• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright (c) 2006 Xiaogang Zhang
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_BESSEL_JN_HPP
7 #define BOOST_MATH_BESSEL_JN_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/math/special_functions/detail/bessel_j0.hpp>
14 #include <boost/math/special_functions/detail/bessel_j1.hpp>
15 #include <boost/math/special_functions/detail/bessel_jy.hpp>
16 #include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
17 #include <boost/math/special_functions/detail/bessel_jy_series.hpp>
18 
19 // Bessel function of the first kind of integer order
20 // J_n(z) is the minimal solution
21 // n < abs(z), forward recurrence stable and usable
22 // n >= abs(z), forward recurrence unstable, use Miller's algorithm
23 
24 namespace boost { namespace math { namespace detail{
25 
26 template <typename T, typename Policy>
bessel_jn(int n,T x,const Policy & pol)27 T bessel_jn(int n, T x, const Policy& pol)
28 {
29     T value(0), factor, current, prev, next;
30 
31     BOOST_MATH_STD_USING
32 
33     //
34     // Reflection has to come first:
35     //
36     if (n < 0)
37     {
38         factor = static_cast<T>((n & 0x1) ? -1 : 1);  // J_{-n}(z) = (-1)^n J_n(z)
39         n = -n;
40     }
41     else
42     {
43         factor = 1;
44     }
45     if(x < 0)
46     {
47         factor *= (n & 0x1) ? -1 : 1;  // J_{n}(-z) = (-1)^n J_n(z)
48         x = -x;
49     }
50     //
51     // Special cases:
52     //
53     if(asymptotic_bessel_large_x_limit(T(n), x))
54        return factor * asymptotic_bessel_j_large_x_2<T>(T(n), x);
55     if (n == 0)
56     {
57         return factor * bessel_j0(x);
58     }
59     if (n == 1)
60     {
61         return factor * bessel_j1(x);
62     }
63 
64     if (x == 0)                             // n >= 2
65     {
66         return static_cast<T>(0);
67     }
68 
69     BOOST_ASSERT(n > 1);
70     T scale = 1;
71     if (n < abs(x))                         // forward recurrence
72     {
73         prev = bessel_j0(x);
74         current = bessel_j1(x);
75         policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
76         for (int k = 1; k < n; k++)
77         {
78             T fact = 2 * k / x;
79             //
80             // rescale if we would overflow or underflow:
81             //
82             if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
83             {
84                scale /= current;
85                prev /= current;
86                current = 1;
87             }
88             value = fact * current - prev;
89             prev = current;
90             current = value;
91         }
92     }
93     else if((x < 1) || (n > x * x / 4) || (x < 5))
94     {
95        return factor * bessel_j_small_z_series(T(n), x, pol);
96     }
97     else                                    // backward recurrence
98     {
99         T fn; int s;                        // fn = J_(n+1) / J_n
100         // |x| <= n, fast convergence for continued fraction CF1
101         boost::math::detail::CF1_jy(static_cast<T>(n), x, &fn, &s, pol);
102         prev = fn;
103         current = 1;
104         // Check recursion won't go on too far:
105         policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
106         for (int k = n; k > 0; k--)
107         {
108             T fact = 2 * k / x;
109             if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
110             {
111                prev /= current;
112                scale /= current;
113                current = 1;
114             }
115             next = fact * current - prev;
116             prev = current;
117             current = next;
118         }
119         value = bessel_j0(x) / current;       // normalization
120         scale = 1 / scale;
121     }
122     value *= factor;
123 
124     if(tools::max_value<T>() * scale < fabs(value))
125        return policies::raise_overflow_error<T>("boost::math::bessel_jn<%1%>(%1%,%1%)", 0, pol);
126 
127     return value / scale;
128 }
129 
130 }}} // namespaces
131 
132 #endif // BOOST_MATH_BESSEL_JN_HPP
133 
134