• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright (c) 2006 Xiaogang Zhang
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_BESSEL_YN_HPP
7 #define BOOST_MATH_BESSEL_YN_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/math/special_functions/detail/bessel_y0.hpp>
14 #include <boost/math/special_functions/detail/bessel_y1.hpp>
15 #include <boost/math/special_functions/detail/bessel_jy_series.hpp>
16 #include <boost/math/policies/error_handling.hpp>
17 
18 // Bessel function of the second kind of integer order
19 // Y_n(z) is the dominant solution, forward recurrence always OK (though unstable)
20 
21 namespace boost { namespace math { namespace detail{
22 
23 template <typename T, typename Policy>
bessel_yn(int n,T x,const Policy & pol)24 T bessel_yn(int n, T x, const Policy& pol)
25 {
26     BOOST_MATH_STD_USING
27     T value, factor, current, prev;
28 
29     using namespace boost::math::tools;
30 
31     static const char* function = "boost::math::bessel_yn<%1%>(%1%,%1%)";
32 
33     if ((x == 0) && (n == 0))
34     {
35        return -policies::raise_overflow_error<T>(function, 0, pol);
36     }
37     if (x <= 0)
38     {
39        return policies::raise_domain_error<T>(function,
40             "Got x = %1%, but x must be > 0, complex result not supported.", x, pol);
41     }
42 
43     //
44     // Reflection comes first:
45     //
46     if (n < 0)
47     {
48         factor = static_cast<T>((n & 0x1) ? -1 : 1);  // Y_{-n}(z) = (-1)^n Y_n(z)
49         n = -n;
50     }
51     else
52     {
53         factor = 1;
54     }
55     if(x < policies::get_epsilon<T, Policy>())
56     {
57        T scale = 1;
58        value = bessel_yn_small_z(n, x, &scale, pol);
59        if(tools::max_value<T>() * fabs(scale) < fabs(value))
60           return boost::math::sign(scale) * boost::math::sign(value) * policies::raise_overflow_error<T>(function, 0, pol);
61        value /= scale;
62     }
63     else if(asymptotic_bessel_large_x_limit(n, x))
64     {
65        value = factor * asymptotic_bessel_y_large_x_2(static_cast<T>(abs(n)), x);
66     }
67     else if (n == 0)
68     {
69         value = bessel_y0(x, pol);
70     }
71     else if (n == 1)
72     {
73         value = factor * bessel_y1(x, pol);
74     }
75     else
76     {
77        prev = bessel_y0(x, pol);
78        current = bessel_y1(x, pol);
79        int k = 1;
80        BOOST_ASSERT(k < n);
81        policies::check_series_iterations<T>("boost::math::bessel_y_n<%1%>(%1%,%1%)", n, pol);
82        T mult = 2 * k / x;
83        value = mult * current - prev;
84        prev = current;
85        current = value;
86        ++k;
87        if((mult > 1) && (fabs(current) > 1))
88        {
89           prev /= current;
90           factor /= current;
91           value /= current;
92           current = 1;
93        }
94        while(k < n)
95        {
96            mult = 2 * k / x;
97            value = mult * current - prev;
98            prev = current;
99            current = value;
100            ++k;
101        }
102        if(fabs(tools::max_value<T>() * factor) < fabs(value))
103           return sign(value) * sign(factor) * policies::raise_overflow_error<T>(function, 0, pol);
104        value /= factor;
105     }
106     return value;
107 }
108 
109 }}} // namespaces
110 
111 #endif // BOOST_MATH_BESSEL_YN_HPP
112 
113