• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <sys/mman.h>
29 
30 #include "anv_private.h"
31 
32 #include "common/intel_aux_map.h"
33 #include "util/anon_file.h"
34 
35 #ifdef HAVE_VALGRIND
36 #define VG_NOACCESS_READ(__ptr) ({                       \
37    VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
38    __typeof(*(__ptr)) __val = *(__ptr);                  \
39    VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
40    __val;                                                \
41 })
42 #define VG_NOACCESS_WRITE(__ptr, __val) ({                  \
43    VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr)));  \
44    *(__ptr) = (__val);                                      \
45    VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));   \
46 })
47 #else
48 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
49 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
50 #endif
51 
52 #ifndef MAP_POPULATE
53 #define MAP_POPULATE 0
54 #endif
55 
56 /* Design goals:
57  *
58  *  - Lock free (except when resizing underlying bos)
59  *
60  *  - Constant time allocation with typically only one atomic
61  *
62  *  - Multiple allocation sizes without fragmentation
63  *
64  *  - Can grow while keeping addresses and offset of contents stable
65  *
66  *  - All allocations within one bo so we can point one of the
67  *    STATE_BASE_ADDRESS pointers at it.
68  *
69  * The overall design is a two-level allocator: top level is a fixed size, big
70  * block (8k) allocator, which operates out of a bo.  Allocation is done by
71  * either pulling a block from the free list or growing the used range of the
72  * bo.  Growing the range may run out of space in the bo which we then need to
73  * grow.  Growing the bo is tricky in a multi-threaded, lockless environment:
74  * we need to keep all pointers and contents in the old map valid.  GEM bos in
75  * general can't grow, but we use a trick: we create a memfd and use ftruncate
76  * to grow it as necessary.  We mmap the new size and then create a gem bo for
77  * it using the new gem userptr ioctl.  Without heavy-handed locking around
78  * our allocation fast-path, there isn't really a way to munmap the old mmap,
79  * so we just keep it around until garbage collection time.  While the block
80  * allocator is lockless for normal operations, we block other threads trying
81  * to allocate while we're growing the map.  It sholdn't happen often, and
82  * growing is fast anyway.
83  *
84  * At the next level we can use various sub-allocators.  The state pool is a
85  * pool of smaller, fixed size objects, which operates much like the block
86  * pool.  It uses a free list for freeing objects, but when it runs out of
87  * space it just allocates a new block from the block pool.  This allocator is
88  * intended for longer lived state objects such as SURFACE_STATE and most
89  * other persistent state objects in the API.  We may need to track more info
90  * with these object and a pointer back to the CPU object (eg VkImage).  In
91  * those cases we just allocate a slightly bigger object and put the extra
92  * state after the GPU state object.
93  *
94  * The state stream allocator works similar to how the i965 DRI driver streams
95  * all its state.  Even with Vulkan, we need to emit transient state (whether
96  * surface state base or dynamic state base), and for that we can just get a
97  * block and fill it up.  These cases are local to a command buffer and the
98  * sub-allocator need not be thread safe.  The streaming allocator gets a new
99  * block when it runs out of space and chains them together so they can be
100  * easily freed.
101  */
102 
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104  * We use it to indicate the free list is empty. */
105 #define EMPTY UINT32_MAX
106 
107 /* On FreeBSD PAGE_SIZE is already defined in
108  * /usr/include/machine/param.h that is indirectly
109  * included here.
110  */
111 #ifndef PAGE_SIZE
112 #define PAGE_SIZE 4096
113 #endif
114 
115 struct anv_mmap_cleanup {
116    void *map;
117    size_t size;
118 };
119 
120 static inline uint32_t
ilog2_round_up(uint32_t value)121 ilog2_round_up(uint32_t value)
122 {
123    assert(value != 0);
124    return 32 - __builtin_clz(value - 1);
125 }
126 
127 static inline uint32_t
round_to_power_of_two(uint32_t value)128 round_to_power_of_two(uint32_t value)
129 {
130    return 1 << ilog2_round_up(value);
131 }
132 
133 struct anv_state_table_cleanup {
134    void *map;
135    size_t size;
136 };
137 
138 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
139 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
140 
141 static VkResult
142 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
143 
144 VkResult
anv_state_table_init(struct anv_state_table * table,struct anv_device * device,uint32_t initial_entries)145 anv_state_table_init(struct anv_state_table *table,
146                     struct anv_device *device,
147                     uint32_t initial_entries)
148 {
149    VkResult result;
150 
151    table->device = device;
152 
153    /* Just make it 2GB up-front.  The Linux kernel won't actually back it
154     * with pages until we either map and fault on one of them or we use
155     * userptr and send a chunk of it off to the GPU.
156     */
157    table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
158    if (table->fd == -1)
159       return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
160 
161    if (!u_vector_init(&table->cleanups, 8,
162                       sizeof(struct anv_state_table_cleanup))) {
163       result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
164       goto fail_fd;
165    }
166 
167    table->state.next = 0;
168    table->state.end = 0;
169    table->size = 0;
170 
171    uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
172    result = anv_state_table_expand_range(table, initial_size);
173    if (result != VK_SUCCESS)
174       goto fail_cleanups;
175 
176    return VK_SUCCESS;
177 
178  fail_cleanups:
179    u_vector_finish(&table->cleanups);
180  fail_fd:
181    close(table->fd);
182 
183    return result;
184 }
185 
186 static VkResult
anv_state_table_expand_range(struct anv_state_table * table,uint32_t size)187 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
188 {
189    void *map;
190    struct anv_state_table_cleanup *cleanup;
191 
192    /* Assert that we only ever grow the pool */
193    assert(size >= table->state.end);
194 
195    /* Make sure that we don't go outside the bounds of the memfd */
196    if (size > BLOCK_POOL_MEMFD_SIZE)
197       return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
198 
199    cleanup = u_vector_add(&table->cleanups);
200    if (!cleanup)
201       return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
202 
203    *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
204 
205    /* Just leak the old map until we destroy the pool.  We can't munmap it
206     * without races or imposing locking on the block allocate fast path. On
207     * the whole the leaked maps adds up to less than the size of the
208     * current map.  MAP_POPULATE seems like the right thing to do, but we
209     * should try to get some numbers.
210     */
211    map = mmap(NULL, size, PROT_READ | PROT_WRITE,
212               MAP_SHARED | MAP_POPULATE, table->fd, 0);
213    if (map == MAP_FAILED) {
214       return vk_errorf(table->device, VK_ERROR_OUT_OF_HOST_MEMORY,
215                        "mmap failed: %m");
216    }
217 
218    cleanup->map = map;
219    cleanup->size = size;
220 
221    table->map = map;
222    table->size = size;
223 
224    return VK_SUCCESS;
225 }
226 
227 static VkResult
anv_state_table_grow(struct anv_state_table * table)228 anv_state_table_grow(struct anv_state_table *table)
229 {
230    VkResult result = VK_SUCCESS;
231 
232    uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
233                              PAGE_SIZE);
234    uint32_t old_size = table->size;
235 
236    /* The block pool is always initialized to a nonzero size and this function
237     * is always called after initialization.
238     */
239    assert(old_size > 0);
240 
241    uint32_t required = MAX2(used, old_size);
242    if (used * 2 <= required) {
243       /* If we're in this case then this isn't the firsta allocation and we
244        * already have enough space on both sides to hold double what we
245        * have allocated.  There's nothing for us to do.
246        */
247       goto done;
248    }
249 
250    uint32_t size = old_size * 2;
251    while (size < required)
252       size *= 2;
253 
254    assert(size > table->size);
255 
256    result = anv_state_table_expand_range(table, size);
257 
258  done:
259    return result;
260 }
261 
262 void
anv_state_table_finish(struct anv_state_table * table)263 anv_state_table_finish(struct anv_state_table *table)
264 {
265    struct anv_state_table_cleanup *cleanup;
266 
267    u_vector_foreach(cleanup, &table->cleanups) {
268       if (cleanup->map)
269          munmap(cleanup->map, cleanup->size);
270    }
271 
272    u_vector_finish(&table->cleanups);
273 
274    close(table->fd);
275 }
276 
277 VkResult
anv_state_table_add(struct anv_state_table * table,uint32_t * idx,uint32_t count)278 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
279                     uint32_t count)
280 {
281    struct anv_block_state state, old, new;
282    VkResult result;
283 
284    assert(idx);
285 
286    while(1) {
287       state.u64 = __sync_fetch_and_add(&table->state.u64, count);
288       if (state.next + count <= state.end) {
289          assert(table->map);
290          struct anv_free_entry *entry = &table->map[state.next];
291          for (int i = 0; i < count; i++) {
292             entry[i].state.idx = state.next + i;
293          }
294          *idx = state.next;
295          return VK_SUCCESS;
296       } else if (state.next <= state.end) {
297          /* We allocated the first block outside the pool so we have to grow
298           * the pool.  pool_state->next acts a mutex: threads who try to
299           * allocate now will get block indexes above the current limit and
300           * hit futex_wait below.
301           */
302          new.next = state.next + count;
303          do {
304             result = anv_state_table_grow(table);
305             if (result != VK_SUCCESS)
306                return result;
307             new.end = table->size / ANV_STATE_ENTRY_SIZE;
308          } while (new.end < new.next);
309 
310          old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
311          if (old.next != state.next)
312             futex_wake(&table->state.end, INT_MAX);
313       } else {
314          futex_wait(&table->state.end, state.end, NULL);
315          continue;
316       }
317    }
318 }
319 
320 void
anv_free_list_push(union anv_free_list * list,struct anv_state_table * table,uint32_t first,uint32_t count)321 anv_free_list_push(union anv_free_list *list,
322                    struct anv_state_table *table,
323                    uint32_t first, uint32_t count)
324 {
325    union anv_free_list current, old, new;
326    uint32_t last = first;
327 
328    for (uint32_t i = 1; i < count; i++, last++)
329       table->map[last].next = last + 1;
330 
331    old.u64 = list->u64;
332    do {
333       current = old;
334       table->map[last].next = current.offset;
335       new.offset = first;
336       new.count = current.count + 1;
337       old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
338    } while (old.u64 != current.u64);
339 }
340 
341 struct anv_state *
anv_free_list_pop(union anv_free_list * list,struct anv_state_table * table)342 anv_free_list_pop(union anv_free_list *list,
343                   struct anv_state_table *table)
344 {
345    union anv_free_list current, new, old;
346 
347    current.u64 = list->u64;
348    while (current.offset != EMPTY) {
349       __sync_synchronize();
350       new.offset = table->map[current.offset].next;
351       new.count = current.count + 1;
352       old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
353       if (old.u64 == current.u64) {
354          struct anv_free_entry *entry = &table->map[current.offset];
355          return &entry->state;
356       }
357       current = old;
358    }
359 
360    return NULL;
361 }
362 
363 static VkResult
364 anv_block_pool_expand_range(struct anv_block_pool *pool,
365                             uint32_t center_bo_offset, uint32_t size);
366 
367 VkResult
anv_block_pool_init(struct anv_block_pool * pool,struct anv_device * device,const char * name,uint64_t start_address,uint32_t initial_size)368 anv_block_pool_init(struct anv_block_pool *pool,
369                     struct anv_device *device,
370                     const char *name,
371                     uint64_t start_address,
372                     uint32_t initial_size)
373 {
374    VkResult result;
375 
376    pool->name = name;
377    pool->device = device;
378    pool->use_softpin = device->physical->use_softpin;
379    pool->nbos = 0;
380    pool->size = 0;
381    pool->center_bo_offset = 0;
382    pool->start_address = intel_canonical_address(start_address);
383    pool->map = NULL;
384 
385    if (pool->use_softpin) {
386       pool->bo = NULL;
387       pool->fd = -1;
388    } else {
389       /* Just make it 2GB up-front.  The Linux kernel won't actually back it
390        * with pages until we either map and fault on one of them or we use
391        * userptr and send a chunk of it off to the GPU.
392        */
393       pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool");
394       if (pool->fd == -1)
395          return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
396 
397       pool->wrapper_bo = (struct anv_bo) {
398          .refcount = 1,
399          .offset = -1,
400          .is_wrapper = true,
401       };
402       pool->bo = &pool->wrapper_bo;
403    }
404 
405    if (!u_vector_init(&pool->mmap_cleanups, 8,
406                       sizeof(struct anv_mmap_cleanup))) {
407       result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
408       goto fail_fd;
409    }
410 
411    pool->state.next = 0;
412    pool->state.end = 0;
413    pool->back_state.next = 0;
414    pool->back_state.end = 0;
415 
416    result = anv_block_pool_expand_range(pool, 0, initial_size);
417    if (result != VK_SUCCESS)
418       goto fail_mmap_cleanups;
419 
420    /* Make the entire pool available in the front of the pool.  If back
421     * allocation needs to use this space, the "ends" will be re-arranged.
422     */
423    pool->state.end = pool->size;
424 
425    return VK_SUCCESS;
426 
427  fail_mmap_cleanups:
428    u_vector_finish(&pool->mmap_cleanups);
429  fail_fd:
430    if (pool->fd >= 0)
431       close(pool->fd);
432 
433    return result;
434 }
435 
436 void
anv_block_pool_finish(struct anv_block_pool * pool)437 anv_block_pool_finish(struct anv_block_pool *pool)
438 {
439    anv_block_pool_foreach_bo(bo, pool) {
440       if (bo->map)
441          anv_gem_munmap(pool->device, bo->map, bo->size);
442       anv_gem_close(pool->device, bo->gem_handle);
443    }
444 
445    struct anv_mmap_cleanup *cleanup;
446    u_vector_foreach(cleanup, &pool->mmap_cleanups)
447       munmap(cleanup->map, cleanup->size);
448    u_vector_finish(&pool->mmap_cleanups);
449 
450    if (pool->fd >= 0)
451       close(pool->fd);
452 }
453 
454 static VkResult
anv_block_pool_expand_range(struct anv_block_pool * pool,uint32_t center_bo_offset,uint32_t size)455 anv_block_pool_expand_range(struct anv_block_pool *pool,
456                             uint32_t center_bo_offset, uint32_t size)
457 {
458    /* Assert that we only ever grow the pool */
459    assert(center_bo_offset >= pool->back_state.end);
460    assert(size - center_bo_offset >= pool->state.end);
461 
462    /* Assert that we don't go outside the bounds of the memfd */
463    assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
464    assert(pool->use_softpin ||
465           size - center_bo_offset <=
466           BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
467 
468    /* For state pool BOs we have to be a bit careful about where we place them
469     * in the GTT.  There are two documented workarounds for state base address
470     * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
471     * which state that those two base addresses do not support 48-bit
472     * addresses and need to be placed in the bottom 32-bit range.
473     * Unfortunately, this is not quite accurate.
474     *
475     * The real problem is that we always set the size of our state pools in
476     * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
477     * likely significantly smaller.  We do this because we do not no at the
478     * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
479     * the pool during command buffer building so we don't actually have a
480     * valid final size.  If the address + size, as seen by STATE_BASE_ADDRESS
481     * overflows 48 bits, the GPU appears to treat all accesses to the buffer
482     * as being out of bounds and returns zero.  For dynamic state, this
483     * usually just leads to rendering corruptions, but shaders that are all
484     * zero hang the GPU immediately.
485     *
486     * The easiest solution to do is exactly what the bogus workarounds say to
487     * do: restrict these buffers to 32-bit addresses.  We could also pin the
488     * BO to some particular location of our choosing, but that's significantly
489     * more work than just not setting a flag.  So, we explicitly DO NOT set
490     * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
491     * hard work for us.  When using softpin, we're in control and the fixed
492     * addresses we choose are fine for base addresses.
493     */
494    enum anv_bo_alloc_flags bo_alloc_flags = ANV_BO_ALLOC_CAPTURE;
495    if (!pool->use_softpin)
496       bo_alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
497 
498    if (pool->use_softpin) {
499       uint32_t new_bo_size = size - pool->size;
500       struct anv_bo *new_bo;
501       assert(center_bo_offset == 0);
502       VkResult result = anv_device_alloc_bo(pool->device,
503                                             pool->name,
504                                             new_bo_size,
505                                             bo_alloc_flags |
506                                             ANV_BO_ALLOC_LOCAL_MEM |
507                                             ANV_BO_ALLOC_FIXED_ADDRESS |
508                                             ANV_BO_ALLOC_MAPPED |
509                                             ANV_BO_ALLOC_SNOOPED,
510                                             pool->start_address + pool->size,
511                                             &new_bo);
512       if (result != VK_SUCCESS)
513          return result;
514 
515       pool->bos[pool->nbos++] = new_bo;
516 
517       /* This pointer will always point to the first BO in the list */
518       pool->bo = pool->bos[0];
519    } else {
520       /* Just leak the old map until we destroy the pool.  We can't munmap it
521        * without races or imposing locking on the block allocate fast path. On
522        * the whole the leaked maps adds up to less than the size of the
523        * current map.  MAP_POPULATE seems like the right thing to do, but we
524        * should try to get some numbers.
525        */
526       void *map = mmap(NULL, size, PROT_READ | PROT_WRITE,
527                        MAP_SHARED | MAP_POPULATE, pool->fd,
528                        BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
529       if (map == MAP_FAILED)
530          return vk_errorf(pool->device, VK_ERROR_MEMORY_MAP_FAILED,
531                           "mmap failed: %m");
532 
533       struct anv_bo *new_bo;
534       VkResult result = anv_device_import_bo_from_host_ptr(pool->device,
535                                                            map, size,
536                                                            bo_alloc_flags,
537                                                            0 /* client_address */,
538                                                            &new_bo);
539       if (result != VK_SUCCESS) {
540          munmap(map, size);
541          return result;
542       }
543 
544       struct anv_mmap_cleanup *cleanup = u_vector_add(&pool->mmap_cleanups);
545       if (!cleanup) {
546          munmap(map, size);
547          anv_device_release_bo(pool->device, new_bo);
548          return vk_error(pool->device, VK_ERROR_OUT_OF_HOST_MEMORY);
549       }
550       cleanup->map = map;
551       cleanup->size = size;
552 
553       /* Now that we mapped the new memory, we can write the new
554        * center_bo_offset back into pool and update pool->map. */
555       pool->center_bo_offset = center_bo_offset;
556       pool->map = map + center_bo_offset;
557 
558       pool->bos[pool->nbos++] = new_bo;
559       pool->wrapper_bo.map = new_bo;
560    }
561 
562    assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
563    pool->size = size;
564 
565    return VK_SUCCESS;
566 }
567 
568 /** Returns current memory map of the block pool.
569  *
570  * The returned pointer points to the map for the memory at the specified
571  * offset. The offset parameter is relative to the "center" of the block pool
572  * rather than the start of the block pool BO map.
573  */
574 void*
anv_block_pool_map(struct anv_block_pool * pool,int32_t offset,uint32_t size)575 anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t size)
576 {
577    if (pool->use_softpin) {
578       struct anv_bo *bo = NULL;
579       int32_t bo_offset = 0;
580       anv_block_pool_foreach_bo(iter_bo, pool) {
581          if (offset < bo_offset + iter_bo->size) {
582             bo = iter_bo;
583             break;
584          }
585          bo_offset += iter_bo->size;
586       }
587       assert(bo != NULL);
588       assert(offset >= bo_offset);
589       assert((offset - bo_offset) + size <= bo->size);
590 
591       return bo->map + (offset - bo_offset);
592    } else {
593       return pool->map + offset;
594    }
595 }
596 
597 /** Grows and re-centers the block pool.
598  *
599  * We grow the block pool in one or both directions in such a way that the
600  * following conditions are met:
601  *
602  *  1) The size of the entire pool is always a power of two.
603  *
604  *  2) The pool only grows on both ends.  Neither end can get
605  *     shortened.
606  *
607  *  3) At the end of the allocation, we have about twice as much space
608  *     allocated for each end as we have used.  This way the pool doesn't
609  *     grow too far in one direction or the other.
610  *
611  *  4) If the _alloc_back() has never been called, then the back portion of
612  *     the pool retains a size of zero.  (This makes it easier for users of
613  *     the block pool that only want a one-sided pool.)
614  *
615  *  5) We have enough space allocated for at least one more block in
616  *     whichever side `state` points to.
617  *
618  *  6) The center of the pool is always aligned to both the block_size of
619  *     the pool and a 4K CPU page.
620  */
621 static uint32_t
anv_block_pool_grow(struct anv_block_pool * pool,struct anv_block_state * state,uint32_t contiguous_size)622 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state,
623                     uint32_t contiguous_size)
624 {
625    VkResult result = VK_SUCCESS;
626 
627    pthread_mutex_lock(&pool->device->mutex);
628 
629    assert(state == &pool->state || state == &pool->back_state);
630 
631    /* Gather a little usage information on the pool.  Since we may have
632     * threadsd waiting in queue to get some storage while we resize, it's
633     * actually possible that total_used will be larger than old_size.  In
634     * particular, block_pool_alloc() increments state->next prior to
635     * calling block_pool_grow, so this ensures that we get enough space for
636     * which ever side tries to grow the pool.
637     *
638     * We align to a page size because it makes it easier to do our
639     * calculations later in such a way that we state page-aigned.
640     */
641    uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
642    uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
643    uint32_t total_used = front_used + back_used;
644 
645    assert(state == &pool->state || back_used > 0);
646 
647    uint32_t old_size = pool->size;
648 
649    /* The block pool is always initialized to a nonzero size and this function
650     * is always called after initialization.
651     */
652    assert(old_size > 0);
653 
654    const uint32_t old_back = pool->center_bo_offset;
655    const uint32_t old_front = old_size - pool->center_bo_offset;
656 
657    /* The back_used and front_used may actually be smaller than the actual
658     * requirement because they are based on the next pointers which are
659     * updated prior to calling this function.
660     */
661    uint32_t back_required = MAX2(back_used, old_back);
662    uint32_t front_required = MAX2(front_used, old_front);
663 
664    if (pool->use_softpin) {
665       /* With softpin, the pool is made up of a bunch of buffers with separate
666        * maps.  Make sure we have enough contiguous space that we can get a
667        * properly contiguous map for the next chunk.
668        */
669       assert(old_back == 0);
670       front_required = MAX2(front_required, old_front + contiguous_size);
671    }
672 
673    if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
674       /* If we're in this case then this isn't the firsta allocation and we
675        * already have enough space on both sides to hold double what we
676        * have allocated.  There's nothing for us to do.
677        */
678       goto done;
679    }
680 
681    uint32_t size = old_size * 2;
682    while (size < back_required + front_required)
683       size *= 2;
684 
685    assert(size > pool->size);
686 
687    /* We compute a new center_bo_offset such that, when we double the size
688     * of the pool, we maintain the ratio of how much is used by each side.
689     * This way things should remain more-or-less balanced.
690     */
691    uint32_t center_bo_offset;
692    if (back_used == 0) {
693       /* If we're in this case then we have never called alloc_back().  In
694        * this case, we want keep the offset at 0 to make things as simple
695        * as possible for users that don't care about back allocations.
696        */
697       center_bo_offset = 0;
698    } else {
699       /* Try to "center" the allocation based on how much is currently in
700        * use on each side of the center line.
701        */
702       center_bo_offset = ((uint64_t)size * back_used) / total_used;
703 
704       /* Align down to a multiple of the page size */
705       center_bo_offset &= ~(PAGE_SIZE - 1);
706 
707       assert(center_bo_offset >= back_used);
708 
709       /* Make sure we don't shrink the back end of the pool */
710       if (center_bo_offset < back_required)
711          center_bo_offset = back_required;
712 
713       /* Make sure that we don't shrink the front end of the pool */
714       if (size - center_bo_offset < front_required)
715          center_bo_offset = size - front_required;
716    }
717 
718    assert(center_bo_offset % PAGE_SIZE == 0);
719 
720    result = anv_block_pool_expand_range(pool, center_bo_offset, size);
721 
722 done:
723    pthread_mutex_unlock(&pool->device->mutex);
724 
725    if (result == VK_SUCCESS) {
726       /* Return the appropriate new size.  This function never actually
727        * updates state->next.  Instead, we let the caller do that because it
728        * needs to do so in order to maintain its concurrency model.
729        */
730       if (state == &pool->state) {
731          return pool->size - pool->center_bo_offset;
732       } else {
733          assert(pool->center_bo_offset > 0);
734          return pool->center_bo_offset;
735       }
736    } else {
737       return 0;
738    }
739 }
740 
741 static uint32_t
anv_block_pool_alloc_new(struct anv_block_pool * pool,struct anv_block_state * pool_state,uint32_t block_size,uint32_t * padding)742 anv_block_pool_alloc_new(struct anv_block_pool *pool,
743                          struct anv_block_state *pool_state,
744                          uint32_t block_size, uint32_t *padding)
745 {
746    struct anv_block_state state, old, new;
747 
748    /* Most allocations won't generate any padding */
749    if (padding)
750       *padding = 0;
751 
752    while (1) {
753       state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
754       if (state.next + block_size <= state.end) {
755          return state.next;
756       } else if (state.next <= state.end) {
757          if (pool->use_softpin && state.next < state.end) {
758             /* We need to grow the block pool, but still have some leftover
759              * space that can't be used by that particular allocation. So we
760              * add that as a "padding", and return it.
761              */
762             uint32_t leftover = state.end - state.next;
763 
764             /* If there is some leftover space in the pool, the caller must
765              * deal with it.
766              */
767             assert(leftover == 0 || padding);
768             if (padding)
769                *padding = leftover;
770             state.next += leftover;
771          }
772 
773          /* We allocated the first block outside the pool so we have to grow
774           * the pool.  pool_state->next acts a mutex: threads who try to
775           * allocate now will get block indexes above the current limit and
776           * hit futex_wait below.
777           */
778          new.next = state.next + block_size;
779          do {
780             new.end = anv_block_pool_grow(pool, pool_state, block_size);
781          } while (new.end < new.next);
782 
783          old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
784          if (old.next != state.next)
785             futex_wake(&pool_state->end, INT_MAX);
786          return state.next;
787       } else {
788          futex_wait(&pool_state->end, state.end, NULL);
789          continue;
790       }
791    }
792 }
793 
794 int32_t
anv_block_pool_alloc(struct anv_block_pool * pool,uint32_t block_size,uint32_t * padding)795 anv_block_pool_alloc(struct anv_block_pool *pool,
796                      uint32_t block_size, uint32_t *padding)
797 {
798    uint32_t offset;
799 
800    offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
801 
802    return offset;
803 }
804 
805 /* Allocates a block out of the back of the block pool.
806  *
807  * This will allocated a block earlier than the "start" of the block pool.
808  * The offsets returned from this function will be negative but will still
809  * be correct relative to the block pool's map pointer.
810  *
811  * If you ever use anv_block_pool_alloc_back, then you will have to do
812  * gymnastics with the block pool's BO when doing relocations.
813  */
814 int32_t
anv_block_pool_alloc_back(struct anv_block_pool * pool,uint32_t block_size)815 anv_block_pool_alloc_back(struct anv_block_pool *pool,
816                           uint32_t block_size)
817 {
818    int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
819                                              block_size, NULL);
820 
821    /* The offset we get out of anv_block_pool_alloc_new() is actually the
822     * number of bytes downwards from the middle to the end of the block.
823     * We need to turn it into a (negative) offset from the middle to the
824     * start of the block.
825     */
826    assert(offset >= 0);
827    return -(offset + block_size);
828 }
829 
830 VkResult
anv_state_pool_init(struct anv_state_pool * pool,struct anv_device * device,const char * name,uint64_t base_address,int32_t start_offset,uint32_t block_size)831 anv_state_pool_init(struct anv_state_pool *pool,
832                     struct anv_device *device,
833                     const char *name,
834                     uint64_t base_address,
835                     int32_t start_offset,
836                     uint32_t block_size)
837 {
838    /* We don't want to ever see signed overflow */
839    assert(start_offset < INT32_MAX - (int32_t)BLOCK_POOL_MEMFD_SIZE);
840 
841    VkResult result = anv_block_pool_init(&pool->block_pool, device, name,
842                                          base_address + start_offset,
843                                          block_size * 16);
844    if (result != VK_SUCCESS)
845       return result;
846 
847    pool->start_offset = start_offset;
848 
849    result = anv_state_table_init(&pool->table, device, 64);
850    if (result != VK_SUCCESS) {
851       anv_block_pool_finish(&pool->block_pool);
852       return result;
853    }
854 
855    assert(util_is_power_of_two_or_zero(block_size));
856    pool->block_size = block_size;
857    pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
858    for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
859       pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
860       pool->buckets[i].block.next = 0;
861       pool->buckets[i].block.end = 0;
862    }
863    VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
864 
865    return VK_SUCCESS;
866 }
867 
868 void
anv_state_pool_finish(struct anv_state_pool * pool)869 anv_state_pool_finish(struct anv_state_pool *pool)
870 {
871    VG(VALGRIND_DESTROY_MEMPOOL(pool));
872    anv_state_table_finish(&pool->table);
873    anv_block_pool_finish(&pool->block_pool);
874 }
875 
876 static uint32_t
anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool * pool,struct anv_block_pool * block_pool,uint32_t state_size,uint32_t block_size,uint32_t * padding)877 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
878                                     struct anv_block_pool *block_pool,
879                                     uint32_t state_size,
880                                     uint32_t block_size,
881                                     uint32_t *padding)
882 {
883    struct anv_block_state block, old, new;
884    uint32_t offset;
885 
886    /* We don't always use anv_block_pool_alloc(), which would set *padding to
887     * zero for us. So if we have a pointer to padding, we must zero it out
888     * ourselves here, to make sure we always return some sensible value.
889     */
890    if (padding)
891       *padding = 0;
892 
893    /* If our state is large, we don't need any sub-allocation from a block.
894     * Instead, we just grab whole (potentially large) blocks.
895     */
896    if (state_size >= block_size)
897       return anv_block_pool_alloc(block_pool, state_size, padding);
898 
899  restart:
900    block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
901 
902    if (block.next < block.end) {
903       return block.next;
904    } else if (block.next == block.end) {
905       offset = anv_block_pool_alloc(block_pool, block_size, padding);
906       new.next = offset + state_size;
907       new.end = offset + block_size;
908       old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
909       if (old.next != block.next)
910          futex_wake(&pool->block.end, INT_MAX);
911       return offset;
912    } else {
913       futex_wait(&pool->block.end, block.end, NULL);
914       goto restart;
915    }
916 }
917 
918 static uint32_t
anv_state_pool_get_bucket(uint32_t size)919 anv_state_pool_get_bucket(uint32_t size)
920 {
921    unsigned size_log2 = ilog2_round_up(size);
922    assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
923    if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
924       size_log2 = ANV_MIN_STATE_SIZE_LOG2;
925    return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
926 }
927 
928 static uint32_t
anv_state_pool_get_bucket_size(uint32_t bucket)929 anv_state_pool_get_bucket_size(uint32_t bucket)
930 {
931    uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
932    return 1 << size_log2;
933 }
934 
935 /** Helper to push a chunk into the state table.
936  *
937  * It creates 'count' entries into the state table and update their sizes,
938  * offsets and maps, also pushing them as "free" states.
939  */
940 static void
anv_state_pool_return_blocks(struct anv_state_pool * pool,uint32_t chunk_offset,uint32_t count,uint32_t block_size)941 anv_state_pool_return_blocks(struct anv_state_pool *pool,
942                              uint32_t chunk_offset, uint32_t count,
943                              uint32_t block_size)
944 {
945    /* Disallow returning 0 chunks */
946    assert(count != 0);
947 
948    /* Make sure we always return chunks aligned to the block_size */
949    assert(chunk_offset % block_size == 0);
950 
951    uint32_t st_idx;
952    UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
953    assert(result == VK_SUCCESS);
954    for (int i = 0; i < count; i++) {
955       /* update states that were added back to the state table */
956       struct anv_state *state_i = anv_state_table_get(&pool->table,
957                                                       st_idx + i);
958       state_i->alloc_size = block_size;
959       state_i->offset = pool->start_offset + chunk_offset + block_size * i;
960       state_i->map = anv_block_pool_map(&pool->block_pool,
961                                         state_i->offset,
962                                         state_i->alloc_size);
963    }
964 
965    uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
966    anv_free_list_push(&pool->buckets[block_bucket].free_list,
967                       &pool->table, st_idx, count);
968 }
969 
970 /** Returns a chunk of memory back to the state pool.
971  *
972  * Do a two-level split. If chunk_size is bigger than divisor
973  * (pool->block_size), we return as many divisor sized blocks as we can, from
974  * the end of the chunk.
975  *
976  * The remaining is then split into smaller blocks (starting at small_size if
977  * it is non-zero), with larger blocks always being taken from the end of the
978  * chunk.
979  */
980 static void
anv_state_pool_return_chunk(struct anv_state_pool * pool,uint32_t chunk_offset,uint32_t chunk_size,uint32_t small_size)981 anv_state_pool_return_chunk(struct anv_state_pool *pool,
982                             uint32_t chunk_offset, uint32_t chunk_size,
983                             uint32_t small_size)
984 {
985    uint32_t divisor = pool->block_size;
986    uint32_t nblocks = chunk_size / divisor;
987    uint32_t rest = chunk_size - nblocks * divisor;
988 
989    if (nblocks > 0) {
990       /* First return divisor aligned and sized chunks. We start returning
991        * larger blocks from the end fo the chunk, since they should already be
992        * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
993        * aligned chunks.
994        */
995       uint32_t offset = chunk_offset + rest;
996       anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
997    }
998 
999    chunk_size = rest;
1000    divisor /= 2;
1001 
1002    if (small_size > 0 && small_size < divisor)
1003       divisor = small_size;
1004 
1005    uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
1006 
1007    /* Just as before, return larger divisor aligned blocks from the end of the
1008     * chunk first.
1009     */
1010    while (chunk_size > 0 && divisor >= min_size) {
1011       nblocks = chunk_size / divisor;
1012       rest = chunk_size - nblocks * divisor;
1013       if (nblocks > 0) {
1014          anv_state_pool_return_blocks(pool, chunk_offset + rest,
1015                                       nblocks, divisor);
1016          chunk_size = rest;
1017       }
1018       divisor /= 2;
1019    }
1020 }
1021 
1022 static struct anv_state
anv_state_pool_alloc_no_vg(struct anv_state_pool * pool,uint32_t size,uint32_t align)1023 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
1024                            uint32_t size, uint32_t align)
1025 {
1026    uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
1027 
1028    struct anv_state *state;
1029    uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1030    int32_t offset;
1031 
1032    /* Try free list first. */
1033    state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1034                              &pool->table);
1035    if (state) {
1036       assert(state->offset >= pool->start_offset);
1037       goto done;
1038    }
1039 
1040    /* Try to grab a chunk from some larger bucket and split it up */
1041    for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1042       state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1043       if (state) {
1044          unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1045          int32_t chunk_offset = state->offset;
1046 
1047          /* First lets update the state we got to its new size. offset and map
1048           * remain the same.
1049           */
1050          state->alloc_size = alloc_size;
1051 
1052          /* Now return the unused part of the chunk back to the pool as free
1053           * blocks
1054           *
1055           * There are a couple of options as to what we do with it:
1056           *
1057           *    1) We could fully split the chunk into state.alloc_size sized
1058           *       pieces.  However, this would mean that allocating a 16B
1059           *       state could potentially split a 2MB chunk into 512K smaller
1060           *       chunks.  This would lead to unnecessary fragmentation.
1061           *
1062           *    2) The classic "buddy allocator" method would have us split the
1063           *       chunk in half and return one half.  Then we would split the
1064           *       remaining half in half and return one half, and repeat as
1065           *       needed until we get down to the size we want.  However, if
1066           *       you are allocating a bunch of the same size state (which is
1067           *       the common case), this means that every other allocation has
1068           *       to go up a level and every fourth goes up two levels, etc.
1069           *       This is not nearly as efficient as it could be if we did a
1070           *       little more work up-front.
1071           *
1072           *    3) Split the difference between (1) and (2) by doing a
1073           *       two-level split.  If it's bigger than some fixed block_size,
1074           *       we split it into block_size sized chunks and return all but
1075           *       one of them.  Then we split what remains into
1076           *       state.alloc_size sized chunks and return them.
1077           *
1078           * We choose something close to option (3), which is implemented with
1079           * anv_state_pool_return_chunk(). That is done by returning the
1080           * remaining of the chunk, with alloc_size as a hint of the size that
1081           * we want the smaller chunk split into.
1082           */
1083          anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1084                                      chunk_size - alloc_size, alloc_size);
1085          goto done;
1086       }
1087    }
1088 
1089    uint32_t padding;
1090    offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1091                                                 &pool->block_pool,
1092                                                 alloc_size,
1093                                                 pool->block_size,
1094                                                 &padding);
1095    /* Everytime we allocate a new state, add it to the state pool */
1096    uint32_t idx;
1097    UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1098    assert(result == VK_SUCCESS);
1099 
1100    state = anv_state_table_get(&pool->table, idx);
1101    state->offset = pool->start_offset + offset;
1102    state->alloc_size = alloc_size;
1103    state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1104 
1105    if (padding > 0) {
1106       uint32_t return_offset = offset - padding;
1107       anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1108    }
1109 
1110 done:
1111    return *state;
1112 }
1113 
1114 struct anv_state
anv_state_pool_alloc(struct anv_state_pool * pool,uint32_t size,uint32_t align)1115 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1116 {
1117    if (size == 0)
1118       return ANV_STATE_NULL;
1119 
1120    struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1121    VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1122    return state;
1123 }
1124 
1125 struct anv_state
anv_state_pool_alloc_back(struct anv_state_pool * pool)1126 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1127 {
1128    struct anv_state *state;
1129    uint32_t alloc_size = pool->block_size;
1130 
1131    /* This function is only used with pools where start_offset == 0 */
1132    assert(pool->start_offset == 0);
1133 
1134    state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1135    if (state) {
1136       assert(state->offset < pool->start_offset);
1137       goto done;
1138    }
1139 
1140    int32_t offset;
1141    offset = anv_block_pool_alloc_back(&pool->block_pool,
1142                                       pool->block_size);
1143    uint32_t idx;
1144    UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1145    assert(result == VK_SUCCESS);
1146 
1147    state = anv_state_table_get(&pool->table, idx);
1148    state->offset = pool->start_offset + offset;
1149    state->alloc_size = alloc_size;
1150    state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1151 
1152 done:
1153    VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1154    return *state;
1155 }
1156 
1157 static void
anv_state_pool_free_no_vg(struct anv_state_pool * pool,struct anv_state state)1158 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1159 {
1160    assert(util_is_power_of_two_or_zero(state.alloc_size));
1161    unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1162 
1163    if (state.offset < pool->start_offset) {
1164       assert(state.alloc_size == pool->block_size);
1165       anv_free_list_push(&pool->back_alloc_free_list,
1166                          &pool->table, state.idx, 1);
1167    } else {
1168       anv_free_list_push(&pool->buckets[bucket].free_list,
1169                          &pool->table, state.idx, 1);
1170    }
1171 }
1172 
1173 void
anv_state_pool_free(struct anv_state_pool * pool,struct anv_state state)1174 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1175 {
1176    if (state.alloc_size == 0)
1177       return;
1178 
1179    VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1180    anv_state_pool_free_no_vg(pool, state);
1181 }
1182 
1183 struct anv_state_stream_block {
1184    struct anv_state block;
1185 
1186    /* The next block */
1187    struct anv_state_stream_block *next;
1188 
1189 #ifdef HAVE_VALGRIND
1190    /* A pointer to the first user-allocated thing in this block.  This is
1191     * what valgrind sees as the start of the block.
1192     */
1193    void *_vg_ptr;
1194 #endif
1195 };
1196 
1197 /* The state stream allocator is a one-shot, single threaded allocator for
1198  * variable sized blocks.  We use it for allocating dynamic state.
1199  */
1200 void
anv_state_stream_init(struct anv_state_stream * stream,struct anv_state_pool * state_pool,uint32_t block_size)1201 anv_state_stream_init(struct anv_state_stream *stream,
1202                       struct anv_state_pool *state_pool,
1203                       uint32_t block_size)
1204 {
1205    stream->state_pool = state_pool;
1206    stream->block_size = block_size;
1207 
1208    stream->block = ANV_STATE_NULL;
1209 
1210    /* Ensure that next + whatever > block_size.  This way the first call to
1211     * state_stream_alloc fetches a new block.
1212     */
1213    stream->next = block_size;
1214 
1215    util_dynarray_init(&stream->all_blocks, NULL);
1216 
1217    VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1218 }
1219 
1220 void
anv_state_stream_finish(struct anv_state_stream * stream)1221 anv_state_stream_finish(struct anv_state_stream *stream)
1222 {
1223    util_dynarray_foreach(&stream->all_blocks, struct anv_state, block) {
1224       VG(VALGRIND_MEMPOOL_FREE(stream, block->map));
1225       VG(VALGRIND_MAKE_MEM_NOACCESS(block->map, block->alloc_size));
1226       anv_state_pool_free_no_vg(stream->state_pool, *block);
1227    }
1228    util_dynarray_fini(&stream->all_blocks);
1229 
1230    VG(VALGRIND_DESTROY_MEMPOOL(stream));
1231 }
1232 
1233 struct anv_state
anv_state_stream_alloc(struct anv_state_stream * stream,uint32_t size,uint32_t alignment)1234 anv_state_stream_alloc(struct anv_state_stream *stream,
1235                        uint32_t size, uint32_t alignment)
1236 {
1237    if (size == 0)
1238       return ANV_STATE_NULL;
1239 
1240    assert(alignment <= PAGE_SIZE);
1241 
1242    uint32_t offset = align_u32(stream->next, alignment);
1243    if (offset + size > stream->block.alloc_size) {
1244       uint32_t block_size = stream->block_size;
1245       if (block_size < size)
1246          block_size = round_to_power_of_two(size);
1247 
1248       stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1249                                                  block_size, PAGE_SIZE);
1250       util_dynarray_append(&stream->all_blocks,
1251                            struct anv_state, stream->block);
1252       VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, block_size));
1253 
1254       /* Reset back to the start */
1255       stream->next = offset = 0;
1256       assert(offset + size <= stream->block.alloc_size);
1257    }
1258    const bool new_block = stream->next == 0;
1259 
1260    struct anv_state state = stream->block;
1261    state.offset += offset;
1262    state.alloc_size = size;
1263    state.map += offset;
1264 
1265    stream->next = offset + size;
1266 
1267    if (new_block) {
1268       assert(state.map == stream->block.map);
1269       VG(VALGRIND_MEMPOOL_ALLOC(stream, state.map, size));
1270    } else {
1271       /* This only updates the mempool.  The newly allocated chunk is still
1272        * marked as NOACCESS. */
1273       VG(VALGRIND_MEMPOOL_CHANGE(stream, stream->block.map, stream->block.map,
1274                                  stream->next));
1275       /* Mark the newly allocated chunk as undefined */
1276       VG(VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size));
1277    }
1278 
1279    return state;
1280 }
1281 
1282 void
anv_state_reserved_pool_init(struct anv_state_reserved_pool * pool,struct anv_state_pool * parent,uint32_t count,uint32_t size,uint32_t alignment)1283 anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
1284                              struct anv_state_pool *parent,
1285                              uint32_t count, uint32_t size, uint32_t alignment)
1286 {
1287    pool->pool = parent;
1288    pool->reserved_blocks = ANV_FREE_LIST_EMPTY;
1289    pool->count = count;
1290 
1291    for (unsigned i = 0; i < count; i++) {
1292       struct anv_state state = anv_state_pool_alloc(pool->pool, size, alignment);
1293       anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1294    }
1295 }
1296 
1297 void
anv_state_reserved_pool_finish(struct anv_state_reserved_pool * pool)1298 anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool)
1299 {
1300    struct anv_state *state;
1301 
1302    while ((state = anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table))) {
1303       anv_state_pool_free(pool->pool, *state);
1304       pool->count--;
1305    }
1306    assert(pool->count == 0);
1307 }
1308 
1309 struct anv_state
anv_state_reserved_pool_alloc(struct anv_state_reserved_pool * pool)1310 anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool)
1311 {
1312    return *anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table);
1313 }
1314 
1315 void
anv_state_reserved_pool_free(struct anv_state_reserved_pool * pool,struct anv_state state)1316 anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
1317                              struct anv_state state)
1318 {
1319    anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1320 }
1321 
1322 void
anv_bo_pool_init(struct anv_bo_pool * pool,struct anv_device * device,const char * name)1323 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
1324                  const char *name)
1325 {
1326    pool->name = name;
1327    pool->device = device;
1328    for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1329       util_sparse_array_free_list_init(&pool->free_list[i],
1330                                        &device->bo_cache.bo_map, 0,
1331                                        offsetof(struct anv_bo, free_index));
1332    }
1333 
1334    VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1335 }
1336 
1337 void
anv_bo_pool_finish(struct anv_bo_pool * pool)1338 anv_bo_pool_finish(struct anv_bo_pool *pool)
1339 {
1340    for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1341       while (1) {
1342          struct anv_bo *bo =
1343             util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
1344          if (bo == NULL)
1345             break;
1346 
1347          /* anv_device_release_bo is going to "free" it */
1348          VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
1349          anv_device_release_bo(pool->device, bo);
1350       }
1351    }
1352 
1353    VG(VALGRIND_DESTROY_MEMPOOL(pool));
1354 }
1355 
1356 VkResult
anv_bo_pool_alloc(struct anv_bo_pool * pool,uint32_t size,struct anv_bo ** bo_out)1357 anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1358                   struct anv_bo **bo_out)
1359 {
1360    const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1361    const unsigned pow2_size = 1 << size_log2;
1362    const unsigned bucket = size_log2 - 12;
1363    assert(bucket < ARRAY_SIZE(pool->free_list));
1364 
1365    struct anv_bo *bo =
1366       util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
1367    if (bo != NULL) {
1368       VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1369       *bo_out = bo;
1370       return VK_SUCCESS;
1371    }
1372 
1373    VkResult result = anv_device_alloc_bo(pool->device,
1374                                          pool->name,
1375                                          pow2_size,
1376                                          ANV_BO_ALLOC_LOCAL_MEM |
1377                                          ANV_BO_ALLOC_MAPPED |
1378                                          ANV_BO_ALLOC_SNOOPED |
1379                                          ANV_BO_ALLOC_CAPTURE,
1380                                          0 /* explicit_address */,
1381                                          &bo);
1382    if (result != VK_SUCCESS)
1383       return result;
1384 
1385    /* We want it to look like it came from this pool */
1386    VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
1387    VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1388 
1389    *bo_out = bo;
1390 
1391    return VK_SUCCESS;
1392 }
1393 
1394 void
anv_bo_pool_free(struct anv_bo_pool * pool,struct anv_bo * bo)1395 anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
1396 {
1397    VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
1398 
1399    assert(util_is_power_of_two_or_zero(bo->size));
1400    const unsigned size_log2 = ilog2_round_up(bo->size);
1401    const unsigned bucket = size_log2 - 12;
1402    assert(bucket < ARRAY_SIZE(pool->free_list));
1403 
1404    assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
1405                                 bo->gem_handle) == bo);
1406    util_sparse_array_free_list_push(&pool->free_list[bucket],
1407                                     &bo->gem_handle, 1);
1408 }
1409 
1410 // Scratch pool
1411 
1412 void
anv_scratch_pool_init(struct anv_device * device,struct anv_scratch_pool * pool)1413 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1414 {
1415    memset(pool, 0, sizeof(*pool));
1416 }
1417 
1418 void
anv_scratch_pool_finish(struct anv_device * device,struct anv_scratch_pool * pool)1419 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1420 {
1421    for (unsigned s = 0; s < ARRAY_SIZE(pool->bos[0]); s++) {
1422       for (unsigned i = 0; i < 16; i++) {
1423          if (pool->bos[i][s] != NULL)
1424             anv_device_release_bo(device, pool->bos[i][s]);
1425       }
1426    }
1427 
1428    for (unsigned i = 0; i < 16; i++) {
1429       if (pool->surf_states[i].map != NULL) {
1430          anv_state_pool_free(&device->surface_state_pool,
1431                              pool->surf_states[i]);
1432       }
1433    }
1434 }
1435 
1436 struct anv_bo *
anv_scratch_pool_alloc(struct anv_device * device,struct anv_scratch_pool * pool,gl_shader_stage stage,unsigned per_thread_scratch)1437 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1438                        gl_shader_stage stage, unsigned per_thread_scratch)
1439 {
1440    if (per_thread_scratch == 0)
1441       return NULL;
1442 
1443    unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1444    assert(scratch_size_log2 < 16);
1445 
1446    assert(stage < ARRAY_SIZE(pool->bos));
1447 
1448    const struct intel_device_info *devinfo = &device->info;
1449 
1450    /* On GFX version 12.5, scratch access changed to a surface-based model.
1451     * Instead of each shader type having its own layout based on IDs passed
1452     * from the relevant fixed-function unit, all scratch access is based on
1453     * thread IDs like it always has been for compute.
1454     */
1455    if (devinfo->verx10 >= 125)
1456       stage = MESA_SHADER_COMPUTE;
1457 
1458    struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]);
1459 
1460    if (bo != NULL)
1461       return bo;
1462 
1463    assert(stage < ARRAY_SIZE(devinfo->max_scratch_ids));
1464    uint32_t size = per_thread_scratch * devinfo->max_scratch_ids[stage];
1465 
1466    /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1467     * are still relative to the general state base address.  When we emit
1468     * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1469     * to the maximum (1 page under 4GB).  This allows us to just place the
1470     * scratch buffers anywhere we wish in the bottom 32 bits of address space
1471     * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1472     * However, in order to do so, we need to ensure that the kernel does not
1473     * place the scratch BO above the 32-bit boundary.
1474     *
1475     * NOTE: Technically, it can't go "anywhere" because the top page is off
1476     * limits.  However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1477     * kernel allocates space using
1478     *
1479     *    end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1480     *
1481     * so nothing will ever touch the top page.
1482     */
1483    VkResult result = anv_device_alloc_bo(device, "scratch", size,
1484                                          ANV_BO_ALLOC_32BIT_ADDRESS |
1485                                          ANV_BO_ALLOC_LOCAL_MEM,
1486                                          0 /* explicit_address */,
1487                                          &bo);
1488    if (result != VK_SUCCESS)
1489       return NULL; /* TODO */
1490 
1491    struct anv_bo *current_bo =
1492       p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo);
1493    if (current_bo) {
1494       anv_device_release_bo(device, bo);
1495       return current_bo;
1496    } else {
1497       return bo;
1498    }
1499 }
1500 
1501 uint32_t
anv_scratch_pool_get_surf(struct anv_device * device,struct anv_scratch_pool * pool,unsigned per_thread_scratch)1502 anv_scratch_pool_get_surf(struct anv_device *device,
1503                           struct anv_scratch_pool *pool,
1504                           unsigned per_thread_scratch)
1505 {
1506    if (per_thread_scratch == 0)
1507       return 0;
1508 
1509    unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1510    assert(scratch_size_log2 < 16);
1511 
1512    uint32_t surf = p_atomic_read(&pool->surfs[scratch_size_log2]);
1513    if (surf > 0)
1514       return surf;
1515 
1516    struct anv_bo *bo =
1517       anv_scratch_pool_alloc(device, pool, MESA_SHADER_COMPUTE,
1518                              per_thread_scratch);
1519    struct anv_address addr = { .bo = bo };
1520 
1521    struct anv_state state =
1522       anv_state_pool_alloc(&device->surface_state_pool,
1523                            device->isl_dev.ss.size, 64);
1524 
1525    isl_buffer_fill_state(&device->isl_dev, state.map,
1526                          .address = anv_address_physical(addr),
1527                          .size_B = bo->size,
1528                          .mocs = anv_mocs(device, bo, 0),
1529                          .format = ISL_FORMAT_RAW,
1530                          .swizzle = ISL_SWIZZLE_IDENTITY,
1531                          .stride_B = per_thread_scratch,
1532                          .is_scratch = true);
1533 
1534    uint32_t current = p_atomic_cmpxchg(&pool->surfs[scratch_size_log2],
1535                                        0, state.offset);
1536    if (current) {
1537       anv_state_pool_free(&device->surface_state_pool, state);
1538       return current;
1539    } else {
1540       pool->surf_states[scratch_size_log2] = state;
1541       return state.offset;
1542    }
1543 }
1544 
1545 VkResult
anv_bo_cache_init(struct anv_bo_cache * cache,struct anv_device * device)1546 anv_bo_cache_init(struct anv_bo_cache *cache, struct anv_device *device)
1547 {
1548    util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
1549 
1550    if (pthread_mutex_init(&cache->mutex, NULL)) {
1551       util_sparse_array_finish(&cache->bo_map);
1552       return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY,
1553                        "pthread_mutex_init failed: %m");
1554    }
1555 
1556    return VK_SUCCESS;
1557 }
1558 
1559 void
anv_bo_cache_finish(struct anv_bo_cache * cache)1560 anv_bo_cache_finish(struct anv_bo_cache *cache)
1561 {
1562    util_sparse_array_finish(&cache->bo_map);
1563    pthread_mutex_destroy(&cache->mutex);
1564 }
1565 
1566 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1567    (EXEC_OBJECT_WRITE | \
1568     EXEC_OBJECT_ASYNC | \
1569     EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1570     EXEC_OBJECT_PINNED | \
1571     EXEC_OBJECT_CAPTURE)
1572 
1573 static uint32_t
anv_bo_alloc_flags_to_bo_flags(struct anv_device * device,enum anv_bo_alloc_flags alloc_flags)1574 anv_bo_alloc_flags_to_bo_flags(struct anv_device *device,
1575                                enum anv_bo_alloc_flags alloc_flags)
1576 {
1577    struct anv_physical_device *pdevice = device->physical;
1578 
1579    uint64_t bo_flags = 0;
1580    if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) &&
1581        pdevice->supports_48bit_addresses)
1582       bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1583 
1584    if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture)
1585       bo_flags |= EXEC_OBJECT_CAPTURE;
1586 
1587    if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) {
1588       assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC);
1589       bo_flags |= EXEC_OBJECT_WRITE;
1590    }
1591 
1592    if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async)
1593       bo_flags |= EXEC_OBJECT_ASYNC;
1594 
1595    if (pdevice->use_softpin)
1596       bo_flags |= EXEC_OBJECT_PINNED;
1597 
1598    return bo_flags;
1599 }
1600 
1601 static uint32_t
anv_device_get_bo_align(struct anv_device * device,enum anv_bo_alloc_flags alloc_flags)1602 anv_device_get_bo_align(struct anv_device *device,
1603                         enum anv_bo_alloc_flags alloc_flags)
1604 {
1605    /* Gfx12 CCS surface addresses need to be 64K aligned. */
1606    if (device->info.ver >= 12 && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS))
1607       return 64 * 1024;
1608 
1609    return 4096;
1610 }
1611 
1612 VkResult
anv_device_alloc_bo(struct anv_device * device,const char * name,uint64_t size,enum anv_bo_alloc_flags alloc_flags,uint64_t explicit_address,struct anv_bo ** bo_out)1613 anv_device_alloc_bo(struct anv_device *device,
1614                     const char *name,
1615                     uint64_t size,
1616                     enum anv_bo_alloc_flags alloc_flags,
1617                     uint64_t explicit_address,
1618                     struct anv_bo **bo_out)
1619 {
1620    if (!(alloc_flags & ANV_BO_ALLOC_LOCAL_MEM))
1621       anv_perf_warn(VK_LOG_NO_OBJS(&device->physical->instance->vk.base),
1622                                    "system memory used");
1623 
1624    if (!device->physical->has_implicit_ccs)
1625       assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1626 
1627    const uint32_t bo_flags =
1628       anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1629    assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1630 
1631    /* The kernel is going to give us whole pages anyway */
1632    size = align_u64(size, 4096);
1633 
1634    const uint32_t align = anv_device_get_bo_align(device, alloc_flags);
1635 
1636    uint64_t ccs_size = 0;
1637    if (device->info.has_aux_map && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)) {
1638       /* Align the size up to the next multiple of 64K so we don't have any
1639        * AUX-TT entries pointing from a 64K page to itself.
1640        */
1641       size = align_u64(size, 64 * 1024);
1642 
1643       /* See anv_bo::_ccs_size */
1644       ccs_size = align_u64(DIV_ROUND_UP(size, INTEL_AUX_MAP_GFX12_CCS_SCALE), 4096);
1645    }
1646 
1647    uint32_t gem_handle;
1648 
1649    /* If we have vram size, we have multiple memory regions and should choose
1650     * one of them.
1651     */
1652    if (device->physical->vram.size > 0) {
1653       struct drm_i915_gem_memory_class_instance regions[2];
1654       uint32_t nregions = 0;
1655 
1656       if (alloc_flags & ANV_BO_ALLOC_LOCAL_MEM) {
1657          /* For vram allocation, still use system memory as a fallback. */
1658          regions[nregions++] = device->physical->vram.region;
1659          regions[nregions++] = device->physical->sys.region;
1660       } else {
1661          regions[nregions++] = device->physical->sys.region;
1662       }
1663 
1664       gem_handle = anv_gem_create_regions(device, size + ccs_size,
1665                                           nregions, regions);
1666    } else {
1667       gem_handle = anv_gem_create(device, size + ccs_size);
1668    }
1669 
1670    if (gem_handle == 0)
1671       return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
1672 
1673    struct anv_bo new_bo = {
1674       .name = name,
1675       .gem_handle = gem_handle,
1676       .refcount = 1,
1677       .offset = -1,
1678       .size = size,
1679       ._ccs_size = ccs_size,
1680       .flags = bo_flags,
1681       .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL),
1682       .has_client_visible_address =
1683          (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1684       .has_implicit_ccs = ccs_size > 0,
1685    };
1686 
1687    if (alloc_flags & ANV_BO_ALLOC_MAPPED) {
1688       new_bo.map = anv_gem_mmap(device, new_bo.gem_handle, 0, size, 0);
1689       if (new_bo.map == MAP_FAILED) {
1690          anv_gem_close(device, new_bo.gem_handle);
1691          return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY,
1692                           "mmap failed: %m");
1693       }
1694    }
1695 
1696    if (alloc_flags & ANV_BO_ALLOC_SNOOPED) {
1697       assert(alloc_flags & ANV_BO_ALLOC_MAPPED);
1698       /* We don't want to change these defaults if it's going to be shared
1699        * with another process.
1700        */
1701       assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL));
1702 
1703       /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
1704        * I915_CACHING_NONE on non-LLC platforms.  For many internal state
1705        * objects, we'd rather take the snooping overhead than risk forgetting
1706        * a CLFLUSH somewhere.  Userptr objects are always created as
1707        * I915_CACHING_CACHED, which on non-LLC means snooped so there's no
1708        * need to do this there.
1709        */
1710       if (!device->info.has_llc) {
1711          anv_gem_set_caching(device, new_bo.gem_handle,
1712                              I915_CACHING_CACHED);
1713       }
1714    }
1715 
1716    if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) {
1717       new_bo.has_fixed_address = true;
1718       new_bo.offset = explicit_address;
1719    } else if (new_bo.flags & EXEC_OBJECT_PINNED) {
1720       new_bo.offset = anv_vma_alloc(device, new_bo.size + new_bo._ccs_size,
1721                                     align, alloc_flags, explicit_address);
1722       if (new_bo.offset == 0) {
1723          if (new_bo.map)
1724             anv_gem_munmap(device, new_bo.map, size);
1725          anv_gem_close(device, new_bo.gem_handle);
1726          return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1727                           "failed to allocate virtual address for BO");
1728       }
1729    } else {
1730       assert(!new_bo.has_client_visible_address);
1731    }
1732 
1733    if (new_bo._ccs_size > 0) {
1734       assert(device->info.has_aux_map);
1735       intel_aux_map_add_mapping(device->aux_map_ctx,
1736                                 intel_canonical_address(new_bo.offset),
1737                                 intel_canonical_address(new_bo.offset + new_bo.size),
1738                                 new_bo.size, 0 /* format_bits */);
1739    }
1740 
1741    assert(new_bo.gem_handle);
1742 
1743    /* If we just got this gem_handle from anv_bo_init_new then we know no one
1744     * else is touching this BO at the moment so we don't need to lock here.
1745     */
1746    struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle);
1747    *bo = new_bo;
1748 
1749    *bo_out = bo;
1750 
1751    return VK_SUCCESS;
1752 }
1753 
1754 VkResult
anv_device_import_bo_from_host_ptr(struct anv_device * device,void * host_ptr,uint32_t size,enum anv_bo_alloc_flags alloc_flags,uint64_t client_address,struct anv_bo ** bo_out)1755 anv_device_import_bo_from_host_ptr(struct anv_device *device,
1756                                    void *host_ptr, uint32_t size,
1757                                    enum anv_bo_alloc_flags alloc_flags,
1758                                    uint64_t client_address,
1759                                    struct anv_bo **bo_out)
1760 {
1761    assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1762                            ANV_BO_ALLOC_SNOOPED |
1763                            ANV_BO_ALLOC_FIXED_ADDRESS)));
1764 
1765    /* We can't do implicit CCS with an aux table on shared memory */
1766    if (!device->physical->has_implicit_ccs || device->info.has_aux_map)
1767        assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1768 
1769    struct anv_bo_cache *cache = &device->bo_cache;
1770    const uint32_t bo_flags =
1771       anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1772    assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1773 
1774    uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1775    if (!gem_handle)
1776       return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1777 
1778    pthread_mutex_lock(&cache->mutex);
1779 
1780    struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1781    if (bo->refcount > 0) {
1782       /* VK_EXT_external_memory_host doesn't require handling importing the
1783        * same pointer twice at the same time, but we don't get in the way.  If
1784        * kernel gives us the same gem_handle, only succeed if the flags match.
1785        */
1786       assert(bo->gem_handle == gem_handle);
1787       if (bo_flags != bo->flags) {
1788          pthread_mutex_unlock(&cache->mutex);
1789          return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1790                           "same host pointer imported two different ways");
1791       }
1792 
1793       if (bo->has_client_visible_address !=
1794           ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1795          pthread_mutex_unlock(&cache->mutex);
1796          return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1797                           "The same BO was imported with and without buffer "
1798                           "device address");
1799       }
1800 
1801       if (client_address && client_address != intel_48b_address(bo->offset)) {
1802          pthread_mutex_unlock(&cache->mutex);
1803          return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1804                           "The same BO was imported at two different "
1805                           "addresses");
1806       }
1807 
1808       __sync_fetch_and_add(&bo->refcount, 1);
1809    } else {
1810       struct anv_bo new_bo = {
1811          .name = "host-ptr",
1812          .gem_handle = gem_handle,
1813          .refcount = 1,
1814          .offset = -1,
1815          .size = size,
1816          .map = host_ptr,
1817          .flags = bo_flags,
1818          .is_external = true,
1819          .from_host_ptr = true,
1820          .has_client_visible_address =
1821             (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1822       };
1823 
1824       assert(client_address == intel_48b_address(client_address));
1825       if (new_bo.flags & EXEC_OBJECT_PINNED) {
1826          assert(new_bo._ccs_size == 0);
1827          new_bo.offset = anv_vma_alloc(device, new_bo.size,
1828                                        anv_device_get_bo_align(device,
1829                                                                alloc_flags),
1830                                        alloc_flags, client_address);
1831          if (new_bo.offset == 0) {
1832             anv_gem_close(device, new_bo.gem_handle);
1833             pthread_mutex_unlock(&cache->mutex);
1834             return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1835                              "failed to allocate virtual address for BO");
1836          }
1837       } else {
1838          assert(!new_bo.has_client_visible_address);
1839       }
1840 
1841       *bo = new_bo;
1842    }
1843 
1844    pthread_mutex_unlock(&cache->mutex);
1845    *bo_out = bo;
1846 
1847    return VK_SUCCESS;
1848 }
1849 
1850 VkResult
anv_device_import_bo(struct anv_device * device,int fd,enum anv_bo_alloc_flags alloc_flags,uint64_t client_address,struct anv_bo ** bo_out)1851 anv_device_import_bo(struct anv_device *device,
1852                      int fd,
1853                      enum anv_bo_alloc_flags alloc_flags,
1854                      uint64_t client_address,
1855                      struct anv_bo **bo_out)
1856 {
1857    assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1858                            ANV_BO_ALLOC_SNOOPED |
1859                            ANV_BO_ALLOC_FIXED_ADDRESS)));
1860 
1861    /* We can't do implicit CCS with an aux table on shared memory */
1862    if (!device->physical->has_implicit_ccs || device->info.has_aux_map)
1863        assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1864 
1865    struct anv_bo_cache *cache = &device->bo_cache;
1866    const uint32_t bo_flags =
1867       anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1868    assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1869 
1870    pthread_mutex_lock(&cache->mutex);
1871 
1872    uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1873    if (!gem_handle) {
1874       pthread_mutex_unlock(&cache->mutex);
1875       return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1876    }
1877 
1878    struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1879    if (bo->refcount > 0) {
1880       /* We have to be careful how we combine flags so that it makes sense.
1881        * Really, though, if we get to this case and it actually matters, the
1882        * client has imported a BO twice in different ways and they get what
1883        * they have coming.
1884        */
1885       uint64_t new_flags = 0;
1886       new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
1887       new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
1888       new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1889       new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
1890       new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE;
1891 
1892       /* It's theoretically possible for a BO to get imported such that it's
1893        * both pinned and not pinned.  The only way this can happen is if it
1894        * gets imported as both a semaphore and a memory object and that would
1895        * be an application error.  Just fail out in that case.
1896        */
1897       if ((bo->flags & EXEC_OBJECT_PINNED) !=
1898           (bo_flags & EXEC_OBJECT_PINNED)) {
1899          pthread_mutex_unlock(&cache->mutex);
1900          return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1901                           "The same BO was imported two different ways");
1902       }
1903 
1904       /* It's also theoretically possible that someone could export a BO from
1905        * one heap and import it into another or to import the same BO into two
1906        * different heaps.  If this happens, we could potentially end up both
1907        * allowing and disallowing 48-bit addresses.  There's not much we can
1908        * do about it if we're pinning so we just throw an error and hope no
1909        * app is actually that stupid.
1910        */
1911       if ((new_flags & EXEC_OBJECT_PINNED) &&
1912           (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1913           (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1914          pthread_mutex_unlock(&cache->mutex);
1915          return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1916                           "The same BO was imported on two different heaps");
1917       }
1918 
1919       if (bo->has_client_visible_address !=
1920           ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1921          pthread_mutex_unlock(&cache->mutex);
1922          return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1923                           "The same BO was imported with and without buffer "
1924                           "device address");
1925       }
1926 
1927       if (client_address && client_address != intel_48b_address(bo->offset)) {
1928          pthread_mutex_unlock(&cache->mutex);
1929          return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1930                           "The same BO was imported at two different "
1931                           "addresses");
1932       }
1933 
1934       bo->flags = new_flags;
1935 
1936       __sync_fetch_and_add(&bo->refcount, 1);
1937    } else {
1938       off_t size = lseek(fd, 0, SEEK_END);
1939       if (size == (off_t)-1) {
1940          anv_gem_close(device, gem_handle);
1941          pthread_mutex_unlock(&cache->mutex);
1942          return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1943       }
1944 
1945       struct anv_bo new_bo = {
1946          .name = "imported",
1947          .gem_handle = gem_handle,
1948          .refcount = 1,
1949          .offset = -1,
1950          .size = size,
1951          .flags = bo_flags,
1952          .is_external = true,
1953          .has_client_visible_address =
1954             (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1955       };
1956 
1957       assert(client_address == intel_48b_address(client_address));
1958       if (new_bo.flags & EXEC_OBJECT_PINNED) {
1959          assert(new_bo._ccs_size == 0);
1960          new_bo.offset = anv_vma_alloc(device, new_bo.size,
1961                                        anv_device_get_bo_align(device,
1962                                                                alloc_flags),
1963                                        alloc_flags, client_address);
1964          if (new_bo.offset == 0) {
1965             anv_gem_close(device, new_bo.gem_handle);
1966             pthread_mutex_unlock(&cache->mutex);
1967             return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1968                              "failed to allocate virtual address for BO");
1969          }
1970       } else {
1971          assert(!new_bo.has_client_visible_address);
1972       }
1973 
1974       *bo = new_bo;
1975    }
1976 
1977    pthread_mutex_unlock(&cache->mutex);
1978    *bo_out = bo;
1979 
1980    return VK_SUCCESS;
1981 }
1982 
1983 VkResult
anv_device_export_bo(struct anv_device * device,struct anv_bo * bo,int * fd_out)1984 anv_device_export_bo(struct anv_device *device,
1985                      struct anv_bo *bo, int *fd_out)
1986 {
1987    assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1988 
1989    /* This BO must have been flagged external in order for us to be able
1990     * to export it.  This is done based on external options passed into
1991     * anv_AllocateMemory.
1992     */
1993    assert(bo->is_external);
1994 
1995    int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
1996    if (fd < 0)
1997       return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS);
1998 
1999    *fd_out = fd;
2000 
2001    return VK_SUCCESS;
2002 }
2003 
2004 static bool
atomic_dec_not_one(uint32_t * counter)2005 atomic_dec_not_one(uint32_t *counter)
2006 {
2007    uint32_t old, val;
2008 
2009    val = *counter;
2010    while (1) {
2011       if (val == 1)
2012          return false;
2013 
2014       old = __sync_val_compare_and_swap(counter, val, val - 1);
2015       if (old == val)
2016          return true;
2017 
2018       val = old;
2019    }
2020 }
2021 
2022 void
anv_device_release_bo(struct anv_device * device,struct anv_bo * bo)2023 anv_device_release_bo(struct anv_device *device,
2024                       struct anv_bo *bo)
2025 {
2026    struct anv_bo_cache *cache = &device->bo_cache;
2027    assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
2028 
2029    /* Try to decrement the counter but don't go below one.  If this succeeds
2030     * then the refcount has been decremented and we are not the last
2031     * reference.
2032     */
2033    if (atomic_dec_not_one(&bo->refcount))
2034       return;
2035 
2036    pthread_mutex_lock(&cache->mutex);
2037 
2038    /* We are probably the last reference since our attempt to decrement above
2039     * failed.  However, we can't actually know until we are inside the mutex.
2040     * Otherwise, someone could import the BO between the decrement and our
2041     * taking the mutex.
2042     */
2043    if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
2044       /* Turns out we're not the last reference.  Unlock and bail. */
2045       pthread_mutex_unlock(&cache->mutex);
2046       return;
2047    }
2048    assert(bo->refcount == 0);
2049 
2050    if (bo->map && !bo->from_host_ptr)
2051       anv_gem_munmap(device, bo->map, bo->size);
2052 
2053    if (bo->_ccs_size > 0) {
2054       assert(device->physical->has_implicit_ccs);
2055       assert(device->info.has_aux_map);
2056       assert(bo->has_implicit_ccs);
2057       intel_aux_map_unmap_range(device->aux_map_ctx,
2058                                 intel_canonical_address(bo->offset),
2059                                 bo->size);
2060    }
2061 
2062    if ((bo->flags & EXEC_OBJECT_PINNED) && !bo->has_fixed_address)
2063       anv_vma_free(device, bo->offset, bo->size + bo->_ccs_size);
2064 
2065    uint32_t gem_handle = bo->gem_handle;
2066 
2067    /* Memset the BO just in case.  The refcount being zero should be enough to
2068     * prevent someone from assuming the data is valid but it's safer to just
2069     * stomp to zero just in case.  We explicitly do this *before* we close the
2070     * GEM handle to ensure that if anyone allocates something and gets the
2071     * same GEM handle, the memset has already happen and won't stomp all over
2072     * any data they may write in this BO.
2073     */
2074    memset(bo, 0, sizeof(*bo));
2075 
2076    anv_gem_close(device, gem_handle);
2077 
2078    /* Don't unlock until we've actually closed the BO.  The whole point of
2079     * the BO cache is to ensure that we correctly handle races with creating
2080     * and releasing GEM handles and we don't want to let someone import the BO
2081     * again between mutex unlock and closing the GEM handle.
2082     */
2083    pthread_mutex_unlock(&cache->mutex);
2084 }
2085