1 /*
2 * Linearize - walk the statement tree (but _not_ the expressions)
3 * to generate a linear version of it and the basic blocks.
4 *
5 * NOTE! We're not interested in the actual sub-expressions yet,
6 * even though they can generate conditional branches and
7 * subroutine calls. That's all "local" behaviour.
8 *
9 * Copyright (C) 2004 Linus Torvalds
10 * Copyright (C) 2004 Christopher Li
11 */
12
13 #include <string.h>
14 #include <stdarg.h>
15 #include <stdlib.h>
16 #include <stdio.h>
17 #include <assert.h>
18
19 #include "parse.h"
20 #include "expression.h"
21 #include "linearize.h"
22 #include "optimize.h"
23 #include "flow.h"
24 #include "target.h"
25
26 static pseudo_t linearize_statement(struct entrypoint *ep, struct statement *stmt);
27 static pseudo_t linearize_expression(struct entrypoint *ep, struct expression *expr);
28
29 static pseudo_t add_cast(struct entrypoint *ep, struct symbol *to, struct symbol *from, int op, pseudo_t src);
30 static pseudo_t add_binary_op(struct entrypoint *ep, struct symbol *ctype, int op, pseudo_t left, pseudo_t right);
31 static pseudo_t linearize_one_symbol(struct entrypoint *ep, struct symbol *sym);
32
33 static pseudo_t cast_pseudo(struct entrypoint *ep, pseudo_t src, struct symbol *from, struct symbol *to);
34
35 struct pseudo void_pseudo = {};
36
37 static struct position current_pos;
38
39 ALLOCATOR(pseudo_user, "pseudo_user");
40
alloc_instruction(int opcode,int size)41 static struct instruction *alloc_instruction(int opcode, int size)
42 {
43 struct instruction * insn = __alloc_instruction(0);
44 insn->opcode = opcode;
45 insn->size = size;
46 insn->pos = current_pos;
47 return insn;
48 }
49
type_size(struct symbol * type)50 static inline int type_size(struct symbol *type)
51 {
52 return type ? type->bit_size > 0 ? type->bit_size : 0 : 0;
53 }
54
alloc_typed_instruction(int opcode,struct symbol * type)55 static struct instruction *alloc_typed_instruction(int opcode, struct symbol *type)
56 {
57 struct instruction *insn = alloc_instruction(opcode, type_size(type));
58 insn->type = type;
59 return insn;
60 }
61
alloc_entrypoint(void)62 static struct entrypoint *alloc_entrypoint(void)
63 {
64 return __alloc_entrypoint(0);
65 }
66
alloc_basic_block(struct entrypoint * ep,struct position pos)67 static struct basic_block *alloc_basic_block(struct entrypoint *ep, struct position pos)
68 {
69 static int nr;
70 struct basic_block *bb = __alloc_basic_block(0);
71 bb->pos = pos;
72 bb->ep = ep;
73 bb->nr = nr++;
74 return bb;
75 }
76
alloc_multijmp(struct basic_block * target,long long begin,long long end)77 static struct multijmp *alloc_multijmp(struct basic_block *target, long long begin, long long end)
78 {
79 struct multijmp *multijmp = __alloc_multijmp(0);
80 multijmp->target = target;
81 multijmp->begin = begin;
82 multijmp->end = end;
83 return multijmp;
84 }
85
show_label(struct basic_block * bb)86 const char *show_label(struct basic_block *bb)
87 {
88 static int n;
89 static char buffer[4][16];
90 char *buf = buffer[3 & ++n];
91
92 if (!bb)
93 return ".L???";
94 snprintf(buf, 64, ".L%u", bb->nr);
95 return buf;
96 }
97
show_pseudo(pseudo_t pseudo)98 const char *show_pseudo(pseudo_t pseudo)
99 {
100 static int n;
101 static char buffer[4][64];
102 char *buf;
103 int i;
104
105 if (!pseudo)
106 return "no pseudo";
107 if (pseudo == VOID)
108 return "VOID";
109 buf = buffer[3 & ++n];
110 switch(pseudo->type) {
111 case PSEUDO_SYM: {
112 struct symbol *sym = pseudo->sym;
113 struct expression *expr;
114
115 if (!sym) {
116 snprintf(buf, 64, "<bad symbol>");
117 break;
118 }
119 if (sym->bb_target) {
120 snprintf(buf, 64, "%s", show_label(sym->bb_target));
121 break;
122 }
123 if (sym->ident) {
124 snprintf(buf, 64, "%s", show_ident(sym->ident));
125 break;
126 }
127 expr = sym->initializer;
128 snprintf(buf, 64, "<anon symbol:%p>", verbose ? sym : NULL);
129 if (expr) {
130 switch (expr->type) {
131 case EXPR_VALUE:
132 snprintf(buf, 64, "<symbol value: %lld>", expr->value);
133 break;
134 case EXPR_STRING:
135 return show_string(expr->string);
136 default:
137 break;
138 }
139 }
140 break;
141 }
142 case PSEUDO_REG:
143 i = snprintf(buf, 64, "%%r%d", pseudo->nr);
144 if (pseudo->ident)
145 sprintf(buf+i, "(%s)", show_ident(pseudo->ident));
146 break;
147 case PSEUDO_VAL: {
148 long long value = pseudo->value;
149 if (value > 1000 || value < -1000)
150 snprintf(buf, 64, "$%#llx", value);
151 else
152 snprintf(buf, 64, "$%lld", value);
153 break;
154 }
155 case PSEUDO_ARG:
156 snprintf(buf, 64, "%%arg%d", pseudo->nr);
157 break;
158 case PSEUDO_PHI:
159 i = snprintf(buf, 64, "%%phi%d", pseudo->nr);
160 if (pseudo->ident)
161 sprintf(buf+i, "(%s)", show_ident(pseudo->ident));
162 break;
163 case PSEUDO_UNDEF:
164 return "UNDEF";
165 default:
166 snprintf(buf, 64, "<bad pseudo type %d>", pseudo->type);
167 }
168 return buf;
169 }
170
171 static const char *opcodes[] = {
172 [OP_BADOP] = "bad_op",
173
174 /* Fn entrypoint */
175 [OP_ENTRY] = "<entry-point>",
176
177 /* Terminator */
178 [OP_RET] = "ret",
179 [OP_BR] = "br",
180 [OP_CBR] = "cbr",
181 [OP_SWITCH] = "switch",
182 [OP_UNREACH] = "unreachable",
183 [OP_COMPUTEDGOTO] = "jmp *",
184
185 /* Binary */
186 [OP_ADD] = "add",
187 [OP_SUB] = "sub",
188 [OP_MUL] = "mul",
189 [OP_DIVU] = "divu",
190 [OP_DIVS] = "divs",
191 [OP_MODU] = "modu",
192 [OP_MODS] = "mods",
193 [OP_SHL] = "shl",
194 [OP_LSR] = "lsr",
195 [OP_ASR] = "asr",
196
197 /* Floating-point Binary */
198 [OP_FADD] = "fadd",
199 [OP_FSUB] = "fsub",
200 [OP_FMUL] = "fmul",
201 [OP_FDIV] = "fdiv",
202
203 /* Logical */
204 [OP_AND] = "and",
205 [OP_OR] = "or",
206 [OP_XOR] = "xor",
207
208 /* Binary comparison */
209 [OP_SET_EQ] = "seteq",
210 [OP_SET_NE] = "setne",
211 [OP_SET_LE] = "setle",
212 [OP_SET_GE] = "setge",
213 [OP_SET_LT] = "setlt",
214 [OP_SET_GT] = "setgt",
215 [OP_SET_B] = "setb",
216 [OP_SET_A] = "seta",
217 [OP_SET_BE] = "setbe",
218 [OP_SET_AE] = "setae",
219
220 /* floating-point comparison */
221 [OP_FCMP_ORD] = "fcmpord",
222 [OP_FCMP_OEQ] = "fcmpoeq",
223 [OP_FCMP_ONE] = "fcmpone",
224 [OP_FCMP_OLE] = "fcmpole",
225 [OP_FCMP_OGE] = "fcmpoge",
226 [OP_FCMP_OLT] = "fcmpolt",
227 [OP_FCMP_OGT] = "fcmpogt",
228 [OP_FCMP_UEQ] = "fcmpueq",
229 [OP_FCMP_UNE] = "fcmpune",
230 [OP_FCMP_ULE] = "fcmpule",
231 [OP_FCMP_UGE] = "fcmpuge",
232 [OP_FCMP_ULT] = "fcmpult",
233 [OP_FCMP_UGT] = "fcmpugt",
234 [OP_FCMP_UNO] = "fcmpuno",
235
236 /* Uni */
237 [OP_NOT] = "not",
238 [OP_NEG] = "neg",
239 [OP_FNEG] = "fneg",
240
241 /* Special three-input */
242 [OP_SEL] = "select",
243 [OP_FMADD] = "fmadd",
244
245 /* Memory */
246 [OP_LOAD] = "load",
247 [OP_STORE] = "store",
248 [OP_LABEL] = "label",
249 [OP_SETVAL] = "set",
250 [OP_SETFVAL] = "setfval",
251 [OP_SYMADDR] = "symaddr",
252
253 /* Other */
254 [OP_PHI] = "phi",
255 [OP_PHISOURCE] = "phisrc",
256 [OP_SEXT] = "sext",
257 [OP_ZEXT] = "zext",
258 [OP_TRUNC] = "trunc",
259 [OP_FCVTU] = "fcvtu",
260 [OP_FCVTS] = "fcvts",
261 [OP_UCVTF] = "ucvtf",
262 [OP_SCVTF] = "scvtf",
263 [OP_FCVTF] = "fcvtf",
264 [OP_UTPTR] = "utptr",
265 [OP_PTRTU] = "ptrtu",
266 [OP_PTRCAST] = "ptrcast",
267 [OP_INLINED_CALL] = "# call",
268 [OP_CALL] = "call",
269 [OP_SLICE] = "slice",
270 [OP_NOP] = "nop",
271 [OP_DEATHNOTE] = "dead",
272 [OP_ASM] = "asm",
273
274 /* Sparse tagging (line numbers, context, whatever) */
275 [OP_CONTEXT] = "context",
276 [OP_RANGE] = "range-check",
277
278 [OP_COPY] = "copy",
279 };
280
show_asm_constraints(char * buf,const char * sep,struct asm_constraint_list * list)281 static char *show_asm_constraints(char *buf, const char *sep, struct asm_constraint_list *list)
282 {
283 struct asm_constraint *entry;
284
285 FOR_EACH_PTR(list, entry) {
286 buf += sprintf(buf, "%s\"%s\"", sep, entry->constraint);
287 if (entry->pseudo)
288 buf += sprintf(buf, " (%s)", show_pseudo(entry->pseudo));
289 if (entry->ident)
290 buf += sprintf(buf, " [%s]", show_ident(entry->ident));
291 sep = ", ";
292 } END_FOR_EACH_PTR(entry);
293 return buf;
294 }
295
show_asm(char * buf,struct instruction * insn)296 static char *show_asm(char *buf, struct instruction *insn)
297 {
298 struct asm_rules *rules = insn->asm_rules;
299
300 buf += sprintf(buf, "\"%s\"", insn->string);
301 buf = show_asm_constraints(buf, "\n\t\tout: ", rules->outputs);
302 buf = show_asm_constraints(buf, "\n\t\tin: ", rules->inputs);
303 buf = show_asm_constraints(buf, "\n\t\tclobber: ", rules->clobbers);
304 return buf;
305 }
306
show_instruction(struct instruction * insn)307 const char *show_instruction(struct instruction *insn)
308 {
309 int opcode = insn->opcode;
310 static char buffer[4096];
311 char *buf;
312
313 buf = buffer;
314 if (!insn->bb)
315 buf += sprintf(buf, "# ");
316
317 if (opcode < ARRAY_SIZE(opcodes)) {
318 const char *op = opcodes[opcode];
319 if (!op)
320 buf += sprintf(buf, "opcode:%d", opcode);
321 else
322 buf += sprintf(buf, "%s", op);
323 if (insn->size)
324 buf += sprintf(buf, ".%d", insn->size);
325 memset(buf, ' ', 20);
326 buf++;
327 }
328
329 if (buf < buffer + 12)
330 buf = buffer + 12;
331 switch (opcode) {
332 case OP_RET:
333 if (insn->src && insn->src != VOID)
334 buf += sprintf(buf, "%s", show_pseudo(insn->src));
335 break;
336
337 case OP_CBR:
338 buf += sprintf(buf, "%s, %s, %s", show_pseudo(insn->cond), show_label(insn->bb_true), show_label(insn->bb_false));
339 break;
340
341 case OP_BR:
342 buf += sprintf(buf, "%s", show_label(insn->bb_true));
343 break;
344
345 case OP_LABEL:
346 buf += sprintf(buf, "%s <- ", show_pseudo(insn->target));
347 buf += sprintf(buf, "%s", show_label(insn->bb_true));
348 break;
349
350 case OP_SETVAL: {
351 struct expression *expr = insn->val;
352 buf += sprintf(buf, "%s <- ", show_pseudo(insn->target));
353
354 if (!expr) {
355 buf += sprintf(buf, "%s", "<none>");
356 break;
357 }
358
359 switch (expr->type) {
360 case EXPR_VALUE:
361 buf += sprintf(buf, "%lld", expr->value);
362 break;
363 case EXPR_FVALUE:
364 buf += sprintf(buf, "%Le", expr->fvalue);
365 break;
366 case EXPR_STRING:
367 buf += sprintf(buf, "%.40s", show_string(expr->string));
368 break;
369 case EXPR_SYMBOL:
370 buf += sprintf(buf, "%s", show_ident(expr->symbol->ident));
371 break;
372 case EXPR_LABEL:
373 buf += sprintf(buf, "%s", show_label(expr->symbol->bb_target));
374 break;
375 default:
376 buf += sprintf(buf, "SETVAL EXPR TYPE %d", expr->type);
377 }
378 break;
379 }
380 case OP_SETFVAL:
381 buf += sprintf(buf, "%s <- ", show_pseudo(insn->target));
382 buf += sprintf(buf, "%Le", insn->fvalue);
383 break;
384
385 case OP_SWITCH: {
386 struct multijmp *jmp;
387 buf += sprintf(buf, "%s", show_pseudo(insn->cond));
388 FOR_EACH_PTR(insn->multijmp_list, jmp) {
389 if (jmp->begin == jmp->end)
390 buf += sprintf(buf, ", %lld -> %s", jmp->begin, show_label(jmp->target));
391 else if (jmp->begin < jmp->end)
392 buf += sprintf(buf, ", %lld ... %lld -> %s", jmp->begin, jmp->end, show_label(jmp->target));
393 else
394 buf += sprintf(buf, ", default -> %s", show_label(jmp->target));
395 } END_FOR_EACH_PTR(jmp);
396 break;
397 }
398 case OP_COMPUTEDGOTO: {
399 struct multijmp *jmp;
400 buf += sprintf(buf, "%s", show_pseudo(insn->src));
401 FOR_EACH_PTR(insn->multijmp_list, jmp) {
402 buf += sprintf(buf, ", %s", show_label(jmp->target));
403 } END_FOR_EACH_PTR(jmp);
404 break;
405 }
406 case OP_UNREACH:
407 break;
408
409 case OP_PHISOURCE: {
410 buf += sprintf(buf, "%s <- %s ", show_pseudo(insn->target), show_pseudo(insn->phi_src));
411 break;
412 }
413
414 case OP_PHI: {
415 pseudo_t phi;
416 const char *s = " <-";
417 buf += sprintf(buf, "%s", show_pseudo(insn->target));
418 FOR_EACH_PTR(insn->phi_list, phi) {
419 if (phi == VOID && !verbose)
420 continue;
421 buf += sprintf(buf, "%s %s", s, show_pseudo(phi));
422 s = ",";
423 } END_FOR_EACH_PTR(phi);
424 break;
425 }
426 case OP_LOAD:
427 buf += sprintf(buf, "%s <- %lld[%s]", show_pseudo(insn->target), insn->offset, show_pseudo(insn->src));
428 break;
429 case OP_STORE:
430 buf += sprintf(buf, "%s -> %lld[%s]", show_pseudo(insn->target), insn->offset, show_pseudo(insn->src));
431 break;
432 case OP_INLINED_CALL:
433 case OP_CALL: {
434 struct pseudo *arg;
435 if (insn->target && insn->target != VOID)
436 buf += sprintf(buf, "%s <- ", show_pseudo(insn->target));
437 buf += sprintf(buf, "%s", show_pseudo(insn->func));
438 FOR_EACH_PTR(insn->arguments, arg) {
439 buf += sprintf(buf, ", %s", show_pseudo(arg));
440 } END_FOR_EACH_PTR(arg);
441 break;
442 }
443 case OP_SEXT: case OP_ZEXT:
444 case OP_TRUNC:
445 case OP_FCVTU: case OP_FCVTS:
446 case OP_UCVTF: case OP_SCVTF:
447 case OP_FCVTF:
448 case OP_UTPTR:
449 case OP_PTRTU:
450 case OP_PTRCAST:
451 buf += sprintf(buf, "%s <- (%d) %s",
452 show_pseudo(insn->target),
453 type_size(insn->orig_type),
454 show_pseudo(insn->src));
455 break;
456 case OP_BINARY ... OP_BINARY_END:
457 case OP_FPCMP ... OP_FPCMP_END:
458 case OP_BINCMP ... OP_BINCMP_END:
459 buf += sprintf(buf, "%s <- %s, %s", show_pseudo(insn->target), show_pseudo(insn->src1), show_pseudo(insn->src2));
460 break;
461
462 case OP_SEL:
463 case OP_FMADD:
464 buf += sprintf(buf, "%s <- %s, %s, %s", show_pseudo(insn->target),
465 show_pseudo(insn->src1), show_pseudo(insn->src2), show_pseudo(insn->src3));
466 break;
467
468 case OP_SLICE:
469 buf += sprintf(buf, "%s <- (%d) %s, %d", show_pseudo(insn->target), type_size(insn->orig_type), show_pseudo(insn->src), insn->from);
470 break;
471
472 case OP_NOT: case OP_NEG:
473 case OP_FNEG:
474 case OP_SYMADDR:
475 buf += sprintf(buf, "%s <- %s", show_pseudo(insn->target), show_pseudo(insn->src1));
476 break;
477
478 case OP_CONTEXT:
479 buf += sprintf(buf, "%s%d", insn->check ? "check: " : "", insn->increment);
480 break;
481 case OP_RANGE:
482 buf += sprintf(buf, "%s between %s..%s", show_pseudo(insn->src1), show_pseudo(insn->src2), show_pseudo(insn->src3));
483 break;
484 case OP_NOP:
485 buf += sprintf(buf, "%s <- %s", show_pseudo(insn->target), show_pseudo(insn->src1));
486 break;
487 case OP_DEATHNOTE:
488 buf += sprintf(buf, "%s", show_pseudo(insn->target));
489 break;
490 case OP_ASM:
491 buf = show_asm(buf, insn);
492 break;
493 case OP_COPY:
494 buf += sprintf(buf, "%s <- %s", show_pseudo(insn->target), show_pseudo(insn->src));
495 break;
496 default:
497 break;
498 }
499
500 if (buf >= buffer + sizeof(buffer))
501 die("instruction buffer overflowed %td\n", buf - buffer);
502 do { --buf; } while (*buf == ' ');
503 *++buf = 0;
504 return buffer;
505 }
506
show_bb(struct basic_block * bb)507 void show_bb(struct basic_block *bb)
508 {
509 struct instruction *insn;
510
511 printf("%s:\n", show_label(bb));
512 if (verbose) {
513 pseudo_t needs, defines;
514 printf("%s:%d\n", stream_name(bb->pos.stream), bb->pos.line);
515
516 FOR_EACH_PTR(bb->needs, needs) {
517 struct instruction *def = needs->def;
518 if (def->opcode != OP_PHI) {
519 printf(" **uses %s (from %s)**\n", show_pseudo(needs), show_label(def->bb));
520 } else {
521 pseudo_t phi;
522 const char *sep = " ";
523 printf(" **uses %s (from", show_pseudo(needs));
524 FOR_EACH_PTR(def->phi_list, phi) {
525 if (phi == VOID)
526 continue;
527 printf("%s(%s:%s)", sep, show_pseudo(phi), show_label(phi->def->bb));
528 sep = ", ";
529 } END_FOR_EACH_PTR(phi);
530 printf(")**\n");
531 }
532 } END_FOR_EACH_PTR(needs);
533
534 FOR_EACH_PTR(bb->defines, defines) {
535 printf(" **defines %s **\n", show_pseudo(defines));
536 } END_FOR_EACH_PTR(defines);
537
538 if (bb->parents) {
539 struct basic_block *from;
540 FOR_EACH_PTR(bb->parents, from) {
541 printf(" **from %s (%s:%d:%d)**\n", show_label(from),
542 stream_name(from->pos.stream), from->pos.line, from->pos.pos);
543 } END_FOR_EACH_PTR(from);
544 }
545
546 if (bb->children) {
547 struct basic_block *to;
548 FOR_EACH_PTR(bb->children, to) {
549 printf(" **to %s (%s:%d:%d)**\n", show_label(to),
550 stream_name(to->pos.stream), to->pos.line, to->pos.pos);
551 } END_FOR_EACH_PTR(to);
552 }
553 }
554
555 FOR_EACH_PTR(bb->insns, insn) {
556 if (!insn->bb && verbose < 2)
557 continue;
558 printf("\t%s\n", show_instruction(insn));
559 } END_FOR_EACH_PTR(insn);
560 if (!bb_terminated(bb))
561 printf("\tEND\n");
562 }
563
564 ///
565 // show BB of non-removed instruction
show_insn_bb(struct instruction * insn)566 void show_insn_bb(struct instruction *insn)
567 {
568 if (!insn || !insn->bb)
569 return;
570 show_bb(insn->bb);
571 }
572
show_symbol_usage(pseudo_t pseudo)573 static void show_symbol_usage(pseudo_t pseudo)
574 {
575 struct pseudo_user *pu;
576
577 if (pseudo) {
578 FOR_EACH_PTR(pseudo->users, pu) {
579 printf("\t%s\n", show_instruction(pu->insn));
580 } END_FOR_EACH_PTR(pu);
581 }
582 }
583
show_entry(struct entrypoint * ep)584 void show_entry(struct entrypoint *ep)
585 {
586 struct symbol *sym;
587 struct basic_block *bb;
588
589 printf("%s:\n", show_ident(ep->name->ident));
590
591 if (verbose) {
592 printf("ep %p: %s\n", ep, show_ident(ep->name->ident));
593
594 FOR_EACH_PTR(ep->syms, sym) {
595 if (!sym->pseudo)
596 continue;
597 if (!sym->pseudo->users)
598 continue;
599 printf(" sym: %p %s\n", sym, show_ident(sym->ident));
600 if (sym->ctype.modifiers & (MOD_EXTERN | MOD_STATIC | MOD_ADDRESSABLE))
601 printf("\texternal visibility\n");
602 show_symbol_usage(sym->pseudo);
603 } END_FOR_EACH_PTR(sym);
604
605 printf("\n");
606 }
607
608 FOR_EACH_PTR(ep->bbs, bb) {
609 if (!bb)
610 continue;
611 if (!bb->parents && !bb->children && !bb->insns && verbose < 2)
612 continue;
613 show_bb(bb);
614 printf("\n");
615 } END_FOR_EACH_PTR(bb);
616
617 printf("\n");
618 }
619
620 ///
621 // show the function containing the instruction but only if not already removed.
show_insn_entry(struct instruction * insn)622 void show_insn_entry(struct instruction *insn)
623 {
624 if (!insn || !insn->bb || !insn->bb->ep)
625 return;
626 show_entry(insn->bb->ep);
627 }
628
bind_label(struct symbol * label,struct basic_block * bb,struct position pos)629 static void bind_label(struct symbol *label, struct basic_block *bb, struct position pos)
630 {
631 if (label->bb_target)
632 warning(pos, "label '%s' already bound", show_ident(label->ident));
633 label->bb_target = bb;
634 }
635
get_bound_block(struct entrypoint * ep,struct symbol * label)636 static struct basic_block * get_bound_block(struct entrypoint *ep, struct symbol *label)
637 {
638 struct basic_block *bb = label->bb_target;
639
640 if (!bb) {
641 bb = alloc_basic_block(ep, label->pos);
642 label->bb_target = bb;
643 }
644 return bb;
645 }
646
finish_block(struct entrypoint * ep)647 static void finish_block(struct entrypoint *ep)
648 {
649 struct basic_block *src = ep->active;
650 if (bb_reachable(src))
651 ep->active = NULL;
652 }
653
add_goto(struct entrypoint * ep,struct basic_block * dst)654 static void add_goto(struct entrypoint *ep, struct basic_block *dst)
655 {
656 struct basic_block *src = ep->active;
657 if (bb_reachable(src)) {
658 struct instruction *br = alloc_instruction(OP_BR, 0);
659 br->bb_true = dst;
660 add_bb(&dst->parents, src);
661 add_bb(&src->children, dst);
662 br->bb = src;
663 add_instruction(&src->insns, br);
664 ep->active = NULL;
665 }
666 }
667
add_one_insn(struct entrypoint * ep,struct instruction * insn)668 static void add_one_insn(struct entrypoint *ep, struct instruction *insn)
669 {
670 struct basic_block *bb = ep->active;
671
672 if (bb_reachable(bb)) {
673 insn->bb = bb;
674 add_instruction(&bb->insns, insn);
675 }
676 }
677
add_unreachable(struct entrypoint * ep)678 static void add_unreachable(struct entrypoint *ep)
679 {
680 struct instruction *insn = alloc_instruction(OP_UNREACH, 0);
681 add_one_insn(ep, insn);
682 ep->active = NULL;
683 }
684
set_activeblock(struct entrypoint * ep,struct basic_block * bb)685 static void set_activeblock(struct entrypoint *ep, struct basic_block *bb)
686 {
687 if (!bb_terminated(ep->active))
688 add_goto(ep, bb);
689
690 ep->active = bb;
691 if (bb_reachable(bb))
692 add_bb(&ep->bbs, bb);
693 }
694
insert_select(struct basic_block * bb,struct instruction * br,struct instruction * phi_node,pseudo_t if_true,pseudo_t if_false)695 void insert_select(struct basic_block *bb, struct instruction *br, struct instruction *phi_node, pseudo_t if_true, pseudo_t if_false)
696 {
697 pseudo_t target;
698 struct instruction *select;
699
700 select = alloc_typed_instruction(OP_SEL, phi_node->type);
701
702 assert(br->cond);
703 use_pseudo(select, br->cond, &select->src1);
704
705 target = phi_node->target;
706 assert(target->def == phi_node);
707 select->target = target;
708 target->def = select;
709
710 use_pseudo(select, if_true, &select->src2);
711 use_pseudo(select, if_false, &select->src3);
712
713 insert_last_instruction(bb, select);
714 }
715
bb_empty(struct basic_block * bb)716 static inline int bb_empty(struct basic_block *bb)
717 {
718 return !bb->insns;
719 }
720
721 /* Add a label to the currently active block, return new active block */
add_label(struct entrypoint * ep,struct symbol * label)722 static struct basic_block * add_label(struct entrypoint *ep, struct symbol *label)
723 {
724 struct basic_block *bb = label->bb_target;
725
726 if (bb) {
727 set_activeblock(ep, bb);
728 return bb;
729 }
730 bb = ep->active;
731 if (!bb_reachable(bb) || !bb_empty(bb)) {
732 bb = alloc_basic_block(ep, label->pos);
733 set_activeblock(ep, bb);
734 }
735 label->bb_target = bb;
736 return bb;
737 }
738
add_branch(struct entrypoint * ep,pseudo_t cond,struct basic_block * bb_true,struct basic_block * bb_false)739 static void add_branch(struct entrypoint *ep, pseudo_t cond, struct basic_block *bb_true, struct basic_block *bb_false)
740 {
741 struct basic_block *bb = ep->active;
742 struct instruction *br;
743
744 if (bb_reachable(bb)) {
745 br = alloc_instruction(OP_CBR, 0);
746 use_pseudo(br, cond, &br->cond);
747 br->bb_true = bb_true;
748 br->bb_false = bb_false;
749 add_bb(&bb_true->parents, bb);
750 add_bb(&bb_false->parents, bb);
751 add_bb(&bb->children, bb_true);
752 add_bb(&bb->children, bb_false);
753 add_one_insn(ep, br);
754 }
755 }
756
alloc_pseudo(struct instruction * def)757 pseudo_t alloc_pseudo(struct instruction *def)
758 {
759 static int nr = 0;
760 struct pseudo * pseudo = __alloc_pseudo(0);
761 pseudo->type = PSEUDO_REG;
762 pseudo->nr = ++nr;
763 pseudo->def = def;
764 return pseudo;
765 }
766
symbol_pseudo(struct entrypoint * ep,struct symbol * sym)767 static pseudo_t symbol_pseudo(struct entrypoint *ep, struct symbol *sym)
768 {
769 pseudo_t pseudo;
770
771 if (!sym)
772 return VOID;
773
774 pseudo = sym->pseudo;
775 if (!pseudo) {
776 pseudo = __alloc_pseudo(0);
777 pseudo->nr = -1;
778 pseudo->type = PSEUDO_SYM;
779 pseudo->sym = sym;
780 pseudo->ident = sym->ident;
781 sym->pseudo = pseudo;
782 add_pseudo(&ep->accesses, pseudo);
783 }
784 /* Symbol pseudos have neither nr nor def */
785 return pseudo;
786 }
787
value_pseudo(long long val)788 pseudo_t value_pseudo(long long val)
789 {
790 #define MAX_VAL_HASH 64
791 static struct pseudo_list *prev[MAX_VAL_HASH];
792 int hash = val & (MAX_VAL_HASH-1);
793 struct pseudo_list **list = prev + hash;
794 pseudo_t pseudo;
795
796 FOR_EACH_PTR(*list, pseudo) {
797 if (pseudo->value == val)
798 return pseudo;
799 } END_FOR_EACH_PTR(pseudo);
800
801 pseudo = __alloc_pseudo(0);
802 pseudo->type = PSEUDO_VAL;
803 pseudo->value = val;
804 add_pseudo(list, pseudo);
805
806 /* Value pseudos have neither nr, usage nor def */
807 return pseudo;
808 }
809
undef_pseudo(void)810 pseudo_t undef_pseudo(void)
811 {
812 pseudo_t pseudo = __alloc_pseudo(0);
813 pseudo->type = PSEUDO_UNDEF;
814 return pseudo;
815 }
816
argument_pseudo(struct entrypoint * ep,int nr)817 static pseudo_t argument_pseudo(struct entrypoint *ep, int nr)
818 {
819 pseudo_t pseudo = __alloc_pseudo(0);
820 struct instruction *entry = ep->entry;
821
822 pseudo->type = PSEUDO_ARG;
823 pseudo->nr = nr;
824 pseudo->def = entry;
825 add_pseudo(&entry->arg_list, pseudo);
826
827 /* Argument pseudos have neither usage nor def */
828 return pseudo;
829 }
830
alloc_phisrc(pseudo_t pseudo,struct symbol * type)831 struct instruction *alloc_phisrc(pseudo_t pseudo, struct symbol *type)
832 {
833 struct instruction *insn = alloc_typed_instruction(OP_PHISOURCE, type);
834 pseudo_t phi = __alloc_pseudo(0);
835 static int nr = 0;
836
837 phi->type = PSEUDO_PHI;
838 phi->nr = ++nr;
839 phi->def = insn;
840
841 use_pseudo(insn, pseudo, &insn->phi_src);
842 insn->target = phi;
843 return insn;
844 }
845
alloc_phi(struct basic_block * source,pseudo_t pseudo,struct symbol * type)846 pseudo_t alloc_phi(struct basic_block *source, pseudo_t pseudo, struct symbol *type)
847 {
848 struct instruction *insn;
849
850 if (!source)
851 return VOID;
852
853 insn = alloc_phisrc(pseudo, type);
854 insn->bb = source;
855 add_instruction(&source->insns, insn);
856 return insn->target;
857 }
858
alloc_phi_node(struct basic_block * bb,struct symbol * type,struct ident * ident)859 struct instruction *alloc_phi_node(struct basic_block *bb, struct symbol *type, struct ident *ident)
860 {
861 struct instruction *phi_node = alloc_typed_instruction(OP_PHI, type);
862 pseudo_t phi;
863
864 phi = alloc_pseudo(phi_node);
865 phi->ident = ident;
866 phi->def = phi_node;
867 phi_node->target = phi;
868 phi_node->bb = bb;
869 return phi_node;
870 }
871
add_phi_node(struct basic_block * bb,struct instruction * phi_node)872 void add_phi_node(struct basic_block *bb, struct instruction *phi_node)
873 {
874 struct instruction *insn;
875
876 FOR_EACH_PTR(bb->insns, insn) {
877 enum opcode op = insn->opcode;
878 if (op == OP_PHI)
879 continue;
880 INSERT_CURRENT(phi_node, insn);
881 return;
882 } END_FOR_EACH_PTR(insn);
883
884 // FIXME
885 add_instruction(&bb->insns, phi_node);
886 }
887
insert_phi_node(struct basic_block * bb,struct symbol * var)888 struct instruction *insert_phi_node(struct basic_block *bb, struct symbol *var)
889 {
890 struct instruction *phi_node = alloc_phi_node(bb, var, var->ident);
891 add_phi_node(bb, phi_node);
892 return phi_node;
893 }
894
895 /*
896 * We carry the "access_data" structure around for any accesses,
897 * which simplifies things a lot. It contains all the access
898 * information in one place.
899 */
900 struct access_data {
901 struct symbol *type; // ctype
902 struct symbol *btype; // base type of bitfields
903 pseudo_t address; // pseudo containing address ..
904 long long offset; // byte offset
905 };
906
linearize_simple_address(struct entrypoint * ep,struct expression * addr,struct access_data * ad)907 static int linearize_simple_address(struct entrypoint *ep,
908 struct expression *addr,
909 struct access_data *ad)
910 {
911 if (addr->type == EXPR_SYMBOL) {
912 linearize_one_symbol(ep, addr->symbol);
913 ad->address = symbol_pseudo(ep, addr->symbol);
914 return 1;
915 }
916 if (addr->type == EXPR_BINOP) {
917 if (addr->right->type == EXPR_VALUE) {
918 if (addr->op == '+') {
919 ad->offset += get_expression_value(addr->right);
920 return linearize_simple_address(ep, addr->left, ad);
921 }
922 }
923 }
924 ad->address = linearize_expression(ep, addr);
925 return 1;
926 }
927
bitfield_base_type(struct symbol * sym)928 static struct symbol *bitfield_base_type(struct symbol *sym)
929 {
930 struct symbol *base = sym;
931
932 if (sym) {
933 if (sym->type == SYM_NODE)
934 base = base->ctype.base_type;
935 if (base->type == SYM_BITFIELD) {
936 base = base->ctype.base_type;
937 if (sym->packed) {
938 int size = bits_to_bytes(sym->bit_offset + sym->bit_size);
939 sym = __alloc_symbol(0);
940 *sym = *base;
941 sym->bit_size = bytes_to_bits(size);
942 return sym;
943 }
944 return base;
945 }
946 }
947 return sym;
948 }
949
linearize_address_gen(struct entrypoint * ep,struct expression * expr,struct access_data * ad)950 static int linearize_address_gen(struct entrypoint *ep,
951 struct expression *expr,
952 struct access_data *ad)
953 {
954 struct symbol *ctype = expr->ctype;
955
956 if (!ctype)
957 return 0;
958 ad->type = ctype;
959 if (expr->type == EXPR_PREOP && expr->op == '*')
960 return linearize_simple_address(ep, expr->unop, ad);
961
962 warning(expr->pos, "generating address of non-lvalue (%d)", expr->type);
963 return 0;
964 }
965
add_load(struct entrypoint * ep,struct access_data * ad)966 static pseudo_t add_load(struct entrypoint *ep, struct access_data *ad)
967 {
968 struct instruction *insn;
969 pseudo_t new;
970
971 if (!ep->active)
972 return VOID;
973
974 insn = alloc_typed_instruction(OP_LOAD, ad->btype);
975 new = alloc_pseudo(insn);
976
977 insn->target = new;
978 insn->offset = ad->offset;
979 insn->is_volatile = ad->type && (ad->type->ctype.modifiers & MOD_VOLATILE);
980 use_pseudo(insn, ad->address, &insn->src);
981 add_one_insn(ep, insn);
982 return new;
983 }
984
add_store(struct entrypoint * ep,struct access_data * ad,pseudo_t value)985 static void add_store(struct entrypoint *ep, struct access_data *ad, pseudo_t value)
986 {
987 struct basic_block *bb = ep->active;
988 struct instruction *store;
989
990 if (!bb)
991 return;
992
993 store = alloc_typed_instruction(OP_STORE, ad->btype);
994 store->offset = ad->offset;
995 store->is_volatile = ad->type && (ad->type->ctype.modifiers & MOD_VOLATILE);
996 use_pseudo(store, value, &store->target);
997 use_pseudo(store, ad->address, &store->src);
998 add_one_insn(ep, store);
999 }
1000
linearize_bitfield_insert(struct entrypoint * ep,pseudo_t ori,pseudo_t val,struct symbol * ctype,struct symbol * btype)1001 static pseudo_t linearize_bitfield_insert(struct entrypoint *ep,
1002 pseudo_t ori, pseudo_t val, struct symbol *ctype, struct symbol *btype)
1003 {
1004 unsigned int shift = ctype->bit_offset;
1005 unsigned int size = ctype->bit_size;
1006 unsigned long long mask = ((1ULL << size) - 1);
1007 unsigned long long smask= bits_mask(btype->bit_size);
1008
1009 val = add_cast(ep, btype, ctype, OP_ZEXT, val);
1010 if (shift) {
1011 val = add_binary_op(ep, btype, OP_SHL, val, value_pseudo(shift));
1012 mask <<= shift;
1013 }
1014 ori = add_binary_op(ep, btype, OP_AND, ori, value_pseudo(~mask & smask));
1015 val = add_binary_op(ep, btype, OP_OR, ori, val);
1016
1017 return val;
1018 }
1019
linearize_store_gen(struct entrypoint * ep,pseudo_t value,struct access_data * ad)1020 static pseudo_t linearize_store_gen(struct entrypoint *ep,
1021 pseudo_t value,
1022 struct access_data *ad)
1023 {
1024 struct symbol *ctype = ad->type;
1025 struct symbol *btype;
1026 pseudo_t store = value;
1027
1028 if (!ep->active)
1029 return VOID;
1030
1031 btype = ad->btype = bitfield_base_type(ctype);
1032 if (type_size(btype) != type_size(ctype)) {
1033 pseudo_t orig = add_load(ep, ad);
1034 store = linearize_bitfield_insert(ep, orig, value, ctype, btype);
1035 }
1036 add_store(ep, ad, store);
1037 return value;
1038 }
1039
taint_undefined_behaviour(struct instruction * insn)1040 static void taint_undefined_behaviour(struct instruction *insn)
1041 {
1042 pseudo_t src2;
1043
1044 switch (insn->opcode) {
1045 case OP_LSR:
1046 case OP_ASR:
1047 case OP_SHL:
1048 src2 = insn->src2;
1049 if (src2->type != PSEUDO_VAL)
1050 break;
1051 if ((unsigned long long)src2->value >= insn->size)
1052 insn->tainted = 1;
1053 break;
1054 }
1055 }
1056
add_binary_op(struct entrypoint * ep,struct symbol * ctype,int op,pseudo_t left,pseudo_t right)1057 static pseudo_t add_binary_op(struct entrypoint *ep, struct symbol *ctype, int op, pseudo_t left, pseudo_t right)
1058 {
1059 struct instruction *insn = alloc_typed_instruction(op, ctype);
1060 pseudo_t target = alloc_pseudo(insn);
1061 insn->target = target;
1062 use_pseudo(insn, left, &insn->src1);
1063 use_pseudo(insn, right, &insn->src2);
1064 add_one_insn(ep, insn);
1065 return target;
1066 }
1067
add_cmp_op(struct entrypoint * ep,struct symbol * ctype,int op,struct symbol * itype,pseudo_t left,pseudo_t right)1068 static pseudo_t add_cmp_op(struct entrypoint *ep, struct symbol *ctype, int op, struct symbol *itype, pseudo_t left, pseudo_t right)
1069 {
1070 pseudo_t target = add_binary_op(ep, ctype, op, left, right);
1071 target->def->itype = itype;
1072 return target;
1073 }
1074
add_setval(struct entrypoint * ep,struct symbol * ctype,struct expression * val)1075 static pseudo_t add_setval(struct entrypoint *ep, struct symbol *ctype, struct expression *val)
1076 {
1077 struct instruction *insn = alloc_typed_instruction(OP_SETVAL, ctype);
1078 pseudo_t target = alloc_pseudo(insn);
1079 insn->target = target;
1080 insn->val = val;
1081 add_one_insn(ep, insn);
1082 return target;
1083 }
1084
add_setfval(struct entrypoint * ep,struct symbol * ctype,long double fval)1085 static pseudo_t add_setfval(struct entrypoint *ep, struct symbol *ctype, long double fval)
1086 {
1087 struct instruction *insn = alloc_typed_instruction(OP_SETFVAL, ctype);
1088 pseudo_t target = alloc_pseudo(insn);
1089 insn->target = target;
1090 insn->fvalue = fval;
1091 add_one_insn(ep, insn);
1092 return target;
1093 }
1094
add_symbol_address(struct entrypoint * ep,struct expression * expr)1095 static pseudo_t add_symbol_address(struct entrypoint *ep, struct expression *expr)
1096 {
1097 struct instruction *insn = alloc_typed_instruction(OP_SYMADDR, expr->ctype);
1098 pseudo_t target = alloc_pseudo(insn);
1099
1100 insn->target = target;
1101 use_pseudo(insn, symbol_pseudo(ep, expr->symbol), &insn->src);
1102 add_one_insn(ep, insn);
1103 return target;
1104 }
1105
linearize_bitfield_extract(struct entrypoint * ep,pseudo_t val,struct symbol * ctype,struct symbol * btype)1106 static pseudo_t linearize_bitfield_extract(struct entrypoint *ep,
1107 pseudo_t val, struct symbol *ctype, struct symbol *btype)
1108 {
1109 unsigned int off = ctype->bit_offset;
1110
1111 if (off) {
1112 pseudo_t shift = value_pseudo(off);
1113 val = add_binary_op(ep, btype, OP_LSR, val, shift);
1114 }
1115 val = cast_pseudo(ep, val, btype, ctype);
1116 return val;
1117 }
1118
linearize_load_gen(struct entrypoint * ep,struct access_data * ad)1119 static pseudo_t linearize_load_gen(struct entrypoint *ep, struct access_data *ad)
1120 {
1121 struct symbol *ctype = ad->type;
1122 struct symbol *btype;
1123 pseudo_t new;
1124
1125 if (!ep->active)
1126 return VOID;
1127
1128 btype = ad->btype = bitfield_base_type(ctype);
1129 new = add_load(ep, ad);
1130 if (ctype->bit_size != type_size(btype))
1131 new = linearize_bitfield_extract(ep, new, ctype, btype);
1132 return new;
1133 }
1134
linearize_access(struct entrypoint * ep,struct expression * expr)1135 static pseudo_t linearize_access(struct entrypoint *ep, struct expression *expr)
1136 {
1137 struct access_data ad = { NULL, };
1138 pseudo_t value;
1139
1140 if (!linearize_address_gen(ep, expr, &ad))
1141 return VOID;
1142 value = linearize_load_gen(ep, &ad);
1143 return value;
1144 }
1145
linearize_inc_dec(struct entrypoint * ep,struct expression * expr,int postop)1146 static pseudo_t linearize_inc_dec(struct entrypoint *ep, struct expression *expr, int postop)
1147 {
1148 struct access_data ad = { NULL, };
1149 pseudo_t old, new, one;
1150 int op = expr->op == SPECIAL_INCREMENT ? OP_ADD : OP_SUB;
1151
1152 if (!linearize_address_gen(ep, expr->unop, &ad))
1153 return VOID;
1154
1155 old = linearize_load_gen(ep, &ad);
1156 op = opcode_float(op, expr->ctype);
1157 if (is_float_type(expr->ctype))
1158 one = add_setfval(ep, expr->ctype, expr->op_value);
1159 else
1160 one = value_pseudo(expr->op_value);
1161 if (ad.btype != ad.type)
1162 old = cast_pseudo(ep, old, ad.type, ad.btype);
1163 new = add_binary_op(ep, ad.btype, op, old, one);
1164 if (ad.btype != ad.type)
1165 new = cast_pseudo(ep, new, ad.btype, ad.type);
1166 linearize_store_gen(ep, new, &ad);
1167 return postop ? old : new;
1168 }
1169
add_unop(struct entrypoint * ep,struct symbol * ctype,int op,pseudo_t src)1170 static pseudo_t add_unop(struct entrypoint *ep, struct symbol *ctype, int op, pseudo_t src)
1171 {
1172 struct instruction *insn = alloc_typed_instruction(op, ctype);
1173 pseudo_t new = alloc_pseudo(insn);
1174
1175 insn->target = new;
1176 use_pseudo(insn, src, &insn->src1);
1177 add_one_insn(ep, insn);
1178 return new;
1179 }
1180
add_cast(struct entrypoint * ep,struct symbol * to,struct symbol * from,int op,pseudo_t src)1181 static pseudo_t add_cast(struct entrypoint *ep, struct symbol *to,
1182 struct symbol *from, int op, pseudo_t src)
1183 {
1184 pseudo_t new = add_unop(ep, to, op, src);
1185 new->def->orig_type = from;
1186 return new;
1187 }
1188
linearize_slice(struct entrypoint * ep,struct expression * expr)1189 static pseudo_t linearize_slice(struct entrypoint *ep, struct expression *expr)
1190 {
1191 pseudo_t pre = linearize_expression(ep, expr->base);
1192 struct instruction *insn = alloc_typed_instruction(OP_SLICE, expr->ctype);
1193 pseudo_t new = alloc_pseudo(insn);
1194
1195 insn->target = new;
1196 insn->from = expr->r_bitpos;
1197 insn->orig_type = expr->base->ctype;
1198 use_pseudo(insn, pre, &insn->src);
1199 add_one_insn(ep, insn);
1200 return new;
1201 }
1202
linearize_regular_preop(struct entrypoint * ep,struct expression * expr)1203 static pseudo_t linearize_regular_preop(struct entrypoint *ep, struct expression *expr)
1204 {
1205 pseudo_t pre = linearize_expression(ep, expr->unop);
1206 struct symbol *ctype = expr->ctype;
1207 switch (expr->op) {
1208 case '+':
1209 return pre;
1210 case '!': {
1211 pseudo_t zero = value_pseudo(0);
1212 return add_cmp_op(ep, ctype, OP_SET_EQ, expr->unop->ctype, pre, zero);
1213 }
1214 case '~':
1215 return add_unop(ep, ctype, OP_NOT, pre);
1216 case '-':
1217 return add_unop(ep, ctype, opcode_float(OP_NEG, ctype), pre);
1218 }
1219 return VOID;
1220 }
1221
linearize_preop(struct entrypoint * ep,struct expression * expr)1222 static pseudo_t linearize_preop(struct entrypoint *ep, struct expression *expr)
1223 {
1224 /*
1225 * '*' is an lvalue access, and is fundamentally different
1226 * from an arithmetic operation. Maybe it should have an
1227 * expression type of its own..
1228 */
1229 if (expr->op == '*')
1230 return linearize_access(ep, expr);
1231 if (expr->op == SPECIAL_INCREMENT || expr->op == SPECIAL_DECREMENT)
1232 return linearize_inc_dec(ep, expr, 0);
1233 return linearize_regular_preop(ep, expr);
1234 }
1235
linearize_postop(struct entrypoint * ep,struct expression * expr)1236 static pseudo_t linearize_postop(struct entrypoint *ep, struct expression *expr)
1237 {
1238 return linearize_inc_dec(ep, expr, 1);
1239 }
1240
1241 /*
1242 * Casts to pointers are "less safe" than other casts, since
1243 * they imply type-unsafe accesses. "void *" is a special
1244 * case, since you can't access through it anyway without another
1245 * cast.
1246 */
1247 enum mtype {
1248 MTYPE_UINT,
1249 MTYPE_SINT,
1250 MTYPE_PTR,
1251 MTYPE_VPTR, // TODO: must be removed ?
1252 MTYPE_FLOAT,
1253 MTYPE_BAD,
1254 };
1255
get_mtype(struct symbol * s)1256 static enum mtype get_mtype(struct symbol *s)
1257 {
1258 int sign = (s->ctype.modifiers & MOD_SIGNED) ? 1 : 0;
1259
1260 retry: switch (s->type) {
1261 case SYM_NODE:
1262 s = s->ctype.base_type;
1263 goto retry;
1264 case SYM_PTR:
1265 if (s->ctype.base_type == &void_ctype)
1266 return MTYPE_VPTR;
1267 return MTYPE_PTR;
1268 case SYM_BITFIELD:
1269 case SYM_RESTRICT:
1270 case SYM_FOULED:
1271 case SYM_ENUM:
1272 s = s->ctype.base_type;
1273 /* fall-through */
1274 case_int:
1275 return sign ? MTYPE_SINT : MTYPE_UINT;
1276 case SYM_BASETYPE:
1277 if (s->ctype.base_type == &fp_type)
1278 return MTYPE_FLOAT;
1279 if (s->ctype.base_type == &int_type)
1280 goto case_int;
1281 /* fall-through */
1282 default:
1283 return MTYPE_BAD;
1284 }
1285 }
1286
get_cast_opcode(struct symbol * dst,struct symbol * src)1287 static int get_cast_opcode(struct symbol *dst, struct symbol *src)
1288 {
1289 enum mtype stype = get_mtype(src);
1290 enum mtype dtype = get_mtype(dst);
1291
1292 switch (dtype) {
1293 case MTYPE_FLOAT:
1294 switch (stype) {
1295 case MTYPE_FLOAT:
1296 if (dst->bit_size == src->bit_size)
1297 return OP_NOP;
1298 return OP_FCVTF;
1299 case MTYPE_UINT:
1300 return OP_UCVTF;
1301 case MTYPE_SINT:
1302 return OP_SCVTF;
1303 default:
1304 return OP_BADOP;
1305 }
1306 case MTYPE_PTR:
1307 switch (stype) {
1308 case MTYPE_UINT:
1309 case MTYPE_SINT:
1310 return OP_UTPTR;
1311 case MTYPE_PTR:
1312 case MTYPE_VPTR:
1313 return OP_PTRCAST;
1314 default:
1315 return OP_BADOP;
1316 }
1317 case MTYPE_VPTR:
1318 switch (stype) {
1319 case MTYPE_PTR:
1320 case MTYPE_VPTR:
1321 case MTYPE_UINT:
1322 stype = MTYPE_UINT;
1323 /* fall through */
1324 case MTYPE_SINT:
1325 break;
1326 default:
1327 return OP_BADOP;
1328 }
1329 /* fall through */
1330 case MTYPE_UINT:
1331 case MTYPE_SINT:
1332 switch (stype) {
1333 case MTYPE_FLOAT:
1334 return dtype == MTYPE_UINT ? OP_FCVTU : OP_FCVTS;
1335 case MTYPE_PTR:
1336 return OP_PTRTU;
1337 case MTYPE_VPTR:
1338 case MTYPE_UINT:
1339 case MTYPE_SINT:
1340 if (dst->bit_size ==src->bit_size)
1341 return OP_NOP;
1342 if (dst->bit_size < src->bit_size)
1343 return OP_TRUNC;
1344 return stype == MTYPE_SINT ? OP_SEXT : OP_ZEXT;
1345 default:
1346 return OP_BADOP;
1347 }
1348 /* fall through */
1349 default:
1350 if (src->type == SYM_NODE)
1351 src = src->ctype.base_type;
1352 if (dst->type == SYM_NODE)
1353 dst = dst->ctype.base_type;
1354 if (src == dst)
1355 return OP_NOP;
1356 return OP_BADOP;
1357 }
1358 }
1359
cast_pseudo(struct entrypoint * ep,pseudo_t src,struct symbol * from,struct symbol * to)1360 static pseudo_t cast_pseudo(struct entrypoint *ep, pseudo_t src, struct symbol *from, struct symbol *to)
1361 {
1362 const struct position pos = current_pos;
1363 pseudo_t result;
1364 struct instruction *insn;
1365 int opcode;
1366
1367 if (src == VOID)
1368 return VOID;
1369 if (!from || !to)
1370 return VOID;
1371 if (from->bit_size < 0 || to->bit_size < 0)
1372 return VOID;
1373 opcode = get_cast_opcode(to, from);
1374 switch (opcode) {
1375 case OP_NOP:
1376 return src;
1377 case OP_UTPTR:
1378 if (from->bit_size == to->bit_size)
1379 break;
1380 if (src == value_pseudo(0))
1381 break;
1382 if (Wint_to_pointer_cast)
1383 warning(pos, "non size-preserving integer to pointer cast");
1384 src = cast_pseudo(ep, src, from, size_t_ctype);
1385 from = size_t_ctype;
1386 break;
1387 case OP_PTRTU:
1388 if (from->bit_size == to->bit_size)
1389 break;
1390 if (Wpointer_to_int_cast)
1391 warning(pos, "non size-preserving pointer to integer cast");
1392 src = cast_pseudo(ep, src, from, size_t_ctype);
1393 return cast_pseudo(ep, src, size_t_ctype, to);
1394 case OP_BADOP:
1395 return VOID;
1396 default:
1397 break;
1398 }
1399 insn = alloc_typed_instruction(opcode, to);
1400 result = alloc_pseudo(insn);
1401 insn->target = result;
1402 insn->orig_type = from;
1403 use_pseudo(insn, src, &insn->src);
1404 add_one_insn(ep, insn);
1405 return result;
1406 }
1407
map_opcode(int opcode,struct symbol * ctype)1408 static int map_opcode(int opcode, struct symbol *ctype)
1409 {
1410 if (ctype && is_float_type(ctype))
1411 return opcode_table[opcode].to_float;
1412 if (ctype && (ctype->ctype.modifiers & MOD_SIGNED)) {
1413 switch(opcode) {
1414 case OP_DIVU: case OP_MODU: case OP_LSR:
1415 opcode++;
1416 }
1417 }
1418 return opcode;
1419 }
1420
add_convert_to_bool(struct entrypoint * ep,pseudo_t src,struct symbol * type)1421 static inline pseudo_t add_convert_to_bool(struct entrypoint *ep, pseudo_t src, struct symbol *type)
1422 {
1423 pseudo_t zero;
1424 int op;
1425
1426 if (!type || src == VOID)
1427 return VOID;
1428 if (is_bool_type(type))
1429 return src;
1430 if (src->type == PSEUDO_VAL && (src->value == 0 || src->value == 1))
1431 return src;
1432 if (is_float_type(type)) {
1433 zero = add_setfval(ep, type, 0.0);
1434 op = map_opcode(OP_SET_NE, type);
1435 } else {
1436 zero = value_pseudo(0);
1437 op = OP_SET_NE;
1438 }
1439 return add_cmp_op(ep, &bool_ctype, op, type, src, zero);
1440 }
1441
linearize_expression_to_bool(struct entrypoint * ep,struct expression * expr)1442 static pseudo_t linearize_expression_to_bool(struct entrypoint *ep, struct expression *expr)
1443 {
1444 pseudo_t dst;
1445 dst = linearize_expression(ep, expr);
1446 dst = add_convert_to_bool(ep, dst, expr->ctype);
1447 return dst;
1448 }
1449
linearize_assignment(struct entrypoint * ep,struct expression * expr)1450 static pseudo_t linearize_assignment(struct entrypoint *ep, struct expression *expr)
1451 {
1452 struct access_data ad = { NULL, };
1453 struct expression *target = expr->left;
1454 struct expression *src = expr->right;
1455 struct symbol *ctype;
1456 pseudo_t value;
1457
1458 value = linearize_expression(ep, src);
1459 if (!target || !linearize_address_gen(ep, target, &ad))
1460 return value;
1461 if (expr->op != '=') {
1462 pseudo_t oldvalue = linearize_load_gen(ep, &ad);
1463 pseudo_t dst;
1464 static const int op_trans[] = {
1465 [SPECIAL_ADD_ASSIGN - SPECIAL_BASE] = OP_ADD,
1466 [SPECIAL_SUB_ASSIGN - SPECIAL_BASE] = OP_SUB,
1467 [SPECIAL_MUL_ASSIGN - SPECIAL_BASE] = OP_MUL,
1468 [SPECIAL_DIV_ASSIGN - SPECIAL_BASE] = OP_DIVU,
1469 [SPECIAL_MOD_ASSIGN - SPECIAL_BASE] = OP_MODU,
1470 [SPECIAL_SHL_ASSIGN - SPECIAL_BASE] = OP_SHL,
1471 [SPECIAL_SHR_ASSIGN - SPECIAL_BASE] = OP_LSR,
1472 [SPECIAL_AND_ASSIGN - SPECIAL_BASE] = OP_AND,
1473 [SPECIAL_OR_ASSIGN - SPECIAL_BASE] = OP_OR,
1474 [SPECIAL_XOR_ASSIGN - SPECIAL_BASE] = OP_XOR
1475 };
1476 int opcode;
1477
1478 if (!src)
1479 return VOID;
1480
1481 ctype = src->ctype;
1482 oldvalue = cast_pseudo(ep, oldvalue, target->ctype, ctype);
1483 opcode = map_opcode(op_trans[expr->op - SPECIAL_BASE], ctype);
1484 dst = add_binary_op(ep, ctype, opcode, oldvalue, value);
1485 taint_undefined_behaviour(dst->def);
1486 value = cast_pseudo(ep, dst, ctype, expr->ctype);
1487 }
1488 value = linearize_store_gen(ep, value, &ad);
1489 return value;
1490 }
1491
linearize_call_expression(struct entrypoint * ep,struct expression * expr)1492 static pseudo_t linearize_call_expression(struct entrypoint *ep, struct expression *expr)
1493 {
1494 struct expression *arg, *fn;
1495 struct instruction *insn;
1496 pseudo_t retval, call;
1497 struct ctype *ctype = NULL;
1498 struct symbol *fntype;
1499 struct context *context;
1500
1501 if (!expr->ctype)
1502 return VOID;
1503
1504 fn = expr->fn;
1505 fntype = fn->ctype;
1506
1507 // handle builtins
1508 if (fntype->op && fntype->op->linearize) {
1509 retval = fntype->op->linearize(ep, expr);
1510 if (retval)
1511 return retval;
1512 }
1513
1514 ctype = &fntype->ctype;
1515
1516 insn = alloc_typed_instruction(OP_CALL, expr->ctype);
1517 add_symbol(&insn->fntypes, fntype);
1518 FOR_EACH_PTR(expr->args, arg) {
1519 pseudo_t new = linearize_expression(ep, arg);
1520 use_pseudo(insn, new, add_pseudo(&insn->arguments, new));
1521 add_symbol(&insn->fntypes, arg->ctype);
1522 } END_FOR_EACH_PTR(arg);
1523
1524 if (fn->type == EXPR_PREOP && fn->op == '*' && is_func_type(fn->ctype))
1525 fn = fn->unop;
1526
1527 if (fn->type == EXPR_SYMBOL) {
1528 call = symbol_pseudo(ep, fn->symbol);
1529 } else {
1530 call = linearize_expression(ep, fn);
1531 }
1532 use_pseudo(insn, call, &insn->func);
1533 retval = VOID;
1534 if (expr->ctype != &void_ctype)
1535 retval = alloc_pseudo(insn);
1536 insn->target = retval;
1537 add_one_insn(ep, insn);
1538
1539 if (ctype) {
1540 FOR_EACH_PTR(ctype->contexts, context) {
1541 int in = context->in;
1542 int out = context->out;
1543 int check = 0;
1544 int context_diff;
1545 if (in < 0) {
1546 check = 1;
1547 in = 0;
1548 }
1549 if (out < 0) {
1550 check = 0;
1551 out = 0;
1552 }
1553 context_diff = out - in;
1554 if (check || context_diff) {
1555 insn = alloc_instruction(OP_CONTEXT, 0);
1556 insn->increment = context_diff;
1557 insn->check = check;
1558 insn->context_expr = context->context;
1559 add_one_insn(ep, insn);
1560 }
1561 } END_FOR_EACH_PTR(context);
1562
1563 if (ctype->modifiers & MOD_NORETURN)
1564 add_unreachable(ep);
1565 }
1566
1567 return retval;
1568 }
1569
linearize_binop_bool(struct entrypoint * ep,struct expression * expr)1570 static pseudo_t linearize_binop_bool(struct entrypoint *ep, struct expression *expr)
1571 {
1572 pseudo_t src1, src2, dst;
1573 int op = (expr->op == SPECIAL_LOGICAL_OR) ? OP_OR : OP_AND;
1574
1575 src1 = linearize_expression_to_bool(ep, expr->left);
1576 src2 = linearize_expression_to_bool(ep, expr->right);
1577 dst = add_binary_op(ep, &bool_ctype, op, src1, src2);
1578 if (expr->ctype != &bool_ctype)
1579 dst = cast_pseudo(ep, dst, &bool_ctype, expr->ctype);
1580 return dst;
1581 }
1582
linearize_binop(struct entrypoint * ep,struct expression * expr)1583 static pseudo_t linearize_binop(struct entrypoint *ep, struct expression *expr)
1584 {
1585 pseudo_t src1, src2, dst;
1586 static const int opcode[] = {
1587 ['+'] = OP_ADD, ['-'] = OP_SUB,
1588 ['*'] = OP_MUL, ['/'] = OP_DIVU,
1589 ['%'] = OP_MODU, ['&'] = OP_AND,
1590 ['|'] = OP_OR, ['^'] = OP_XOR,
1591 [SPECIAL_LEFTSHIFT] = OP_SHL,
1592 [SPECIAL_RIGHTSHIFT] = OP_LSR,
1593 };
1594 int op;
1595
1596 src1 = linearize_expression(ep, expr->left);
1597 src2 = linearize_expression(ep, expr->right);
1598 op = map_opcode(opcode[expr->op], expr->ctype);
1599 dst = add_binary_op(ep, expr->ctype, op, src1, src2);
1600 taint_undefined_behaviour(dst->def);
1601 return dst;
1602 }
1603
1604 static pseudo_t linearize_logical_branch(struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false);
1605
1606 static pseudo_t linearize_cond_branch(struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false);
1607
linearize_select(struct entrypoint * ep,struct expression * expr)1608 static pseudo_t linearize_select(struct entrypoint *ep, struct expression *expr)
1609 {
1610 pseudo_t cond, valt, valf, res;
1611 struct instruction *insn;
1612
1613 valt = linearize_expression(ep, expr->cond_true);
1614 valf = linearize_expression(ep, expr->cond_false);
1615 cond = linearize_expression(ep, expr->conditional);
1616
1617 insn = alloc_typed_instruction(OP_SEL, expr->ctype);
1618 if (!expr->cond_true)
1619 valt = cond;
1620 use_pseudo(insn, cond, &insn->src1);
1621 use_pseudo(insn, valt, &insn->src2);
1622 use_pseudo(insn, valf, &insn->src3);
1623
1624 res = alloc_pseudo(insn);
1625 insn->target = res;
1626 add_one_insn(ep, insn);
1627 return res;
1628 }
1629
add_join_conditional(struct entrypoint * ep,struct expression * expr,pseudo_t phi1,pseudo_t phi2)1630 static pseudo_t add_join_conditional(struct entrypoint *ep, struct expression *expr,
1631 pseudo_t phi1, pseudo_t phi2)
1632 {
1633 pseudo_t target;
1634 struct instruction *phi_node;
1635
1636 if (phi1 == VOID)
1637 return (phi2 == VOID) ? phi2 : phi2->def->src;
1638 if (phi2 == VOID)
1639 return (phi1 == VOID) ? phi1 : phi1->def->src;
1640
1641 phi_node = alloc_typed_instruction(OP_PHI, expr->ctype);
1642 link_phi(phi_node, phi1);
1643 link_phi(phi_node, phi2);
1644 phi_node->target = target = alloc_pseudo(phi_node);
1645 add_one_insn(ep, phi_node);
1646 return target;
1647 }
1648
linearize_short_conditional(struct entrypoint * ep,struct expression * expr,struct expression * cond,struct expression * expr_false)1649 static pseudo_t linearize_short_conditional(struct entrypoint *ep, struct expression *expr,
1650 struct expression *cond,
1651 struct expression *expr_false)
1652 {
1653 pseudo_t src1, src2;
1654 struct basic_block *bb_false;
1655 struct basic_block *merge;
1656 pseudo_t phi1, phi2;
1657
1658 if (!expr_false || !ep->active)
1659 return VOID;
1660
1661 bb_false = alloc_basic_block(ep, expr_false->pos);
1662 merge = alloc_basic_block(ep, expr->pos);
1663
1664 src1 = linearize_expression(ep, cond);
1665 phi1 = alloc_phi(ep->active, src1, expr->ctype);
1666 add_branch(ep, src1, merge, bb_false);
1667
1668 set_activeblock(ep, bb_false);
1669 src2 = linearize_expression(ep, expr_false);
1670 phi2 = alloc_phi(ep->active, src2, expr->ctype);
1671 set_activeblock(ep, merge);
1672
1673 return add_join_conditional(ep, expr, phi1, phi2);
1674 }
1675
linearize_conditional(struct entrypoint * ep,struct expression * expr,struct expression * cond,struct expression * expr_true,struct expression * expr_false)1676 static pseudo_t linearize_conditional(struct entrypoint *ep, struct expression *expr,
1677 struct expression *cond,
1678 struct expression *expr_true,
1679 struct expression *expr_false)
1680 {
1681 pseudo_t src1, src2;
1682 pseudo_t phi1, phi2;
1683 struct basic_block *bb_true, *bb_false, *merge;
1684
1685 if (!cond || !expr_true || !expr_false || !ep->active)
1686 return VOID;
1687 bb_true = alloc_basic_block(ep, expr_true->pos);
1688 bb_false = alloc_basic_block(ep, expr_false->pos);
1689 merge = alloc_basic_block(ep, expr->pos);
1690
1691 linearize_cond_branch(ep, cond, bb_true, bb_false);
1692
1693 set_activeblock(ep, bb_true);
1694 src1 = linearize_expression(ep, expr_true);
1695 phi1 = alloc_phi(ep->active, src1, expr->ctype);
1696 add_goto(ep, merge);
1697
1698 set_activeblock(ep, bb_false);
1699 src2 = linearize_expression(ep, expr_false);
1700 phi2 = alloc_phi(ep->active, src2, expr->ctype);
1701 set_activeblock(ep, merge);
1702
1703 return add_join_conditional(ep, expr, phi1, phi2);
1704 }
1705
insert_phis(struct basic_block * bb,pseudo_t src,struct symbol * ctype,struct instruction * node)1706 static void insert_phis(struct basic_block *bb, pseudo_t src, struct symbol *ctype,
1707 struct instruction *node)
1708 {
1709 struct basic_block *parent;
1710
1711 FOR_EACH_PTR(bb->parents, parent) {
1712 struct instruction *phisrc = alloc_phisrc(src, ctype);
1713 insert_last_instruction(parent, phisrc);
1714 link_phi(node, phisrc->target);
1715 } END_FOR_EACH_PTR(parent);
1716 }
1717
linearize_logical(struct entrypoint * ep,struct expression * expr)1718 static pseudo_t linearize_logical(struct entrypoint *ep, struct expression *expr)
1719 {
1720 struct symbol *ctype = expr->ctype;
1721 struct basic_block *other, *merge;
1722 struct instruction *node;
1723 pseudo_t src1, src2, phi2;
1724
1725 if (!ep->active || !expr->left || !expr->right)
1726 return VOID;
1727
1728 other = alloc_basic_block(ep, expr->right->pos);
1729 merge = alloc_basic_block(ep, expr->pos);
1730 node = alloc_phi_node(merge, ctype, NULL);
1731
1732 // LHS and its shortcut
1733 if (expr->op == SPECIAL_LOGICAL_OR) {
1734 linearize_cond_branch(ep, expr->left, merge, other);
1735 src1 = value_pseudo(1);
1736 } else {
1737 linearize_cond_branch(ep, expr->left, other, merge);
1738 src1 = value_pseudo(0);
1739 }
1740 insert_phis(merge, src1, ctype, node);
1741
1742 // RHS
1743 set_activeblock(ep, other);
1744 src2 = linearize_expression_to_bool(ep, expr->right);
1745 src2 = cast_pseudo(ep, src2, &bool_ctype, ctype);
1746 phi2 = alloc_phi(ep->active, src2, ctype);
1747 link_phi(node, phi2);
1748
1749 // join
1750 set_activeblock(ep, merge);
1751 add_instruction(&merge->insns, node);
1752 return node->target;
1753 }
1754
linearize_compare(struct entrypoint * ep,struct expression * expr)1755 static pseudo_t linearize_compare(struct entrypoint *ep, struct expression *expr)
1756 {
1757 static const int cmpop[] = {
1758 ['>'] = OP_SET_GT, ['<'] = OP_SET_LT,
1759 [SPECIAL_EQUAL] = OP_SET_EQ,
1760 [SPECIAL_NOTEQUAL] = OP_SET_NE,
1761 [SPECIAL_GTE] = OP_SET_GE,
1762 [SPECIAL_LTE] = OP_SET_LE,
1763 [SPECIAL_UNSIGNED_LT] = OP_SET_B,
1764 [SPECIAL_UNSIGNED_GT] = OP_SET_A,
1765 [SPECIAL_UNSIGNED_LTE] = OP_SET_BE,
1766 [SPECIAL_UNSIGNED_GTE] = OP_SET_AE,
1767 };
1768 struct symbol *itype = expr->right->ctype;
1769 int op = opcode_float(cmpop[expr->op], itype);
1770 pseudo_t src1 = linearize_expression(ep, expr->left);
1771 pseudo_t src2 = linearize_expression(ep, expr->right);
1772 pseudo_t dst = add_cmp_op(ep, expr->ctype, op, itype, src1, src2);
1773 return dst;
1774 }
1775
1776
linearize_cond_branch(struct entrypoint * ep,struct expression * expr,struct basic_block * bb_true,struct basic_block * bb_false)1777 static pseudo_t linearize_cond_branch(struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false)
1778 {
1779 pseudo_t cond;
1780
1781 if (!expr || !valid_type(expr->ctype) || !bb_reachable(ep->active))
1782 return VOID;
1783
1784 switch (expr->type) {
1785
1786 case EXPR_STRING:
1787 case EXPR_VALUE:
1788 add_goto(ep, expr->value ? bb_true : bb_false);
1789 break;
1790 case EXPR_FVALUE:
1791 add_goto(ep, expr->fvalue ? bb_true : bb_false);
1792 break;
1793 case EXPR_LOGICAL:
1794 linearize_logical_branch(ep, expr, bb_true, bb_false);
1795 break;
1796 case EXPR_COMPARE:
1797 cond = linearize_compare(ep, expr);
1798 add_branch(ep, cond, bb_true, bb_false);
1799 break;
1800 case EXPR_PREOP:
1801 if (expr->op == '!')
1802 return linearize_cond_branch(ep, expr->unop, bb_false, bb_true);
1803 /* fall through */
1804 default:
1805 cond = linearize_expression_to_bool(ep, expr);
1806 add_branch(ep, cond, bb_true, bb_false);
1807 break;
1808 }
1809 return VOID;
1810 }
1811
1812
linearize_logical_branch(struct entrypoint * ep,struct expression * expr,struct basic_block * bb_true,struct basic_block * bb_false)1813 static pseudo_t linearize_logical_branch(struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false)
1814 {
1815 struct basic_block *next = alloc_basic_block(ep, expr->pos);
1816
1817 if (expr->op == SPECIAL_LOGICAL_OR)
1818 linearize_cond_branch(ep, expr->left, bb_true, next);
1819 else
1820 linearize_cond_branch(ep, expr->left, next, bb_false);
1821 set_activeblock(ep, next);
1822 linearize_cond_branch(ep, expr->right, bb_true, bb_false);
1823 return VOID;
1824 }
1825
linearize_cast(struct entrypoint * ep,struct expression * expr)1826 static pseudo_t linearize_cast(struct entrypoint *ep, struct expression *expr)
1827 {
1828 pseudo_t src;
1829 struct expression *orig = expr->cast_expression;
1830
1831 if (!orig)
1832 return VOID;
1833
1834 src = linearize_expression(ep, orig);
1835 return cast_pseudo(ep, src, orig->ctype, expr->ctype);
1836 }
1837
linearize_initializer(struct entrypoint * ep,struct expression * initializer,struct access_data * ad)1838 static pseudo_t linearize_initializer(struct entrypoint *ep, struct expression *initializer, struct access_data *ad)
1839 {
1840 switch (initializer->type) {
1841 case EXPR_INITIALIZER: {
1842 struct expression *expr;
1843 FOR_EACH_PTR(initializer->expr_list, expr) {
1844 linearize_initializer(ep, expr, ad);
1845 } END_FOR_EACH_PTR(expr);
1846 break;
1847 }
1848 case EXPR_POS:
1849 ad->offset = initializer->init_offset;
1850 linearize_initializer(ep, initializer->init_expr, ad);
1851 break;
1852 default: {
1853 pseudo_t value = linearize_expression(ep, initializer);
1854 ad->type = initializer->ctype;
1855 linearize_store_gen(ep, value, ad);
1856 return value;
1857 }
1858 }
1859
1860 return VOID;
1861 }
1862
linearize_argument(struct entrypoint * ep,struct symbol * arg,int nr)1863 static void linearize_argument(struct entrypoint *ep, struct symbol *arg, int nr)
1864 {
1865 struct access_data ad = { NULL, };
1866
1867 ad.type = arg;
1868 ad.address = symbol_pseudo(ep, arg);
1869 linearize_store_gen(ep, argument_pseudo(ep, nr), &ad);
1870 }
1871
linearize_expression(struct entrypoint * ep,struct expression * expr)1872 static pseudo_t linearize_expression(struct entrypoint *ep, struct expression *expr)
1873 {
1874 if (!expr || !valid_type(expr->ctype))
1875 return VOID;
1876
1877 current_pos = expr->pos;
1878 switch (expr->type) {
1879 case EXPR_SYMBOL:
1880 linearize_one_symbol(ep, expr->symbol);
1881 return add_symbol_address(ep, expr);
1882
1883 case EXPR_VALUE:
1884 return value_pseudo(expr->value);
1885
1886 case EXPR_STRING:
1887 case EXPR_LABEL:
1888 return add_setval(ep, expr->ctype, expr);
1889
1890 case EXPR_FVALUE:
1891 return add_setfval(ep, expr->ctype, expr->fvalue);
1892
1893 case EXPR_STATEMENT:
1894 return linearize_statement(ep, expr->statement);
1895
1896 case EXPR_CALL:
1897 return linearize_call_expression(ep, expr);
1898
1899 case EXPR_BINOP:
1900 if (expr->op == SPECIAL_LOGICAL_AND || expr->op == SPECIAL_LOGICAL_OR)
1901 return linearize_binop_bool(ep, expr);
1902 return linearize_binop(ep, expr);
1903
1904 case EXPR_LOGICAL:
1905 return linearize_logical(ep, expr);
1906
1907 case EXPR_COMPARE:
1908 return linearize_compare(ep, expr);
1909
1910 case EXPR_SELECT:
1911 return linearize_select(ep, expr);
1912
1913 case EXPR_CONDITIONAL:
1914 if (!expr->cond_true)
1915 return linearize_short_conditional(ep, expr, expr->conditional, expr->cond_false);
1916
1917 return linearize_conditional(ep, expr, expr->conditional,
1918 expr->cond_true, expr->cond_false);
1919
1920 case EXPR_COMMA:
1921 linearize_expression(ep, expr->left);
1922 return linearize_expression(ep, expr->right);
1923
1924 case EXPR_ASSIGNMENT:
1925 return linearize_assignment(ep, expr);
1926
1927 case EXPR_PREOP:
1928 return linearize_preop(ep, expr);
1929
1930 case EXPR_POSTOP:
1931 return linearize_postop(ep, expr);
1932
1933 case EXPR_CAST:
1934 case EXPR_FORCE_CAST:
1935 case EXPR_IMPLIED_CAST:
1936 return linearize_cast(ep, expr);
1937
1938 case EXPR_SLICE:
1939 return linearize_slice(ep, expr);
1940
1941 case EXPR_INITIALIZER:
1942 case EXPR_POS:
1943 warning(expr->pos, "unexpected initializer expression (%d %d)", expr->type, expr->op);
1944 return VOID;
1945 default:
1946 warning(expr->pos, "unknown expression (%d %d)", expr->type, expr->op);
1947 return VOID;
1948 }
1949 return VOID;
1950 }
1951
linearize_one_symbol(struct entrypoint * ep,struct symbol * sym)1952 static pseudo_t linearize_one_symbol(struct entrypoint *ep, struct symbol *sym)
1953 {
1954 struct access_data ad = { NULL, };
1955 pseudo_t value;
1956
1957 if (!sym || !sym->initializer || sym->initialized)
1958 return VOID;
1959
1960 /* We need to output these puppies some day too.. */
1961 if (sym->ctype.modifiers & (MOD_STATIC | MOD_TOPLEVEL))
1962 return VOID;
1963
1964 sym->initialized = 1;
1965 ad.address = symbol_pseudo(ep, sym);
1966
1967 if (sym->initializer && !is_scalar_type(sym)) {
1968 // default zero initialization [6.7.9.21]
1969 // FIXME: this init the whole aggregate while
1970 // only the existing fields need to be initialized.
1971 // FIXME: this init the whole aggregate even if
1972 // all fields arelater explicitely initialized.
1973 ad.type = sym;
1974 ad.address = symbol_pseudo(ep, sym);
1975 linearize_store_gen(ep, value_pseudo(0), &ad);
1976 }
1977
1978 value = linearize_initializer(ep, sym->initializer, &ad);
1979 return value;
1980 }
1981
linearize_compound_statement(struct entrypoint * ep,struct statement * stmt)1982 static pseudo_t linearize_compound_statement(struct entrypoint *ep, struct statement *stmt)
1983 {
1984 pseudo_t pseudo;
1985 struct statement *s;
1986
1987 pseudo = VOID;
1988 FOR_EACH_PTR(stmt->stmts, s) {
1989 pseudo = linearize_statement(ep, s);
1990 } END_FOR_EACH_PTR(s);
1991
1992 return pseudo;
1993 }
1994
add_return(struct entrypoint * ep,struct basic_block * bb,struct symbol * ctype,pseudo_t src)1995 static void add_return(struct entrypoint *ep, struct basic_block *bb, struct symbol *ctype, pseudo_t src)
1996 {
1997 struct instruction *phi_node = first_instruction(bb->insns);
1998 pseudo_t phi;
1999 if (!phi_node) {
2000 phi_node = alloc_typed_instruction(OP_PHI, ctype);
2001 phi_node->target = alloc_pseudo(phi_node);
2002 phi_node->bb = bb;
2003 add_instruction(&bb->insns, phi_node);
2004 }
2005 phi = alloc_phi(ep->active, src, ctype);
2006 phi->ident = &return_ident;
2007 link_phi(phi_node, phi);
2008 }
2009
linearize_fn_statement(struct entrypoint * ep,struct statement * stmt)2010 static pseudo_t linearize_fn_statement(struct entrypoint *ep, struct statement *stmt)
2011 {
2012 struct instruction *phi_node;
2013 struct basic_block *bb;
2014 pseudo_t pseudo;
2015
2016 pseudo = linearize_compound_statement(ep, stmt);
2017 if (!is_void_type(stmt->ret)) { // non-void function
2018 struct basic_block *active = ep->active;
2019 if (active && !bb_terminated(active)) { // missing return
2020 struct basic_block *bb_ret;
2021 bb_ret = get_bound_block(ep, stmt->ret);
2022 add_return(ep, bb_ret, stmt->ret, undef_pseudo());
2023 }
2024 }
2025 bb = add_label(ep, stmt->ret);
2026 phi_node = first_instruction(bb->insns);
2027 if (phi_node)
2028 pseudo = phi_node->target;
2029 return pseudo;
2030 }
2031
linearize_inlined_call(struct entrypoint * ep,struct statement * stmt)2032 static pseudo_t linearize_inlined_call(struct entrypoint *ep, struct statement *stmt)
2033 {
2034 struct instruction *insn = alloc_instruction(OP_INLINED_CALL, 0);
2035 struct statement *args = stmt->args;
2036 struct basic_block *bb;
2037 pseudo_t pseudo;
2038
2039 if (args) {
2040 struct symbol *sym;
2041
2042 concat_symbol_list(args->declaration, &ep->syms);
2043 FOR_EACH_PTR(args->declaration, sym) {
2044 pseudo_t value = linearize_one_symbol(ep, sym);
2045 add_pseudo(&insn->arguments, value);
2046 } END_FOR_EACH_PTR(sym);
2047 }
2048
2049 pseudo = linearize_fn_statement(ep, stmt);
2050 insn->target = pseudo;
2051
2052 insn->func = symbol_pseudo(ep, stmt->inline_fn);
2053 bb = ep->active;
2054 if (!bb->insns)
2055 bb->pos = stmt->pos;
2056 add_one_insn(ep, insn);
2057 return pseudo;
2058 }
2059
linearize_context(struct entrypoint * ep,struct statement * stmt)2060 static pseudo_t linearize_context(struct entrypoint *ep, struct statement *stmt)
2061 {
2062 struct instruction *insn = alloc_instruction(OP_CONTEXT, 0);
2063 struct expression *expr = stmt->expression;
2064
2065 insn->increment = get_expression_value(expr);
2066 insn->context_expr = stmt->context;
2067 add_one_insn(ep, insn);
2068 return VOID;
2069 }
2070
linearize_range(struct entrypoint * ep,struct statement * stmt)2071 static pseudo_t linearize_range(struct entrypoint *ep, struct statement *stmt)
2072 {
2073 struct instruction *insn = alloc_instruction(OP_RANGE, 0);
2074
2075 use_pseudo(insn, linearize_expression(ep, stmt->range_expression), &insn->src1);
2076 use_pseudo(insn, linearize_expression(ep, stmt->range_low), &insn->src2);
2077 use_pseudo(insn, linearize_expression(ep, stmt->range_high), &insn->src3);
2078 add_one_insn(ep, insn);
2079 return VOID;
2080 }
2081
2082 ALLOCATOR(asm_rules, "asm rules");
2083 ALLOCATOR(asm_constraint, "asm constraints");
2084
add_asm_rule(struct instruction * insn,struct asm_constraint_list ** list,struct asm_operand * op,pseudo_t pseudo)2085 static void add_asm_rule(struct instruction *insn, struct asm_constraint_list **list, struct asm_operand *op, pseudo_t pseudo)
2086 {
2087 struct asm_constraint *rule = __alloc_asm_constraint(0);
2088 rule->is_memory = op->is_memory;
2089 rule->ident = op->name;
2090 rule->constraint = op->constraint ? op->constraint->string->data : "";
2091 use_pseudo(insn, pseudo, &rule->pseudo);
2092 add_ptr_list(list, rule);
2093 }
2094
add_asm_input(struct entrypoint * ep,struct instruction * insn,struct asm_operand * op)2095 static void add_asm_input(struct entrypoint *ep, struct instruction *insn, struct asm_operand *op)
2096 {
2097 pseudo_t pseudo = linearize_expression(ep, op->expr);
2098
2099 add_asm_rule(insn, &insn->asm_rules->inputs, op, pseudo);
2100 }
2101
add_asm_output_address(struct entrypoint * ep,struct instruction * insn,struct asm_operand * op)2102 static void add_asm_output_address(struct entrypoint *ep, struct instruction *insn, struct asm_operand *op)
2103 {
2104 pseudo_t pseudo;
2105
2106 if (!op->is_memory)
2107 return;
2108
2109 pseudo = linearize_expression(ep, op->expr);
2110 add_asm_rule(insn, &insn->asm_rules->outputs, op, pseudo);
2111 insn->output_memory = 1;
2112 }
2113
add_asm_output(struct entrypoint * ep,struct instruction * insn,struct asm_operand * op)2114 static void add_asm_output(struct entrypoint *ep, struct instruction *insn, struct asm_operand *op)
2115 {
2116 struct access_data ad = { NULL, };
2117 pseudo_t pseudo;
2118
2119 if (op->is_memory)
2120 return;
2121
2122 if (!linearize_address_gen(ep, op->expr, &ad))
2123 return;
2124 pseudo = alloc_pseudo(insn);
2125 linearize_store_gen(ep, pseudo, &ad);
2126
2127 add_asm_rule(insn, &insn->asm_rules->outputs, op, pseudo);
2128 }
2129
linearize_asm_statement(struct entrypoint * ep,struct statement * stmt)2130 static pseudo_t linearize_asm_statement(struct entrypoint *ep, struct statement *stmt)
2131 {
2132 struct instruction *insn;
2133 struct expression *expr, *clob;
2134 struct asm_rules *rules;
2135 struct asm_operand *op;
2136
2137 insn = alloc_instruction(OP_ASM, 0);
2138 expr = stmt->asm_string;
2139 if (!expr || expr->type != EXPR_STRING) {
2140 warning(stmt->pos, "expected string in inline asm");
2141 return VOID;
2142 }
2143 insn->string = expr->string->data;
2144
2145 rules = __alloc_asm_rules(0);
2146 insn->asm_rules = rules;
2147
2148 /* Gather the inputs.. */
2149 FOR_EACH_PTR(stmt->asm_inputs, op) {
2150 add_asm_input(ep, insn, op);
2151 } END_FOR_EACH_PTR(op);
2152
2153 /* ... and the addresses for memory outputs */
2154 FOR_EACH_PTR(stmt->asm_outputs, op) {
2155 add_asm_output_address(ep, insn, op);
2156 } END_FOR_EACH_PTR(op);
2157
2158 add_one_insn(ep, insn);
2159
2160 /* Assign the outputs */
2161 FOR_EACH_PTR(stmt->asm_outputs, op) {
2162 add_asm_output(ep, insn, op);
2163 } END_FOR_EACH_PTR(op);
2164
2165 /* and finally, look if it clobbers memory */
2166 FOR_EACH_PTR(stmt->asm_clobbers, clob) {
2167 if (!strcmp(clob->string->data, "memory"))
2168 insn->clobber_memory = 1;
2169 } END_FOR_EACH_PTR(clob);
2170
2171 return VOID;
2172 }
2173
multijmp_cmp(const void * _a,const void * _b)2174 static int multijmp_cmp(const void *_a, const void *_b)
2175 {
2176 const struct multijmp *a = _a;
2177 const struct multijmp *b = _b;
2178
2179 // "default" case?
2180 if (a->begin > a->end) {
2181 if (b->begin > b->end)
2182 return 0;
2183 return 1;
2184 }
2185 if (b->begin > b->end)
2186 return -1;
2187 if (a->begin == b->begin) {
2188 if (a->end == b->end)
2189 return 0;
2190 return (a->end < b->end) ? -1 : 1;
2191 }
2192 return a->begin < b->begin ? -1 : 1;
2193 }
2194
sort_switch_cases(struct instruction * insn)2195 static void sort_switch_cases(struct instruction *insn)
2196 {
2197 sort_list((struct ptr_list **)&insn->multijmp_list, multijmp_cmp);
2198 }
2199
linearize_declaration(struct entrypoint * ep,struct statement * stmt)2200 static pseudo_t linearize_declaration(struct entrypoint *ep, struct statement *stmt)
2201 {
2202 struct symbol *sym;
2203
2204 concat_symbol_list(stmt->declaration, &ep->syms);
2205
2206 FOR_EACH_PTR(stmt->declaration, sym) {
2207 linearize_one_symbol(ep, sym);
2208 } END_FOR_EACH_PTR(sym);
2209 return VOID;
2210 }
2211
linearize_return(struct entrypoint * ep,struct statement * stmt)2212 static pseudo_t linearize_return(struct entrypoint *ep, struct statement *stmt)
2213 {
2214 struct expression *expr = stmt->expression;
2215 struct symbol *ret = stmt->ret_target;
2216 struct basic_block *bb_return = get_bound_block(ep, ret);
2217 struct basic_block *active;
2218 pseudo_t src = linearize_expression(ep, expr);
2219 active = ep->active;
2220 if (active && !is_void_type(ret)) {
2221 add_return(ep, bb_return, ret, src);
2222 }
2223 add_goto(ep, bb_return);
2224 return VOID;
2225 }
2226
linearize_switch(struct entrypoint * ep,struct statement * stmt)2227 static pseudo_t linearize_switch(struct entrypoint *ep, struct statement *stmt)
2228 {
2229 struct symbol *sym;
2230 struct instruction *switch_ins;
2231 struct basic_block *switch_end = alloc_basic_block(ep, stmt->pos);
2232 struct basic_block *active, *default_case;
2233 struct expression *expr = stmt->switch_expression;
2234 struct multijmp *jmp;
2235 pseudo_t pseudo;
2236
2237 if (!expr || !expr->ctype)
2238 return VOID;
2239 pseudo = linearize_expression(ep, expr);
2240 active = ep->active;
2241 if (!active) {
2242 active = alloc_basic_block(ep, stmt->pos);
2243 set_activeblock(ep, active);
2244 }
2245
2246 switch_ins = alloc_typed_instruction(OP_SWITCH, expr->ctype);
2247 use_pseudo(switch_ins, pseudo, &switch_ins->cond);
2248 add_one_insn(ep, switch_ins);
2249 finish_block(ep);
2250
2251 default_case = NULL;
2252 FOR_EACH_PTR(stmt->switch_case->symbol_list, sym) {
2253 struct statement *case_stmt = sym->stmt;
2254 struct basic_block *bb_case = get_bound_block(ep, sym);
2255
2256 if (!case_stmt->case_expression) {
2257 default_case = bb_case;
2258 continue;
2259 } else if (case_stmt->case_expression->type != EXPR_VALUE) {
2260 continue;
2261 } else {
2262 struct expression *case_to = case_stmt->case_to;
2263 long long begin, end;
2264
2265 begin = end = case_stmt->case_expression->value;
2266 if (case_to && case_to->type == EXPR_VALUE)
2267 end = case_to->value;
2268 if (begin > end)
2269 jmp = alloc_multijmp(bb_case, end, begin);
2270 else
2271 jmp = alloc_multijmp(bb_case, begin, end);
2272
2273 }
2274 add_multijmp(&switch_ins->multijmp_list, jmp);
2275 add_bb(&bb_case->parents, active);
2276 add_bb(&active->children, bb_case);
2277 } END_FOR_EACH_PTR(sym);
2278
2279 bind_label(stmt->switch_break, switch_end, stmt->pos);
2280
2281 /* And linearize the actual statement */
2282 linearize_statement(ep, stmt->switch_statement);
2283 set_activeblock(ep, switch_end);
2284
2285 if (!default_case)
2286 default_case = switch_end;
2287
2288 jmp = alloc_multijmp(default_case, 1, 0);
2289 add_multijmp(&switch_ins->multijmp_list, jmp);
2290 add_bb(&default_case->parents, active);
2291 add_bb(&active->children, default_case);
2292 sort_switch_cases(switch_ins);
2293
2294 return VOID;
2295 }
2296
linearize_iterator(struct entrypoint * ep,struct statement * stmt)2297 static pseudo_t linearize_iterator(struct entrypoint *ep, struct statement *stmt)
2298 {
2299 struct statement *pre_statement = stmt->iterator_pre_statement;
2300 struct expression *pre_condition = stmt->iterator_pre_condition;
2301 struct statement *statement = stmt->iterator_statement;
2302 struct statement *post_statement = stmt->iterator_post_statement;
2303 struct expression *post_condition = stmt->iterator_post_condition;
2304 struct basic_block *loop_top, *loop_body, *loop_continue, *loop_end;
2305 struct symbol *sym;
2306
2307 FOR_EACH_PTR(stmt->iterator_syms, sym) {
2308 linearize_one_symbol(ep, sym);
2309 } END_FOR_EACH_PTR(sym);
2310 concat_symbol_list(stmt->iterator_syms, &ep->syms);
2311 linearize_statement(ep, pre_statement);
2312
2313 loop_body = loop_top = alloc_basic_block(ep, stmt->pos);
2314 loop_continue = alloc_basic_block(ep, stmt->pos);
2315 loop_end = alloc_basic_block(ep, stmt->pos);
2316
2317 /* An empty post-condition means that it's the same as the pre-condition */
2318 if (!post_condition) {
2319 loop_top = alloc_basic_block(ep, stmt->pos);
2320 set_activeblock(ep, loop_top);
2321 }
2322
2323 if (pre_condition)
2324 linearize_cond_branch(ep, pre_condition, loop_body, loop_end);
2325
2326 bind_label(stmt->iterator_continue, loop_continue, stmt->pos);
2327 bind_label(stmt->iterator_break, loop_end, stmt->pos);
2328
2329 set_activeblock(ep, loop_body);
2330 linearize_statement(ep, statement);
2331 add_goto(ep, loop_continue);
2332
2333 set_activeblock(ep, loop_continue);
2334 linearize_statement(ep, post_statement);
2335 if (!post_condition)
2336 add_goto(ep, loop_top);
2337 else
2338 linearize_cond_branch(ep, post_condition, loop_top, loop_end);
2339 set_activeblock(ep, loop_end);
2340
2341 return VOID;
2342 }
2343
linearize_statement(struct entrypoint * ep,struct statement * stmt)2344 static pseudo_t linearize_statement(struct entrypoint *ep, struct statement *stmt)
2345 {
2346 struct basic_block *bb;
2347
2348 if (!stmt)
2349 return VOID;
2350
2351 bb = ep->active;
2352 if (bb && !bb->insns)
2353 bb->pos = stmt->pos;
2354 current_pos = stmt->pos;
2355
2356 switch (stmt->type) {
2357 case STMT_NONE:
2358 break;
2359
2360 case STMT_DECLARATION:
2361 return linearize_declaration(ep, stmt);
2362
2363 case STMT_CONTEXT:
2364 return linearize_context(ep, stmt);
2365
2366 case STMT_RANGE:
2367 return linearize_range(ep, stmt);
2368
2369 case STMT_EXPRESSION:
2370 return linearize_expression(ep, stmt->expression);
2371
2372 case STMT_ASM:
2373 return linearize_asm_statement(ep, stmt);
2374
2375 case STMT_RETURN:
2376 return linearize_return(ep, stmt);
2377
2378 case STMT_CASE: {
2379 add_label(ep, stmt->case_label);
2380 linearize_statement(ep, stmt->case_statement);
2381 break;
2382 }
2383
2384 case STMT_LABEL: {
2385 struct symbol *label = stmt->label_identifier;
2386
2387 if (label->used) {
2388 add_label(ep, label);
2389 }
2390 return linearize_statement(ep, stmt->label_statement);
2391 }
2392
2393 case STMT_GOTO: {
2394 struct symbol *sym;
2395 struct expression *expr;
2396 struct instruction *goto_ins;
2397 struct basic_block *active;
2398 pseudo_t pseudo;
2399
2400 active = ep->active;
2401 if (!bb_reachable(active))
2402 break;
2403
2404 if (stmt->goto_label) {
2405 add_goto(ep, get_bound_block(ep, stmt->goto_label));
2406 break;
2407 }
2408
2409 expr = stmt->goto_expression;
2410 if (!expr)
2411 break;
2412
2413 /* This can happen as part of simplification */
2414 if (expr->type == EXPR_LABEL) {
2415 add_goto(ep, get_bound_block(ep, expr->label_symbol));
2416 break;
2417 }
2418
2419 pseudo = linearize_expression(ep, expr);
2420 goto_ins = alloc_instruction(OP_COMPUTEDGOTO, 0);
2421 use_pseudo(goto_ins, pseudo, &goto_ins->src);
2422 add_one_insn(ep, goto_ins);
2423
2424 FOR_EACH_PTR(stmt->target_list, sym) {
2425 struct basic_block *bb_computed = get_bound_block(ep, sym);
2426 struct multijmp *jmp = alloc_multijmp(bb_computed, 1, 0);
2427 add_multijmp(&goto_ins->multijmp_list, jmp);
2428 add_bb(&bb_computed->parents, ep->active);
2429 add_bb(&active->children, bb_computed);
2430 } END_FOR_EACH_PTR(sym);
2431
2432 finish_block(ep);
2433 break;
2434 }
2435
2436 case STMT_COMPOUND:
2437 if (stmt->inline_fn)
2438 return linearize_inlined_call(ep, stmt);
2439 return linearize_compound_statement(ep, stmt);
2440
2441 /*
2442 * This could take 'likely/unlikely' into account, and
2443 * switch the arms around appropriately..
2444 */
2445 case STMT_IF: {
2446 struct basic_block *bb_true, *bb_false, *endif;
2447 struct expression *cond = stmt->if_conditional;
2448
2449 bb_true = alloc_basic_block(ep, stmt->pos);
2450 bb_false = endif = alloc_basic_block(ep, stmt->pos);
2451
2452 // If the condition is invalid, the following
2453 // statement(s) are not evaluated.
2454 if (!cond || !valid_type(cond->ctype))
2455 return VOID;
2456 linearize_cond_branch(ep, cond, bb_true, bb_false);
2457
2458 set_activeblock(ep, bb_true);
2459 linearize_statement(ep, stmt->if_true);
2460
2461 if (stmt->if_false) {
2462 endif = alloc_basic_block(ep, stmt->pos);
2463 add_goto(ep, endif);
2464 set_activeblock(ep, bb_false);
2465 linearize_statement(ep, stmt->if_false);
2466 }
2467 set_activeblock(ep, endif);
2468 break;
2469 }
2470
2471 case STMT_SWITCH:
2472 return linearize_switch(ep, stmt);
2473
2474 case STMT_ITERATOR:
2475 return linearize_iterator(ep, stmt);
2476
2477 default:
2478 break;
2479 }
2480 return VOID;
2481 }
2482
check_tainted_insn(struct instruction * insn)2483 static void check_tainted_insn(struct instruction *insn)
2484 {
2485 unsigned long long uval;
2486 long long sval;
2487 pseudo_t src2;
2488
2489 switch (insn->opcode) {
2490 case OP_DIVU: case OP_DIVS:
2491 case OP_MODU: case OP_MODS:
2492 if (insn->src2 == value_pseudo(0))
2493 warning(insn->pos, "divide by zero");
2494 break;
2495 case OP_SHL: case OP_LSR: case OP_ASR:
2496 src2 = insn->src2;
2497 if (src2->type != PSEUDO_VAL)
2498 break;
2499 uval = src2->value;
2500 if (uval < insn->size)
2501 break;
2502 sval = sign_extend(uval, insn->size);
2503 if (Wshift_count_negative && sval < 0)
2504 warning(insn->pos, "shift count is negative (%lld)", sval);
2505 else if (Wshift_count_overflow)
2506 warning(insn->pos, "shift too big (%llu) for type %s", uval, show_typename(insn->type));
2507 }
2508 }
2509
2510 ///
2511 // issue warnings after all possible DCE
late_warnings(struct entrypoint * ep)2512 static void late_warnings(struct entrypoint *ep)
2513 {
2514 struct basic_block *bb;
2515 FOR_EACH_PTR(ep->bbs, bb) {
2516 struct instruction *insn;
2517 FOR_EACH_PTR(bb->insns, insn) {
2518 if (!insn->bb)
2519 continue;
2520 if (insn->tainted)
2521 check_tainted_insn(insn);
2522 switch (insn->opcode) {
2523 case OP_LOAD:
2524 // Check for illegal offsets.
2525 check_access(insn);
2526 break;
2527 }
2528 } END_FOR_EACH_PTR(insn);
2529 } END_FOR_EACH_PTR(bb);
2530 }
2531
linearize_fn(struct symbol * sym,struct symbol * base_type)2532 static struct entrypoint *linearize_fn(struct symbol *sym, struct symbol *base_type)
2533 {
2534 struct statement *stmt = base_type->stmt;
2535 struct entrypoint *ep;
2536 struct basic_block *bb;
2537 struct symbol *ret_type;
2538 struct symbol *arg;
2539 struct instruction *entry;
2540 struct instruction *ret;
2541 pseudo_t result;
2542 int i;
2543
2544 if (!stmt || sym->bogus_linear)
2545 return NULL;
2546
2547 ep = alloc_entrypoint();
2548 ep->name = sym;
2549 sym->ep = ep;
2550 bb = alloc_basic_block(ep, sym->pos);
2551 set_activeblock(ep, bb);
2552
2553 if (stmt->type == STMT_ASM) { // top-level asm
2554 linearize_asm_statement(ep, stmt);
2555 return ep;
2556 }
2557
2558 entry = alloc_instruction(OP_ENTRY, 0);
2559 add_one_insn(ep, entry);
2560 ep->entry = entry;
2561
2562 concat_symbol_list(base_type->arguments, &ep->syms);
2563
2564 /* FIXME!! We should do something else about varargs.. */
2565 i = 0;
2566 FOR_EACH_PTR(base_type->arguments, arg) {
2567 linearize_argument(ep, arg, ++i);
2568 } END_FOR_EACH_PTR(arg);
2569
2570 result = linearize_fn_statement(ep, stmt);
2571 ret_type = base_type->ctype.base_type;
2572 ret = alloc_typed_instruction(OP_RET, ret_type);
2573 if (type_size(ret_type) > 0)
2574 use_pseudo(ret, result, &ret->src);
2575 add_one_insn(ep, ret);
2576
2577 optimize(ep);
2578 late_warnings(ep);
2579 return ep;
2580 }
2581
linearize_symbol(struct symbol * sym)2582 struct entrypoint *linearize_symbol(struct symbol *sym)
2583 {
2584 struct symbol *base_type;
2585
2586 if (!sym)
2587 return NULL;
2588 current_pos = sym->pos;
2589 base_type = sym->ctype.base_type;
2590 if (!base_type)
2591 return NULL;
2592 if (base_type->type == SYM_FN)
2593 return linearize_fn(sym, base_type);
2594 return NULL;
2595 }
2596
2597 /*
2598 * Builtin functions
2599 */
2600
linearize_fma(struct entrypoint * ep,struct expression * expr)2601 static pseudo_t linearize_fma(struct entrypoint *ep, struct expression *expr)
2602 {
2603 struct instruction *insn = alloc_typed_instruction(OP_FMADD, expr->ctype);
2604 struct expression *arg;
2605
2606 PREPARE_PTR_LIST(expr->args, arg);
2607 use_pseudo(insn, linearize_expression(ep, arg), &insn->src1);
2608 NEXT_PTR_LIST(arg)
2609 use_pseudo(insn, linearize_expression(ep, arg), &insn->src2);
2610 NEXT_PTR_LIST(arg)
2611 use_pseudo(insn, linearize_expression(ep, arg), &insn->src3);
2612 FINISH_PTR_LIST(arg);
2613
2614 add_one_insn(ep, insn);
2615 return insn->target = alloc_pseudo(insn);
2616 }
2617
linearize_isdigit(struct entrypoint * ep,struct expression * expr)2618 static pseudo_t linearize_isdigit(struct entrypoint *ep, struct expression *expr)
2619 {
2620 struct instruction *insn;
2621 pseudo_t src;
2622
2623 insn = alloc_typed_instruction(OP_SUB, &int_ctype);
2624 src = linearize_expression(ep, first_expression(expr->args));
2625 use_pseudo(insn, src, &insn->src1);
2626 insn->src2 = value_pseudo('0');
2627 src = insn->target = alloc_pseudo(insn);
2628 add_one_insn(ep, insn);
2629
2630 insn = alloc_typed_instruction(OP_SET_BE, &int_ctype);
2631 use_pseudo(insn, src, &insn->src1);
2632 insn->src2 = value_pseudo(9);
2633 insn->target = alloc_pseudo(insn);
2634 insn->itype = &int_ctype;
2635 add_one_insn(ep, insn);
2636
2637 return insn->target;
2638 }
2639
linearize_unreachable(struct entrypoint * ep,struct expression * exp)2640 static pseudo_t linearize_unreachable(struct entrypoint *ep, struct expression *exp)
2641 {
2642 add_unreachable(ep);
2643 return VOID;
2644 }
2645
2646 static struct sym_init {
2647 const char *name;
2648 pseudo_t (*linearize)(struct entrypoint *, struct expression*);
2649 struct symbol_op op;
2650 } builtins_table[] = {
2651 // must be declared in builtin.c:declare_builtins[]
2652 { "__builtin_fma", linearize_fma },
2653 { "__builtin_fmaf", linearize_fma },
2654 { "__builtin_fmal", linearize_fma },
2655 { "__builtin_isdigit", linearize_isdigit },
2656 { "__builtin_unreachable", linearize_unreachable },
2657 { }
2658 };
2659
init_linearized_builtins(int stream)2660 void init_linearized_builtins(int stream)
2661 {
2662 struct sym_init *ptr;
2663
2664 for (ptr = builtins_table; ptr->name; ptr++) {
2665 struct symbol *sym;
2666 sym = create_symbol(stream, ptr->name, SYM_NODE, NS_SYMBOL);
2667 if (!sym->op)
2668 sym->op = &ptr->op;
2669 sym->op->type |= KW_BUILTIN;
2670 sym->op->linearize = ptr->linearize;
2671 }
2672 }
2673