
359   }
360 
constructNamedDef(void * SymStorage,Block & Base,JITTargetAddress Offset,StringRef Name,JITTargetAddress Size,Linkage L,Scope S,bool IsLive,bool IsCallable)361   static Symbol &constructNamedDef(void *SymStorage, Block &Base,
362                                    JITTargetAddress Offset, StringRef Name,
363                                    JITTargetAddress Size, Linkage L, Scope S,
364                                    bool IsLive, bool IsCallable) {
365     assert(SymStorage && "Storage cannot be null");
366     assert(Offset < Base.getSize() && "Symbol offset is outside block");
367     assert(!Name.empty() && "Name cannot be empty");
368     auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
369     new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable);
370     return *Sym;
371   }
372 
373 public:
374   /// Create a null Symbol. This allows Symbols to be default initialized for
375   /// use in containers (e.g. as map values). Null symbols are only useful for
376   /// assigning to.
377   Symbol() = default;
378 
379   // Symbols are not movable or copyable.
380   Symbol(const Symbol &) = delete;
381   Symbol &operator=(const Symbol &) = delete;
382   Symbol(Symbol &&) = delete;
383   Symbol &operator=(Symbol &&) = delete;
384 
385   /// Returns true if this symbol has a name.
hasName()386   bool hasName() const { return !Name.empty(); }
387 
388   /// Returns the name of this symbol (empty if the symbol is anonymous).
getName()389   StringRef getName() const {
390     assert((!Name.empty() || getScope() == Scope::Local) &&
391            "Anonymous symbol has non-local scope");
392     return Name;
393   }
394 
395   /// Returns true if this Symbol has content (potentially) defined within this
396   /// object file (i.e. is anything but an external or absolute symbol).
isDefined()397   bool isDefined() const {
398     assert(Base && "Attempt to access null symbol");
399     return Base->isDefined();
400   }
401 
402   /// Returns true if this symbol is live (i.e. should be treated as a root for
403   /// dead stripping).
isLive()404   bool isLive() const {
405     assert(Base && "Attempting to access null symbol");
406     return IsLive;
407   }
408 
409   /// Set this symbol's live bit.
setLive(bool IsLive)410   void setLive(bool IsLive) { this->IsLive = IsLive; }
411 
412   /// Returns true is this symbol is callable.
isCallable()413   bool isCallable() const { return IsCallable; }
414 
415   /// Set this symbol's callable bit.
setCallable(bool IsCallable)416   void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
417 
418   /// Returns true if the underlying addressable is an unresolved external.
isExternal()419   bool isExternal() const {
420     assert(Base && "Attempt to access null symbol");
421     return !Base->isDefined() && !Base->isAbsolute();
422   }
423 
424   /// Returns true if the underlying addressable is an absolute symbol.
isAbsolute()425   bool isAbsolute() const {
426     assert(Base && "Attempt to access null symbol");
427     return !Base->isDefined() && Base->isAbsolute();
428   }
429 
430   /// Return the addressable that this symbol points to.
getAddressable()431   Addressable &getAddressable() {
432     assert(Base && "Cannot get underlying addressable for null symbol");
433     return *Base;
434   }
435 
436   /// Return the addressable that thsi symbol points to.
getAddressable()437   const Addressable &getAddressable() const {
438     assert(Base && "Cannot get underlying addressable for null symbol");
439     return *Base;
440   }
441 
442   /// Return the Block for this Symbol (Symbol must be defined).
getBlock()443   Block &getBlock() {
444     assert(Base && "Cannot get block for null symbol");
445     assert(Base->isDefined() && "Not a defined symbol");
446     return static_cast<Block &>(*Base);
447   }
448 
449   /// Return the Block for this Symbol (Symbol must be defined).
getBlock()450   const Block &getBlock() const {
451     assert(Base && "Cannot get block for null symbol");
452     assert(Base->isDefined() && "Not a defined symbol");
453     return static_cast<const Block &>(*Base);
454   }
455 
456   /// Returns the offset for this symbol within the underlying addressable.
getOffset()457   JITTargetAddress getOffset() const { return Offset; }
458 
459   /// Returns the address of this symbol.
getAddress()460   JITTargetAddress getAddress() const { return Base->getAddress() + Offset; }
461 
462   /// Returns the size of this symbol.
getSize()463   JITTargetAddress getSize() const { return Size; }
464 
465   /// Returns true if this symbol is backed by a zero-fill block.
466   /// This method may only be called on defined symbols.
isSymbolZeroFill()467   bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
468 
469   /// Returns the content in the underlying block covered by this symbol.
470   /// This method may only be called on defined non-zero-fill symbols.
getSymbolContent()471   StringRef getSymbolContent() const {
472     return getBlock().getContent().substr(Offset, Size);
473   }
474 
475   /// Get the linkage for this Symbol.
getLinkage()476   Linkage getLinkage() const { return static_cast<Linkage>(L); }
477 
478   /// Set the linkage for this Symbol.
setLinkage(Linkage L)479   void setLinkage(Linkage L) {
480     assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) &&
481            "Linkage can only be applied to defined named symbols");
482     this->L = static_cast<uint8_t>(L);
483   }
484 
485   /// Get the visibility for this Symbol.
getScope()486   Scope getScope() const { return static_cast<Scope>(S); }
487 
488   /// Set the visibility for this Symbol.
setScope(Scope S)489   void setScope(Scope S) {
490     assert((S == Scope::Default || Base->isDefined() || Base->isAbsolute()) &&
491            "Invalid visibility for symbol type");
492     this->S = static_cast<uint8_t>(S);
493   }
494 
495 private:
makeExternal(Addressable & A)496   void makeExternal(Addressable &A) {
497     assert(!A.isDefined() && "Attempting to make external with defined block");
498     Base = &A;
499     Offset = 0;
500     setLinkage(Linkage::Strong);
501     setScope(Scope::Default);
502     IsLive = 0;
503     // note: Size and IsCallable fields left unchanged.
504   }
505 
setBlock(Block & B)506   void setBlock(Block &B) { Base = &B; }
507 
setOffset(uint64_t NewOffset)508   void setOffset(uint64_t NewOffset) {
509     assert(NewOffset <= MaxOffset && "Offset out of range");
510     Offset = NewOffset;
511   }
512 
513   static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
514 
515   // FIXME: A char* or SymbolStringPtr may pack better.
516   StringRef Name;
517   Addressable *Base = nullptr;
518   uint64_t Offset : 59;
519   uint64_t L : 1;
520   uint64_t S : 2;
521   uint64_t IsLive : 1;
522   uint64_t IsCallable : 1;
523   JITTargetAddress Size = 0;
524 };
525 
526 raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
527 
528 void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
529                StringRef EdgeKindName);
530 
531 /// Represents an object file section.
532 class Section {
533   friend class LinkGraph;
534 
535 private:
Section(StringRef Name,sys::Memory::ProtectionFlags Prot,SectionOrdinal SecOrdinal)536   Section(StringRef Name, sys::Memory::ProtectionFlags Prot,
537           SectionOrdinal SecOrdinal)
538       : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
539 
540   using SymbolSet = DenseSet<Symbol *>;
541   using BlockSet = DenseSet<Block *>;
542 
543 public:
544   using symbol_iterator = SymbolSet::iterator;
545   using const_symbol_iterator = SymbolSet::const_iterator;
546 
547   using block_iterator = BlockSet::iterator;
548   using const_block_iterator = BlockSet::const_iterator;
549 
550   ~Section();
551 
552   /// Returns the name of this section.
getName()553   StringRef getName() const { return Name; }
554 
555   /// Returns the protection flags for this section.
getProtectionFlags()556   sys::Memory::ProtectionFlags getProtectionFlags() const { return Prot; }
557 
558   /// Returns the ordinal for this section.
getOrdinal()559   SectionOrdinal getOrdinal() const { return SecOrdinal; }
560 
561   /// Returns an iterator over the blocks defined in this section.
blocks()562   iterator_range<block_iterator> blocks() {
563     return make_range(Blocks.begin(), Blocks.end());
564   }
565 
566   /// Returns an iterator over the blocks defined in this section.
blocks()567   iterator_range<const_block_iterator> blocks() const {
568     return make_range(Blocks.begin(), Blocks.end());
569   }
570 
571   /// Returns an iterator over the symbols defined in this section.
symbols()572   iterator_range<symbol_iterator> symbols() {
573     return make_range(Symbols.begin(), Symbols.end());
574   }
575 
576   /// Returns an iterator over the symbols defined in this section.
symbols()577   iterator_range<const_symbol_iterator> symbols() const {
578     return make_range(Symbols.begin(), Symbols.end());
579   }
580 
581   /// Return the number of symbols in this section.
symbols_size()582   SymbolSet::size_type symbols_size() { return Symbols.size(); }
583 
584 private:
addSymbol(Symbol & Sym)585   void addSymbol(Symbol &Sym) {
586     assert(!Symbols.count(&Sym) && "Symbol is already in this section");
587     Symbols.insert(&Sym);
588   }
589 
removeSymbol(Symbol & Sym)590   void removeSymbol(Symbol &Sym) {
591     assert(Symbols.count(&Sym) && "symbol is not in this section");
592     Symbols.erase(&Sym);
593   }
594 
addBlock(Block & B)595   void addBlock(Block &B) {
596     assert(!Blocks.count(&B) && "Block is already in this section");
597     Blocks.insert(&B);
598   }
599 
removeBlock(Block & B)600   void removeBlock(Block &B) {
601     assert(Blocks.count(&B) && "Block is not in this section");
602     Blocks.erase(&B);
603   }
604 
605   StringRef Name;
606   sys::Memory::ProtectionFlags Prot;
607   SectionOrdinal SecOrdinal = 0;
608   BlockSet Blocks;
609   SymbolSet Symbols;
610 };
611 
612 /// Represents a section address range via a pair of Block pointers
613 /// to the first and last Blocks in the section.
614 class SectionRange {
615 public:
616   SectionRange() = default;
SectionRange(const Section & Sec)617   SectionRange(const Section &Sec) {
618     if (llvm::empty(Sec.blocks()))
619       return;
620     First = Last = *Sec.blocks().begin();
621     for (auto *B : Sec.blocks()) {
622       if (B->getAddress() < First->getAddress())
623         First = B;
624       if (B->getAddress() > Last->getAddress())
625         Last = B;
626     }
627   }
getFirstBlock()628   Block *getFirstBlock() const {
629     assert((!Last || First) && "First can not be null if end is non-null");
630     return First;
631   }
getLastBlock()632   Block *getLastBlock() const {
633     assert((First || !Last) && "Last can not be null if start is non-null");
634     return Last;
635   }
isEmpty()636   bool isEmpty() const {
637     assert((First || !Last) && "Last can not be null if start is non-null");
638     return !First;
639   }
getStart()640   JITTargetAddress getStart() const {
641     return First ? First->getAddress() : 0;
642   }
getEnd()643   JITTargetAddress getEnd() const {
644     return Last ? Last->getAddress() + Last->getSize() : 0;
645   }
getSize()646   uint64_t getSize() const { return getEnd() - getStart(); }
647 
648 private:
649   Block *First = nullptr;
650   Block *Last = nullptr;
651 };
652 
653 class LinkGraph {
654 private:
655   using SectionList = std::vector<std::unique_ptr<Section>>;
656   using ExternalSymbolSet = DenseSet<Symbol *>;
657   using BlockSet = DenseSet<Block *>;
658 
659   template <typename... ArgTs>
createAddressable(ArgTs &&...Args)660   Addressable &createAddressable(ArgTs &&... Args) {
661     Addressable *A =
662         reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
663     new (A) Addressable(std::forward<ArgTs>(Args)...);
664     return *A;
665   }
666 
destroyAddressable(Addressable & A)667   void destroyAddressable(Addressable &A) {
668     A.~Addressable();
669     Allocator.Deallocate(&A);
670   }
671 
createBlock(ArgTs &&...Args)672   template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
673     Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
674     new (B) Block(std::forward<ArgTs>(Args)...);
675     B->getSection().addBlock(*B);
676     return *B;
677   }
678 
destroyBlock(Block & B)679   void destroyBlock(Block &B) {
680     B.~Block();
681     Allocator.Deallocate(&B);
682   }
683 
destroySymbol(Symbol & S)684   void destroySymbol(Symbol &S) {
685     S.~Symbol();
686     Allocator.Deallocate(&S);
687   }
688 
getSectionBlocks(Section & S)689   static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) {
690     return S.blocks();
691   }
692 
693   static iterator_range<Section::const_block_iterator>
getSectionConstBlocks(Section & S)694   getSectionConstBlocks(Section &S) {
695     return S.blocks();
696   }
697 
698   static iterator_range<Section::symbol_iterator>
getSectionSymbols(Section & S)699   getSectionSymbols(Section &S) {
700     return S.symbols();
701   }
702 
703   static iterator_range<Section::const_symbol_iterator>
getSectionConstSymbols(Section & S)704   getSectionConstSymbols(Section &S) {
705     return S.symbols();
706   }
707 
708 public:
709   using external_symbol_iterator = ExternalSymbolSet::iterator;
710 
711   using section_iterator = pointee_iterator<SectionList::iterator>;
712   using const_section_iterator = pointee_iterator<SectionList::const_iterator>;
713 
714   template <typename OuterItrT, typename InnerItrT, typename T,
715             iterator_range<InnerItrT> getInnerRange(
716                 typename OuterItrT::reference)>
717   class nested_collection_iterator
718       : public iterator_facade_base<
719             nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>,
720             std::forward_iterator_tag, T> {
721   public:
722     nested_collection_iterator() = default;
723 
nested_collection_iterator(OuterItrT OuterI,OuterItrT OuterE)724     nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE)
725         : OuterI(OuterI), OuterE(OuterE),
726           InnerI(getInnerBegin(OuterI, OuterE)) {
727       moveToNonEmptyInnerOrEnd();
728     }
729 
730     bool operator==(const nested_collection_iterator &RHS) const {
731       return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI);
732     }
733 
734     T operator*() const {
735       assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?");
736       return *InnerI;
737     }
738 
739     nested_collection_iterator operator++() {
740       ++InnerI;
741       moveToNonEmptyInnerOrEnd();
742       return *this;
743     }
744 
745   private:
getInnerBegin(OuterItrT OuterI,OuterItrT OuterE)746     static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) {
747       return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT();
748     }
749 
moveToNonEmptyInnerOrEnd()750     void moveToNonEmptyInnerOrEnd() {
751       while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) {
752         ++OuterI;
753         InnerI = getInnerBegin(OuterI, OuterE);
754       }
755     }
756 
757     OuterItrT OuterI, OuterE;
758     InnerItrT InnerI;
759   };
760 
761   using defined_symbol_iterator =
762       nested_collection_iterator<const_section_iterator,
763                                  Section::symbol_iterator, Symbol *,
764                                  getSectionSymbols>;
765 
766   using const_defined_symbol_iterator =
767       nested_collection_iterator<const_section_iterator,
768                                  Section::const_symbol_iterator, const Symbol *,
769                                  getSectionConstSymbols>;
770 
771   using block_iterator = nested_collection_iterator<const_section_iterator,
772                                                     Section::block_iterator,
773                                                     Block *, getSectionBlocks>;
774 
775   using const_block_iterator =
776       nested_collection_iterator<const_section_iterator,
777                                  Section::const_block_iterator, const Block *,
778                                  getSectionConstBlocks>;
779 
LinkGraph(std::string Name,unsigned PointerSize,support::endianness Endianness)780   LinkGraph(std::string Name, unsigned PointerSize,
781             support::endianness Endianness)
782       : Name(std::move(Name)), PointerSize(PointerSize),
783         Endianness(Endianness) {}
784 
785   /// Returns the name of this graph (usually the name of the original
786   /// underlying MemoryBuffer).
getName()787   const std::string &getName() { return Name; }
788 
789   /// Returns the pointer size for use in this graph.
getPointerSize()790   unsigned getPointerSize() const { return PointerSize; }
791 
792   /// Returns the endianness of content in this graph.
getEndianness()793   support::endianness getEndianness() const { return Endianness; }
794 
795   /// Create a section with the given name, protection flags, and alignment.
createSection(StringRef Name,sys::Memory::ProtectionFlags Prot)796   Section &createSection(StringRef Name, sys::Memory::ProtectionFlags Prot) {
797     std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
798     Sections.push_back(std::move(Sec));
799     return *Sections.back();
800   }
801 
802   /// Create a content block.
createContentBlock(Section & Parent,StringRef Content,uint64_t Address,uint64_t Alignment,uint64_t AlignmentOffset)803   Block &createContentBlock(Section &Parent, StringRef Content,
804                             uint64_t Address, uint64_t Alignment,
805                             uint64_t AlignmentOffset) {
806     return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
807   }
808 
809   /// Create a zero-fill block.
createZeroFillBlock(Section & Parent,uint64_t Size,uint64_t Address,uint64_t Alignment,uint64_t AlignmentOffset)810   Block &createZeroFillBlock(Section &Parent, uint64_t Size, uint64_t Address,
811                              uint64_t Alignment, uint64_t AlignmentOffset) {
812     return createBlock(Parent, Size, Address, Alignment, AlignmentOffset);
813   }
814 
815   /// Cache type for the splitBlock function.
816   using SplitBlockCache = Optional<SmallVector<Symbol *, 8>>;
817 
818   /// Splits block B at the given index which must be greater than zero.
819   /// If SplitIndex == B.getSize() then this function is a no-op and returns B.
820   /// If SplitIndex < B.getSize() then this function returns a new block
821   /// covering the range [ 0, SplitIndex ), and B is modified to cover the range
822   /// [ SplitIndex, B.size() ).
823   ///
824   /// The optional Cache parameter can be used to speed up repeated calls to
825   /// splitBlock for a single block. If the value is None the cache will be
826   /// treated as uninitialized and splitBlock will populate it. Otherwise it
827   /// is assumed to contain the list of Symbols pointing at B, sorted in
828   /// descending order of offset.
829   ///
830   /// Notes:
831   ///
832   /// 1. The newly introduced block will have a new ordinal which will be
833   ///    higher than any other ordinals in the section. Clients are responsible
834   ///    for re-assigning block ordinals to restore a compatible order if
835   ///    needed.
836   ///
837   /// 2. The cache is not automatically updated if new symbols are introduced
838   ///    between calls to splitBlock. Any newly introduced symbols may be
839   ///    added to the cache manually (descending offset order must be
840   ///    preserved), or the cache can be set to None and rebuilt by
841   ///    splitBlock on the next call.
842   Block &splitBlock(Block &B, size_t SplitIndex,
843                     SplitBlockCache *Cache = nullptr);
844 
845   /// Add an external symbol.
846   /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
847   /// size is not known, you should substitute '0'.
848   /// For external symbols Linkage determines whether the symbol must be
849   /// present during lookup: Externals with strong linkage must be found or
850   /// an error will be emitted. Externals with weak linkage are permitted to
851   /// be undefined, in which case they are assigned a value of 0.
addExternalSymbol(StringRef Name,uint64_t Size,Linkage L)852   Symbol &addExternalSymbol(StringRef Name, uint64_t Size, Linkage L) {
853     auto &Sym =
854         Symbol::constructExternal(Allocator.Allocate<Symbol>(),
855                                   createAddressable(0, false), Name, Size, L);
856     ExternalSymbols.insert(&Sym);
857     return Sym;
858   }
859 
860   /// Add an absolute symbol.
addAbsoluteSymbol(StringRef Name,JITTargetAddress Address,uint64_t Size,Linkage L,Scope S,bool IsLive)861   Symbol &addAbsoluteSymbol(StringRef Name, JITTargetAddress Address,
862                             uint64_t Size, Linkage L, Scope S, bool IsLive) {
863     auto &Sym = Symbol::constructAbsolute(Allocator.Allocate<Symbol>(),
864                                           createAddressable(Address), Name,
865                                           Size, L, S, IsLive);
866     AbsoluteSymbols.insert(&Sym);
867     return Sym;
868   }
869 
870   /// Convenience method for adding a weak zero-fill symbol.
addCommonSymbol(StringRef Name,Scope S,Section & Section,JITTargetAddress Address,uint64_t Size,uint64_t Alignment,bool IsLive)871   Symbol &addCommonSymbol(StringRef Name, Scope S, Section &Section,
872                           JITTargetAddress Address, uint64_t Size,
873                           uint64_t Alignment, bool IsLive) {
874     auto &Sym = Symbol::constructCommon(
875         Allocator.Allocate<Symbol>(),
876         createBlock(Section, Size, Address, Alignment, 0), Name, Size, S,
877         IsLive);
878     Section.addSymbol(Sym);
879     return Sym;
880   }
881 
882   /// Add an anonymous symbol.
addAnonymousSymbol(Block & Content,JITTargetAddress Offset,JITTargetAddress Size,bool IsCallable,bool IsLive)883   Symbol &addAnonymousSymbol(Block &Content, JITTargetAddress Offset,
884                              JITTargetAddress Size, bool IsCallable,
885                              bool IsLive) {
886     auto &Sym = Symbol::constructAnonDef(Allocator.Allocate<Symbol>(), Content,
887                                          Offset, Size, IsCallable, IsLive);
888     Content.getSection().addSymbol(Sym);
889     return Sym;
890   }
891 
892   /// Add a named symbol.
addDefinedSymbol(Block & Content,JITTargetAddress Offset,StringRef Name,JITTargetAddress Size,Linkage L,Scope S,bool IsCallable,bool IsLive)893   Symbol &addDefinedSymbol(Block &Content, JITTargetAddress Offset,
894                            StringRef Name, JITTargetAddress Size, Linkage L,
895                            Scope S, bool IsCallable, bool IsLive) {
896     auto &Sym =
897         Symbol::constructNamedDef(Allocator.Allocate<Symbol>(), Content, Offset,
898                                   Name, Size, L, S, IsLive, IsCallable);
899     Content.getSection().addSymbol(Sym);
900     return Sym;
901   }
902 
sections()903   iterator_range<section_iterator> sections() {
904     return make_range(section_iterator(Sections.begin()),
905                       section_iterator(Sections.end()));
906   }
907 
908   /// Returns the section with the given name if it exists, otherwise returns
909   /// null.
findSectionByName(StringRef Name)910   Section *findSectionByName(StringRef Name) {
911     for (auto &S : sections())
912       if (S.getName() == Name)
913         return &S;
914     return nullptr;
915   }
916 
blocks()917   iterator_range<block_iterator> blocks() {
918     return make_range(block_iterator(Sections.begin(), Sections.end()),
919                       block_iterator(Sections.end(), Sections.end()));
920   }
921 
blocks()922   iterator_range<const_block_iterator> blocks() const {
923     return make_range(const_block_iterator(Sections.begin(), Sections.end()),
924                       const_block_iterator(Sections.end(), Sections.end()));
925   }
926 
external_symbols()927   iterator_range<external_symbol_iterator> external_symbols() {
928     return make_range(ExternalSymbols.begin(), ExternalSymbols.end());
929   }
930 
absolute_symbols()931   iterator_range<external_symbol_iterator> absolute_symbols() {
932     return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
933   }
934 
defined_symbols()935   iterator_range<defined_symbol_iterator> defined_symbols() {
936     return make_range(defined_symbol_iterator(Sections.begin(), Sections.end()),
937                       defined_symbol_iterator(Sections.end(), Sections.end()));
938   }
939 
defined_symbols()940   iterator_range<const_defined_symbol_iterator> defined_symbols() const {
941     return make_range(
942         const_defined_symbol_iterator(Sections.begin(), Sections.end()),
943         const_defined_symbol_iterator(Sections.end(), Sections.end()));
944   }
945 
946   /// Turn a defined symbol into an external one.
makeExternal(Symbol & Sym)947   void makeExternal(Symbol &Sym) {
948     if (Sym.getAddressable().isAbsolute()) {
949       assert(AbsoluteSymbols.count(&Sym) &&
950              "Sym is not in the absolute symbols set");
951       AbsoluteSymbols.erase(&Sym);
952     } else {
953       assert(Sym.isDefined() && "Sym is not a defined symbol");
954       Section &Sec = Sym.getBlock().getSection();
955       Sec.removeSymbol(Sym);
956     }
957     Sym.makeExternal(createAddressable(false));
958     ExternalSymbols.insert(&Sym);
959   }
960 
961   /// Removes an external symbol. Also removes the underlying Addressable.
removeExternalSymbol(Symbol & Sym)962   void removeExternalSymbol(Symbol &Sym) {
963     assert(!Sym.isDefined() && !Sym.isAbsolute() &&
964            "Sym is not an external symbol");
965     assert(ExternalSymbols.count(&Sym) && "Symbol is not in the externals set");
966     ExternalSymbols.erase(&Sym);
967     Addressable &Base = *Sym.Base;
968     destroySymbol(Sym);
969     destroyAddressable(Base);
970   }
971 
972   /// Remove an absolute symbol. Also removes the underlying Addressable.
removeAbsoluteSymbol(Symbol & Sym)973   void removeAbsoluteSymbol(Symbol &Sym) {
974     assert(!Sym.isDefined() && Sym.isAbsolute() &&
975            "Sym is not an absolute symbol");
976     assert(AbsoluteSymbols.count(&Sym) &&
977            "Symbol is not in the absolute symbols set");
978     AbsoluteSymbols.erase(&Sym);
979     Addressable &Base = *Sym.Base;
980     destroySymbol(Sym);
981     destroyAddressable(Base);
982   }
983 
984   /// Removes defined symbols. Does not remove the underlying block.
removeDefinedSymbol(Symbol & Sym)985   void removeDefinedSymbol(Symbol &Sym) {
986     assert(Sym.isDefined() && "Sym is not a defined symbol");
987     Sym.getBlock().getSection().removeSymbol(Sym);
988     destroySymbol(Sym);
989   }
990 
991   /// Remove a block.
removeBlock(Block & B)992   void removeBlock(Block &B) {
993     B.getSection().removeBlock(B);
994     destroyBlock(B);
995   }
996 
997   /// Dump the graph.
998   ///
999   /// If supplied, the EdgeKindToName function will be used to name edge
1000   /// kinds in the debug output. Otherwise raw edge kind numbers will be
1001   /// displayed.
1002   void dump(raw_ostream &OS,
1003             std::function<StringRef(Edge::Kind)> EdegKindToName =
1004                 std::function<StringRef(Edge::Kind)>());
1005 
1006 private:
1007   // Put the BumpPtrAllocator first so that we don't free any of the underlying
1008   // memory until the Symbol/Addressable destructors have been run.
1009   BumpPtrAllocator Allocator;
1010 
1011   std::string Name;
1012   unsigned PointerSize;
1013   support::endianness Endianness;
1014   SectionList Sections;
1015   ExternalSymbolSet ExternalSymbols;
1016   ExternalSymbolSet AbsoluteSymbols;
1017 };
1018 
1019 /// Enables easy lookup of blocks by addresses.
1020 class BlockAddressMap {
1021 public:
1022   using AddrToBlockMap = std::map<JITTargetAddress, Block *>;
1023   using const_iterator = AddrToBlockMap::const_iterator;
1024 
1025   /// A block predicate that always adds all blocks.
includeAllBlocks(const Block & B)1026   static bool includeAllBlocks(const Block &B) { return true; }
1027 
1028   /// A block predicate that always includes blocks with non-null addresses.
includeNonNull(const Block & B)1029   static bool includeNonNull(const Block &B) { return B.getAddress(); }
1030 
1031   BlockAddressMap() = default;
1032 
1033   /// Add a block to the map. Returns an error if the block overlaps with any
1034   /// existing block.
1035   template <typename PredFn = decltype(includeAllBlocks)>
1036   Error addBlock(Block &B, PredFn Pred = includeAllBlocks) {
1037     if (!Pred(B))
1038       return Error::success();
1039 
1040     auto I = AddrToBlock.upper_bound(B.getAddress());
1041 
1042     // If we're not at the end of the map, check for overlap with the next
1043     // element.
1044     if (I != AddrToBlock.end()) {
1045       if (B.getAddress() + B.getSize() > I->second->getAddress())
1046         return overlapError(B, *I->second);
1047     }
1048 
1049     // If we're not at the start of the map, check for overlap with the previous
1050     // element.
1051     if (I != AddrToBlock.begin()) {
1052       auto &PrevBlock = *std::prev(I)->second;
1053       if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress())
1054         return overlapError(B, PrevBlock);
1055     }
1056 
1057     AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B));
1058     return Error::success();
1059   }
1060 
1061   /// Add a block to the map without checking for overlap with existing blocks.
1062   /// The client is responsible for ensuring that the block added does not
1063   /// overlap with any existing block.
addBlockWithoutChecking(Block & B)1064   void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; }
1065 
1066   /// Add a range of blocks to the map. Returns an error if any block in the
1067   /// range overlaps with any other block in the range, or with any existing
1068   /// block in the map.
1069   template <typename BlockPtrRange,
1070             typename PredFn = decltype(includeAllBlocks)>
1071   Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) {
1072     for (auto *B : Blocks)
1073       if (auto Err = addBlock(*B, Pred))
1074         return Err;
1075     return Error::success();
1076   }
1077 
1078   /// Add a range of blocks to the map without checking for overlap with
1079   /// existing blocks. The client is responsible for ensuring that the block
1080   /// added does not overlap with any existing block.
1081   template <typename BlockPtrRange>
addBlocksWithoutChecking(BlockPtrRange && Blocks)1082   void addBlocksWithoutChecking(BlockPtrRange &&Blocks) {
1083     for (auto *B : Blocks)
1084       addBlockWithoutChecking(*B);
1085   }
1086 
1087   /// Iterates over (Address, Block*) pairs in ascending order of address.
begin()1088   const_iterator begin() const { return AddrToBlock.begin(); }
end()1089   const_iterator end() const { return AddrToBlock.end(); }
1090 
1091   /// Returns the block starting at the given address, or nullptr if no such
1092   /// block exists.
getBlockAt(JITTargetAddress Addr)1093   Block *getBlockAt(JITTargetAddress Addr) const {
1094     auto I = AddrToBlock.find(Addr);
1095     if (I == AddrToBlock.end())
1096       return nullptr;
1097     return I->second;
1098   }
1099 
1100   /// Returns the block covering the given address, or nullptr if no such block
1101   /// exists.
getBlockCovering(JITTargetAddress Addr)1102   Block *getBlockCovering(JITTargetAddress Addr) const {
1103     auto I = AddrToBlock.upper_bound(Addr);
1104     if (I == AddrToBlock.begin())
1105       return nullptr;
1106     auto *B = std::prev(I)->second;
1107     if (Addr < B->getAddress() + B->getSize())
1108       return B;
1109     return nullptr;
1110   }
1111 
1112 private:
overlapError(Block & NewBlock,Block & ExistingBlock)1113   Error overlapError(Block &NewBlock, Block &ExistingBlock) {
1114     auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize();
1115     auto ExistingBlockEnd =
1116         ExistingBlock.getAddress() + ExistingBlock.getSize();
1117     return make_error<JITLinkError>(
1118         "Block at " +
1119         formatv("{0:x16} -- {1:x16}", NewBlock.getAddress(), NewBlockEnd) +
1120         " overlaps " +
1121         formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress(),
1122                 ExistingBlockEnd));
1123   }
1124 
1125   AddrToBlockMap AddrToBlock;
1126 };
1127 
1128 /// A map of addresses to Symbols.
1129 class SymbolAddressMap {
1130 public:
1131   using SymbolVector = SmallVector<Symbol *, 1>;
1132 
1133   /// Add a symbol to the SymbolAddressMap.
addSymbol(Symbol & Sym)1134   void addSymbol(Symbol &Sym) {
1135     AddrToSymbols[Sym.getAddress()].push_back(&Sym);
1136   }
1137 
1138   /// Add all symbols in a given range to the SymbolAddressMap.
1139   template <typename SymbolPtrCollection>
addSymbols(SymbolPtrCollection && Symbols)1140   void addSymbols(SymbolPtrCollection &&Symbols) {
1141     for (auto *Sym : Symbols)
1142       addSymbol(*Sym);
1143   }
1144 
1145   /// Returns the list of symbols that start at the given address, or nullptr if
1146   /// no such symbols exist.
getSymbolsAt(JITTargetAddress Addr)1147   const SymbolVector *getSymbolsAt(JITTargetAddress Addr) const {
1148     auto I = AddrToSymbols.find(Addr);
1149     if (I == AddrToSymbols.end())
1150       return nullptr;
1151     return &I->second;
1152   }
1153 
1154 private:
1155   std::map<JITTargetAddress, SymbolVector> AddrToSymbols;
1156 };
1157 
1158 /// A function for mutating LinkGraphs.
1159 using LinkGraphPassFunction = std::function<Error(LinkGraph &)>;
1160 
1161 /// A list of LinkGraph passes.
1162 using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
1163 
1164 /// An LinkGraph pass configuration, consisting of a list of pre-prune,
1165 /// post-prune, and post-fixup passes.
1166 struct PassConfiguration {
1167 
1168   /// Pre-prune passes.
1169   ///
1170   /// These passes are called on the graph after it is built, and before any
1171   /// symbols have been pruned.
1172   ///
1173   /// Notable use cases: Marking symbols live or should-discard.
1174   LinkGraphPassList PrePrunePasses;
1175 
1176   /// Post-prune passes.
1177   ///
1178   /// These passes are called on the graph after dead stripping, but before
1179   /// fixups are applied.
1180   ///
1181   /// Notable use cases: Building GOT, stub, and TLV symbols.
1182   LinkGraphPassList PostPrunePasses;
1183 
1184   /// Post-fixup passes.
1185   ///
1186   /// These passes are called on the graph after block contents has been copied
1187   /// to working memory, and fixups applied.
1188   ///
1189   /// Notable use cases: Testing and validation.
1190   LinkGraphPassList PostFixupPasses;
1191 };
1192 
1193 /// Flags for symbol lookup.
1194 ///
1195 /// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge
1196 ///        the two types once we have an OrcSupport library.
1197 enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
1198 
1199 raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF);
1200 
1201 /// A map of symbol names to resolved addresses.
1202 using AsyncLookupResult = DenseMap<StringRef, JITEvaluatedSymbol>;
1203 
1204 /// A function object to call with a resolved symbol map (See AsyncLookupResult)
1205 /// or an error if resolution failed.
1206 class JITLinkAsyncLookupContinuation {
1207 public:
~JITLinkAsyncLookupContinuation()1208   virtual ~JITLinkAsyncLookupContinuation() {}
1209   virtual void run(Expected<AsyncLookupResult> LR) = 0;
1210 
1211 private:
1212   virtual void anchor();
1213 };
1214 
1215 /// Create a lookup continuation from a function object.
1216 template <typename Continuation>
1217 std::unique_ptr<JITLinkAsyncLookupContinuation>
createLookupContinuation(Continuation Cont)1218 createLookupContinuation(Continuation Cont) {
1219 
1220   class Impl final : public JITLinkAsyncLookupContinuation {
1221   public:
1222     Impl(Continuation C) : C(std::move(C)) {}
1223     void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
1224 
1225   private:
1226     Continuation C;
1227   };
1228 
1229   return std::make_unique<Impl>(std::move(Cont));
1230 }
1231 
1232 /// Holds context for a single jitLink invocation.
1233 class JITLinkContext {
1234 public:
1235   using LookupMap = DenseMap<StringRef, SymbolLookupFlags>;
1236 
1237   /// Destroy a JITLinkContext.
1238   virtual ~JITLinkContext();
1239 
1240   /// Return the MemoryManager to be used for this link.
1241   virtual JITLinkMemoryManager &getMemoryManager() = 0;
1242 
1243   /// Returns a StringRef for the object buffer.
1244   /// This method can not be called once takeObjectBuffer has been called.
1245   virtual MemoryBufferRef getObjectBuffer() const = 0;
1246 
1247   /// Notify this context that linking failed.
1248   /// Called by JITLink if linking cannot be completed.
1249   virtual void notifyFailed(Error Err) = 0;
1250 
1251   /// Called by JITLink to resolve external symbols. This method is passed a
1252   /// lookup continutation which it must call with a result to continue the
1253   /// linking process.
1254   virtual void lookup(const LookupMap &Symbols,
1255                       std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
1256 
1257   /// Called by JITLink once all defined symbols in the graph have been assigned
1258   /// their final memory locations in the target process. At this point the
1259   /// LinkGraph can be inspected to build a symbol table, however the block
1260   /// content will not generally have been copied to the target location yet.
1261   virtual void notifyResolved(LinkGraph &G) = 0;
1262 
1263   /// Called by JITLink to notify the context that the object has been
1264   /// finalized (i.e. emitted to memory and memory permissions set). If all of
1265   /// this objects dependencies have also been finalized then the code is ready
1266   /// to run.
1267   virtual void
1268   notifyFinalized(std::unique_ptr<JITLinkMemoryManager::Allocation> A) = 0;
1269 
1270   /// Called by JITLink prior to linking to determine whether default passes for
1271   /// the target should be added. The default implementation returns true.
1272   /// If subclasses override this method to return false for any target then
1273   /// they are required to fully configure the pass pipeline for that target.
1274   virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
1275 
1276   /// Returns the mark-live pass to be used for this link. If no pass is
1277   /// returned (the default) then the target-specific linker implementation will
1278   /// choose a conservative default (usually marking all symbols live).
1279   /// This function is only called if shouldAddDefaultTargetPasses returns true,
1280   /// otherwise the JITContext is responsible for adding a mark-live pass in
1281   /// modifyPassConfig.
1282   virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
1283 
1284   /// Called by JITLink to modify the pass pipeline prior to linking.
1285   /// The default version performs no modification.
1286   virtual Error modifyPassConfig(const Triple &TT, PassConfiguration &Config);
1287 };
1288 
1289 /// Marks all symbols in a graph live. This can be used as a default,
1290 /// conservative mark-live implementation.
1291 Error markAllSymbolsLive(LinkGraph &G);
1292 
1293 /// Basic JITLink implementation.
1294 ///
1295 /// This function will use sensible defaults for GOT and Stub handling.
1296 void jitLink(std::unique_ptr<JITLinkContext> Ctx);
1297 
1298 } // end namespace jitlink
1299 } // end namespace llvm
1300 
1301 #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
1302