• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright (c) 2011 John Maddock
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_BESSEL_JN_SERIES_HPP
7 #define BOOST_MATH_BESSEL_JN_SERIES_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 namespace boost { namespace math { namespace detail{
14 
15 template <class T, class Policy>
16 struct bessel_j_small_z_series_term
17 {
18    typedef T result_type;
19 
bessel_j_small_z_series_termboost::math::detail::bessel_j_small_z_series_term20    bessel_j_small_z_series_term(T v_, T x)
21       : N(0), v(v_)
22    {
23       BOOST_MATH_STD_USING
24       mult = x / 2;
25       mult *= -mult;
26       term = 1;
27    }
operator ()boost::math::detail::bessel_j_small_z_series_term28    T operator()()
29    {
30       T r = term;
31       ++N;
32       term *= mult / (N * (N + v));
33       return r;
34    }
35 private:
36    unsigned N;
37    T v;
38    T mult;
39    T term;
40 };
41 //
42 // Series evaluation for BesselJ(v, z) as z -> 0.
43 // See http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/06/01/04/01/01/0003/
44 // Converges rapidly for all z << v.
45 //
46 template <class T, class Policy>
bessel_j_small_z_series(T v,T x,const Policy & pol)47 inline T bessel_j_small_z_series(T v, T x, const Policy& pol)
48 {
49    BOOST_MATH_STD_USING
50    T prefix;
51    if(v < max_factorial<T>::value)
52    {
53       prefix = pow(x / 2, v) / boost::math::tgamma(v+1, pol);
54    }
55    else
56    {
57       prefix = v * log(x / 2) - boost::math::lgamma(v+1, pol);
58       prefix = exp(prefix);
59    }
60    if(0 == prefix)
61       return prefix;
62 
63    bessel_j_small_z_series_term<T, Policy> s(v, x);
64    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
65 #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
66    T zero = 0;
67    T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, zero);
68 #else
69    T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
70 #endif
71    policies::check_series_iterations<T>("boost::math::bessel_j_small_z_series<%1%>(%1%,%1%)", max_iter, pol);
72    return prefix * result;
73 }
74 
75 template <class T, class Policy>
76 struct bessel_y_small_z_series_term_a
77 {
78    typedef T result_type;
79 
bessel_y_small_z_series_term_aboost::math::detail::bessel_y_small_z_series_term_a80    bessel_y_small_z_series_term_a(T v_, T x)
81       : N(0), v(v_)
82    {
83       BOOST_MATH_STD_USING
84       mult = x / 2;
85       mult *= -mult;
86       term = 1;
87    }
operator ()boost::math::detail::bessel_y_small_z_series_term_a88    T operator()()
89    {
90       BOOST_MATH_STD_USING
91       T r = term;
92       ++N;
93       term *= mult / (N * (N - v));
94       return r;
95    }
96 private:
97    unsigned N;
98    T v;
99    T mult;
100    T term;
101 };
102 
103 template <class T, class Policy>
104 struct bessel_y_small_z_series_term_b
105 {
106    typedef T result_type;
107 
bessel_y_small_z_series_term_bboost::math::detail::bessel_y_small_z_series_term_b108    bessel_y_small_z_series_term_b(T v_, T x)
109       : N(0), v(v_)
110    {
111       BOOST_MATH_STD_USING
112       mult = x / 2;
113       mult *= -mult;
114       term = 1;
115    }
operator ()boost::math::detail::bessel_y_small_z_series_term_b116    T operator()()
117    {
118       T r = term;
119       ++N;
120       term *= mult / (N * (N + v));
121       return r;
122    }
123 private:
124    unsigned N;
125    T v;
126    T mult;
127    T term;
128 };
129 //
130 // Series form for BesselY as z -> 0,
131 // see: http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/06/01/04/01/01/0003/
132 // This series is only useful when the second term is small compared to the first
133 // otherwise we get catastrophic cancellation errors.
134 //
135 // Approximating tgamma(v) by v^v, and assuming |tgamma(-z)| < eps we end up requiring:
136 // eps/2 * v^v(x/2)^-v > (x/2)^v or log(eps/2) > v log((x/2)^2/v)
137 //
138 template <class T, class Policy>
bessel_y_small_z_series(T v,T x,T * pscale,const Policy & pol)139 inline T bessel_y_small_z_series(T v, T x, T* pscale, const Policy& pol)
140 {
141    BOOST_MATH_STD_USING
142    static const char* function = "bessel_y_small_z_series<%1%>(%1%,%1%)";
143    T prefix;
144    T gam;
145    T p = log(x / 2);
146    T scale = 1;
147    bool need_logs = (v >= max_factorial<T>::value) || (tools::log_max_value<T>() / v < fabs(p));
148    if(!need_logs)
149    {
150       gam = boost::math::tgamma(v, pol);
151       p = pow(x / 2, v);
152       if(tools::max_value<T>() * p < gam)
153       {
154          scale /= gam;
155          gam = 1;
156          if(tools::max_value<T>() * p < gam)
157          {
158             return -policies::raise_overflow_error<T>(function, 0, pol);
159          }
160       }
161       prefix = -gam / (constants::pi<T>() * p);
162    }
163    else
164    {
165       gam = boost::math::lgamma(v, pol);
166       p = v * p;
167       prefix = gam - log(constants::pi<T>()) - p;
168       if(tools::log_max_value<T>() < prefix)
169       {
170          prefix -= log(tools::max_value<T>() / 4);
171          scale /= (tools::max_value<T>() / 4);
172          if(tools::log_max_value<T>() < prefix)
173          {
174             return -policies::raise_overflow_error<T>(function, 0, pol);
175          }
176       }
177       prefix = -exp(prefix);
178    }
179    bessel_y_small_z_series_term_a<T, Policy> s(v, x);
180    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
181    *pscale = scale;
182 #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
183    T zero = 0;
184    T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, zero);
185 #else
186    T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
187 #endif
188    policies::check_series_iterations<T>("boost::math::bessel_y_small_z_series<%1%>(%1%,%1%)", max_iter, pol);
189    result *= prefix;
190 
191    if(!need_logs)
192    {
193       prefix = boost::math::tgamma(-v, pol) * boost::math::cos_pi(v) * p / constants::pi<T>();
194    }
195    else
196    {
197       int sgn;
198       prefix = boost::math::lgamma(-v, &sgn, pol) + p;
199       prefix = exp(prefix) * sgn / constants::pi<T>();
200    }
201    bessel_y_small_z_series_term_b<T, Policy> s2(v, x);
202    max_iter = policies::get_max_series_iterations<Policy>();
203 #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
204    T b = boost::math::tools::sum_series(s2, boost::math::policies::get_epsilon<T, Policy>(), max_iter, zero);
205 #else
206    T b = boost::math::tools::sum_series(s2, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
207 #endif
208    result -= scale * prefix * b;
209    return result;
210 }
211 
212 template <class T, class Policy>
bessel_yn_small_z(int n,T z,T * scale,const Policy & pol)213 T bessel_yn_small_z(int n, T z, T* scale, const Policy& pol)
214 {
215    //
216    // See http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/06/01/04/01/02/
217    //
218    // Note that when called we assume that x < epsilon and n is a positive integer.
219    //
220    BOOST_MATH_STD_USING
221    BOOST_ASSERT(n >= 0);
222    BOOST_ASSERT((z < policies::get_epsilon<T, Policy>()));
223 
224    if(n == 0)
225    {
226       return (2 / constants::pi<T>()) * (log(z / 2) +  constants::euler<T>());
227    }
228    else if(n == 1)
229    {
230       return (z / constants::pi<T>()) * log(z / 2)
231          - 2 / (constants::pi<T>() * z)
232          - (z / (2 * constants::pi<T>())) * (1 - 2 * constants::euler<T>());
233    }
234    else if(n == 2)
235    {
236       return (z * z) / (4 * constants::pi<T>()) * log(z / 2)
237          - (4 / (constants::pi<T>() * z * z))
238          - ((z * z) / (8 * constants::pi<T>())) * (T(3)/2 - 2 * constants::euler<T>());
239    }
240    else
241    {
242       T p = pow(z / 2, n);
243       T result = -((boost::math::factorial<T>(n - 1) / constants::pi<T>()));
244       if(p * tools::max_value<T>() < result)
245       {
246          T div = tools::max_value<T>() / 8;
247          result /= div;
248          *scale /= div;
249          if(p * tools::max_value<T>() < result)
250          {
251             return -policies::raise_overflow_error<T>("bessel_yn_small_z<%1%>(%1%,%1%)", 0, pol);
252          }
253       }
254       return result / p;
255    }
256 }
257 
258 }}} // namespaces
259 
260 #endif // BOOST_MATH_BESSEL_JN_SERIES_HPP
261 
262