1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include "drm-uapi/drm_fourcc.h"
29
30 #include "brw_batch.h"
31 #include "brw_image.h"
32 #include "brw_mipmap_tree.h"
33 #include "brw_tex.h"
34 #include "brw_blit.h"
35 #include "brw_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50 #include "util/u_memory.h"
51
52 #include "x86/common_x86_asm.h"
53
54 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
55
56 static void *brw_miptree_map_raw(struct brw_context *brw,
57 struct brw_mipmap_tree *mt,
58 GLbitfield mode);
59
60 static void brw_miptree_unmap_raw(struct brw_mipmap_tree *mt);
61
62 /**
63 * Return true if the format that will be used to access the miptree is
64 * CCS_E-compatible with the miptree's linear/non-sRGB format.
65 *
66 * Why use the linear format? Well, although the miptree may be specified with
67 * an sRGB format, the usage of that color space/format can be toggled. Since
68 * our HW tends to support more linear formats than sRGB ones, we use this
69 * format variant for check for CCS_E compatibility.
70 */
71 static bool
format_ccs_e_compat_with_miptree(const struct intel_device_info * devinfo,const struct brw_mipmap_tree * mt,enum isl_format access_format)72 format_ccs_e_compat_with_miptree(const struct intel_device_info *devinfo,
73 const struct brw_mipmap_tree *mt,
74 enum isl_format access_format)
75 {
76 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
77
78 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
79 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
80 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
81 }
82
83 /* Determine if CCS_E is supported for a given platform and mesa format. */
84 static bool
format_supports_ccs_e(const struct brw_context * brw,mesa_format format)85 format_supports_ccs_e(const struct brw_context *brw, mesa_format format)
86 {
87 /* For now compression is only enabled for integer formats even though
88 * there exist supported floating point formats also. This is a heuristic
89 * decision based on current public benchmarks. In none of the cases these
90 * formats provided any improvement but a few cases were seen to regress.
91 * Hence these are left to to be enabled in the future when they are known
92 * to improve things.
93 */
94 if (_mesa_get_format_datatype(format) == GL_FLOAT)
95 return false;
96
97 /* Many window system buffers are sRGB even if they are never rendered as
98 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
99 * surface is used as sRGB, we fall back to CCS_D.
100 */
101 mesa_format linear_format = _mesa_get_srgb_format_linear(format);
102 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
103 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
104 }
105
106 /**
107 * Determine depth format corresponding to a depth+stencil format,
108 * for separate stencil.
109 */
110 mesa_format
brw_depth_format_for_depthstencil_format(mesa_format format)111 brw_depth_format_for_depthstencil_format(mesa_format format) {
112 switch (format) {
113 case MESA_FORMAT_Z24_UNORM_S8_UINT:
114 return MESA_FORMAT_Z24_UNORM_X8_UINT;
115 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
116 return MESA_FORMAT_Z_FLOAT32;
117 default:
118 return format;
119 }
120 }
121
122 static bool
create_mapping_table(GLenum target,unsigned first_level,unsigned last_level,unsigned depth0,struct brw_mipmap_level * table)123 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
124 unsigned depth0, struct brw_mipmap_level *table)
125 {
126 for (unsigned level = first_level; level <= last_level; level++) {
127 const unsigned d =
128 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
129
130 table[level].slice = calloc(d, sizeof(*table[0].slice));
131 if (!table[level].slice)
132 goto unwind;
133 }
134
135 return true;
136
137 unwind:
138 for (unsigned level = first_level; level <= last_level; level++)
139 free(table[level].slice);
140
141 return false;
142 }
143
144 static bool
needs_separate_stencil(const struct brw_context * brw,struct brw_mipmap_tree * mt,mesa_format format)145 needs_separate_stencil(const struct brw_context *brw,
146 struct brw_mipmap_tree *mt,
147 mesa_format format)
148 {
149 const struct intel_device_info *devinfo = &brw->screen->devinfo;
150
151 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
152 return false;
153
154 if (devinfo->must_use_separate_stencil)
155 return true;
156
157 return brw->has_separate_stencil && brw->has_hiz;
158 }
159
160 /**
161 * Choose the aux usage for this miptree. This function must be called fairly
162 * late in the miptree create process after we have a tiling.
163 */
164 static void
brw_miptree_choose_aux_usage(struct brw_context * brw,struct brw_mipmap_tree * mt)165 brw_miptree_choose_aux_usage(struct brw_context *brw,
166 struct brw_mipmap_tree *mt)
167 {
168 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
169
170 if (_mesa_is_format_color_format(mt->format)) {
171 if (mt->surf.samples > 1) {
172 mt->aux_usage = ISL_AUX_USAGE_MCS;
173 } else if (!INTEL_DEBUG(DEBUG_NO_RBC) &&
174 format_supports_ccs_e(brw, mt->format)) {
175 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
176 } else if (brw->mesa_format_supports_render[mt->format]) {
177 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
178 }
179 } else if (isl_surf_usage_is_depth(mt->surf.usage) && brw->has_hiz) {
180 mt->aux_usage = ISL_AUX_USAGE_HIZ;
181 }
182
183 /* We can do fast-clear on all auxiliary surface types that are
184 * allocated through the normal texture creation paths.
185 */
186 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
187 mt->supports_fast_clear = true;
188 }
189
190
191 /**
192 * Choose an appropriate uncompressed format for a requested
193 * compressed format, if unsupported.
194 */
195 mesa_format
brw_lower_compressed_format(struct brw_context * brw,mesa_format format)196 brw_lower_compressed_format(struct brw_context *brw, mesa_format format)
197 {
198 const struct intel_device_info *devinfo = &brw->screen->devinfo;
199
200 /* No need to lower ETC formats on these platforms,
201 * they are supported natively.
202 */
203 if (devinfo->ver >= 8 || devinfo->is_baytrail)
204 return format;
205
206 switch (format) {
207 case MESA_FORMAT_ETC1_RGB8:
208 return MESA_FORMAT_R8G8B8X8_UNORM;
209 case MESA_FORMAT_ETC2_RGB8:
210 return MESA_FORMAT_R8G8B8X8_UNORM;
211 case MESA_FORMAT_ETC2_SRGB8:
212 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
213 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
214 return MESA_FORMAT_B8G8R8A8_SRGB;
215 case MESA_FORMAT_ETC2_RGBA8_EAC:
216 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
217 return MESA_FORMAT_R8G8B8A8_UNORM;
218 case MESA_FORMAT_ETC2_R11_EAC:
219 return MESA_FORMAT_R_UNORM16;
220 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
221 return MESA_FORMAT_R_SNORM16;
222 case MESA_FORMAT_ETC2_RG11_EAC:
223 return MESA_FORMAT_RG_UNORM16;
224 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
225 return MESA_FORMAT_RG_SNORM16;
226 default:
227 /* Non ETC1 / ETC2 format */
228 return format;
229 }
230 }
231
232 unsigned
brw_get_num_logical_layers(const struct brw_mipmap_tree * mt,unsigned level)233 brw_get_num_logical_layers(const struct brw_mipmap_tree *mt, unsigned level)
234 {
235 if (mt->surf.dim == ISL_SURF_DIM_3D)
236 return minify(mt->surf.logical_level0_px.depth, level);
237 else
238 return mt->surf.logical_level0_px.array_len;
239 }
240
241 UNUSED static unsigned
get_num_phys_layers(const struct isl_surf * surf,unsigned level)242 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
243 {
244 /* In case of physical dimensions one needs to consider also the layout.
245 * See isl_calc_phys_level0_extent_sa().
246 */
247 if (surf->dim != ISL_SURF_DIM_3D)
248 return surf->phys_level0_sa.array_len;
249
250 if (surf->dim_layout == ISL_DIM_LAYOUT_GFX4_2D)
251 return minify(surf->phys_level0_sa.array_len, level);
252
253 return minify(surf->phys_level0_sa.depth, level);
254 }
255
256 /** \brief Assert that the level and layer are valid for the miptree. */
257 void
brw_miptree_check_level_layer(const struct brw_mipmap_tree * mt,uint32_t level,uint32_t layer)258 brw_miptree_check_level_layer(const struct brw_mipmap_tree *mt,
259 uint32_t level,
260 uint32_t layer)
261 {
262 (void) mt;
263 (void) level;
264 (void) layer;
265
266 assert(level >= mt->first_level);
267 assert(level <= mt->last_level);
268 assert(layer < get_num_phys_layers(&mt->surf, level));
269 }
270
271 static enum isl_aux_state **
create_aux_state_map(struct brw_mipmap_tree * mt,enum isl_aux_state initial)272 create_aux_state_map(struct brw_mipmap_tree *mt,
273 enum isl_aux_state initial)
274 {
275 const uint32_t levels = mt->last_level + 1;
276
277 uint32_t total_slices = 0;
278 for (uint32_t level = 0; level < levels; level++)
279 total_slices += brw_get_num_logical_layers(mt, level);
280
281 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
282
283 /* We're going to allocate a single chunk of data for both the per-level
284 * reference array and the arrays of aux_state. This makes cleanup
285 * significantly easier.
286 */
287 const size_t total_size = per_level_array_size +
288 total_slices * sizeof(enum isl_aux_state);
289 void *data = malloc(total_size);
290 if (data == NULL)
291 return NULL;
292
293 enum isl_aux_state **per_level_arr = data;
294 enum isl_aux_state *s = data + per_level_array_size;
295 for (uint32_t level = 0; level < levels; level++) {
296 per_level_arr[level] = s;
297 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
298 for (uint32_t a = 0; a < level_layers; a++)
299 *(s++) = initial;
300 }
301 assert((void *)s == data + total_size);
302
303 return per_level_arr;
304 }
305
306 static void
free_aux_state_map(enum isl_aux_state ** state)307 free_aux_state_map(enum isl_aux_state **state)
308 {
309 free(state);
310 }
311
312 static bool
need_to_retile_as_linear(struct brw_context * brw,unsigned blt_pitch,enum isl_tiling tiling,unsigned samples)313 need_to_retile_as_linear(struct brw_context *brw, unsigned blt_pitch,
314 enum isl_tiling tiling, unsigned samples)
315 {
316 if (samples > 1)
317 return false;
318
319 if (tiling == ISL_TILING_LINEAR)
320 return false;
321
322 if (blt_pitch >= 32768) {
323 perf_debug("blt pitch %u too large to blit, falling back to untiled",
324 blt_pitch);
325 return true;
326 }
327
328 return false;
329 }
330
331 static bool
need_to_retile_as_x(const struct brw_context * brw,uint64_t size,enum isl_tiling tiling)332 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
333 enum isl_tiling tiling)
334 {
335 const struct intel_device_info *devinfo = &brw->screen->devinfo;
336
337 /* If the BO is too large to fit in the aperture, we need to use the
338 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
339 * handle Y-tiling, so we need to fall back to X.
340 */
341 if (devinfo->ver < 6 && size >= brw->max_gtt_map_object_size &&
342 tiling == ISL_TILING_Y0)
343 return true;
344
345 return false;
346 }
347
348 static struct brw_mipmap_tree *
make_surface(struct brw_context * brw,GLenum target,mesa_format format,unsigned first_level,unsigned last_level,unsigned width0,unsigned height0,unsigned depth0,unsigned num_samples,isl_tiling_flags_t tiling_flags,isl_surf_usage_flags_t isl_usage_flags,uint32_t alloc_flags,unsigned row_pitch_B,struct brw_bo * bo)349 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
350 unsigned first_level, unsigned last_level,
351 unsigned width0, unsigned height0, unsigned depth0,
352 unsigned num_samples, isl_tiling_flags_t tiling_flags,
353 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
354 unsigned row_pitch_B, struct brw_bo *bo)
355 {
356 struct brw_mipmap_tree *mt = calloc(sizeof(*mt), 1);
357 if (!mt)
358 return NULL;
359
360 if (!create_mapping_table(target, first_level, last_level, depth0,
361 mt->level)) {
362 free(mt);
363 return NULL;
364 }
365
366 mt->refcount = 1;
367
368 if (target == GL_TEXTURE_CUBE_MAP ||
369 target == GL_TEXTURE_CUBE_MAP_ARRAY)
370 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
371
372 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
373 __func__,
374 _mesa_enum_to_string(target),
375 _mesa_get_format_name(format),
376 num_samples, width0, height0, depth0,
377 first_level, last_level, mt);
378
379 struct isl_surf_init_info init_info = {
380 .dim = get_isl_surf_dim(target),
381 .format = translate_tex_format(brw, format, false),
382 .width = width0,
383 .height = height0,
384 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
385 .levels = last_level - first_level + 1,
386 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
387 .samples = num_samples,
388 .row_pitch_B = row_pitch_B,
389 .usage = isl_usage_flags,
390 .tiling_flags = tiling_flags,
391 };
392
393 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
394 goto fail;
395
396 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
397 * on gfx7 platforms we also need to create Y-tiled copies of stencil for
398 * texturing since the hardware can't sample from W-tiled surfaces. For
399 * everything else, check for corner cases needing special treatment.
400 */
401 bool is_depth_stencil =
402 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
403 if (!is_depth_stencil) {
404 if (need_to_retile_as_linear(brw, brw_miptree_blt_pitch(mt),
405 mt->surf.tiling, mt->surf.samples)) {
406 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
407 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
408 goto fail;
409 } else if (need_to_retile_as_x(brw, mt->surf.size_B, mt->surf.tiling)) {
410 init_info.tiling_flags = 1u << ISL_TILING_X;
411 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
412 goto fail;
413 }
414 }
415
416 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
417 * the size may not be multiple of row_pitch.
418 * See isl_apply_surface_padding().
419 */
420 if (mt->surf.tiling != ISL_TILING_LINEAR)
421 assert(mt->surf.size_B % mt->surf.row_pitch_B == 0);
422
423 if (!bo) {
424 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
425 mt->surf.size_B,
426 BRW_MEMZONE_OTHER,
427 isl_tiling_to_i915_tiling(
428 mt->surf.tiling),
429 mt->surf.row_pitch_B, alloc_flags);
430 if (!mt->bo)
431 goto fail;
432 } else {
433 mt->bo = bo;
434 }
435
436 mt->first_level = first_level;
437 mt->last_level = last_level;
438 mt->target = target;
439 mt->format = format;
440 mt->aux_state = NULL;
441 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
442 mt->compressed = _mesa_is_format_compressed(format);
443 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
444
445 return mt;
446
447 fail:
448 brw_miptree_release(&mt);
449 return NULL;
450 }
451
452 /* Return the usual surface usage flags for the given format. */
453 static isl_surf_usage_flags_t
mt_surf_usage(mesa_format format)454 mt_surf_usage(mesa_format format)
455 {
456 switch(_mesa_get_format_base_format(format)) {
457 case GL_DEPTH_COMPONENT:
458 return ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
459 case GL_DEPTH_STENCIL:
460 return ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
461 ISL_SURF_USAGE_TEXTURE_BIT;
462 case GL_STENCIL_INDEX:
463 return ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
464 default:
465 return ISL_SURF_USAGE_RENDER_TARGET_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
466 }
467 }
468
469 static struct brw_mipmap_tree *
miptree_create(struct brw_context * brw,GLenum target,mesa_format format,GLuint first_level,GLuint last_level,GLuint width0,GLuint height0,GLuint depth0,GLuint num_samples,enum brw_miptree_create_flags flags)470 miptree_create(struct brw_context *brw,
471 GLenum target,
472 mesa_format format,
473 GLuint first_level,
474 GLuint last_level,
475 GLuint width0,
476 GLuint height0,
477 GLuint depth0,
478 GLuint num_samples,
479 enum brw_miptree_create_flags flags)
480 {
481 const struct intel_device_info *devinfo = &brw->screen->devinfo;
482 const uint32_t alloc_flags =
483 (flags & MIPTREE_CREATE_BUSY || num_samples > 1) ? BO_ALLOC_BUSY : 0;
484 isl_tiling_flags_t tiling_flags = ISL_TILING_ANY_MASK;
485
486 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
487 if (devinfo->ver < 6 && _mesa_is_format_color_format(format))
488 tiling_flags &= ~ISL_TILING_Y0_BIT;
489
490 mesa_format mt_fmt = format;
491 if (!_mesa_is_format_color_format(format) && devinfo->ver >= 6) {
492 /* Fix up the Z miptree format for how we're splitting out separate
493 * stencil. Gfx7 expects there to be no stencil bits in its depth buffer.
494 */
495 mt_fmt = brw_depth_format_for_depthstencil_format(format);
496 }
497
498 struct brw_mipmap_tree *mt =
499 make_surface(brw, target, mt_fmt, first_level, last_level,
500 width0, height0, depth0, num_samples,
501 tiling_flags, mt_surf_usage(mt_fmt),
502 alloc_flags, 0, NULL);
503
504 if (mt == NULL)
505 return NULL;
506
507 if (brw_miptree_needs_fake_etc(brw, mt)) {
508 mesa_format decomp_format = brw_lower_compressed_format(brw, format);
509 mt->shadow_mt = make_surface(brw, target, decomp_format, first_level,
510 last_level, width0, height0, depth0,
511 num_samples, tiling_flags,
512 mt_surf_usage(decomp_format),
513 alloc_flags, 0, NULL);
514
515 if (mt->shadow_mt == NULL) {
516 brw_miptree_release(&mt);
517 return NULL;
518 }
519 }
520
521 if (needs_separate_stencil(brw, mt, format)) {
522 mt->stencil_mt =
523 make_surface(brw, target, MESA_FORMAT_S_UINT8, first_level, last_level,
524 width0, height0, depth0, num_samples,
525 ISL_TILING_W_BIT, mt_surf_usage(MESA_FORMAT_S_UINT8),
526 alloc_flags, 0, NULL);
527 if (mt->stencil_mt == NULL) {
528 brw_miptree_release(&mt);
529 return NULL;
530 }
531 }
532
533 if (!(flags & MIPTREE_CREATE_NO_AUX))
534 brw_miptree_choose_aux_usage(brw, mt);
535
536 return mt;
537 }
538
539 struct brw_mipmap_tree *
brw_miptree_create(struct brw_context * brw,GLenum target,mesa_format format,GLuint first_level,GLuint last_level,GLuint width0,GLuint height0,GLuint depth0,GLuint num_samples,enum brw_miptree_create_flags flags)540 brw_miptree_create(struct brw_context *brw,
541 GLenum target,
542 mesa_format format,
543 GLuint first_level,
544 GLuint last_level,
545 GLuint width0,
546 GLuint height0,
547 GLuint depth0,
548 GLuint num_samples,
549 enum brw_miptree_create_flags flags)
550 {
551 assert(num_samples > 0);
552
553 struct brw_mipmap_tree *mt = miptree_create(
554 brw, target, format,
555 first_level, last_level,
556 width0, height0, depth0, num_samples,
557 flags);
558 if (!mt)
559 return NULL;
560
561 mt->offset = 0;
562
563 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
564 * compress clear color so we wait until an actual fast-clear to allocate
565 * it.
566 */
567 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
568 !brw_miptree_alloc_aux(brw, mt)) {
569 mt->aux_usage = ISL_AUX_USAGE_NONE;
570 mt->supports_fast_clear = false;
571 }
572
573 return mt;
574 }
575
576 struct brw_mipmap_tree *
brw_miptree_create_for_bo(struct brw_context * brw,struct brw_bo * bo,mesa_format format,uint32_t offset,uint32_t width,uint32_t height,uint32_t depth,int pitch,enum isl_tiling tiling,enum brw_miptree_create_flags flags)577 brw_miptree_create_for_bo(struct brw_context *brw,
578 struct brw_bo *bo,
579 mesa_format format,
580 uint32_t offset,
581 uint32_t width,
582 uint32_t height,
583 uint32_t depth,
584 int pitch,
585 enum isl_tiling tiling,
586 enum brw_miptree_create_flags flags)
587 {
588 const struct intel_device_info *devinfo = &brw->screen->devinfo;
589 struct brw_mipmap_tree *mt;
590 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
591 const GLenum base_format = _mesa_get_format_base_format(format);
592
593 if ((base_format == GL_DEPTH_COMPONENT ||
594 base_format == GL_DEPTH_STENCIL)) {
595 const mesa_format mt_fmt = (devinfo->ver < 6) ? format :
596 brw_depth_format_for_depthstencil_format(format);
597 mt = make_surface(brw, target, mt_fmt,
598 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
599 mt_surf_usage(mt_fmt),
600 0, pitch, bo);
601 if (!mt)
602 return NULL;
603
604 brw_bo_reference(bo);
605
606 if (!(flags & MIPTREE_CREATE_NO_AUX))
607 brw_miptree_choose_aux_usage(brw, mt);
608
609 return mt;
610 } else if (format == MESA_FORMAT_S_UINT8) {
611 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
612 0, 0, width, height, depth, 1,
613 ISL_TILING_W_BIT,
614 mt_surf_usage(MESA_FORMAT_S_UINT8),
615 0, pitch, bo);
616 if (!mt)
617 return NULL;
618
619 assert(bo->size >= mt->surf.size_B);
620
621 brw_bo_reference(bo);
622 return mt;
623 }
624
625 /* Nothing will be able to use this miptree with the BO if the offset isn't
626 * aligned.
627 */
628 if (tiling != ISL_TILING_LINEAR)
629 assert(offset % 4096 == 0);
630
631 /* miptrees can't handle negative pitch. If you need flipping of images,
632 * that's outside of the scope of the mt.
633 */
634 assert(pitch >= 0);
635
636 mt = make_surface(brw, target, format,
637 0, 0, width, height, depth, 1,
638 1lu << tiling,
639 mt_surf_usage(format),
640 0, pitch, bo);
641 if (!mt)
642 return NULL;
643
644 brw_bo_reference(bo);
645 mt->bo = bo;
646 mt->offset = offset;
647
648 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
649 brw_miptree_choose_aux_usage(brw, mt);
650
651 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
652 * only compress clear color so we wait until an actual fast-clear to
653 * allocate it.
654 */
655 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
656 !brw_miptree_alloc_aux(brw, mt)) {
657 mt->aux_usage = ISL_AUX_USAGE_NONE;
658 mt->supports_fast_clear = false;
659 }
660 }
661
662 return mt;
663 }
664
665 static struct brw_mipmap_tree *
miptree_create_for_planar_image(struct brw_context * brw,__DRIimage * image,GLenum target,enum isl_tiling tiling)666 miptree_create_for_planar_image(struct brw_context *brw,
667 __DRIimage *image, GLenum target,
668 enum isl_tiling tiling)
669 {
670 const struct brw_image_format *f = image->planar_format;
671 struct brw_mipmap_tree *planar_mt = NULL;
672
673 for (int i = 0; i < f->nplanes; i++) {
674 const int index = f->planes[i].buffer_index;
675 const uint32_t dri_format = f->planes[i].dri_format;
676 const mesa_format format = driImageFormatToGLFormat(dri_format);
677 const uint32_t width = image->width >> f->planes[i].width_shift;
678 const uint32_t height = image->height >> f->planes[i].height_shift;
679
680 /* Disable creation of the texture's aux buffers because the driver
681 * exposes no EGL API to manage them. That is, there is no API for
682 * resolving the aux buffer's content to the main buffer nor for
683 * invalidating the aux buffer's content.
684 */
685 struct brw_mipmap_tree *mt =
686 brw_miptree_create_for_bo(brw, image->bo, format,
687 image->offsets[index],
688 width, height, 1,
689 image->strides[index],
690 tiling,
691 MIPTREE_CREATE_NO_AUX);
692 if (mt == NULL) {
693 brw_miptree_release(&planar_mt);
694 return NULL;
695 }
696
697 mt->target = target;
698
699 if (i == 0)
700 planar_mt = mt;
701 else
702 planar_mt->plane[i - 1] = mt;
703 }
704
705 planar_mt->drm_modifier = image->modifier;
706
707 return planar_mt;
708 }
709
710 static bool
create_ccs_buf_for_image(struct brw_context * brw,__DRIimage * image,struct brw_mipmap_tree * mt,enum isl_aux_state initial_state)711 create_ccs_buf_for_image(struct brw_context *brw,
712 __DRIimage *image,
713 struct brw_mipmap_tree *mt,
714 enum isl_aux_state initial_state)
715 {
716 struct isl_surf temp_ccs_surf = {0,};
717
718 /* CCS is only supported for very simple miptrees */
719 assert(image->aux_offset != 0 && image->aux_pitch != 0);
720 assert(image->tile_x == 0 && image->tile_y == 0);
721 assert(mt->surf.samples == 1);
722 assert(mt->surf.levels == 1);
723 assert(mt->surf.logical_level0_px.depth == 1);
724 assert(mt->surf.logical_level0_px.array_len == 1);
725 assert(mt->first_level == 0);
726 assert(mt->last_level == 0);
727
728 /* We shouldn't already have a CCS */
729 assert(!mt->aux_buf);
730
731 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, NULL,
732 &temp_ccs_surf, image->aux_pitch))
733 return false;
734
735 assert(image->aux_offset < image->bo->size);
736 assert(temp_ccs_surf.size_B <= image->bo->size - image->aux_offset);
737
738 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
739 if (mt->aux_buf == NULL)
740 return false;
741
742 mt->aux_state = create_aux_state_map(mt, initial_state);
743 if (!mt->aux_state) {
744 free(mt->aux_buf);
745 mt->aux_buf = NULL;
746 return false;
747 }
748
749 /* On gfx10+ we start using an extra space in the aux buffer to store the
750 * indirect clear color. However, if we imported an image from the window
751 * system with CCS, we don't have the extra space at the end of the aux
752 * buffer. So create a new bo here that will store that clear color.
753 */
754 if (brw->isl_dev.ss.clear_color_state_size > 0) {
755 mt->aux_buf->clear_color_bo =
756 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
757 brw->isl_dev.ss.clear_color_state_size,
758 BRW_MEMZONE_OTHER, I915_TILING_NONE, 0,
759 BO_ALLOC_ZEROED);
760 if (!mt->aux_buf->clear_color_bo) {
761 free(mt->aux_buf);
762 mt->aux_buf = NULL;
763 return false;
764 }
765 }
766
767 mt->aux_buf->bo = image->bo;
768 brw_bo_reference(image->bo);
769
770 mt->aux_buf->offset = image->aux_offset;
771 mt->aux_buf->surf = temp_ccs_surf;
772
773 return true;
774 }
775
776 struct brw_mipmap_tree *
brw_miptree_create_for_dri_image(struct brw_context * brw,__DRIimage * image,GLenum target,mesa_format format,bool allow_internal_aux)777 brw_miptree_create_for_dri_image(struct brw_context *brw,
778 __DRIimage *image, GLenum target,
779 mesa_format format,
780 bool allow_internal_aux)
781 {
782 uint32_t bo_tiling, bo_swizzle;
783 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
784
785 const struct isl_drm_modifier_info *mod_info =
786 isl_drm_modifier_get_info(image->modifier);
787
788 const enum isl_tiling tiling =
789 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
790
791 if (image->planar_format && image->planar_format->nplanes > 1)
792 return miptree_create_for_planar_image(brw, image, target, tiling);
793
794 if (image->planar_format)
795 assert(image->planar_format->planes[0].dri_format == image->dri_format);
796
797 if (!brw->ctx.TextureFormatSupported[format]) {
798 /* The texture storage paths in core Mesa detect if the driver does not
799 * support the user-requested format, and then searches for a
800 * fallback format. The DRIimage code bypasses core Mesa, though. So we
801 * do the fallbacks here for important formats.
802 *
803 * We must support DRM_FOURCC_XBGR8888 textures because the Android
804 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
805 * the Chrome OS compositor consumes as dma_buf EGLImages.
806 */
807 format = _mesa_format_fallback_rgbx_to_rgba(format);
808 }
809
810 if (!brw->ctx.TextureFormatSupported[format])
811 return NULL;
812
813 enum brw_miptree_create_flags mt_create_flags = 0;
814
815 /* If this image comes in from a window system, we have different
816 * requirements than if it comes in via an EGL import operation. Window
817 * system images can use any form of auxiliary compression we wish because
818 * they get "flushed" before being handed off to the window system and we
819 * have the opportunity to do resolves. Non window-system images, on the
820 * other hand, have no resolve point so we can't have aux without a
821 * modifier.
822 */
823 if (!allow_internal_aux)
824 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
825
826 /* If we have a modifier which specifies aux, don't create one yet */
827 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
828 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
829
830 /* Disable creation of the texture's aux buffers because the driver exposes
831 * no EGL API to manage them. That is, there is no API for resolving the aux
832 * buffer's content to the main buffer nor for invalidating the aux buffer's
833 * content.
834 */
835 struct brw_mipmap_tree *mt =
836 brw_miptree_create_for_bo(brw, image->bo, format,
837 image->offset, image->width, image->height, 1,
838 image->pitch, tiling, mt_create_flags);
839 if (mt == NULL)
840 return NULL;
841
842 mt->target = target;
843 mt->level[0].level_x = image->tile_x;
844 mt->level[0].level_y = image->tile_y;
845 mt->drm_modifier = image->modifier;
846
847 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
848 * for EGL images from non-tile aligned sufaces in gfx4 hw and earlier which has
849 * trouble resolving back to destination image due to alignment issues.
850 */
851 const struct intel_device_info *devinfo = &brw->screen->devinfo;
852 if (!devinfo->has_surface_tile_offset) {
853 uint32_t draw_x, draw_y;
854 brw_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
855
856 if (draw_x != 0 || draw_y != 0) {
857 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
858 brw_miptree_release(&mt);
859 return NULL;
860 }
861 }
862
863 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
864 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
865
866 mt->aux_usage = mod_info->aux_usage;
867 /* If we are a window system buffer, then we can support fast-clears
868 * even if the modifier doesn't support them by doing a partial resolve
869 * as part of the flush operation.
870 */
871 mt->supports_fast_clear =
872 allow_internal_aux || mod_info->supports_clear_color;
873
874 /* We don't know the actual state of the surface when we get it but we
875 * can make a pretty good guess based on the modifier. What we do know
876 * for sure is that it isn't in the AUX_INVALID state, so we just assume
877 * a worst case of compression.
878 */
879 enum isl_aux_state initial_state =
880 isl_drm_modifier_get_default_aux_state(image->modifier);
881
882 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
883 brw_miptree_release(&mt);
884 return NULL;
885 }
886 }
887
888 /* Don't assume coherency for imported EGLimages. We don't know what
889 * external clients are going to do with it. They may scan it out.
890 */
891 image->bo->cache_coherent = false;
892
893 return mt;
894 }
895
896 /**
897 * For a singlesample renderbuffer, this simply wraps the given BO with a
898 * miptree.
899 *
900 * For a multisample renderbuffer, this wraps the window system's
901 * (singlesample) BO with a singlesample miptree attached to the
902 * brw_renderbuffer, then creates a multisample miptree attached to irb->mt
903 * that will contain the actual rendering (which is lazily resolved to
904 * irb->singlesample_mt).
905 */
906 bool
brw_update_winsys_renderbuffer_miptree(struct brw_context * intel,struct brw_renderbuffer * irb,struct brw_mipmap_tree * singlesample_mt,uint32_t width,uint32_t height,uint32_t pitch)907 brw_update_winsys_renderbuffer_miptree(struct brw_context *intel,
908 struct brw_renderbuffer *irb,
909 struct brw_mipmap_tree *singlesample_mt,
910 uint32_t width, uint32_t height,
911 uint32_t pitch)
912 {
913 struct brw_mipmap_tree *multisample_mt = NULL;
914 struct gl_renderbuffer *rb = &irb->Base.Base;
915 mesa_format format = rb->Format;
916 const unsigned num_samples = MAX2(rb->NumSamples, 1);
917
918 /* Only the front and back buffers, which are color buffers, are allocated
919 * through the image loader.
920 */
921 assert(_mesa_get_format_base_format(format) == GL_RGB ||
922 _mesa_get_format_base_format(format) == GL_RGBA);
923
924 assert(singlesample_mt);
925
926 if (num_samples == 1) {
927 brw_miptree_release(&irb->mt);
928 irb->mt = singlesample_mt;
929
930 assert(!irb->singlesample_mt);
931 } else {
932 brw_miptree_release(&irb->singlesample_mt);
933 irb->singlesample_mt = singlesample_mt;
934
935 if (!irb->mt ||
936 irb->mt->surf.logical_level0_px.width != width ||
937 irb->mt->surf.logical_level0_px.height != height) {
938 multisample_mt = brw_miptree_create_for_renderbuffer(intel,
939 format,
940 width,
941 height,
942 num_samples);
943 if (!multisample_mt)
944 goto fail;
945
946 irb->need_downsample = false;
947 brw_miptree_release(&irb->mt);
948 irb->mt = multisample_mt;
949 }
950 }
951 return true;
952
953 fail:
954 brw_miptree_release(&irb->mt);
955 return false;
956 }
957
958 struct brw_mipmap_tree*
brw_miptree_create_for_renderbuffer(struct brw_context * brw,mesa_format format,uint32_t width,uint32_t height,uint32_t num_samples)959 brw_miptree_create_for_renderbuffer(struct brw_context *brw,
960 mesa_format format,
961 uint32_t width,
962 uint32_t height,
963 uint32_t num_samples)
964 {
965 struct brw_mipmap_tree *mt;
966 uint32_t depth = 1;
967 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
968
969 mt = brw_miptree_create(brw, target, format, 0, 0,
970 width, height, depth, num_samples,
971 MIPTREE_CREATE_BUSY);
972 if (!mt)
973 goto fail;
974
975 return mt;
976
977 fail:
978 brw_miptree_release(&mt);
979 return NULL;
980 }
981
982 void
brw_miptree_reference(struct brw_mipmap_tree ** dst,struct brw_mipmap_tree * src)983 brw_miptree_reference(struct brw_mipmap_tree **dst,
984 struct brw_mipmap_tree *src)
985 {
986 if (*dst == src)
987 return;
988
989 brw_miptree_release(dst);
990
991 if (src) {
992 src->refcount++;
993 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
994 }
995
996 *dst = src;
997 }
998
999 static void
brw_miptree_aux_buffer_free(struct brw_miptree_aux_buffer * aux_buf)1000 brw_miptree_aux_buffer_free(struct brw_miptree_aux_buffer *aux_buf)
1001 {
1002 if (aux_buf == NULL)
1003 return;
1004
1005 brw_bo_unreference(aux_buf->bo);
1006 brw_bo_unreference(aux_buf->clear_color_bo);
1007
1008 free(aux_buf);
1009 }
1010
1011 void
brw_miptree_release(struct brw_mipmap_tree ** mt)1012 brw_miptree_release(struct brw_mipmap_tree **mt)
1013 {
1014 if (!*mt)
1015 return;
1016
1017 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1018 if (--(*mt)->refcount <= 0) {
1019 GLuint i;
1020
1021 DBG("%s deleting %p\n", __func__, *mt);
1022
1023 brw_bo_unreference((*mt)->bo);
1024 brw_miptree_release(&(*mt)->stencil_mt);
1025 brw_miptree_release(&(*mt)->shadow_mt);
1026 brw_miptree_aux_buffer_free((*mt)->aux_buf);
1027 free_aux_state_map((*mt)->aux_state);
1028
1029 brw_miptree_release(&(*mt)->plane[0]);
1030 brw_miptree_release(&(*mt)->plane[1]);
1031
1032 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1033 free((*mt)->level[i].slice);
1034 }
1035
1036 free(*mt);
1037 }
1038 *mt = NULL;
1039 }
1040
1041
1042 void
brw_get_image_dims(struct gl_texture_image * image,int * width,int * height,int * depth)1043 brw_get_image_dims(struct gl_texture_image *image,
1044 int *width, int *height, int *depth)
1045 {
1046 switch (image->TexObject->Target) {
1047 case GL_TEXTURE_1D_ARRAY:
1048 /* For a 1D Array texture the OpenGL API will treat the image height as
1049 * the number of array slices. For Intel hardware, we treat the 1D array
1050 * as a 2D Array with a height of 1. So, here we want to swap image
1051 * height and depth.
1052 */
1053 assert(image->Depth == 1);
1054 *width = image->Width;
1055 *height = 1;
1056 *depth = image->Height;
1057 break;
1058 case GL_TEXTURE_CUBE_MAP:
1059 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1060 * though we really have 6 slices.
1061 */
1062 assert(image->Depth == 1);
1063 *width = image->Width;
1064 *height = image->Height;
1065 *depth = 6;
1066 break;
1067 default:
1068 *width = image->Width;
1069 *height = image->Height;
1070 *depth = image->Depth;
1071 break;
1072 }
1073 }
1074
1075 /**
1076 * Can the image be pulled into a unified mipmap tree? This mirrors
1077 * the completeness test in a lot of ways.
1078 *
1079 * Not sure whether I want to pass gl_texture_image here.
1080 */
1081 bool
brw_miptree_match_image(struct brw_mipmap_tree * mt,struct gl_texture_image * image)1082 brw_miptree_match_image(struct brw_mipmap_tree *mt,
1083 struct gl_texture_image *image)
1084 {
1085 struct brw_texture_image *brw_image = brw_texture_image(image);
1086 GLuint level = brw_image->base.Base.Level;
1087 int width, height, depth;
1088
1089 /* glTexImage* choose the texture object based on the target passed in, and
1090 * objects can't change targets over their lifetimes, so this should be
1091 * true.
1092 */
1093 assert(image->TexObject->Target == mt->target);
1094
1095 mesa_format mt_format = mt->format;
1096 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1097 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1098 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1099 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1100
1101 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1102 _mesa_get_srgb_format_linear(mt_format))
1103 return false;
1104
1105 brw_get_image_dims(image, &width, &height, &depth);
1106
1107 if (mt->target == GL_TEXTURE_CUBE_MAP)
1108 depth = 6;
1109
1110 if (level >= mt->surf.levels)
1111 return false;
1112
1113 const unsigned level_depth =
1114 mt->surf.dim == ISL_SURF_DIM_3D ?
1115 minify(mt->surf.logical_level0_px.depth, level) :
1116 mt->surf.logical_level0_px.array_len;
1117
1118 return width == minify(mt->surf.logical_level0_px.width, level) &&
1119 height == minify(mt->surf.logical_level0_px.height, level) &&
1120 depth == level_depth &&
1121 MAX2(image->NumSamples, 1) == mt->surf.samples;
1122 }
1123
1124 void
brw_miptree_get_image_offset(const struct brw_mipmap_tree * mt,GLuint level,GLuint slice,GLuint * x,GLuint * y)1125 brw_miptree_get_image_offset(const struct brw_mipmap_tree *mt,
1126 GLuint level, GLuint slice,
1127 GLuint *x, GLuint *y)
1128 {
1129 if (level == 0 && slice == 0) {
1130 *x = mt->level[0].level_x;
1131 *y = mt->level[0].level_y;
1132 return;
1133 }
1134
1135 uint32_t x_offset_sa, y_offset_sa, z_offset_sa, array_offset;
1136
1137 /* Miptree itself can have an offset only if it represents a single
1138 * slice in an imported buffer object.
1139 * See brw_miptree_create_for_dri_image().
1140 */
1141 assert(mt->level[0].level_x == 0);
1142 assert(mt->level[0].level_y == 0);
1143
1144 /* Given level is relative to level zero while the miptree may be
1145 * represent just a subset of all levels starting from 'first_level'.
1146 */
1147 assert(level >= mt->first_level);
1148 level -= mt->first_level;
1149
1150 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1151 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1152 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1153 &x_offset_sa, &y_offset_sa,
1154 &z_offset_sa, &array_offset);
1155
1156 *x = x_offset_sa;
1157 *y = y_offset_sa;
1158 assert(z_offset_sa == 0);
1159 assert(array_offset == 0);
1160 }
1161
1162 /**
1163 * Compute the offset (in bytes) from the start of the BO to the given x
1164 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1165 * multiples of the tile size.
1166 */
1167 uint32_t
brw_miptree_get_aligned_offset(const struct brw_mipmap_tree * mt,uint32_t x,uint32_t y)1168 brw_miptree_get_aligned_offset(const struct brw_mipmap_tree *mt,
1169 uint32_t x, uint32_t y)
1170 {
1171 int cpp = mt->cpp;
1172 uint32_t pitch = mt->surf.row_pitch_B;
1173
1174 switch (mt->surf.tiling) {
1175 default:
1176 unreachable("not reached");
1177 case ISL_TILING_LINEAR:
1178 return y * pitch + x * cpp;
1179 case ISL_TILING_X:
1180 assert((x % (512 / cpp)) == 0);
1181 assert((y % 8) == 0);
1182 return y * pitch + x / (512 / cpp) * 4096;
1183 case ISL_TILING_Y0:
1184 assert((x % (128 / cpp)) == 0);
1185 assert((y % 32) == 0);
1186 return y * pitch + x / (128 / cpp) * 4096;
1187 }
1188 }
1189
1190 /**
1191 * Rendering with tiled buffers requires that the base address of the buffer
1192 * be aligned to a page boundary. For renderbuffers, and sometimes with
1193 * textures, we may want the surface to point at a texture image level that
1194 * isn't at a page boundary.
1195 *
1196 * This function returns an appropriately-aligned base offset
1197 * according to the tiling restrictions, plus any required x/y offset
1198 * from there.
1199 */
1200 uint32_t
brw_miptree_get_tile_offsets(const struct brw_mipmap_tree * mt,GLuint level,GLuint slice,uint32_t * tile_x,uint32_t * tile_y)1201 brw_miptree_get_tile_offsets(const struct brw_mipmap_tree *mt,
1202 GLuint level, GLuint slice,
1203 uint32_t *tile_x,
1204 uint32_t *tile_y)
1205 {
1206 uint32_t x, y;
1207 uint32_t mask_x, mask_y;
1208
1209 isl_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1210 brw_miptree_get_image_offset(mt, level, slice, &x, &y);
1211
1212 *tile_x = x & mask_x;
1213 *tile_y = y & mask_y;
1214
1215 return brw_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1216 }
1217
1218 static void
brw_miptree_copy_slice_sw(struct brw_context * brw,struct brw_mipmap_tree * src_mt,unsigned src_level,unsigned src_layer,struct brw_mipmap_tree * dst_mt,unsigned dst_level,unsigned dst_layer,unsigned width,unsigned height)1219 brw_miptree_copy_slice_sw(struct brw_context *brw,
1220 struct brw_mipmap_tree *src_mt,
1221 unsigned src_level, unsigned src_layer,
1222 struct brw_mipmap_tree *dst_mt,
1223 unsigned dst_level, unsigned dst_layer,
1224 unsigned width, unsigned height)
1225 {
1226 void *src, *dst;
1227 ptrdiff_t src_stride, dst_stride;
1228 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1229
1230 brw_miptree_map(brw, src_mt,
1231 src_level, src_layer,
1232 0, 0,
1233 width, height,
1234 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1235 &src, &src_stride);
1236
1237 brw_miptree_map(brw, dst_mt,
1238 dst_level, dst_layer,
1239 0, 0,
1240 width, height,
1241 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1242 BRW_MAP_DIRECT_BIT,
1243 &dst, &dst_stride);
1244
1245 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1246 _mesa_get_format_name(src_mt->format),
1247 src_mt, src, src_stride,
1248 _mesa_get_format_name(dst_mt->format),
1249 dst_mt, dst, dst_stride,
1250 width, height);
1251
1252 int row_size = cpp * width;
1253 if (src_stride == row_size &&
1254 dst_stride == row_size) {
1255 memcpy(dst, src, row_size * height);
1256 } else {
1257 for (int i = 0; i < height; i++) {
1258 memcpy(dst, src, row_size);
1259 dst += dst_stride;
1260 src += src_stride;
1261 }
1262 }
1263
1264 brw_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1265 brw_miptree_unmap(brw, src_mt, src_level, src_layer);
1266
1267 /* Don't forget to copy the stencil data over, too. We could have skipped
1268 * passing BRW_MAP_DIRECT_BIT, but that would have meant brw_miptree_map
1269 * shuffling the two data sources in/out of temporary storage instead of
1270 * the direct mapping we get this way.
1271 */
1272 if (dst_mt->stencil_mt) {
1273 assert(src_mt->stencil_mt);
1274 brw_miptree_copy_slice_sw(brw,
1275 src_mt->stencil_mt, src_level, src_layer,
1276 dst_mt->stencil_mt, dst_level, dst_layer,
1277 width, height);
1278 }
1279 }
1280
1281 void
brw_miptree_copy_slice(struct brw_context * brw,struct brw_mipmap_tree * src_mt,unsigned src_level,unsigned src_layer,struct brw_mipmap_tree * dst_mt,unsigned dst_level,unsigned dst_layer)1282 brw_miptree_copy_slice(struct brw_context *brw,
1283 struct brw_mipmap_tree *src_mt,
1284 unsigned src_level, unsigned src_layer,
1285 struct brw_mipmap_tree *dst_mt,
1286 unsigned dst_level, unsigned dst_layer)
1287 {
1288 const struct intel_device_info *devinfo = &brw->screen->devinfo;
1289 mesa_format format = src_mt->format;
1290 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1291 src_level - src_mt->first_level);
1292 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1293 src_level - src_mt->first_level);
1294
1295 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1296 src_level - src_mt->first_level));
1297
1298 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1299 _mesa_get_srgb_format_linear(dst_mt->format));
1300
1301 DBG("validate blit mt %s %p %d,%d -> mt %s %p %d,%d (%dx%d)\n",
1302 _mesa_get_format_name(src_mt->format),
1303 src_mt, src_level, src_layer,
1304 _mesa_get_format_name(dst_mt->format),
1305 dst_mt, dst_level, dst_layer,
1306 width, height);
1307
1308 if (devinfo->ver >= 6) {
1309 /* On gfx6 and above, we just use blorp. It's faster than the blitter
1310 * and can handle everything without software fallbacks.
1311 */
1312 brw_blorp_copy_miptrees(brw,
1313 src_mt, src_level, src_layer,
1314 dst_mt, dst_level, dst_layer,
1315 0, 0, 0, 0, width, height);
1316
1317 if (src_mt->stencil_mt) {
1318 assert(dst_mt->stencil_mt);
1319 brw_blorp_copy_miptrees(brw,
1320 src_mt->stencil_mt, src_level, src_layer,
1321 dst_mt->stencil_mt, dst_level, dst_layer,
1322 0, 0, 0, 0, width, height);
1323 }
1324 return;
1325 }
1326
1327 if (dst_mt->compressed) {
1328 unsigned int i, j;
1329 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1330 height = ALIGN_NPOT(height, j) / j;
1331 width = ALIGN_NPOT(width, i) / i;
1332 }
1333
1334 /* Gfx4-5 doesn't support separate stencil */
1335 assert(!src_mt->stencil_mt);
1336
1337 uint32_t dst_x, dst_y, src_x, src_y;
1338 brw_miptree_get_image_offset(dst_mt, dst_level, dst_layer, &dst_x, &dst_y);
1339 brw_miptree_get_image_offset(src_mt, src_level, src_layer, &src_x, &src_y);
1340
1341 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1342 _mesa_get_format_name(src_mt->format),
1343 src_mt, src_x, src_y, src_mt->surf.row_pitch_B,
1344 _mesa_get_format_name(dst_mt->format),
1345 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch_B,
1346 width, height);
1347
1348 if (!brw_miptree_blit(brw,
1349 src_mt, src_level, src_layer, 0, 0, false,
1350 dst_mt, dst_level, dst_layer, 0, 0, false,
1351 width, height, COLOR_LOGICOP_COPY)) {
1352 perf_debug("miptree validate blit for %s failed\n",
1353 _mesa_get_format_name(format));
1354
1355 brw_miptree_copy_slice_sw(brw,
1356 src_mt, src_level, src_layer,
1357 dst_mt, dst_level, dst_layer,
1358 width, height);
1359 }
1360 }
1361
1362 /**
1363 * Copies the image's current data to the given miptree, and associates that
1364 * miptree with the image.
1365 */
1366 void
brw_miptree_copy_teximage(struct brw_context * brw,struct brw_texture_image * brw_image,struct brw_mipmap_tree * dst_mt)1367 brw_miptree_copy_teximage(struct brw_context *brw,
1368 struct brw_texture_image *brw_image,
1369 struct brw_mipmap_tree *dst_mt)
1370 {
1371 struct brw_mipmap_tree *src_mt = brw_image->mt;
1372 struct brw_texture_object *intel_obj =
1373 brw_texture_object(brw_image->base.Base.TexObject);
1374 int level = brw_image->base.Base.Level;
1375 const unsigned face = brw_image->base.Base.Face;
1376 unsigned start_layer, end_layer;
1377
1378 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1379 assert(face == 0);
1380 assert(brw_image->base.Base.Height);
1381 start_layer = 0;
1382 end_layer = brw_image->base.Base.Height - 1;
1383 } else if (face > 0) {
1384 start_layer = face;
1385 end_layer = face;
1386 } else {
1387 assert(brw_image->base.Base.Depth);
1388 start_layer = 0;
1389 end_layer = brw_image->base.Base.Depth - 1;
1390 }
1391
1392 for (unsigned i = start_layer; i <= end_layer; i++) {
1393 brw_miptree_copy_slice(brw, src_mt, level, i, dst_mt, level, i);
1394 }
1395
1396 brw_miptree_reference(&brw_image->mt, dst_mt);
1397 intel_obj->needs_validate = true;
1398 }
1399
1400 static struct brw_miptree_aux_buffer *
brw_alloc_aux_buffer(struct brw_context * brw,const struct isl_surf * aux_surf,bool wants_memset,uint8_t memset_value)1401 brw_alloc_aux_buffer(struct brw_context *brw,
1402 const struct isl_surf *aux_surf,
1403 bool wants_memset,
1404 uint8_t memset_value)
1405 {
1406 struct brw_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1407 if (!buf)
1408 return false;
1409
1410 uint64_t size = aux_surf->size_B;
1411
1412 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1413 if (has_indirect_clear) {
1414 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1415 * will set a pointer to a dword somewhere that contains the color. So,
1416 * allocate the space for the clear color value here on the aux buffer.
1417 */
1418 buf->clear_color_offset = size;
1419 size += brw->isl_dev.ss.clear_color_state_size;
1420 }
1421
1422 /* If the buffer needs to be initialised (requiring the buffer to be
1423 * immediately mapped to cpu space for writing), do not use the gpu access
1424 * flag which can cause an unnecessary delay if the backing pages happened
1425 * to be just used by the GPU.
1426 */
1427 const bool alloc_zeroed = wants_memset && memset_value == 0;
1428 const bool needs_memset =
1429 !alloc_zeroed && (wants_memset || has_indirect_clear);
1430 const uint32_t alloc_flags =
1431 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1432
1433 /* ISL has stricter set of alignment rules then the drm allocator.
1434 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1435 * trying to recalculate based on different format block sizes.
1436 */
1437 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1438 BRW_MEMZONE_OTHER, I915_TILING_Y,
1439 aux_surf->row_pitch_B, alloc_flags);
1440 if (!buf->bo) {
1441 free(buf);
1442 return NULL;
1443 }
1444
1445 /* Initialize the bo to the desired value */
1446 if (needs_memset) {
1447 assert(!(alloc_flags & BO_ALLOC_BUSY));
1448
1449 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1450 if (map == NULL) {
1451 brw_miptree_aux_buffer_free(buf);
1452 return NULL;
1453 }
1454
1455 /* Memset the aux_surf portion of the BO. */
1456 if (wants_memset)
1457 memset(map, memset_value, aux_surf->size_B);
1458
1459 /* Zero the indirect clear color to match ::fast_clear_color. */
1460 if (has_indirect_clear) {
1461 memset((char *)map + buf->clear_color_offset, 0,
1462 brw->isl_dev.ss.clear_color_state_size);
1463 }
1464
1465 brw_bo_unmap(buf->bo);
1466 }
1467
1468 if (has_indirect_clear) {
1469 buf->clear_color_bo = buf->bo;
1470 brw_bo_reference(buf->clear_color_bo);
1471 }
1472
1473 buf->surf = *aux_surf;
1474
1475 return buf;
1476 }
1477
1478
1479 /**
1480 * Helper for brw_miptree_alloc_aux() that sets
1481 * \c mt->level[level].has_hiz. Return true if and only if
1482 * \c has_hiz was set.
1483 */
1484 static bool
brw_miptree_level_enable_hiz(struct brw_context * brw,struct brw_mipmap_tree * mt,uint32_t level)1485 brw_miptree_level_enable_hiz(struct brw_context *brw,
1486 struct brw_mipmap_tree *mt,
1487 uint32_t level)
1488 {
1489 const struct intel_device_info *devinfo = &brw->screen->devinfo;
1490
1491 assert(mt->aux_buf);
1492 assert(mt->surf.size_B > 0);
1493
1494 if (devinfo->verx10 >= 75) {
1495 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1496 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1497
1498 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1499 * and the height is 4 aligned. This allows our HiZ support
1500 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1501 * we can grow the width & height to allow the HiZ op to
1502 * force the proper size alignments.
1503 */
1504 if (level > 0 && ((width & 7) || (height & 3))) {
1505 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1506 return false;
1507 }
1508 }
1509
1510 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1511 mt->level[level].has_hiz = true;
1512 return true;
1513 }
1514
1515
1516 /**
1517 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1518 *
1519 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1520 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1521 * compress clear color so we wait until an actual fast-clear to allocate it.
1522 */
1523 bool
brw_miptree_alloc_aux(struct brw_context * brw,struct brw_mipmap_tree * mt)1524 brw_miptree_alloc_aux(struct brw_context *brw, struct brw_mipmap_tree *mt)
1525 {
1526 assert(mt->aux_buf == NULL);
1527
1528 /* Get the aux buf allocation parameters for this miptree. */
1529 enum isl_aux_state initial_state;
1530 uint8_t memset_value;
1531 struct isl_surf aux_surf = {0,};
1532 bool aux_surf_ok = false;
1533
1534 switch (mt->aux_usage) {
1535 case ISL_AUX_USAGE_NONE:
1536 aux_surf.size_B = 0;
1537 aux_surf_ok = true;
1538 break;
1539 case ISL_AUX_USAGE_HIZ:
1540 initial_state = ISL_AUX_STATE_AUX_INVALID;
1541 memset_value = 0;
1542 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1543 break;
1544 case ISL_AUX_USAGE_MCS:
1545 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1546 *
1547 * When MCS buffer is enabled and bound to MSRT, it is required that
1548 * it is cleared prior to any rendering.
1549 *
1550 * Since we don't use the MCS buffer for any purpose other than
1551 * rendering, it makes sense to just clear it immediately upon
1552 * allocation.
1553 *
1554 * Note: the clear value for MCS buffers is all 1's, so we memset to
1555 * 0xff.
1556 */
1557 initial_state = ISL_AUX_STATE_CLEAR;
1558 memset_value = 0xFF;
1559 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1560 break;
1561 case ISL_AUX_USAGE_CCS_D:
1562 case ISL_AUX_USAGE_CCS_E:
1563 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1564 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1565 * Target(s)":
1566 *
1567 * "If Software wants to enable Color Compression without Fast
1568 * clear, Software needs to initialize MCS with zeros."
1569 *
1570 * A CCS value of 0 indicates that the corresponding block is in the
1571 * pass-through state which is what we want.
1572 *
1573 * For CCS_D, do the same thing. On gfx9+, this avoids having any
1574 * undefined bits in the aux buffer.
1575 */
1576 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1577 memset_value = 0;
1578 aux_surf_ok =
1579 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, NULL, &aux_surf, 0);
1580 break;
1581
1582 default:
1583 unreachable("Invalid aux usage");
1584 }
1585
1586 /* We should have a valid aux_surf. */
1587 if (!aux_surf_ok)
1588 return false;
1589
1590 /* No work is needed for a zero-sized auxiliary buffer. */
1591 if (aux_surf.size_B == 0)
1592 return true;
1593
1594 /* Create the aux_state for the auxiliary buffer. */
1595 mt->aux_state = create_aux_state_map(mt, initial_state);
1596 if (mt->aux_state == NULL)
1597 return false;
1598
1599 /* Allocate the auxiliary buffer. */
1600 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1601 mt->aux_buf = brw_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1602 memset_value);
1603 if (mt->aux_buf == NULL) {
1604 free_aux_state_map(mt->aux_state);
1605 mt->aux_state = NULL;
1606 return false;
1607 }
1608
1609 /* Perform aux_usage-specific initialization. */
1610 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1611 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1612 brw_miptree_level_enable_hiz(brw, mt, level);
1613 }
1614
1615 return true;
1616 }
1617
1618
1619 /**
1620 * Can the miptree sample using the hiz buffer?
1621 */
1622 bool
brw_miptree_sample_with_hiz(struct brw_context * brw,struct brw_mipmap_tree * mt)1623 brw_miptree_sample_with_hiz(struct brw_context *brw,
1624 struct brw_mipmap_tree *mt)
1625 {
1626 const struct intel_device_info *devinfo = &brw->screen->devinfo;
1627
1628 if (!devinfo->has_sample_with_hiz) {
1629 return false;
1630 }
1631
1632 if (!mt->aux_buf) {
1633 return false;
1634 }
1635
1636 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1637 if (!brw_miptree_level_has_hiz(mt, level))
1638 return false;
1639 }
1640
1641 /* From the BDW PRM (Volume 2d: Command Reference: Structures
1642 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1643 *
1644 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1645 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1646 *
1647 * There is no such blurb for 1D textures, but there is sufficient evidence
1648 * that this is broken on SKL+.
1649 */
1650 return (mt->surf.samples == 1 &&
1651 mt->target != GL_TEXTURE_3D &&
1652 mt->target != GL_TEXTURE_1D /* gfx9+ restriction */);
1653 }
1654
1655 static bool
level_has_aux(const struct brw_mipmap_tree * mt,uint32_t level)1656 level_has_aux(const struct brw_mipmap_tree *mt, uint32_t level)
1657 {
1658 return isl_aux_usage_has_hiz(mt->aux_usage) ?
1659 brw_miptree_level_has_hiz(mt, level) :
1660 mt->aux_usage != ISL_AUX_USAGE_NONE && mt->aux_buf;
1661 }
1662
1663 /**
1664 * Does the miptree slice have hiz enabled?
1665 */
1666 bool
brw_miptree_level_has_hiz(const struct brw_mipmap_tree * mt,uint32_t level)1667 brw_miptree_level_has_hiz(const struct brw_mipmap_tree *mt, uint32_t level)
1668 {
1669 brw_miptree_check_level_layer(mt, level, 0);
1670 return mt->level[level].has_hiz;
1671 }
1672
1673 static inline uint32_t
miptree_level_range_length(const struct brw_mipmap_tree * mt,uint32_t start_level,uint32_t num_levels)1674 miptree_level_range_length(const struct brw_mipmap_tree *mt,
1675 uint32_t start_level, uint32_t num_levels)
1676 {
1677 assert(start_level >= mt->first_level);
1678 assert(start_level <= mt->last_level);
1679
1680 if (num_levels == INTEL_REMAINING_LAYERS)
1681 num_levels = mt->last_level - start_level + 1;
1682 /* Check for overflow */
1683 assert(start_level + num_levels >= start_level);
1684 assert(start_level + num_levels <= mt->last_level + 1);
1685
1686 return num_levels;
1687 }
1688
1689 static inline uint32_t
miptree_layer_range_length(const struct brw_mipmap_tree * mt,uint32_t level,uint32_t start_layer,uint32_t num_layers)1690 miptree_layer_range_length(const struct brw_mipmap_tree *mt, uint32_t level,
1691 uint32_t start_layer, uint32_t num_layers)
1692 {
1693 assert(level <= mt->last_level);
1694
1695 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1696 assert(start_layer < total_num_layers);
1697 if (num_layers == INTEL_REMAINING_LAYERS)
1698 num_layers = total_num_layers - start_layer;
1699 /* Check for overflow */
1700 assert(start_layer + num_layers >= start_layer);
1701 assert(start_layer + num_layers <= total_num_layers);
1702
1703 return num_layers;
1704 }
1705
1706 bool
brw_miptree_has_color_unresolved(const struct brw_mipmap_tree * mt,unsigned start_level,unsigned num_levels,unsigned start_layer,unsigned num_layers)1707 brw_miptree_has_color_unresolved(const struct brw_mipmap_tree *mt,
1708 unsigned start_level, unsigned num_levels,
1709 unsigned start_layer, unsigned num_layers)
1710 {
1711 assert(_mesa_is_format_color_format(mt->format));
1712
1713 if (!mt->aux_buf)
1714 return false;
1715
1716 /* Clamp the level range to fit the miptree */
1717 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1718
1719 for (uint32_t l = 0; l < num_levels; l++) {
1720 const uint32_t level = start_level + l;
1721 const uint32_t level_layers =
1722 miptree_layer_range_length(mt, level, start_layer, num_layers);
1723 for (unsigned a = 0; a < level_layers; a++) {
1724 enum isl_aux_state aux_state =
1725 brw_miptree_get_aux_state(mt, level, start_layer + a);
1726 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1727 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1728 return true;
1729 }
1730 }
1731
1732 return false;
1733 }
1734
1735 static void
brw_miptree_check_color_resolve(const struct brw_context * brw,const struct brw_mipmap_tree * mt,unsigned level,unsigned layer)1736 brw_miptree_check_color_resolve(const struct brw_context *brw,
1737 const struct brw_mipmap_tree *mt,
1738 unsigned level, unsigned layer)
1739 {
1740 if (!mt->aux_buf)
1741 return;
1742
1743 /* Fast color clear is supported for mipmapped surfaces only on Gfx8+. */
1744 assert(brw->screen->devinfo.ver >= 8 ||
1745 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
1746
1747 /* Compression of arrayed msaa surfaces is supported. */
1748 if (mt->surf.samples > 1)
1749 return;
1750
1751 /* Fast color clear is supported for non-msaa arrays only on Gfx8+. */
1752 assert(brw->screen->devinfo.ver >= 8 ||
1753 (layer == 0 &&
1754 mt->surf.logical_level0_px.depth == 1 &&
1755 mt->surf.logical_level0_px.array_len == 1));
1756
1757 (void)level;
1758 (void)layer;
1759 }
1760
1761 void
brw_miptree_prepare_access(struct brw_context * brw,struct brw_mipmap_tree * mt,uint32_t start_level,uint32_t num_levels,uint32_t start_layer,uint32_t num_layers,enum isl_aux_usage aux_usage,bool fast_clear_supported)1762 brw_miptree_prepare_access(struct brw_context *brw,
1763 struct brw_mipmap_tree *mt,
1764 uint32_t start_level, uint32_t num_levels,
1765 uint32_t start_layer, uint32_t num_layers,
1766 enum isl_aux_usage aux_usage,
1767 bool fast_clear_supported)
1768 {
1769 const uint32_t clamped_levels =
1770 miptree_level_range_length(mt, start_level, num_levels);
1771 for (uint32_t l = 0; l < clamped_levels; l++) {
1772 const uint32_t level = start_level + l;
1773 if (!level_has_aux(mt, level))
1774 continue;
1775
1776 const uint32_t level_layers =
1777 miptree_layer_range_length(mt, level, start_layer, num_layers);
1778 for (uint32_t a = 0; a < level_layers; a++) {
1779 const uint32_t layer = start_layer + a;
1780 const enum isl_aux_state aux_state =
1781 brw_miptree_get_aux_state(mt, level, layer);
1782 const enum isl_aux_op aux_op =
1783 isl_aux_prepare_access(aux_state, aux_usage, fast_clear_supported);
1784
1785 if (aux_op == ISL_AUX_OP_NONE) {
1786 /* Nothing to do here. */
1787 } else if (isl_aux_usage_has_mcs(mt->aux_usage)) {
1788 assert(aux_op == ISL_AUX_OP_PARTIAL_RESOLVE);
1789 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
1790 } else if (isl_aux_usage_has_hiz(mt->aux_usage)) {
1791 brw_hiz_exec(brw, mt, level, layer, 1, aux_op);
1792 } else {
1793 assert(isl_aux_usage_has_ccs(mt->aux_usage));
1794 brw_miptree_check_color_resolve(brw, mt, level, layer);
1795 brw_blorp_resolve_color(brw, mt, level, layer, aux_op);
1796 }
1797
1798 const enum isl_aux_state new_state =
1799 isl_aux_state_transition_aux_op(aux_state, mt->aux_usage, aux_op);
1800 brw_miptree_set_aux_state(brw, mt, level, layer, 1, new_state);
1801 }
1802 }
1803 }
1804
1805 void
brw_miptree_finish_write(struct brw_context * brw,struct brw_mipmap_tree * mt,uint32_t level,uint32_t start_layer,uint32_t num_layers,enum isl_aux_usage aux_usage)1806 brw_miptree_finish_write(struct brw_context *brw,
1807 struct brw_mipmap_tree *mt, uint32_t level,
1808 uint32_t start_layer, uint32_t num_layers,
1809 enum isl_aux_usage aux_usage)
1810 {
1811 const struct intel_device_info *devinfo = &brw->screen->devinfo;
1812
1813 if (mt->format == MESA_FORMAT_S_UINT8 && devinfo->ver <= 7) {
1814 mt->shadow_needs_update = true;
1815 } else if (brw_miptree_has_etc_shadow(brw, mt)) {
1816 mt->shadow_needs_update = true;
1817 }
1818
1819 if (!level_has_aux(mt, level))
1820 return;
1821
1822 const uint32_t level_layers =
1823 miptree_layer_range_length(mt, level, start_layer, num_layers);
1824
1825 for (uint32_t a = 0; a < level_layers; a++) {
1826 const uint32_t layer = start_layer + a;
1827 const enum isl_aux_state aux_state =
1828 brw_miptree_get_aux_state(mt, level, layer);
1829 const enum isl_aux_state new_aux_state =
1830 isl_aux_state_transition_write(aux_state, aux_usage, false);
1831 brw_miptree_set_aux_state(brw, mt, level, layer, 1, new_aux_state);
1832 }
1833 }
1834
1835 enum isl_aux_state
brw_miptree_get_aux_state(const struct brw_mipmap_tree * mt,uint32_t level,uint32_t layer)1836 brw_miptree_get_aux_state(const struct brw_mipmap_tree *mt,
1837 uint32_t level, uint32_t layer)
1838 {
1839 brw_miptree_check_level_layer(mt, level, layer);
1840
1841 if (_mesa_is_format_color_format(mt->format)) {
1842 assert(mt->aux_buf != NULL);
1843 assert(mt->surf.samples == 1 ||
1844 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
1845 } else if (mt->format == MESA_FORMAT_S_UINT8) {
1846 unreachable("Cannot get aux state for stencil");
1847 } else {
1848 assert(brw_miptree_level_has_hiz(mt, level));
1849 }
1850
1851 return mt->aux_state[level][layer];
1852 }
1853
1854 void
brw_miptree_set_aux_state(struct brw_context * brw,struct brw_mipmap_tree * mt,uint32_t level,uint32_t start_layer,uint32_t num_layers,enum isl_aux_state aux_state)1855 brw_miptree_set_aux_state(struct brw_context *brw,
1856 struct brw_mipmap_tree *mt, uint32_t level,
1857 uint32_t start_layer, uint32_t num_layers,
1858 enum isl_aux_state aux_state)
1859 {
1860 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
1861
1862 if (_mesa_is_format_color_format(mt->format)) {
1863 assert(mt->aux_buf != NULL);
1864 assert(mt->surf.samples == 1 ||
1865 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
1866 } else if (mt->format == MESA_FORMAT_S_UINT8) {
1867 unreachable("Cannot get aux state for stencil");
1868 } else {
1869 assert(brw_miptree_level_has_hiz(mt, level));
1870 }
1871
1872 for (unsigned a = 0; a < num_layers; a++) {
1873 if (mt->aux_state[level][start_layer + a] != aux_state) {
1874 mt->aux_state[level][start_layer + a] = aux_state;
1875 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
1876 }
1877 }
1878 }
1879
1880 /* On Gfx9 color buffers may be compressed by the hardware (lossless
1881 * compression). There are, however, format restrictions and care needs to be
1882 * taken that the sampler engine is capable for re-interpreting a buffer with
1883 * format different the buffer was originally written with.
1884 *
1885 * For example, SRGB formats are not compressible and the sampler engine isn't
1886 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
1887 * color buffer needs to be resolved so that the sampling surface can be
1888 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
1889 * set).
1890 */
1891 static bool
can_texture_with_ccs(struct brw_context * brw,struct brw_mipmap_tree * mt,enum isl_format view_format)1892 can_texture_with_ccs(struct brw_context *brw,
1893 struct brw_mipmap_tree *mt,
1894 enum isl_format view_format)
1895 {
1896 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
1897 return false;
1898
1899 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
1900 mt, view_format)) {
1901 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
1902 isl_format_get_name(view_format),
1903 _mesa_get_format_name(mt->format));
1904 return false;
1905 }
1906
1907 return true;
1908 }
1909
1910 enum isl_aux_usage
brw_miptree_texture_aux_usage(struct brw_context * brw,struct brw_mipmap_tree * mt,enum isl_format view_format,enum gfx9_astc5x5_wa_tex_type astc5x5_wa_bits)1911 brw_miptree_texture_aux_usage(struct brw_context *brw,
1912 struct brw_mipmap_tree *mt,
1913 enum isl_format view_format,
1914 enum gfx9_astc5x5_wa_tex_type astc5x5_wa_bits)
1915 {
1916 assert(brw->screen->devinfo.ver == 9 || astc5x5_wa_bits == 0);
1917
1918 /* On gfx9, ASTC 5x5 textures cannot live in the sampler cache along side
1919 * CCS or HiZ compressed textures. See gfx9_apply_astc5x5_wa_flush() for
1920 * details.
1921 */
1922 if ((astc5x5_wa_bits & GFX9_ASTC5X5_WA_TEX_TYPE_ASTC5x5) &&
1923 mt->aux_usage != ISL_AUX_USAGE_MCS)
1924 return ISL_AUX_USAGE_NONE;
1925
1926 switch (mt->aux_usage) {
1927 case ISL_AUX_USAGE_HIZ:
1928 if (brw_miptree_sample_with_hiz(brw, mt))
1929 return ISL_AUX_USAGE_HIZ;
1930 break;
1931
1932 case ISL_AUX_USAGE_MCS:
1933 return ISL_AUX_USAGE_MCS;
1934
1935 case ISL_AUX_USAGE_CCS_D:
1936 case ISL_AUX_USAGE_CCS_E:
1937 if (!mt->aux_buf) {
1938 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1939 return ISL_AUX_USAGE_NONE;
1940 }
1941
1942 /* If we don't have any unresolved color, report an aux usage of
1943 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
1944 * aux surface and we can save some bandwidth.
1945 */
1946 if (!brw_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
1947 0, INTEL_REMAINING_LAYERS))
1948 return ISL_AUX_USAGE_NONE;
1949
1950 if (can_texture_with_ccs(brw, mt, view_format))
1951 return ISL_AUX_USAGE_CCS_E;
1952 break;
1953
1954 default:
1955 break;
1956 }
1957
1958 return ISL_AUX_USAGE_NONE;
1959 }
1960
1961 static bool
isl_formats_are_fast_clear_compatible(enum isl_format a,enum isl_format b)1962 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
1963 {
1964 /* On gfx8 and earlier, the hardware was only capable of handling 0/1 clear
1965 * values so sRGB curve application was a no-op for all fast-clearable
1966 * formats.
1967 *
1968 * On gfx9+, the hardware supports arbitrary clear values. For sRGB clear
1969 * values, the hardware interprets the floats, not as what would be
1970 * returned from the sampler (or written by the shader), but as being
1971 * between format conversion and sRGB curve application. This means that
1972 * we can switch between sRGB and UNORM without having to whack the clear
1973 * color.
1974 */
1975 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
1976 }
1977
1978 void
brw_miptree_prepare_texture(struct brw_context * brw,struct brw_mipmap_tree * mt,enum isl_format view_format,uint32_t start_level,uint32_t num_levels,uint32_t start_layer,uint32_t num_layers,enum gfx9_astc5x5_wa_tex_type astc5x5_wa_bits)1979 brw_miptree_prepare_texture(struct brw_context *brw,
1980 struct brw_mipmap_tree *mt,
1981 enum isl_format view_format,
1982 uint32_t start_level, uint32_t num_levels,
1983 uint32_t start_layer, uint32_t num_layers,
1984 enum gfx9_astc5x5_wa_tex_type astc5x5_wa_bits)
1985 {
1986 enum isl_aux_usage aux_usage =
1987 brw_miptree_texture_aux_usage(brw, mt, view_format, astc5x5_wa_bits);
1988
1989 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
1990
1991 /* Clear color is specified as ints or floats and the conversion is done by
1992 * the sampler. If we have a texture view, we would have to perform the
1993 * clear color conversion manually. Just disable clear color.
1994 */
1995 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
1996 clear_supported = false;
1997
1998 brw_miptree_prepare_access(brw, mt, start_level, num_levels,
1999 start_layer, num_layers,
2000 aux_usage, clear_supported);
2001 }
2002
2003 void
brw_miptree_prepare_image(struct brw_context * brw,struct brw_mipmap_tree * mt)2004 brw_miptree_prepare_image(struct brw_context *brw, struct brw_mipmap_tree *mt)
2005 {
2006 /* The data port doesn't understand any compression */
2007 brw_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2008 0, INTEL_REMAINING_LAYERS,
2009 ISL_AUX_USAGE_NONE, false);
2010 }
2011
2012 enum isl_aux_usage
brw_miptree_render_aux_usage(struct brw_context * brw,struct brw_mipmap_tree * mt,enum isl_format render_format,bool blend_enabled,bool draw_aux_disabled)2013 brw_miptree_render_aux_usage(struct brw_context *brw,
2014 struct brw_mipmap_tree *mt,
2015 enum isl_format render_format,
2016 bool blend_enabled,
2017 bool draw_aux_disabled)
2018 {
2019 struct intel_device_info *devinfo = &brw->screen->devinfo;
2020
2021 if (draw_aux_disabled)
2022 return ISL_AUX_USAGE_NONE;
2023
2024 switch (mt->aux_usage) {
2025 case ISL_AUX_USAGE_MCS:
2026 assert(mt->aux_buf);
2027 return ISL_AUX_USAGE_MCS;
2028
2029 case ISL_AUX_USAGE_CCS_D:
2030 case ISL_AUX_USAGE_CCS_E:
2031 if (!mt->aux_buf) {
2032 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2033 return ISL_AUX_USAGE_NONE;
2034 }
2035
2036 /* gfx9+ hardware technically supports non-0/1 clear colors with sRGB
2037 * formats. However, there are issues with blending where it doesn't
2038 * properly apply the sRGB curve to the clear color when blending.
2039 */
2040 if (devinfo->ver >= 9 && blend_enabled &&
2041 isl_format_is_srgb(render_format) &&
2042 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2043 return ISL_AUX_USAGE_NONE;
2044
2045 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2046 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2047 mt, render_format))
2048 return ISL_AUX_USAGE_CCS_E;
2049
2050 /* Otherwise, we have to fall back to CCS_D */
2051 return ISL_AUX_USAGE_CCS_D;
2052
2053 default:
2054 return ISL_AUX_USAGE_NONE;
2055 }
2056 }
2057
2058 void
brw_miptree_prepare_render(struct brw_context * brw,struct brw_mipmap_tree * mt,uint32_t level,uint32_t start_layer,uint32_t layer_count,enum isl_aux_usage aux_usage)2059 brw_miptree_prepare_render(struct brw_context *brw,
2060 struct brw_mipmap_tree *mt, uint32_t level,
2061 uint32_t start_layer, uint32_t layer_count,
2062 enum isl_aux_usage aux_usage)
2063 {
2064 brw_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2065 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2066 }
2067
2068 void
brw_miptree_finish_render(struct brw_context * brw,struct brw_mipmap_tree * mt,uint32_t level,uint32_t start_layer,uint32_t layer_count,enum isl_aux_usage aux_usage)2069 brw_miptree_finish_render(struct brw_context *brw,
2070 struct brw_mipmap_tree *mt, uint32_t level,
2071 uint32_t start_layer, uint32_t layer_count,
2072 enum isl_aux_usage aux_usage)
2073 {
2074 assert(_mesa_is_format_color_format(mt->format));
2075
2076 brw_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2077 aux_usage);
2078 }
2079
2080 void
brw_miptree_prepare_depth(struct brw_context * brw,struct brw_mipmap_tree * mt,uint32_t level,uint32_t start_layer,uint32_t layer_count)2081 brw_miptree_prepare_depth(struct brw_context *brw,
2082 struct brw_mipmap_tree *mt, uint32_t level,
2083 uint32_t start_layer, uint32_t layer_count)
2084 {
2085 brw_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2086 mt->aux_usage, mt->aux_buf != NULL);
2087 }
2088
2089 void
brw_miptree_finish_depth(struct brw_context * brw,struct brw_mipmap_tree * mt,uint32_t level,uint32_t start_layer,uint32_t layer_count,bool depth_written)2090 brw_miptree_finish_depth(struct brw_context *brw,
2091 struct brw_mipmap_tree *mt, uint32_t level,
2092 uint32_t start_layer, uint32_t layer_count,
2093 bool depth_written)
2094 {
2095 if (depth_written) {
2096 brw_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2097 mt->aux_usage);
2098 }
2099 }
2100
2101 void
brw_miptree_prepare_external(struct brw_context * brw,struct brw_mipmap_tree * mt)2102 brw_miptree_prepare_external(struct brw_context *brw,
2103 struct brw_mipmap_tree *mt)
2104 {
2105 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2106 bool supports_fast_clear = false;
2107
2108 const struct isl_drm_modifier_info *mod_info =
2109 isl_drm_modifier_get_info(mt->drm_modifier);
2110
2111 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2112 /* CCS_E is the only supported aux for external images and it's only
2113 * supported on very simple images.
2114 */
2115 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2116 assert(_mesa_is_format_color_format(mt->format));
2117 assert(mt->first_level == 0 && mt->last_level == 0);
2118 assert(mt->surf.logical_level0_px.depth == 1);
2119 assert(mt->surf.logical_level0_px.array_len == 1);
2120 assert(mt->surf.samples == 1);
2121 assert(mt->aux_buf != NULL);
2122
2123 aux_usage = mod_info->aux_usage;
2124 supports_fast_clear = mod_info->supports_clear_color;
2125 }
2126
2127 brw_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2128 0, INTEL_REMAINING_LAYERS,
2129 aux_usage, supports_fast_clear);
2130 }
2131
2132 void
brw_miptree_finish_external(struct brw_context * brw,struct brw_mipmap_tree * mt)2133 brw_miptree_finish_external(struct brw_context *brw,
2134 struct brw_mipmap_tree *mt)
2135 {
2136 if (!mt->aux_buf)
2137 return;
2138
2139 /* We don't know the actual aux state of the aux surface. The previous
2140 * owner could have given it to us in a number of different states.
2141 * Because we don't know the aux state, we reset the aux state to the
2142 * least common denominator of possible valid states.
2143 */
2144 enum isl_aux_state default_aux_state =
2145 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2146 assert(mt->last_level == mt->first_level);
2147 brw_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2148 default_aux_state);
2149 }
2150
2151 /**
2152 * Make it possible to share the BO backing the given miptree with another
2153 * process or another miptree.
2154 *
2155 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2156 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2157 * ensure that no MCS buffer gets allocated in the future.
2158 *
2159 * HiZ is similarly unsafe with shared buffers.
2160 */
2161 void
brw_miptree_make_shareable(struct brw_context * brw,struct brw_mipmap_tree * mt)2162 brw_miptree_make_shareable(struct brw_context *brw,
2163 struct brw_mipmap_tree *mt)
2164 {
2165 /* MCS buffers are also used for multisample buffers, but we can't resolve
2166 * away a multisample MCS buffer because it's an integral part of how the
2167 * pixel data is stored. Fortunately this code path should never be
2168 * reached for multisample buffers.
2169 */
2170 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2171 mt->surf.samples == 1);
2172
2173 brw_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2174 0, INTEL_REMAINING_LAYERS,
2175 ISL_AUX_USAGE_NONE, false);
2176
2177 if (mt->aux_buf) {
2178 brw_miptree_aux_buffer_free(mt->aux_buf);
2179 mt->aux_buf = NULL;
2180
2181 /* Make future calls of brw_miptree_level_has_hiz() return false. */
2182 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2183 mt->level[l].has_hiz = false;
2184 }
2185
2186 free(mt->aux_state);
2187 mt->aux_state = NULL;
2188 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2189 }
2190
2191 mt->aux_usage = ISL_AUX_USAGE_NONE;
2192 mt->supports_fast_clear = false;
2193 }
2194
2195
2196 /**
2197 * \brief Get pointer offset into stencil buffer.
2198 *
2199 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2200 * must decode the tile's layout in software.
2201 *
2202 * See
2203 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2204 * Format.
2205 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2206 *
2207 * Even though the returned offset is always positive, the return type is
2208 * signed due to
2209 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2210 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2211 */
2212 static intptr_t
brw_offset_S8(uint32_t stride,uint32_t x,uint32_t y,bool swizzled)2213 brw_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2214 {
2215 uint32_t tile_size = 4096;
2216 uint32_t tile_width = 64;
2217 uint32_t tile_height = 64;
2218 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2219
2220 uint32_t tile_x = x / tile_width;
2221 uint32_t tile_y = y / tile_height;
2222
2223 /* The byte's address relative to the tile's base addres. */
2224 uint32_t byte_x = x % tile_width;
2225 uint32_t byte_y = y % tile_height;
2226
2227 uintptr_t u = tile_y * row_size
2228 + tile_x * tile_size
2229 + 512 * (byte_x / 8)
2230 + 64 * (byte_y / 8)
2231 + 32 * ((byte_y / 4) % 2)
2232 + 16 * ((byte_x / 4) % 2)
2233 + 8 * ((byte_y / 2) % 2)
2234 + 4 * ((byte_x / 2) % 2)
2235 + 2 * (byte_y % 2)
2236 + 1 * (byte_x % 2);
2237
2238 if (swizzled) {
2239 /* adjust for bit6 swizzling */
2240 if (((byte_x / 8) % 2) == 1) {
2241 if (((byte_y / 8) % 2) == 0) {
2242 u += 64;
2243 } else {
2244 u -= 64;
2245 }
2246 }
2247 }
2248
2249 return u;
2250 }
2251
2252 void
brw_miptree_updownsample(struct brw_context * brw,struct brw_mipmap_tree * src,struct brw_mipmap_tree * dst)2253 brw_miptree_updownsample(struct brw_context *brw,
2254 struct brw_mipmap_tree *src,
2255 struct brw_mipmap_tree *dst)
2256 {
2257 unsigned src_w = src->surf.logical_level0_px.width;
2258 unsigned src_h = src->surf.logical_level0_px.height;
2259 unsigned dst_w = dst->surf.logical_level0_px.width;
2260 unsigned dst_h = dst->surf.logical_level0_px.height;
2261
2262 brw_blorp_blit_miptrees(brw,
2263 src, 0 /* level */, 0 /* layer */,
2264 src->format, SWIZZLE_XYZW,
2265 dst, 0 /* level */, 0 /* layer */, dst->format,
2266 0, 0, src_w, src_h,
2267 0, 0, dst_w, dst_h,
2268 GL_NEAREST, false, false /*mirror x, y*/,
2269 false, false);
2270
2271 if (src->stencil_mt) {
2272 src_w = src->stencil_mt->surf.logical_level0_px.width;
2273 src_h = src->stencil_mt->surf.logical_level0_px.height;
2274 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2275 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2276
2277 brw_blorp_blit_miptrees(brw,
2278 src->stencil_mt, 0 /* level */, 0 /* layer */,
2279 src->stencil_mt->format, SWIZZLE_XYZW,
2280 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2281 dst->stencil_mt->format,
2282 0, 0, src_w, src_h,
2283 0, 0, dst_w, dst_h,
2284 GL_NEAREST, false, false /*mirror x, y*/,
2285 false, false /* decode/encode srgb */);
2286 }
2287 }
2288
2289 void
brw_update_r8stencil(struct brw_context * brw,struct brw_mipmap_tree * mt)2290 brw_update_r8stencil(struct brw_context *brw,
2291 struct brw_mipmap_tree *mt)
2292 {
2293 const struct intel_device_info *devinfo = &brw->screen->devinfo;
2294
2295 assert(devinfo->ver >= 7);
2296 struct brw_mipmap_tree *src =
2297 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2298 if (!src || devinfo->ver >= 8)
2299 return;
2300
2301 assert(src->surf.size_B > 0);
2302
2303 if (!mt->shadow_mt) {
2304 assert(devinfo->ver > 6); /* Handle MIPTREE_LAYOUT_GFX6_HIZ_STENCIL */
2305 mt->shadow_mt = make_surface(
2306 brw,
2307 src->target,
2308 MESA_FORMAT_R_UINT8,
2309 src->first_level, src->last_level,
2310 src->surf.logical_level0_px.width,
2311 src->surf.logical_level0_px.height,
2312 src->surf.dim == ISL_SURF_DIM_3D ?
2313 src->surf.logical_level0_px.depth :
2314 src->surf.logical_level0_px.array_len,
2315 src->surf.samples,
2316 ISL_TILING_Y0_BIT,
2317 ISL_SURF_USAGE_TEXTURE_BIT,
2318 BO_ALLOC_BUSY, 0, NULL);
2319 assert(mt->shadow_mt);
2320 }
2321
2322 if (src->shadow_needs_update == false)
2323 return;
2324
2325 struct brw_mipmap_tree *dst = mt->shadow_mt;
2326
2327 for (int level = src->first_level; level <= src->last_level; level++) {
2328 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2329 minify(src->surf.phys_level0_sa.depth, level) :
2330 src->surf.phys_level0_sa.array_len;
2331
2332 for (unsigned layer = 0; layer < depth; layer++) {
2333 brw_blorp_copy_miptrees(brw,
2334 src, level, layer,
2335 dst, level, layer,
2336 0, 0, 0, 0,
2337 minify(src->surf.logical_level0_px.width,
2338 level),
2339 minify(src->surf.logical_level0_px.height,
2340 level));
2341 }
2342 }
2343
2344 brw_cache_flush_for_read(brw, dst->bo);
2345 src->shadow_needs_update = false;
2346 }
2347
2348 static void *
brw_miptree_map_raw(struct brw_context * brw,struct brw_mipmap_tree * mt,GLbitfield mode)2349 brw_miptree_map_raw(struct brw_context *brw,
2350 struct brw_mipmap_tree *mt,
2351 GLbitfield mode)
2352 {
2353 struct brw_bo *bo = mt->bo;
2354
2355 if (brw_batch_references(&brw->batch, bo))
2356 brw_batch_flush(brw);
2357
2358 return brw_bo_map(brw, bo, mode);
2359 }
2360
2361 static void
brw_miptree_unmap_raw(struct brw_mipmap_tree * mt)2362 brw_miptree_unmap_raw(struct brw_mipmap_tree *mt)
2363 {
2364 brw_bo_unmap(mt->bo);
2365 }
2366
2367 static void
brw_miptree_unmap_map(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2368 brw_miptree_unmap_map(struct brw_context *brw,
2369 struct brw_mipmap_tree *mt,
2370 struct brw_miptree_map *map,
2371 unsigned int level, unsigned int slice)
2372 {
2373 brw_miptree_unmap_raw(mt);
2374 }
2375
2376 static void
brw_miptree_map_map(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2377 brw_miptree_map_map(struct brw_context *brw,
2378 struct brw_mipmap_tree *mt,
2379 struct brw_miptree_map *map,
2380 unsigned int level, unsigned int slice)
2381 {
2382 unsigned int bw, bh;
2383 void *base;
2384 unsigned int image_x, image_y;
2385 intptr_t x = map->x;
2386 intptr_t y = map->y;
2387
2388 /* For compressed formats, the stride is the number of bytes per
2389 * row of blocks. brw_miptree_get_image_offset() already does
2390 * the divide.
2391 */
2392 _mesa_get_format_block_size(mt->format, &bw, &bh);
2393 assert(y % bh == 0);
2394 assert(x % bw == 0);
2395 y /= bh;
2396 x /= bw;
2397
2398 brw_miptree_access_raw(brw, mt, level, slice,
2399 map->mode & GL_MAP_WRITE_BIT);
2400
2401 base = brw_miptree_map_raw(brw, mt, map->mode);
2402
2403 if (base == NULL)
2404 map->ptr = NULL;
2405 else {
2406 base += mt->offset;
2407
2408 /* Note that in the case of cube maps, the caller must have passed the
2409 * slice number referencing the face.
2410 */
2411 brw_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2412 x += image_x;
2413 y += image_y;
2414
2415 map->stride = mt->surf.row_pitch_B;
2416 map->ptr = base + y * map->stride + x * mt->cpp;
2417 }
2418
2419 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2420 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2421 map->x, map->y, map->w, map->h,
2422 mt, _mesa_get_format_name(mt->format),
2423 x, y, map->ptr, map->stride);
2424
2425 map->unmap = brw_miptree_unmap_map;
2426 }
2427
2428 static void
brw_miptree_unmap_blit(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2429 brw_miptree_unmap_blit(struct brw_context *brw,
2430 struct brw_mipmap_tree *mt,
2431 struct brw_miptree_map *map,
2432 unsigned int level,
2433 unsigned int slice)
2434 {
2435 const struct intel_device_info *devinfo = &brw->screen->devinfo;
2436 struct gl_context *ctx = &brw->ctx;
2437
2438 brw_miptree_unmap_raw(map->linear_mt);
2439
2440 if (map->mode & GL_MAP_WRITE_BIT) {
2441 if (devinfo->ver >= 6) {
2442 brw_blorp_copy_miptrees(brw, map->linear_mt, 0, 0,
2443 mt, level, slice,
2444 0, 0, map->x, map->y, map->w, map->h);
2445 } else {
2446 bool ok = brw_miptree_copy(brw,
2447 map->linear_mt, 0, 0, 0, 0,
2448 mt, level, slice, map->x, map->y,
2449 map->w, map->h);
2450 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2451 }
2452 }
2453
2454 brw_miptree_release(&map->linear_mt);
2455 }
2456
2457 /* Compute extent parameters for use with tiled_memcpy functions.
2458 * xs are in units of bytes and ys are in units of strides.
2459 */
2460 static inline void
tile_extents(struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice,unsigned int * x1_B,unsigned int * x2_B,unsigned int * y1_el,unsigned int * y2_el)2461 tile_extents(struct brw_mipmap_tree *mt, struct brw_miptree_map *map,
2462 unsigned int level, unsigned int slice, unsigned int *x1_B,
2463 unsigned int *x2_B, unsigned int *y1_el, unsigned int *y2_el)
2464 {
2465 unsigned int block_width, block_height;
2466 unsigned int x0_el, y0_el;
2467
2468 _mesa_get_format_block_size(mt->format, &block_width, &block_height);
2469
2470 assert(map->x % block_width == 0);
2471 assert(map->y % block_height == 0);
2472
2473 brw_miptree_get_image_offset(mt, level, slice, &x0_el, &y0_el);
2474 *x1_B = (map->x / block_width + x0_el) * mt->cpp;
2475 *y1_el = map->y / block_height + y0_el;
2476 *x2_B = (DIV_ROUND_UP(map->x + map->w, block_width) + x0_el) * mt->cpp;
2477 *y2_el = DIV_ROUND_UP(map->y + map->h, block_height) + y0_el;
2478 }
2479
2480 static void
brw_miptree_unmap_tiled_memcpy(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2481 brw_miptree_unmap_tiled_memcpy(struct brw_context *brw,
2482 struct brw_mipmap_tree *mt,
2483 struct brw_miptree_map *map,
2484 unsigned int level,
2485 unsigned int slice)
2486 {
2487 if (map->mode & GL_MAP_WRITE_BIT) {
2488 unsigned int x1, x2, y1, y2;
2489 tile_extents(mt, map, level, slice, &x1, &x2, &y1, &y2);
2490
2491 char *dst = brw_miptree_map_raw(brw, mt, map->mode | MAP_RAW);
2492 dst += mt->offset;
2493
2494 isl_memcpy_linear_to_tiled(
2495 x1, x2, y1, y2, dst, map->ptr, mt->surf.row_pitch_B, map->stride,
2496 brw->has_swizzling, mt->surf.tiling, ISL_MEMCPY);
2497
2498 brw_miptree_unmap_raw(mt);
2499 }
2500 align_free(map->buffer);
2501 map->buffer = map->ptr = NULL;
2502 }
2503
2504 /**
2505 * Determine which copy function to use for the given format combination
2506 *
2507 * The only two possible copy functions which are ever returned are a
2508 * direct memcpy and a RGBA <-> BGRA copy function. Since RGBA -> BGRA and
2509 * BGRA -> RGBA are exactly the same operation (and memcpy is obviously
2510 * symmetric), it doesn't matter whether the copy is from the tiled image
2511 * to the untiled or vice versa. The copy function required is the same in
2512 * either case so this function can be used.
2513 *
2514 * \param[in] tiledFormat The format of the tiled image
2515 * \param[in] format The GL format of the client data
2516 * \param[in] type The GL type of the client data
2517 * \param[out] mem_copy Will be set to one of either the standard
2518 * library's memcpy or a different copy function
2519 * that performs an RGBA to BGRA conversion
2520 * \param[out] cpp Number of bytes per channel
2521 *
2522 * \return true if the format and type combination are valid
2523 */
2524 isl_memcpy_type
brw_miptree_get_memcpy_type(mesa_format tiledFormat,GLenum format,GLenum type,uint32_t * cpp)2525 brw_miptree_get_memcpy_type(mesa_format tiledFormat, GLenum format, GLenum type,
2526 uint32_t *cpp)
2527 {
2528 if (type == GL_UNSIGNED_INT_8_8_8_8_REV &&
2529 !(format == GL_RGBA || format == GL_BGRA))
2530 return ISL_MEMCPY_INVALID; /* Invalid type/format combination */
2531
2532 if ((tiledFormat == MESA_FORMAT_L_UNORM8 && format == GL_LUMINANCE) ||
2533 (tiledFormat == MESA_FORMAT_A_UNORM8 && format == GL_ALPHA)) {
2534 *cpp = 1;
2535 return ISL_MEMCPY;
2536 } else if ((tiledFormat == MESA_FORMAT_B8G8R8A8_UNORM) ||
2537 (tiledFormat == MESA_FORMAT_B8G8R8X8_UNORM) ||
2538 (tiledFormat == MESA_FORMAT_B8G8R8A8_SRGB) ||
2539 (tiledFormat == MESA_FORMAT_B8G8R8X8_SRGB)) {
2540 *cpp = 4;
2541 if (format == GL_BGRA) {
2542 return ISL_MEMCPY;
2543 } else if (format == GL_RGBA) {
2544 return ISL_MEMCPY_BGRA8;
2545 }
2546 } else if ((tiledFormat == MESA_FORMAT_R8G8B8A8_UNORM) ||
2547 (tiledFormat == MESA_FORMAT_R8G8B8X8_UNORM) ||
2548 (tiledFormat == MESA_FORMAT_R8G8B8A8_SRGB) ||
2549 (tiledFormat == MESA_FORMAT_R8G8B8X8_SRGB)) {
2550 *cpp = 4;
2551 if (format == GL_BGRA) {
2552 /* Copying from RGBA to BGRA is the same as BGRA to RGBA so we can
2553 * use the same function.
2554 */
2555 return ISL_MEMCPY_BGRA8;
2556 } else if (format == GL_RGBA) {
2557 return ISL_MEMCPY;
2558 }
2559 }
2560
2561 return ISL_MEMCPY_INVALID;
2562 }
2563
2564 static void
brw_miptree_map_tiled_memcpy(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2565 brw_miptree_map_tiled_memcpy(struct brw_context *brw,
2566 struct brw_mipmap_tree *mt,
2567 struct brw_miptree_map *map,
2568 unsigned int level, unsigned int slice)
2569 {
2570 brw_miptree_access_raw(brw, mt, level, slice,
2571 map->mode & GL_MAP_WRITE_BIT);
2572
2573 unsigned int x1, x2, y1, y2;
2574 tile_extents(mt, map, level, slice, &x1, &x2, &y1, &y2);
2575 map->stride = ALIGN(_mesa_format_row_stride(mt->format, map->w), 16);
2576
2577 /* The tiling and detiling functions require that the linear buffer
2578 * has proper 16-byte alignment (that is, its `x0` is 16-byte
2579 * aligned). Here we over-allocate the linear buffer by enough
2580 * bytes to get the proper alignment.
2581 */
2582 map->buffer = align_malloc(map->stride * (y2 - y1) + (x1 & 0xf), 16);
2583 map->ptr = (char *)map->buffer + (x1 & 0xf);
2584 assert(map->buffer);
2585
2586 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2587 char *src = brw_miptree_map_raw(brw, mt, map->mode | MAP_RAW);
2588 src += mt->offset;
2589
2590 const isl_memcpy_type copy_type =
2591 #if defined(USE_SSE41)
2592 cpu_has_sse4_1 ? ISL_MEMCPY_STREAMING_LOAD :
2593 #endif
2594 ISL_MEMCPY;
2595
2596 isl_memcpy_tiled_to_linear(
2597 x1, x2, y1, y2, map->ptr, src, map->stride,
2598 mt->surf.row_pitch_B, brw->has_swizzling, mt->surf.tiling,
2599 copy_type);
2600
2601 brw_miptree_unmap_raw(mt);
2602 }
2603
2604 map->unmap = brw_miptree_unmap_tiled_memcpy;
2605 }
2606
2607 static void
brw_miptree_map_blit(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2608 brw_miptree_map_blit(struct brw_context *brw,
2609 struct brw_mipmap_tree *mt,
2610 struct brw_miptree_map *map,
2611 unsigned int level, unsigned int slice)
2612 {
2613 const struct intel_device_info *devinfo = &brw->screen->devinfo;
2614 map->linear_mt = make_surface(brw, GL_TEXTURE_2D, mt->format,
2615 0, 0, map->w, map->h, 1, 1,
2616 ISL_TILING_LINEAR_BIT,
2617 ISL_SURF_USAGE_RENDER_TARGET_BIT |
2618 ISL_SURF_USAGE_TEXTURE_BIT,
2619 0, 0, NULL);
2620
2621 if (!map->linear_mt) {
2622 fprintf(stderr, "Failed to allocate blit temporary\n");
2623 goto fail;
2624 }
2625 map->stride = map->linear_mt->surf.row_pitch_B;
2626
2627 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2628 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2629 * invalidate is set, since we'll be writing the whole rectangle from our
2630 * temporary buffer back out.
2631 */
2632 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2633 if (devinfo->ver >= 6) {
2634 brw_blorp_copy_miptrees(brw, mt, level, slice,
2635 map->linear_mt, 0, 0,
2636 map->x, map->y, 0, 0, map->w, map->h);
2637 } else {
2638 if (!brw_miptree_copy(brw,
2639 mt, level, slice, map->x, map->y,
2640 map->linear_mt, 0, 0, 0, 0,
2641 map->w, map->h)) {
2642 fprintf(stderr, "Failed to blit\n");
2643 goto fail;
2644 }
2645 }
2646 }
2647
2648 map->ptr = brw_miptree_map_raw(brw, map->linear_mt, map->mode);
2649
2650 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2651 map->x, map->y, map->w, map->h,
2652 mt, _mesa_get_format_name(mt->format),
2653 level, slice, map->ptr, map->stride);
2654
2655 map->unmap = brw_miptree_unmap_blit;
2656 return;
2657
2658 fail:
2659 brw_miptree_release(&map->linear_mt);
2660 map->ptr = NULL;
2661 map->stride = 0;
2662 }
2663
2664 /**
2665 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2666 */
2667 #if defined(USE_SSE41)
2668 static void
brw_miptree_unmap_movntdqa(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2669 brw_miptree_unmap_movntdqa(struct brw_context *brw,
2670 struct brw_mipmap_tree *mt,
2671 struct brw_miptree_map *map,
2672 unsigned int level,
2673 unsigned int slice)
2674 {
2675 align_free(map->buffer);
2676 map->buffer = NULL;
2677 map->ptr = NULL;
2678 }
2679
2680 static void
brw_miptree_map_movntdqa(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2681 brw_miptree_map_movntdqa(struct brw_context *brw,
2682 struct brw_mipmap_tree *mt,
2683 struct brw_miptree_map *map,
2684 unsigned int level, unsigned int slice)
2685 {
2686 assert(map->mode & GL_MAP_READ_BIT);
2687 assert(!(map->mode & GL_MAP_WRITE_BIT));
2688
2689 brw_miptree_access_raw(brw, mt, level, slice, false);
2690
2691 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2692 map->x, map->y, map->w, map->h,
2693 mt, _mesa_get_format_name(mt->format),
2694 level, slice, map->ptr, map->stride);
2695
2696 /* Map the original image */
2697 uint32_t image_x;
2698 uint32_t image_y;
2699 brw_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2700 image_x += map->x;
2701 image_y += map->y;
2702
2703 void *src = brw_miptree_map_raw(brw, mt, map->mode);
2704 if (!src)
2705 return;
2706
2707 src += mt->offset;
2708
2709 src += image_y * mt->surf.row_pitch_B;
2710 src += image_x * mt->cpp;
2711
2712 /* Due to the pixel offsets for the particular image being mapped, our
2713 * src pointer may not be 16-byte aligned. However, if the pitch is
2714 * divisible by 16, then the amount by which it's misaligned will remain
2715 * consistent from row to row.
2716 */
2717 assert((mt->surf.row_pitch_B % 16) == 0);
2718 const int misalignment = ((uintptr_t) src) & 15;
2719
2720 /* Create an untiled temporary buffer for the mapping. */
2721 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2722
2723 map->stride = ALIGN(misalignment + width_bytes, 16);
2724
2725 map->buffer = align_malloc(map->stride * map->h, 16);
2726 /* Offset the destination so it has the same misalignment as src. */
2727 map->ptr = map->buffer + misalignment;
2728
2729 assert((((uintptr_t) map->ptr) & 15) == misalignment);
2730
2731 for (uint32_t y = 0; y < map->h; y++) {
2732 void *dst_ptr = map->ptr + y * map->stride;
2733 void *src_ptr = src + y * mt->surf.row_pitch_B;
2734
2735 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2736 }
2737
2738 brw_miptree_unmap_raw(mt);
2739
2740 map->unmap = brw_miptree_unmap_movntdqa;
2741 }
2742 #endif
2743
2744 static void
brw_miptree_unmap_s8(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2745 brw_miptree_unmap_s8(struct brw_context *brw,
2746 struct brw_mipmap_tree *mt,
2747 struct brw_miptree_map *map,
2748 unsigned int level,
2749 unsigned int slice)
2750 {
2751 if (map->mode & GL_MAP_WRITE_BIT) {
2752 unsigned int image_x, image_y;
2753 uint8_t *untiled_s8_map = map->ptr;
2754 uint8_t *tiled_s8_map = brw_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
2755
2756 brw_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2757
2758 for (uint32_t y = 0; y < map->h; y++) {
2759 for (uint32_t x = 0; x < map->w; x++) {
2760 ptrdiff_t offset = brw_offset_S8(mt->surf.row_pitch_B,
2761 image_x + x + map->x,
2762 image_y + y + map->y,
2763 brw->has_swizzling);
2764 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2765 }
2766 }
2767
2768 brw_miptree_unmap_raw(mt);
2769 }
2770
2771 free(map->buffer);
2772 }
2773
2774 static void
brw_miptree_map_s8(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2775 brw_miptree_map_s8(struct brw_context *brw,
2776 struct brw_mipmap_tree *mt,
2777 struct brw_miptree_map *map,
2778 unsigned int level, unsigned int slice)
2779 {
2780 map->stride = map->w;
2781 map->buffer = map->ptr = malloc(map->stride * map->h);
2782 if (!map->buffer)
2783 return;
2784
2785 brw_miptree_access_raw(brw, mt, level, slice,
2786 map->mode & GL_MAP_WRITE_BIT);
2787
2788 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2789 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2790 * invalidate is set, since we'll be writing the whole rectangle from our
2791 * temporary buffer back out.
2792 */
2793 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2794 uint8_t *untiled_s8_map = map->ptr;
2795 uint8_t *tiled_s8_map = brw_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
2796 unsigned int image_x, image_y;
2797
2798 brw_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2799
2800 for (uint32_t y = 0; y < map->h; y++) {
2801 for (uint32_t x = 0; x < map->w; x++) {
2802 ptrdiff_t offset = brw_offset_S8(mt->surf.row_pitch_B,
2803 x + image_x + map->x,
2804 y + image_y + map->y,
2805 brw->has_swizzling);
2806 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2807 }
2808 }
2809
2810 brw_miptree_unmap_raw(mt);
2811
2812 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
2813 map->x, map->y, map->w, map->h,
2814 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2815 } else {
2816 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2817 map->x, map->y, map->w, map->h,
2818 mt, map->ptr, map->stride);
2819 }
2820
2821 map->unmap = brw_miptree_unmap_s8;
2822 }
2823
2824 /**
2825 * Mapping functions for packed depth/stencil miptrees backed by real separate
2826 * miptrees for depth and stencil.
2827 *
2828 * On gfx7, and to support HiZ pre-gfx7, we have to have the stencil buffer
2829 * separate from the depth buffer. Yet at the GL API level, we have to expose
2830 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2831 * be able to map that memory for texture storage and glReadPixels-type
2832 * operations. We give Mesa core that access by mallocing a temporary and
2833 * copying the data between the actual backing store and the temporary.
2834 */
2835 static void
brw_miptree_unmap_depthstencil(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2836 brw_miptree_unmap_depthstencil(struct brw_context *brw,
2837 struct brw_mipmap_tree *mt,
2838 struct brw_miptree_map *map,
2839 unsigned int level,
2840 unsigned int slice)
2841 {
2842 struct brw_mipmap_tree *z_mt = mt;
2843 struct brw_mipmap_tree *s_mt = mt->stencil_mt;
2844 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2845
2846 if (map->mode & GL_MAP_WRITE_BIT) {
2847 uint32_t *packed_map = map->ptr;
2848 uint8_t *s_map = brw_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
2849 uint32_t *z_map = brw_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
2850 unsigned int s_image_x, s_image_y;
2851 unsigned int z_image_x, z_image_y;
2852
2853 brw_miptree_get_image_offset(s_mt, level, slice,
2854 &s_image_x, &s_image_y);
2855 brw_miptree_get_image_offset(z_mt, level, slice,
2856 &z_image_x, &z_image_y);
2857
2858 for (uint32_t y = 0; y < map->h; y++) {
2859 for (uint32_t x = 0; x < map->w; x++) {
2860 ptrdiff_t s_offset = brw_offset_S8(s_mt->surf.row_pitch_B,
2861 x + s_image_x + map->x,
2862 y + s_image_y + map->y,
2863 brw->has_swizzling);
2864 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2865 (z_mt->surf.row_pitch_B / 4) +
2866 (x + z_image_x + map->x));
2867
2868 if (map_z32f_x24s8) {
2869 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2870 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2871 } else {
2872 uint32_t packed = packed_map[y * map->w + x];
2873 s_map[s_offset] = packed >> 24;
2874 z_map[z_offset] = packed;
2875 }
2876 }
2877 }
2878
2879 brw_miptree_unmap_raw(s_mt);
2880 brw_miptree_unmap_raw(z_mt);
2881
2882 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2883 __func__,
2884 map->x, map->y, map->w, map->h,
2885 z_mt, _mesa_get_format_name(z_mt->format),
2886 map->x + z_image_x, map->y + z_image_y,
2887 s_mt, map->x + s_image_x, map->y + s_image_y,
2888 map->ptr, map->stride);
2889 }
2890
2891 free(map->buffer);
2892 }
2893
2894 static void
brw_miptree_map_depthstencil(struct brw_context * brw,struct brw_mipmap_tree * mt,struct brw_miptree_map * map,unsigned int level,unsigned int slice)2895 brw_miptree_map_depthstencil(struct brw_context *brw,
2896 struct brw_mipmap_tree *mt,
2897 struct brw_miptree_map *map,
2898 unsigned int level, unsigned int slice)
2899 {
2900 struct brw_mipmap_tree *z_mt = mt;
2901 struct brw_mipmap_tree *s_mt = mt->stencil_mt;
2902 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2903 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2904
2905 map->stride = map->w * packed_bpp;
2906 map->buffer = map->ptr = malloc(map->stride * map->h);
2907 if (!map->buffer)
2908 return;
2909
2910 brw_miptree_access_raw(brw, z_mt, level, slice,
2911 map->mode & GL_MAP_WRITE_BIT);
2912 brw_miptree_access_raw(brw, s_mt, level, slice,
2913 map->mode & GL_MAP_WRITE_BIT);
2914
2915 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2916 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2917 * invalidate is set, since we'll be writing the whole rectangle from our
2918 * temporary buffer back out.
2919 */
2920 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2921 uint32_t *packed_map = map->ptr;
2922 uint8_t *s_map = brw_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
2923 uint32_t *z_map = brw_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
2924 unsigned int s_image_x, s_image_y;
2925 unsigned int z_image_x, z_image_y;
2926
2927 brw_miptree_get_image_offset(s_mt, level, slice,
2928 &s_image_x, &s_image_y);
2929 brw_miptree_get_image_offset(z_mt, level, slice,
2930 &z_image_x, &z_image_y);
2931
2932 for (uint32_t y = 0; y < map->h; y++) {
2933 for (uint32_t x = 0; x < map->w; x++) {
2934 int map_x = map->x + x, map_y = map->y + y;
2935 ptrdiff_t s_offset = brw_offset_S8(s_mt->surf.row_pitch_B,
2936 map_x + s_image_x,
2937 map_y + s_image_y,
2938 brw->has_swizzling);
2939 ptrdiff_t z_offset = ((map_y + z_image_y) *
2940 (z_mt->surf.row_pitch_B / 4) +
2941 (map_x + z_image_x));
2942 uint8_t s = s_map[s_offset];
2943 uint32_t z = z_map[z_offset];
2944
2945 if (map_z32f_x24s8) {
2946 packed_map[(y * map->w + x) * 2 + 0] = z;
2947 packed_map[(y * map->w + x) * 2 + 1] = s;
2948 } else {
2949 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2950 }
2951 }
2952 }
2953
2954 brw_miptree_unmap_raw(s_mt);
2955 brw_miptree_unmap_raw(z_mt);
2956
2957 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2958 __func__,
2959 map->x, map->y, map->w, map->h,
2960 z_mt, map->x + z_image_x, map->y + z_image_y,
2961 s_mt, map->x + s_image_x, map->y + s_image_y,
2962 map->ptr, map->stride);
2963 } else {
2964 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2965 map->x, map->y, map->w, map->h,
2966 mt, map->ptr, map->stride);
2967 }
2968
2969 map->unmap = brw_miptree_unmap_depthstencil;
2970 }
2971
2972 /**
2973 * Create and attach a map to the miptree at (level, slice). Return the
2974 * attached map.
2975 */
2976 static struct brw_miptree_map*
brw_miptree_attach_map(struct brw_mipmap_tree * mt,unsigned int level,unsigned int slice,unsigned int x,unsigned int y,unsigned int w,unsigned int h,GLbitfield mode)2977 brw_miptree_attach_map(struct brw_mipmap_tree *mt,
2978 unsigned int level,
2979 unsigned int slice,
2980 unsigned int x,
2981 unsigned int y,
2982 unsigned int w,
2983 unsigned int h,
2984 GLbitfield mode)
2985 {
2986 struct brw_miptree_map *map = calloc(1, sizeof(*map));
2987
2988 if (!map)
2989 return NULL;
2990
2991 assert(mt->level[level].slice[slice].map == NULL);
2992 mt->level[level].slice[slice].map = map;
2993
2994 map->mode = mode;
2995 map->x = x;
2996 map->y = y;
2997 map->w = w;
2998 map->h = h;
2999
3000 return map;
3001 }
3002
3003 /**
3004 * Release the map at (level, slice).
3005 */
3006 static void
brw_miptree_release_map(struct brw_mipmap_tree * mt,unsigned int level,unsigned int slice)3007 brw_miptree_release_map(struct brw_mipmap_tree *mt,
3008 unsigned int level,
3009 unsigned int slice)
3010 {
3011 struct brw_miptree_map **map;
3012
3013 map = &mt->level[level].slice[slice].map;
3014 free(*map);
3015 *map = NULL;
3016 }
3017
3018 static bool
can_blit_slice(struct brw_mipmap_tree * mt,const struct brw_miptree_map * map)3019 can_blit_slice(struct brw_mipmap_tree *mt,
3020 const struct brw_miptree_map *map)
3021 {
3022 /* See brw_miptree_blit() for details on the 32k pitch limit. */
3023 const unsigned src_blt_pitch = brw_miptree_blt_pitch(mt);
3024 const unsigned dst_blt_pitch = ALIGN(map->w * mt->cpp, 64);
3025 return src_blt_pitch < 32768 && dst_blt_pitch < 32768;
3026 }
3027
3028 static bool
use_blitter_to_map(struct brw_context * brw,struct brw_mipmap_tree * mt,const struct brw_miptree_map * map)3029 use_blitter_to_map(struct brw_context *brw,
3030 struct brw_mipmap_tree *mt,
3031 const struct brw_miptree_map *map)
3032 {
3033 const struct intel_device_info *devinfo = &brw->screen->devinfo;
3034
3035 if (devinfo->has_llc &&
3036 /* It's probably not worth swapping to the blit ring because of
3037 * all the overhead involved.
3038 */
3039 !(map->mode & GL_MAP_WRITE_BIT) &&
3040 !mt->compressed &&
3041 (mt->surf.tiling == ISL_TILING_X ||
3042 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3043 (devinfo->ver >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3044 /* Fast copy blit on skl+ supports all tiling formats. */
3045 devinfo->ver >= 9) &&
3046 can_blit_slice(mt, map))
3047 return true;
3048
3049 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3050 mt->bo->size >= brw->max_gtt_map_object_size) {
3051 assert(can_blit_slice(mt, map));
3052 return true;
3053 }
3054
3055 return false;
3056 }
3057
3058 /**
3059 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3060 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3061 * arithmetic overflow.
3062 *
3063 * If you call this function and use \a out_stride, then you're doing pointer
3064 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3065 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3066 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3067 * which usually have type uint32_t or GLuint.
3068 */
3069 void
brw_miptree_map(struct brw_context * brw,struct brw_mipmap_tree * mt,unsigned int level,unsigned int slice,unsigned int x,unsigned int y,unsigned int w,unsigned int h,GLbitfield mode,void ** out_ptr,ptrdiff_t * out_stride)3070 brw_miptree_map(struct brw_context *brw,
3071 struct brw_mipmap_tree *mt,
3072 unsigned int level,
3073 unsigned int slice,
3074 unsigned int x,
3075 unsigned int y,
3076 unsigned int w,
3077 unsigned int h,
3078 GLbitfield mode,
3079 void **out_ptr,
3080 ptrdiff_t *out_stride)
3081 {
3082 const struct intel_device_info *devinfo = &brw->screen->devinfo;
3083 struct brw_miptree_map *map;
3084
3085 assert(mt->surf.samples == 1);
3086
3087 map = brw_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3088 if (!map){
3089 *out_ptr = NULL;
3090 *out_stride = 0;
3091 return;
3092 }
3093
3094 if (mt->format == MESA_FORMAT_S_UINT8) {
3095 brw_miptree_map_s8(brw, mt, map, level, slice);
3096 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3097 brw_miptree_map_depthstencil(brw, mt, map, level, slice);
3098 } else if (use_blitter_to_map(brw, mt, map)) {
3099 brw_miptree_map_blit(brw, mt, map, level, slice);
3100 } else if (mt->surf.tiling != ISL_TILING_LINEAR && devinfo->ver > 4) {
3101 brw_miptree_map_tiled_memcpy(brw, mt, map, level, slice);
3102 #if defined(USE_SSE41)
3103 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3104 !mt->compressed && cpu_has_sse4_1 &&
3105 (mt->surf.row_pitch_B % 16 == 0)) {
3106 brw_miptree_map_movntdqa(brw, mt, map, level, slice);
3107 #endif
3108 } else {
3109 if (mt->surf.tiling != ISL_TILING_LINEAR)
3110 perf_debug("brw_miptree_map: mapping via gtt");
3111 brw_miptree_map_map(brw, mt, map, level, slice);
3112 }
3113
3114 *out_ptr = map->ptr;
3115 *out_stride = map->stride;
3116
3117 if (map->ptr == NULL)
3118 brw_miptree_release_map(mt, level, slice);
3119 }
3120
3121 void
brw_miptree_unmap(struct brw_context * brw,struct brw_mipmap_tree * mt,unsigned int level,unsigned int slice)3122 brw_miptree_unmap(struct brw_context *brw,
3123 struct brw_mipmap_tree *mt,
3124 unsigned int level,
3125 unsigned int slice)
3126 {
3127 struct brw_miptree_map *map = mt->level[level].slice[slice].map;
3128
3129 assert(mt->surf.samples == 1);
3130
3131 if (!map)
3132 return;
3133
3134 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3135 mt, _mesa_get_format_name(mt->format), level, slice);
3136
3137 if (map->unmap)
3138 map->unmap(brw, mt, map, level, slice);
3139
3140 brw_miptree_release_map(mt, level, slice);
3141 }
3142
3143 enum isl_surf_dim
get_isl_surf_dim(GLenum target)3144 get_isl_surf_dim(GLenum target)
3145 {
3146 switch (target) {
3147 case GL_TEXTURE_1D:
3148 case GL_TEXTURE_1D_ARRAY:
3149 return ISL_SURF_DIM_1D;
3150
3151 case GL_TEXTURE_2D:
3152 case GL_TEXTURE_2D_ARRAY:
3153 case GL_TEXTURE_RECTANGLE:
3154 case GL_TEXTURE_CUBE_MAP:
3155 case GL_TEXTURE_CUBE_MAP_ARRAY:
3156 case GL_TEXTURE_2D_MULTISAMPLE:
3157 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3158 case GL_TEXTURE_EXTERNAL_OES:
3159 return ISL_SURF_DIM_2D;
3160
3161 case GL_TEXTURE_3D:
3162 return ISL_SURF_DIM_3D;
3163 }
3164
3165 unreachable("Invalid texture target");
3166 }
3167
3168 enum isl_dim_layout
get_isl_dim_layout(const struct intel_device_info * devinfo,enum isl_tiling tiling,GLenum target)3169 get_isl_dim_layout(const struct intel_device_info *devinfo,
3170 enum isl_tiling tiling, GLenum target)
3171 {
3172 switch (target) {
3173 case GL_TEXTURE_1D:
3174 case GL_TEXTURE_1D_ARRAY:
3175 return (devinfo->ver >= 9 && tiling == ISL_TILING_LINEAR ?
3176 ISL_DIM_LAYOUT_GFX9_1D : ISL_DIM_LAYOUT_GFX4_2D);
3177
3178 case GL_TEXTURE_2D:
3179 case GL_TEXTURE_2D_ARRAY:
3180 case GL_TEXTURE_RECTANGLE:
3181 case GL_TEXTURE_2D_MULTISAMPLE:
3182 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3183 case GL_TEXTURE_EXTERNAL_OES:
3184 return ISL_DIM_LAYOUT_GFX4_2D;
3185
3186 case GL_TEXTURE_CUBE_MAP:
3187 case GL_TEXTURE_CUBE_MAP_ARRAY:
3188 return (devinfo->ver == 4 ? ISL_DIM_LAYOUT_GFX4_3D :
3189 ISL_DIM_LAYOUT_GFX4_2D);
3190
3191 case GL_TEXTURE_3D:
3192 return (devinfo->ver >= 9 ?
3193 ISL_DIM_LAYOUT_GFX4_2D : ISL_DIM_LAYOUT_GFX4_3D);
3194 }
3195
3196 unreachable("Invalid texture target");
3197 }
3198
3199 bool
brw_miptree_set_clear_color(struct brw_context * brw,struct brw_mipmap_tree * mt,union isl_color_value clear_color)3200 brw_miptree_set_clear_color(struct brw_context *brw,
3201 struct brw_mipmap_tree *mt,
3202 union isl_color_value clear_color)
3203 {
3204 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3205 mt->fast_clear_color = clear_color;
3206 if (mt->aux_buf->clear_color_bo) {
3207 /* We can't update the clear color while the hardware is still using
3208 * the previous one for a resolve or sampling from it. Make sure that
3209 * there are no pending commands at this point.
3210 */
3211 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3212 for (int i = 0; i < 4; i++) {
3213 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3214 mt->aux_buf->clear_color_offset + i * 4,
3215 mt->fast_clear_color.u32[i]);
3216 }
3217 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3218 }
3219 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3220 return true;
3221 }
3222 return false;
3223 }
3224
3225 union isl_color_value
brw_miptree_get_clear_color(const struct brw_mipmap_tree * mt,struct brw_bo ** clear_color_bo,uint64_t * clear_color_offset)3226 brw_miptree_get_clear_color(const struct brw_mipmap_tree *mt,
3227 struct brw_bo **clear_color_bo,
3228 uint64_t *clear_color_offset)
3229 {
3230 assert(mt->aux_buf);
3231
3232 *clear_color_bo = mt->aux_buf->clear_color_bo;
3233 *clear_color_offset = mt->aux_buf->clear_color_offset;
3234 return mt->fast_clear_color;
3235 }
3236
3237 static void
brw_miptree_update_etc_shadow(struct brw_context * brw,struct brw_mipmap_tree * mt,unsigned int level,unsigned int slice,int level_w,int level_h)3238 brw_miptree_update_etc_shadow(struct brw_context *brw,
3239 struct brw_mipmap_tree *mt,
3240 unsigned int level,
3241 unsigned int slice,
3242 int level_w,
3243 int level_h)
3244 {
3245 ptrdiff_t etc_stride, shadow_stride;
3246 void *mptr, *sptr;
3247 struct brw_mipmap_tree *smt = mt->shadow_mt;
3248
3249 assert(brw_miptree_has_etc_shadow(brw, mt));
3250
3251 brw_miptree_map(brw, mt, level, slice, 0, 0, level_w, level_h,
3252 GL_MAP_READ_BIT, &mptr, &etc_stride);
3253 brw_miptree_map(brw, smt, level, slice, 0, 0, level_w, level_h,
3254 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT,
3255 &sptr, &shadow_stride);
3256
3257 if (mt->format == MESA_FORMAT_ETC1_RGB8) {
3258 _mesa_etc1_unpack_rgba8888(sptr, shadow_stride, mptr, etc_stride,
3259 level_w, level_h);
3260 } else {
3261 /* destination and source images must have the same swizzle */
3262 bool is_bgra = (smt->format == MESA_FORMAT_B8G8R8A8_SRGB);
3263 _mesa_unpack_etc2_format(sptr, shadow_stride, mptr, etc_stride,
3264 level_w, level_h, mt->format, is_bgra);
3265 }
3266
3267 brw_miptree_unmap(brw, mt, level, slice);
3268 brw_miptree_unmap(brw, smt, level, slice);
3269 }
3270
3271 void
brw_miptree_update_etc_shadow_levels(struct brw_context * brw,struct brw_mipmap_tree * mt)3272 brw_miptree_update_etc_shadow_levels(struct brw_context *brw,
3273 struct brw_mipmap_tree *mt)
3274 {
3275 struct brw_mipmap_tree *smt;
3276 int num_slices;
3277
3278 assert(mt);
3279 assert(mt->surf.size_B > 0);
3280 assert(brw_miptree_has_etc_shadow(brw, mt));
3281
3282 smt = mt->shadow_mt;
3283 num_slices = smt->surf.logical_level0_px.array_len;
3284
3285 for (int level = smt->first_level; level <= smt->last_level; level++) {
3286 int level_w = minify(smt->surf.logical_level0_px.width,
3287 level - smt->first_level);
3288 int level_h = minify(smt->surf.logical_level0_px.height,
3289 level - smt->first_level);
3290
3291 for (unsigned int slice = 0; slice < num_slices; slice++) {
3292 brw_miptree_update_etc_shadow(brw, mt, level, slice, level_w,
3293 level_h);
3294 }
3295 }
3296
3297 mt->shadow_needs_update = false;
3298 }
3299