• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "brw_nir.h"
25 #include "brw_shader.h"
26 #include "dev/intel_debug.h"
27 #include "compiler/glsl_types.h"
28 #include "compiler/nir/nir_builder.h"
29 #include "util/u_math.h"
30 
31 static bool
remap_tess_levels(nir_builder * b,nir_intrinsic_instr * intr,GLenum primitive_mode)32 remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr,
33                   GLenum primitive_mode)
34 {
35    const int location = nir_intrinsic_base(intr);
36    const unsigned component = nir_intrinsic_component(intr);
37    bool out_of_bounds;
38 
39    if (location == VARYING_SLOT_TESS_LEVEL_INNER) {
40       switch (primitive_mode) {
41       case GL_QUADS:
42          /* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */
43          nir_intrinsic_set_base(intr, 0);
44          nir_intrinsic_set_component(intr, 3 - component);
45          out_of_bounds = false;
46          break;
47       case GL_TRIANGLES:
48          /* gl_TessLevelInner[0] lives at DWord 4. */
49          nir_intrinsic_set_base(intr, 1);
50          out_of_bounds = component > 0;
51          break;
52       case GL_ISOLINES:
53          out_of_bounds = true;
54          break;
55       default:
56          unreachable("Bogus tessellation domain");
57       }
58    } else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) {
59       if (primitive_mode == GL_ISOLINES) {
60          /* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */
61          nir_intrinsic_set_base(intr, 1);
62          nir_intrinsic_set_component(intr, 2 + nir_intrinsic_component(intr));
63          out_of_bounds = component > 1;
64       } else {
65          /* Triangles use DWords 7-5 (reversed); Quads use 7-4 (reversed) */
66          nir_intrinsic_set_base(intr, 1);
67          nir_intrinsic_set_component(intr, 3 - nir_intrinsic_component(intr));
68          out_of_bounds = component == 3 && primitive_mode == GL_TRIANGLES;
69       }
70    } else {
71       return false;
72    }
73 
74    if (out_of_bounds) {
75       if (nir_intrinsic_infos[intr->intrinsic].has_dest) {
76          b->cursor = nir_before_instr(&intr->instr);
77          nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
78          nir_ssa_def_rewrite_uses(&intr->dest.ssa, undef);
79       }
80       nir_instr_remove(&intr->instr);
81    }
82 
83    return true;
84 }
85 
86 static bool
is_input(nir_intrinsic_instr * intrin)87 is_input(nir_intrinsic_instr *intrin)
88 {
89    return intrin->intrinsic == nir_intrinsic_load_input ||
90           intrin->intrinsic == nir_intrinsic_load_per_vertex_input ||
91           intrin->intrinsic == nir_intrinsic_load_interpolated_input;
92 }
93 
94 static bool
is_output(nir_intrinsic_instr * intrin)95 is_output(nir_intrinsic_instr *intrin)
96 {
97    return intrin->intrinsic == nir_intrinsic_load_output ||
98           intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
99           intrin->intrinsic == nir_intrinsic_store_output ||
100           intrin->intrinsic == nir_intrinsic_store_per_vertex_output;
101 }
102 
103 
104 static bool
remap_patch_urb_offsets(nir_block * block,nir_builder * b,const struct brw_vue_map * vue_map,GLenum tes_primitive_mode)105 remap_patch_urb_offsets(nir_block *block, nir_builder *b,
106                         const struct brw_vue_map *vue_map,
107                         GLenum tes_primitive_mode)
108 {
109    const bool is_passthrough_tcs = b->shader->info.name &&
110       strcmp(b->shader->info.name, "passthrough TCS") == 0;
111 
112    nir_foreach_instr_safe(instr, block) {
113       if (instr->type != nir_instr_type_intrinsic)
114          continue;
115 
116       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
117 
118       gl_shader_stage stage = b->shader->info.stage;
119 
120       if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) ||
121           (stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) {
122 
123          if (!is_passthrough_tcs &&
124              remap_tess_levels(b, intrin, tes_primitive_mode))
125             continue;
126 
127          int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]];
128          assert(vue_slot != -1);
129          intrin->const_index[0] = vue_slot;
130 
131          nir_src *vertex = nir_get_io_vertex_index_src(intrin);
132          if (vertex) {
133             if (nir_src_is_const(*vertex)) {
134                intrin->const_index[0] += nir_src_as_uint(*vertex) *
135                                          vue_map->num_per_vertex_slots;
136             } else {
137                b->cursor = nir_before_instr(&intrin->instr);
138 
139                /* Multiply by the number of per-vertex slots. */
140                nir_ssa_def *vertex_offset =
141                   nir_imul(b,
142                            nir_ssa_for_src(b, *vertex, 1),
143                            nir_imm_int(b,
144                                        vue_map->num_per_vertex_slots));
145 
146                /* Add it to the existing offset */
147                nir_src *offset = nir_get_io_offset_src(intrin);
148                nir_ssa_def *total_offset =
149                   nir_iadd(b, vertex_offset,
150                            nir_ssa_for_src(b, *offset, 1));
151 
152                nir_instr_rewrite_src(&intrin->instr, offset,
153                                      nir_src_for_ssa(total_offset));
154             }
155          }
156       }
157    }
158    return true;
159 }
160 
161 void
brw_nir_lower_vs_inputs(nir_shader * nir,bool edgeflag_is_last,const uint8_t * vs_attrib_wa_flags)162 brw_nir_lower_vs_inputs(nir_shader *nir,
163                         bool edgeflag_is_last,
164                         const uint8_t *vs_attrib_wa_flags)
165 {
166    /* Start with the location of the variable's base. */
167    nir_foreach_shader_in_variable(var, nir)
168       var->data.driver_location = var->data.location;
169 
170    /* Now use nir_lower_io to walk dereference chains.  Attribute arrays are
171     * loaded as one vec4 or dvec4 per element (or matrix column), depending on
172     * whether it is a double-precision type or not.
173     */
174    nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
175                 nir_lower_io_lower_64bit_to_32);
176 
177    /* This pass needs actual constants */
178    nir_opt_constant_folding(nir);
179 
180    nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
181 
182    brw_nir_apply_attribute_workarounds(nir, vs_attrib_wa_flags);
183 
184    /* The last step is to remap VERT_ATTRIB_* to actual registers */
185 
186    /* Whether or not we have any system generated values.  gl_DrawID is not
187     * included here as it lives in its own vec4.
188     */
189    const bool has_sgvs =
190       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
191       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
192       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
193       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
194 
195    const unsigned num_inputs = util_bitcount64(nir->info.inputs_read);
196 
197    nir_foreach_function(function, nir) {
198       if (!function->impl)
199          continue;
200 
201       nir_builder b;
202       nir_builder_init(&b, function->impl);
203 
204       nir_foreach_block(block, function->impl) {
205          nir_foreach_instr_safe(instr, block) {
206             if (instr->type != nir_instr_type_intrinsic)
207                continue;
208 
209             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
210 
211             switch (intrin->intrinsic) {
212             case nir_intrinsic_load_first_vertex:
213             case nir_intrinsic_load_base_instance:
214             case nir_intrinsic_load_vertex_id_zero_base:
215             case nir_intrinsic_load_instance_id:
216             case nir_intrinsic_load_is_indexed_draw:
217             case nir_intrinsic_load_draw_id: {
218                b.cursor = nir_after_instr(&intrin->instr);
219 
220                /* gl_VertexID and friends are stored by the VF as the last
221                 * vertex element.  We convert them to load_input intrinsics at
222                 * the right location.
223                 */
224                nir_intrinsic_instr *load =
225                   nir_intrinsic_instr_create(nir, nir_intrinsic_load_input);
226                load->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
227 
228                nir_intrinsic_set_base(load, num_inputs);
229                switch (intrin->intrinsic) {
230                case nir_intrinsic_load_first_vertex:
231                   nir_intrinsic_set_component(load, 0);
232                   break;
233                case nir_intrinsic_load_base_instance:
234                   nir_intrinsic_set_component(load, 1);
235                   break;
236                case nir_intrinsic_load_vertex_id_zero_base:
237                   nir_intrinsic_set_component(load, 2);
238                   break;
239                case nir_intrinsic_load_instance_id:
240                   nir_intrinsic_set_component(load, 3);
241                   break;
242                case nir_intrinsic_load_draw_id:
243                case nir_intrinsic_load_is_indexed_draw:
244                   /* gl_DrawID and IsIndexedDraw are stored right after
245                    * gl_VertexID and friends if any of them exist.
246                    */
247                   nir_intrinsic_set_base(load, num_inputs + has_sgvs);
248                   if (intrin->intrinsic == nir_intrinsic_load_draw_id)
249                      nir_intrinsic_set_component(load, 0);
250                   else
251                      nir_intrinsic_set_component(load, 1);
252                   break;
253                default:
254                   unreachable("Invalid system value intrinsic");
255                }
256 
257                load->num_components = 1;
258                nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, NULL);
259                nir_builder_instr_insert(&b, &load->instr);
260 
261                nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
262                                         &load->dest.ssa);
263                nir_instr_remove(&intrin->instr);
264                break;
265             }
266 
267             case nir_intrinsic_load_input: {
268                /* Attributes come in a contiguous block, ordered by their
269                 * gl_vert_attrib value.  That means we can compute the slot
270                 * number for an attribute by masking out the enabled attributes
271                 * before it and counting the bits.
272                 */
273                int attr = nir_intrinsic_base(intrin);
274                uint64_t inputs_read = nir->info.inputs_read;
275                int slot = -1;
276                if (edgeflag_is_last) {
277                   inputs_read &= ~BITFIELD64_BIT(VERT_ATTRIB_EDGEFLAG);
278                   if (attr == VERT_ATTRIB_EDGEFLAG)
279                      slot = num_inputs - 1;
280                }
281                if (slot == -1)
282                   slot = util_bitcount64(inputs_read &
283                                          BITFIELD64_MASK(attr));
284                nir_intrinsic_set_base(intrin, slot);
285                break;
286             }
287 
288             default:
289                break; /* Nothing to do */
290             }
291          }
292       }
293    }
294 }
295 
296 void
brw_nir_lower_vue_inputs(nir_shader * nir,const struct brw_vue_map * vue_map)297 brw_nir_lower_vue_inputs(nir_shader *nir,
298                          const struct brw_vue_map *vue_map)
299 {
300    nir_foreach_shader_in_variable(var, nir)
301       var->data.driver_location = var->data.location;
302 
303    /* Inputs are stored in vec4 slots, so use type_size_vec4(). */
304    nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
305                 nir_lower_io_lower_64bit_to_32);
306 
307    /* This pass needs actual constants */
308    nir_opt_constant_folding(nir);
309 
310    nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
311 
312    nir_foreach_function(function, nir) {
313       if (!function->impl)
314          continue;
315 
316       nir_foreach_block(block, function->impl) {
317          nir_foreach_instr(instr, block) {
318             if (instr->type != nir_instr_type_intrinsic)
319                continue;
320 
321             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
322 
323             if (intrin->intrinsic == nir_intrinsic_load_input ||
324                 intrin->intrinsic == nir_intrinsic_load_per_vertex_input) {
325                /* Offset 0 is the VUE header, which contains
326                 * VARYING_SLOT_LAYER [.y], VARYING_SLOT_VIEWPORT [.z], and
327                 * VARYING_SLOT_PSIZ [.w].
328                 */
329                int varying = nir_intrinsic_base(intrin);
330                int vue_slot;
331                switch (varying) {
332                case VARYING_SLOT_PSIZ:
333                   nir_intrinsic_set_base(intrin, 0);
334                   nir_intrinsic_set_component(intrin, 3);
335                   break;
336 
337                default:
338                   vue_slot = vue_map->varying_to_slot[varying];
339                   assert(vue_slot != -1);
340                   nir_intrinsic_set_base(intrin, vue_slot);
341                   break;
342                }
343             }
344          }
345       }
346    }
347 }
348 
349 void
brw_nir_lower_tes_inputs(nir_shader * nir,const struct brw_vue_map * vue_map)350 brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map)
351 {
352    nir_foreach_shader_in_variable(var, nir)
353       var->data.driver_location = var->data.location;
354 
355    nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
356                 nir_lower_io_lower_64bit_to_32);
357 
358    /* This pass needs actual constants */
359    nir_opt_constant_folding(nir);
360 
361    nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
362 
363    nir_foreach_function(function, nir) {
364       if (function->impl) {
365          nir_builder b;
366          nir_builder_init(&b, function->impl);
367          nir_foreach_block(block, function->impl) {
368             remap_patch_urb_offsets(block, &b, vue_map,
369                                     nir->info.tess.primitive_mode);
370          }
371       }
372    }
373 }
374 
375 /**
376  * Convert interpolateAtOffset() offsets from [-0.5, +0.5] floating point
377  * offsets to integer [-8, +7] offsets (in units of 1/16th of a pixel).
378  *
379  * We clamp to +7/16 on the upper end of the range, since +0.5 isn't
380  * representable in a S0.4 value; a naive conversion would give us -8/16,
381  * which is the opposite of what was intended.
382  *
383  * This is allowed by GL_ARB_gpu_shader5's quantization rules:
384  *
385  *    "Not all values of <offset> may be supported; x and y offsets may
386  *     be rounded to fixed-point values with the number of fraction bits
387  *     given by the implementation-dependent constant
388  *     FRAGMENT_INTERPOLATION_OFFSET_BITS."
389  */
390 static bool
lower_barycentric_at_offset(nir_builder * b,nir_instr * instr,void * data)391 lower_barycentric_at_offset(nir_builder *b, nir_instr *instr, void *data)
392 {
393    if (instr->type != nir_instr_type_intrinsic)
394       return false;
395 
396    nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
397 
398    if (intrin->intrinsic != nir_intrinsic_load_barycentric_at_offset)
399       return false;
400 
401    b->cursor = nir_before_instr(instr);
402 
403    assert(intrin->src[0].ssa);
404    nir_ssa_def *offset =
405       nir_imin(b, nir_imm_int(b, 7),
406                nir_f2i32(b, nir_fmul(b, nir_imm_float(b, 16),
407                                      intrin->src[0].ssa)));
408 
409    nir_instr_rewrite_src(instr, &intrin->src[0], nir_src_for_ssa(offset));
410 
411    return true;
412 }
413 
414 void
brw_nir_lower_fs_inputs(nir_shader * nir,const struct intel_device_info * devinfo,const struct brw_wm_prog_key * key)415 brw_nir_lower_fs_inputs(nir_shader *nir,
416                         const struct intel_device_info *devinfo,
417                         const struct brw_wm_prog_key *key)
418 {
419    nir_foreach_shader_in_variable(var, nir) {
420       var->data.driver_location = var->data.location;
421 
422       /* Apply default interpolation mode.
423        *
424        * Everything defaults to smooth except for the legacy GL color
425        * built-in variables, which might be flat depending on API state.
426        */
427       if (var->data.interpolation == INTERP_MODE_NONE) {
428          const bool flat = key->flat_shade &&
429             (var->data.location == VARYING_SLOT_COL0 ||
430              var->data.location == VARYING_SLOT_COL1);
431 
432          var->data.interpolation = flat ? INTERP_MODE_FLAT
433                                         : INTERP_MODE_SMOOTH;
434       }
435 
436       /* On Ironlake and below, there is only one interpolation mode.
437        * Centroid interpolation doesn't mean anything on this hardware --
438        * there is no multisampling.
439        */
440       if (devinfo->ver < 6) {
441          var->data.centroid = false;
442          var->data.sample = false;
443       }
444    }
445 
446    nir_lower_io_options lower_io_options = nir_lower_io_lower_64bit_to_32;
447    if (key->persample_interp)
448       lower_io_options |= nir_lower_io_force_sample_interpolation;
449 
450    nir_lower_io(nir, nir_var_shader_in, type_size_vec4, lower_io_options);
451    if (devinfo->ver >= 11)
452       nir_lower_interpolation(nir, ~0);
453 
454    nir_shader_instructions_pass(nir, lower_barycentric_at_offset,
455                                 nir_metadata_block_index |
456                                 nir_metadata_dominance,
457                                 NULL);
458 
459    /* This pass needs actual constants */
460    nir_opt_constant_folding(nir);
461 
462    nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
463 }
464 
465 void
brw_nir_lower_vue_outputs(nir_shader * nir)466 brw_nir_lower_vue_outputs(nir_shader *nir)
467 {
468    nir_foreach_shader_out_variable(var, nir) {
469       var->data.driver_location = var->data.location;
470    }
471 
472    nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
473                 nir_lower_io_lower_64bit_to_32);
474 }
475 
476 void
brw_nir_lower_tcs_outputs(nir_shader * nir,const struct brw_vue_map * vue_map,GLenum tes_primitive_mode)477 brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map,
478                           GLenum tes_primitive_mode)
479 {
480    nir_foreach_shader_out_variable(var, nir) {
481       var->data.driver_location = var->data.location;
482    }
483 
484    nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
485                 nir_lower_io_lower_64bit_to_32);
486 
487    /* This pass needs actual constants */
488    nir_opt_constant_folding(nir);
489 
490    nir_io_add_const_offset_to_base(nir, nir_var_shader_out);
491 
492    nir_foreach_function(function, nir) {
493       if (function->impl) {
494          nir_builder b;
495          nir_builder_init(&b, function->impl);
496          nir_foreach_block(block, function->impl) {
497             remap_patch_urb_offsets(block, &b, vue_map, tes_primitive_mode);
498          }
499       }
500    }
501 }
502 
503 void
brw_nir_lower_fs_outputs(nir_shader * nir)504 brw_nir_lower_fs_outputs(nir_shader *nir)
505 {
506    nir_foreach_shader_out_variable(var, nir) {
507       var->data.driver_location =
508          SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) |
509          SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION);
510    }
511 
512    nir_lower_io(nir, nir_var_shader_out, type_size_dvec4, 0);
513 }
514 
515 #define OPT(pass, ...) ({                                  \
516    bool this_progress = false;                             \
517    NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__);      \
518    if (this_progress)                                      \
519       progress = true;                                     \
520    this_progress;                                          \
521 })
522 
523 void
brw_nir_optimize(nir_shader * nir,const struct brw_compiler * compiler,bool is_scalar,bool allow_copies)524 brw_nir_optimize(nir_shader *nir, const struct brw_compiler *compiler,
525                  bool is_scalar, bool allow_copies)
526 {
527    bool progress;
528    unsigned lower_flrp =
529       (nir->options->lower_flrp16 ? 16 : 0) |
530       (nir->options->lower_flrp32 ? 32 : 0) |
531       (nir->options->lower_flrp64 ? 64 : 0);
532 
533    do {
534       progress = false;
535       OPT(nir_split_array_vars, nir_var_function_temp);
536       OPT(nir_shrink_vec_array_vars, nir_var_function_temp);
537       OPT(nir_opt_deref);
538       OPT(nir_lower_vars_to_ssa);
539       if (allow_copies) {
540          /* Only run this pass in the first call to brw_nir_optimize.  Later
541           * calls assume that we've lowered away any copy_deref instructions
542           * and we don't want to introduce any more.
543           */
544          OPT(nir_opt_find_array_copies);
545       }
546       OPT(nir_opt_copy_prop_vars);
547       OPT(nir_opt_dead_write_vars);
548       OPT(nir_opt_combine_stores, nir_var_all);
549 
550       if (is_scalar) {
551          OPT(nir_lower_alu_to_scalar, NULL, NULL);
552       } else {
553          OPT(nir_opt_shrink_vectors, true);
554       }
555 
556       OPT(nir_copy_prop);
557 
558       if (is_scalar) {
559          OPT(nir_lower_phis_to_scalar, false);
560       }
561 
562       OPT(nir_copy_prop);
563       OPT(nir_opt_dce);
564       OPT(nir_opt_cse);
565       OPT(nir_opt_combine_stores, nir_var_all);
566 
567       /* Passing 0 to the peephole select pass causes it to convert
568        * if-statements that contain only move instructions in the branches
569        * regardless of the count.
570        *
571        * Passing 1 to the peephole select pass causes it to convert
572        * if-statements that contain at most a single ALU instruction (total)
573        * in both branches.  Before Gfx6, some math instructions were
574        * prohibitively expensive and the results of compare operations need an
575        * extra resolve step.  For these reasons, this pass is more harmful
576        * than good on those platforms.
577        *
578        * For indirect loads of uniforms (push constants), we assume that array
579        * indices will nearly always be in bounds and the cost of the load is
580        * low.  Therefore there shouldn't be a performance benefit to avoid it.
581        * However, in vec4 tessellation shaders, these loads operate by
582        * actually pulling from memory.
583        */
584       const bool is_vec4_tessellation = !is_scalar &&
585          (nir->info.stage == MESA_SHADER_TESS_CTRL ||
586           nir->info.stage == MESA_SHADER_TESS_EVAL);
587       OPT(nir_opt_peephole_select, 0, !is_vec4_tessellation, false);
588       OPT(nir_opt_peephole_select, 8, !is_vec4_tessellation,
589           compiler->devinfo->ver >= 6);
590 
591       OPT(nir_opt_intrinsics);
592       OPT(nir_opt_idiv_const, 32);
593       OPT(nir_opt_algebraic);
594       OPT(nir_opt_constant_folding);
595 
596       if (lower_flrp != 0) {
597          if (OPT(nir_lower_flrp,
598                  lower_flrp,
599                  false /* always_precise */)) {
600             OPT(nir_opt_constant_folding);
601          }
602 
603          /* Nothing should rematerialize any flrps, so we only need to do this
604           * lowering once.
605           */
606          lower_flrp = 0;
607       }
608 
609       OPT(nir_opt_dead_cf);
610       if (OPT(nir_opt_trivial_continues)) {
611          /* If nir_opt_trivial_continues makes progress, then we need to clean
612           * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
613           * to make progress.
614           */
615          OPT(nir_copy_prop);
616          OPT(nir_opt_dce);
617       }
618       OPT(nir_opt_if, false);
619       OPT(nir_opt_conditional_discard);
620       if (nir->options->max_unroll_iterations != 0) {
621          OPT(nir_opt_loop_unroll);
622       }
623       OPT(nir_opt_remove_phis);
624       OPT(nir_opt_gcm, false);
625       OPT(nir_opt_undef);
626       OPT(nir_lower_pack);
627    } while (progress);
628 
629    /* Workaround Gfxbench unused local sampler variable which will trigger an
630     * assert in the opt_large_constants pass.
631     */
632    OPT(nir_remove_dead_variables, nir_var_function_temp, NULL);
633 }
634 
635 static unsigned
lower_bit_size_callback(const nir_instr * instr,UNUSED void * data)636 lower_bit_size_callback(const nir_instr *instr, UNUSED void *data)
637 {
638    const struct brw_compiler *compiler = (const struct brw_compiler *) data;
639    const struct intel_device_info *devinfo = compiler->devinfo;
640 
641    switch (instr->type) {
642    case nir_instr_type_alu: {
643       nir_alu_instr *alu = nir_instr_as_alu(instr);
644       assert(alu->dest.dest.is_ssa);
645       if (alu->dest.dest.ssa.bit_size >= 32)
646          return 0;
647 
648       /* Note: nir_op_iabs and nir_op_ineg are not lowered here because the
649        * 8-bit ABS or NEG instruction should eventually get copy propagated
650        * into the MOV that does the type conversion.  This results in far
651        * fewer MOV instructions.
652        */
653       switch (alu->op) {
654       case nir_op_idiv:
655       case nir_op_imod:
656       case nir_op_irem:
657       case nir_op_udiv:
658       case nir_op_umod:
659       case nir_op_fceil:
660       case nir_op_ffloor:
661       case nir_op_ffract:
662       case nir_op_fround_even:
663       case nir_op_ftrunc:
664          return 32;
665       case nir_op_frcp:
666       case nir_op_frsq:
667       case nir_op_fsqrt:
668       case nir_op_fpow:
669       case nir_op_fexp2:
670       case nir_op_flog2:
671       case nir_op_fsin:
672       case nir_op_fcos:
673          return devinfo->ver < 9 ? 32 : 0;
674       case nir_op_isign:
675          assert(!"Should have been lowered by nir_opt_algebraic.");
676          return 0;
677       default:
678          if (nir_op_infos[alu->op].num_inputs >= 2 &&
679              alu->dest.dest.ssa.bit_size == 8)
680             return 16;
681 
682          if (nir_alu_instr_is_comparison(alu) &&
683              alu->src[0].src.ssa->bit_size == 8)
684             return 16;
685 
686          return 0;
687       }
688       break;
689    }
690 
691    case nir_instr_type_intrinsic: {
692       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
693       switch (intrin->intrinsic) {
694       case nir_intrinsic_read_invocation:
695       case nir_intrinsic_read_first_invocation:
696       case nir_intrinsic_vote_feq:
697       case nir_intrinsic_vote_ieq:
698       case nir_intrinsic_shuffle:
699       case nir_intrinsic_shuffle_xor:
700       case nir_intrinsic_shuffle_up:
701       case nir_intrinsic_shuffle_down:
702       case nir_intrinsic_quad_broadcast:
703       case nir_intrinsic_quad_swap_horizontal:
704       case nir_intrinsic_quad_swap_vertical:
705       case nir_intrinsic_quad_swap_diagonal:
706          if (intrin->src[0].ssa->bit_size == 8)
707             return 16;
708          return 0;
709 
710       case nir_intrinsic_reduce:
711       case nir_intrinsic_inclusive_scan:
712       case nir_intrinsic_exclusive_scan:
713          /* There are a couple of register region issues that make things
714           * complicated for 8-bit types:
715           *
716           *    1. Only raw moves are allowed to write to a packed 8-bit
717           *       destination.
718           *    2. If we use a strided destination, the efficient way to do
719           *       scan operations ends up using strides that are too big to
720           *       encode in an instruction.
721           *
722           * To get around these issues, we just do all 8-bit scan operations
723           * in 16 bits.  It's actually fewer instructions than what we'd have
724           * to do if we were trying to do it in native 8-bit types and the
725           * results are the same once we truncate to 8 bits at the end.
726           */
727          if (intrin->dest.ssa.bit_size == 8)
728             return 16;
729          return 0;
730 
731       default:
732          return 0;
733       }
734       break;
735    }
736 
737    case nir_instr_type_phi: {
738       nir_phi_instr *phi = nir_instr_as_phi(instr);
739       if (phi->dest.ssa.bit_size == 8)
740          return 16;
741       return 0;
742    }
743 
744    default:
745       return 0;
746    }
747 }
748 
749 /* Does some simple lowering and runs the standard suite of optimizations
750  *
751  * This is intended to be called more-or-less directly after you get the
752  * shader out of GLSL or some other source.  While it is geared towards i965,
753  * it is not at all generator-specific except for the is_scalar flag.  Even
754  * there, it is safe to call with is_scalar = false for a shader that is
755  * intended for the FS backend as long as nir_optimize is called again with
756  * is_scalar = true to scalarize everything prior to code gen.
757  */
758 void
brw_preprocess_nir(const struct brw_compiler * compiler,nir_shader * nir,const nir_shader * softfp64)759 brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir,
760                    const nir_shader *softfp64)
761 {
762    const struct intel_device_info *devinfo = compiler->devinfo;
763    UNUSED bool progress; /* Written by OPT */
764 
765    const bool is_scalar = compiler->scalar_stage[nir->info.stage];
766 
767    nir_validate_ssa_dominance(nir, "before brw_preprocess_nir");
768 
769    if (is_scalar) {
770       OPT(nir_lower_alu_to_scalar, NULL, NULL);
771    }
772 
773    if (nir->info.stage == MESA_SHADER_GEOMETRY)
774       OPT(nir_lower_gs_intrinsics, 0);
775 
776    /* See also brw_nir_trig_workarounds.py */
777    if (compiler->precise_trig &&
778        !(devinfo->ver >= 10 || devinfo->is_kabylake))
779       OPT(brw_nir_apply_trig_workarounds);
780 
781    if (devinfo->ver >= 12)
782       OPT(brw_nir_clamp_image_1d_2d_array_sizes);
783 
784    const nir_lower_tex_options tex_options = {
785       .lower_txp = ~0,
786       .lower_txf_offset = true,
787       .lower_rect_offset = true,
788       .lower_txd_cube_map = true,
789       .lower_txd_3d = devinfo->verx10 >= 125,
790       .lower_txb_shadow_clamp = true,
791       .lower_txd_shadow_clamp = true,
792       .lower_txd_offset_clamp = true,
793       .lower_tg4_offsets = true,
794       .lower_txs_lod = true, /* Wa_14012320009 */
795    };
796 
797    OPT(nir_lower_tex, &tex_options);
798    OPT(nir_normalize_cubemap_coords);
799 
800    OPT(nir_lower_global_vars_to_local);
801 
802    OPT(nir_split_var_copies);
803    OPT(nir_split_struct_vars, nir_var_function_temp);
804 
805    brw_nir_optimize(nir, compiler, is_scalar, true);
806 
807    OPT(nir_lower_doubles, softfp64, nir->options->lower_doubles_options);
808    OPT(nir_lower_int64);
809 
810    OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
811 
812    if (is_scalar) {
813       OPT(nir_lower_load_const_to_scalar);
814    }
815 
816    /* Lower a bunch of stuff */
817    OPT(nir_lower_var_copies);
818 
819    /* This needs to be run after the first optimization pass but before we
820     * lower indirect derefs away
821     */
822    if (compiler->supports_shader_constants) {
823       OPT(nir_opt_large_constants, NULL, 32);
824    }
825 
826    OPT(nir_lower_system_values);
827    OPT(nir_lower_compute_system_values, NULL);
828 
829    const nir_lower_subgroups_options subgroups_options = {
830       .ballot_bit_size = 32,
831       .ballot_components = 1,
832       .lower_to_scalar = true,
833       .lower_vote_trivial = !is_scalar,
834       .lower_shuffle = true,
835       .lower_quad_broadcast_dynamic = true,
836       .lower_elect = true,
837    };
838    OPT(nir_lower_subgroups, &subgroups_options);
839 
840    OPT(nir_lower_clip_cull_distance_arrays);
841 
842    nir_variable_mode indirect_mask =
843       brw_nir_no_indirect_mask(compiler, nir->info.stage);
844    OPT(nir_lower_indirect_derefs, indirect_mask, UINT32_MAX);
845 
846    /* Even in cases where we can handle indirect temporaries via scratch, we
847     * it can still be expensive.  Lower indirects on small arrays to
848     * conditional load/stores.
849     *
850     * The threshold of 16 was chosen semi-arbitrarily.  The idea is that an
851     * indirect on an array of 16 elements is about 30 instructions at which
852     * point, you may be better off doing a send.  With a SIMD8 program, 16
853     * floats is 1/8 of the entire register file.  Any array larger than that
854     * is likely to cause pressure issues.  Also, this value is sufficiently
855     * high that the benchmarks known to suffer from large temporary array
856     * issues are helped but nothing else in shader-db is hurt except for maybe
857     * that one kerbal space program shader.
858     */
859    if (is_scalar && !(indirect_mask & nir_var_function_temp))
860       OPT(nir_lower_indirect_derefs, nir_var_function_temp, 16);
861 
862    /* Lower array derefs of vectors for SSBO and UBO loads.  For both UBOs and
863     * SSBOs, our back-end is capable of loading an entire vec4 at a time and
864     * we would like to take advantage of that whenever possible regardless of
865     * whether or not the app gives us full loads.  This should allow the
866     * optimizer to combine UBO and SSBO load operations and save us some send
867     * messages.
868     */
869    OPT(nir_lower_array_deref_of_vec,
870        nir_var_mem_ubo | nir_var_mem_ssbo,
871        nir_lower_direct_array_deref_of_vec_load);
872 
873    /* Get rid of split copies */
874    brw_nir_optimize(nir, compiler, is_scalar, false);
875 }
876 
877 void
brw_nir_link_shaders(const struct brw_compiler * compiler,nir_shader * producer,nir_shader * consumer)878 brw_nir_link_shaders(const struct brw_compiler *compiler,
879                      nir_shader *producer, nir_shader *consumer)
880 {
881    nir_lower_io_arrays_to_elements(producer, consumer);
882    nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
883    nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
884 
885    const bool p_is_scalar = compiler->scalar_stage[producer->info.stage];
886    const bool c_is_scalar = compiler->scalar_stage[consumer->info.stage];
887 
888    if (p_is_scalar && c_is_scalar) {
889       NIR_PASS_V(producer, nir_lower_io_to_scalar_early, nir_var_shader_out);
890       NIR_PASS_V(consumer, nir_lower_io_to_scalar_early, nir_var_shader_in);
891       brw_nir_optimize(producer, compiler, p_is_scalar, false);
892       brw_nir_optimize(consumer, compiler, c_is_scalar, false);
893    }
894 
895    if (nir_link_opt_varyings(producer, consumer))
896       brw_nir_optimize(consumer, compiler, c_is_scalar, false);
897 
898    NIR_PASS_V(producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
899    NIR_PASS_V(consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
900 
901    if (nir_remove_unused_varyings(producer, consumer)) {
902       NIR_PASS_V(producer, nir_lower_global_vars_to_local);
903       NIR_PASS_V(consumer, nir_lower_global_vars_to_local);
904 
905       /* The backend might not be able to handle indirects on
906        * temporaries so we need to lower indirects on any of the
907        * varyings we have demoted here.
908        */
909       NIR_PASS_V(producer, nir_lower_indirect_derefs,
910                  brw_nir_no_indirect_mask(compiler, producer->info.stage),
911                  UINT32_MAX);
912       NIR_PASS_V(consumer, nir_lower_indirect_derefs,
913                  brw_nir_no_indirect_mask(compiler, consumer->info.stage),
914                  UINT32_MAX);
915 
916       brw_nir_optimize(producer, compiler, p_is_scalar, false);
917       brw_nir_optimize(consumer, compiler, c_is_scalar, false);
918    }
919 
920    NIR_PASS_V(producer, nir_lower_io_to_vector, nir_var_shader_out);
921    NIR_PASS_V(producer, nir_opt_combine_stores, nir_var_shader_out);
922    NIR_PASS_V(consumer, nir_lower_io_to_vector, nir_var_shader_in);
923 
924    if (producer->info.stage != MESA_SHADER_TESS_CTRL) {
925       /* Calling lower_io_to_vector creates output variable writes with
926        * write-masks.  On non-TCS outputs, the back-end can't handle it and we
927        * need to call nir_lower_io_to_temporaries to get rid of them.  This,
928        * in turn, creates temporary variables and extra copy_deref intrinsics
929        * that we need to clean up.
930        */
931       NIR_PASS_V(producer, nir_lower_io_to_temporaries,
932                  nir_shader_get_entrypoint(producer), true, false);
933       NIR_PASS_V(producer, nir_lower_global_vars_to_local);
934       NIR_PASS_V(producer, nir_split_var_copies);
935       NIR_PASS_V(producer, nir_lower_var_copies);
936    }
937 }
938 
939 static bool
brw_nir_should_vectorize_mem(unsigned align_mul,unsigned align_offset,unsigned bit_size,unsigned num_components,nir_intrinsic_instr * low,nir_intrinsic_instr * high,void * data)940 brw_nir_should_vectorize_mem(unsigned align_mul, unsigned align_offset,
941                              unsigned bit_size,
942                              unsigned num_components,
943                              nir_intrinsic_instr *low,
944                              nir_intrinsic_instr *high,
945                              void *data)
946 {
947    /* Don't combine things to generate 64-bit loads/stores.  We have to split
948     * those back into 32-bit ones anyway and UBO loads aren't split in NIR so
949     * we don't want to make a mess for the back-end.
950     */
951    if (bit_size > 32)
952       return false;
953 
954    /* We can handle at most a vec4 right now.  Anything bigger would get
955     * immediately split by brw_nir_lower_mem_access_bit_sizes anyway.
956     */
957    if (num_components > 4)
958       return false;
959 
960 
961    uint32_t align;
962    if (align_offset)
963       align = 1 << (ffs(align_offset) - 1);
964    else
965       align = align_mul;
966 
967    if (align < bit_size / 8)
968       return false;
969 
970    return true;
971 }
972 
973 static
combine_all_barriers(nir_intrinsic_instr * a,nir_intrinsic_instr * b,void * data)974 bool combine_all_barriers(nir_intrinsic_instr *a,
975                           nir_intrinsic_instr *b,
976                           void *data)
977 {
978    /* Translation to backend IR will get rid of modes we don't care about, so
979     * no harm in always combining them.
980     *
981     * TODO: While HW has only ACQUIRE|RELEASE fences, we could improve the
982     * scheduling so that it can take advantage of the different semantics.
983     */
984    nir_intrinsic_set_memory_modes(a, nir_intrinsic_memory_modes(a) |
985                                      nir_intrinsic_memory_modes(b));
986    nir_intrinsic_set_memory_semantics(a, nir_intrinsic_memory_semantics(a) |
987                                          nir_intrinsic_memory_semantics(b));
988    nir_intrinsic_set_memory_scope(a, MAX2(nir_intrinsic_memory_scope(a),
989                                           nir_intrinsic_memory_scope(b)));
990    return true;
991 }
992 
993 static void
brw_vectorize_lower_mem_access(nir_shader * nir,const struct brw_compiler * compiler,bool is_scalar,bool robust_buffer_access)994 brw_vectorize_lower_mem_access(nir_shader *nir,
995                                const struct brw_compiler *compiler,
996                                bool is_scalar,
997                                bool robust_buffer_access)
998 {
999    const struct intel_device_info *devinfo = compiler->devinfo;
1000    bool progress = false;
1001 
1002    if (is_scalar) {
1003       nir_load_store_vectorize_options options = {
1004          .modes = nir_var_mem_ubo | nir_var_mem_ssbo |
1005                   nir_var_mem_global | nir_var_mem_shared,
1006          .callback = brw_nir_should_vectorize_mem,
1007          .robust_modes = (nir_variable_mode)0,
1008       };
1009 
1010       if (robust_buffer_access) {
1011          options.robust_modes = nir_var_mem_ubo | nir_var_mem_ssbo |
1012                                 nir_var_mem_global;
1013       }
1014 
1015       OPT(nir_opt_load_store_vectorize, &options);
1016    }
1017 
1018    OPT(brw_nir_lower_mem_access_bit_sizes, devinfo);
1019 
1020    while (progress) {
1021       progress = false;
1022 
1023       OPT(nir_lower_pack);
1024       OPT(nir_copy_prop);
1025       OPT(nir_opt_dce);
1026       OPT(nir_opt_cse);
1027       OPT(nir_opt_algebraic);
1028       OPT(nir_opt_constant_folding);
1029    }
1030 }
1031 
1032 static bool
nir_shader_has_local_variables(const nir_shader * nir)1033 nir_shader_has_local_variables(const nir_shader *nir)
1034 {
1035    nir_foreach_function(func, nir) {
1036       if (func->impl && !exec_list_is_empty(&func->impl->locals))
1037          return true;
1038    }
1039 
1040    return false;
1041 }
1042 
1043 /* Prepare the given shader for codegen
1044  *
1045  * This function is intended to be called right before going into the actual
1046  * backend and is highly backend-specific.  Also, once this function has been
1047  * called on a shader, it will no longer be in SSA form so most optimizations
1048  * will not work.
1049  */
1050 void
brw_postprocess_nir(nir_shader * nir,const struct brw_compiler * compiler,bool is_scalar,bool debug_enabled,bool robust_buffer_access)1051 brw_postprocess_nir(nir_shader *nir, const struct brw_compiler *compiler,
1052                     bool is_scalar, bool debug_enabled,
1053                     bool robust_buffer_access)
1054 {
1055    const struct intel_device_info *devinfo = compiler->devinfo;
1056 
1057    UNUSED bool progress; /* Written by OPT */
1058 
1059    OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
1060 
1061    OPT(brw_nir_lower_scoped_barriers);
1062    OPT(nir_opt_combine_memory_barriers, combine_all_barriers, NULL);
1063 
1064    do {
1065       progress = false;
1066       OPT(nir_opt_algebraic_before_ffma);
1067    } while (progress);
1068 
1069    if (devinfo->verx10 >= 125) {
1070       const nir_lower_idiv_options options = {
1071          .imprecise_32bit_lowering = false,
1072          .allow_fp16 = false
1073       };
1074       OPT(nir_lower_idiv, &options);
1075    }
1076 
1077    brw_nir_optimize(nir, compiler, is_scalar, false);
1078 
1079    if (is_scalar && nir_shader_has_local_variables(nir)) {
1080       OPT(nir_lower_vars_to_explicit_types, nir_var_function_temp,
1081           glsl_get_natural_size_align_bytes);
1082       OPT(nir_lower_explicit_io, nir_var_function_temp,
1083           nir_address_format_32bit_offset);
1084       brw_nir_optimize(nir, compiler, is_scalar, false);
1085    }
1086 
1087    brw_vectorize_lower_mem_access(nir, compiler, is_scalar,
1088                                   robust_buffer_access);
1089 
1090    if (OPT(nir_lower_int64))
1091       brw_nir_optimize(nir, compiler, is_scalar, false);
1092 
1093    if (devinfo->ver >= 6) {
1094       /* Try and fuse multiply-adds */
1095       OPT(brw_nir_opt_peephole_ffma);
1096    }
1097 
1098    if (OPT(nir_opt_comparison_pre)) {
1099       OPT(nir_copy_prop);
1100       OPT(nir_opt_dce);
1101       OPT(nir_opt_cse);
1102 
1103       /* Do the select peepehole again.  nir_opt_comparison_pre (combined with
1104        * the other optimization passes) will have removed at least one
1105        * instruction from one of the branches of the if-statement, so now it
1106        * might be under the threshold of conversion to bcsel.
1107        *
1108        * See brw_nir_optimize for the explanation of is_vec4_tessellation.
1109        */
1110       const bool is_vec4_tessellation = !is_scalar &&
1111          (nir->info.stage == MESA_SHADER_TESS_CTRL ||
1112           nir->info.stage == MESA_SHADER_TESS_EVAL);
1113       OPT(nir_opt_peephole_select, 0, is_vec4_tessellation, false);
1114       OPT(nir_opt_peephole_select, 1, is_vec4_tessellation,
1115           compiler->devinfo->ver >= 6);
1116    }
1117 
1118    do {
1119       progress = false;
1120       if (OPT(nir_opt_algebraic_late)) {
1121          /* At this late stage, anything that makes more constants will wreak
1122           * havok on the vec4 backend.  The handling of constants in the vec4
1123           * backend is not good.
1124           */
1125          if (is_scalar)
1126             OPT(nir_opt_constant_folding);
1127 
1128          OPT(nir_copy_prop);
1129          OPT(nir_opt_dce);
1130          OPT(nir_opt_cse);
1131       }
1132    } while (progress);
1133 
1134 
1135    OPT(brw_nir_lower_conversions);
1136 
1137    if (is_scalar)
1138       OPT(nir_lower_alu_to_scalar, NULL, NULL);
1139 
1140    while (OPT(nir_opt_algebraic_distribute_src_mods)) {
1141       OPT(nir_copy_prop);
1142       OPT(nir_opt_dce);
1143       OPT(nir_opt_cse);
1144    }
1145 
1146    OPT(nir_copy_prop);
1147    OPT(nir_opt_dce);
1148    OPT(nir_opt_move, nir_move_comparisons);
1149    OPT(nir_opt_dead_cf);
1150 
1151    OPT(nir_lower_bool_to_int32);
1152    OPT(nir_copy_prop);
1153    OPT(nir_opt_dce);
1154 
1155    OPT(nir_lower_locals_to_regs);
1156 
1157    if (unlikely(debug_enabled)) {
1158       /* Re-index SSA defs so we print more sensible numbers. */
1159       nir_foreach_function(function, nir) {
1160          if (function->impl)
1161             nir_index_ssa_defs(function->impl);
1162       }
1163 
1164       fprintf(stderr, "NIR (SSA form) for %s shader:\n",
1165               _mesa_shader_stage_to_string(nir->info.stage));
1166       nir_print_shader(nir, stderr);
1167    }
1168 
1169    nir_validate_ssa_dominance(nir, "before nir_convert_from_ssa");
1170 
1171    OPT(nir_convert_from_ssa, true);
1172 
1173    if (!is_scalar) {
1174       OPT(nir_move_vec_src_uses_to_dest);
1175       OPT(nir_lower_vec_to_movs, NULL, NULL);
1176    }
1177 
1178    OPT(nir_opt_dce);
1179 
1180    if (OPT(nir_opt_rematerialize_compares))
1181       OPT(nir_opt_dce);
1182 
1183    /* This is the last pass we run before we start emitting stuff.  It
1184     * determines when we need to insert boolean resolves on Gen <= 5.  We
1185     * run it last because it stashes data in instr->pass_flags and we don't
1186     * want that to be squashed by other NIR passes.
1187     */
1188    if (devinfo->ver <= 5)
1189       brw_nir_analyze_boolean_resolves(nir);
1190 
1191    nir_sweep(nir);
1192 
1193    if (unlikely(debug_enabled)) {
1194       fprintf(stderr, "NIR (final form) for %s shader:\n",
1195               _mesa_shader_stage_to_string(nir->info.stage));
1196       nir_print_shader(nir, stderr);
1197    }
1198 }
1199 
1200 static bool
brw_nir_apply_sampler_key(nir_shader * nir,const struct brw_compiler * compiler,const struct brw_sampler_prog_key_data * key_tex)1201 brw_nir_apply_sampler_key(nir_shader *nir,
1202                           const struct brw_compiler *compiler,
1203                           const struct brw_sampler_prog_key_data *key_tex)
1204 {
1205    const struct intel_device_info *devinfo = compiler->devinfo;
1206    nir_lower_tex_options tex_options = {
1207       .lower_txd_clamp_bindless_sampler = true,
1208       .lower_txd_clamp_if_sampler_index_not_lt_16 = true,
1209    };
1210 
1211    /* Iron Lake and prior require lowering of all rectangle textures */
1212    if (devinfo->ver < 6)
1213       tex_options.lower_rect = true;
1214 
1215    /* Prior to Broadwell, our hardware can't actually do GL_CLAMP */
1216    if (devinfo->ver < 8) {
1217       tex_options.saturate_s = key_tex->gl_clamp_mask[0];
1218       tex_options.saturate_t = key_tex->gl_clamp_mask[1];
1219       tex_options.saturate_r = key_tex->gl_clamp_mask[2];
1220    }
1221 
1222    /* Prior to Haswell, we have to fake texture swizzle */
1223    for (unsigned s = 0; s < MAX_SAMPLERS; s++) {
1224       if (key_tex->swizzles[s] == SWIZZLE_NOOP)
1225          continue;
1226 
1227       tex_options.swizzle_result |= BITFIELD_BIT(s);
1228       for (unsigned c = 0; c < 4; c++)
1229          tex_options.swizzles[s][c] = GET_SWZ(key_tex->swizzles[s], c);
1230    }
1231 
1232    /* Prior to Haswell, we have to lower gradients on shadow samplers */
1233    tex_options.lower_txd_shadow = devinfo->verx10 <= 70;
1234 
1235    tex_options.lower_y_uv_external = key_tex->y_uv_image_mask;
1236    tex_options.lower_y_u_v_external = key_tex->y_u_v_image_mask;
1237    tex_options.lower_yx_xuxv_external = key_tex->yx_xuxv_image_mask;
1238    tex_options.lower_xy_uxvx_external = key_tex->xy_uxvx_image_mask;
1239    tex_options.lower_ayuv_external = key_tex->ayuv_image_mask;
1240    tex_options.lower_xyuv_external = key_tex->xyuv_image_mask;
1241    tex_options.bt709_external = key_tex->bt709_mask;
1242    tex_options.bt2020_external = key_tex->bt2020_mask;
1243 
1244    /* Setup array of scaling factors for each texture. */
1245    memcpy(&tex_options.scale_factors, &key_tex->scale_factors,
1246           sizeof(tex_options.scale_factors));
1247 
1248    return nir_lower_tex(nir, &tex_options);
1249 }
1250 
1251 static unsigned
get_subgroup_size(gl_shader_stage stage,const struct brw_base_prog_key * key,unsigned max_subgroup_size)1252 get_subgroup_size(gl_shader_stage stage,
1253                   const struct brw_base_prog_key *key,
1254                   unsigned max_subgroup_size)
1255 {
1256    switch (key->subgroup_size_type) {
1257    case BRW_SUBGROUP_SIZE_API_CONSTANT:
1258       /* We have to use the global constant size. */
1259       return BRW_SUBGROUP_SIZE;
1260 
1261    case BRW_SUBGROUP_SIZE_UNIFORM:
1262       /* It has to be uniform across all invocations but can vary per stage
1263        * if we want.  This gives us a bit more freedom.
1264        *
1265        * For compute, brw_nir_apply_key is called per-dispatch-width so this
1266        * is the actual subgroup size and not a maximum.  However, we only
1267        * invoke one size of any given compute shader so it's still guaranteed
1268        * to be uniform across invocations.
1269        */
1270       return max_subgroup_size;
1271 
1272    case BRW_SUBGROUP_SIZE_VARYING:
1273       /* The subgroup size is allowed to be fully varying.  For geometry
1274        * stages, we know it's always 8 which is max_subgroup_size so we can
1275        * return that.  For compute, brw_nir_apply_key is called once per
1276        * dispatch-width so max_subgroup_size is the real subgroup size.
1277        *
1278        * For fragment, we return 0 and let it fall through to the back-end
1279        * compiler.  This means we can't optimize based on subgroup size but
1280        * that's a risk the client took when it asked for a varying subgroup
1281        * size.
1282        */
1283       return stage == MESA_SHADER_FRAGMENT ? 0 : max_subgroup_size;
1284 
1285    case BRW_SUBGROUP_SIZE_REQUIRE_8:
1286    case BRW_SUBGROUP_SIZE_REQUIRE_16:
1287    case BRW_SUBGROUP_SIZE_REQUIRE_32:
1288       assert(stage == MESA_SHADER_COMPUTE);
1289       /* These enum values are expressly chosen to be equal to the subgroup
1290        * size that they require.
1291        */
1292       return key->subgroup_size_type;
1293    }
1294 
1295    unreachable("Invalid subgroup size type");
1296 }
1297 
1298 void
brw_nir_apply_key(nir_shader * nir,const struct brw_compiler * compiler,const struct brw_base_prog_key * key,unsigned max_subgroup_size,bool is_scalar)1299 brw_nir_apply_key(nir_shader *nir,
1300                   const struct brw_compiler *compiler,
1301                   const struct brw_base_prog_key *key,
1302                   unsigned max_subgroup_size,
1303                   bool is_scalar)
1304 {
1305    bool progress = false;
1306 
1307    OPT(brw_nir_apply_sampler_key, compiler, &key->tex);
1308 
1309    const nir_lower_subgroups_options subgroups_options = {
1310       .subgroup_size = get_subgroup_size(nir->info.stage, key,
1311                                          max_subgroup_size),
1312       .ballot_bit_size = 32,
1313       .ballot_components = 1,
1314       .lower_subgroup_masks = true,
1315    };
1316    OPT(nir_lower_subgroups, &subgroups_options);
1317 
1318    if (progress)
1319       brw_nir_optimize(nir, compiler, is_scalar, false);
1320 }
1321 
1322 enum brw_conditional_mod
brw_cmod_for_nir_comparison(nir_op op)1323 brw_cmod_for_nir_comparison(nir_op op)
1324 {
1325    switch (op) {
1326    case nir_op_flt:
1327    case nir_op_flt32:
1328    case nir_op_ilt:
1329    case nir_op_ilt32:
1330    case nir_op_ult:
1331    case nir_op_ult32:
1332       return BRW_CONDITIONAL_L;
1333 
1334    case nir_op_fge:
1335    case nir_op_fge32:
1336    case nir_op_ige:
1337    case nir_op_ige32:
1338    case nir_op_uge:
1339    case nir_op_uge32:
1340       return BRW_CONDITIONAL_GE;
1341 
1342    case nir_op_feq:
1343    case nir_op_feq32:
1344    case nir_op_ieq:
1345    case nir_op_ieq32:
1346    case nir_op_b32all_fequal2:
1347    case nir_op_b32all_iequal2:
1348    case nir_op_b32all_fequal3:
1349    case nir_op_b32all_iequal3:
1350    case nir_op_b32all_fequal4:
1351    case nir_op_b32all_iequal4:
1352       return BRW_CONDITIONAL_Z;
1353 
1354    case nir_op_fneu:
1355    case nir_op_fneu32:
1356    case nir_op_ine:
1357    case nir_op_ine32:
1358    case nir_op_b32any_fnequal2:
1359    case nir_op_b32any_inequal2:
1360    case nir_op_b32any_fnequal3:
1361    case nir_op_b32any_inequal3:
1362    case nir_op_b32any_fnequal4:
1363    case nir_op_b32any_inequal4:
1364       return BRW_CONDITIONAL_NZ;
1365 
1366    default:
1367       unreachable("Unsupported NIR comparison op");
1368    }
1369 }
1370 
1371 uint32_t
brw_aop_for_nir_intrinsic(const nir_intrinsic_instr * atomic)1372 brw_aop_for_nir_intrinsic(const nir_intrinsic_instr *atomic)
1373 {
1374    switch (atomic->intrinsic) {
1375 #define AOP_CASE(atom) \
1376    case nir_intrinsic_image_atomic_##atom:            \
1377    case nir_intrinsic_bindless_image_atomic_##atom:   \
1378    case nir_intrinsic_ssbo_atomic_##atom:             \
1379    case nir_intrinsic_shared_atomic_##atom:           \
1380    case nir_intrinsic_global_atomic_##atom
1381 
1382    AOP_CASE(add): {
1383       unsigned src_idx;
1384       switch (atomic->intrinsic) {
1385       case nir_intrinsic_image_atomic_add:
1386       case nir_intrinsic_bindless_image_atomic_add:
1387          src_idx = 3;
1388          break;
1389       case nir_intrinsic_ssbo_atomic_add:
1390          src_idx = 2;
1391          break;
1392       case nir_intrinsic_shared_atomic_add:
1393       case nir_intrinsic_global_atomic_add:
1394          src_idx = 1;
1395          break;
1396       default:
1397          unreachable("Invalid add atomic opcode");
1398       }
1399 
1400       if (nir_src_is_const(atomic->src[src_idx])) {
1401          int64_t add_val = nir_src_as_int(atomic->src[src_idx]);
1402          if (add_val == 1)
1403             return BRW_AOP_INC;
1404          else if (add_val == -1)
1405             return BRW_AOP_DEC;
1406       }
1407       return BRW_AOP_ADD;
1408    }
1409 
1410    AOP_CASE(imin):         return BRW_AOP_IMIN;
1411    AOP_CASE(umin):         return BRW_AOP_UMIN;
1412    AOP_CASE(imax):         return BRW_AOP_IMAX;
1413    AOP_CASE(umax):         return BRW_AOP_UMAX;
1414    AOP_CASE(and):          return BRW_AOP_AND;
1415    AOP_CASE(or):           return BRW_AOP_OR;
1416    AOP_CASE(xor):          return BRW_AOP_XOR;
1417    AOP_CASE(exchange):     return BRW_AOP_MOV;
1418    AOP_CASE(comp_swap):    return BRW_AOP_CMPWR;
1419 
1420 #undef AOP_CASE
1421 #define AOP_CASE(atom) \
1422    case nir_intrinsic_ssbo_atomic_##atom:          \
1423    case nir_intrinsic_shared_atomic_##atom:        \
1424    case nir_intrinsic_global_atomic_##atom
1425 
1426    AOP_CASE(fmin):         return BRW_AOP_FMIN;
1427    AOP_CASE(fmax):         return BRW_AOP_FMAX;
1428    AOP_CASE(fcomp_swap):   return BRW_AOP_FCMPWR;
1429    AOP_CASE(fadd):         return BRW_AOP_FADD;
1430 
1431 #undef AOP_CASE
1432 
1433    default:
1434       unreachable("Unsupported NIR atomic intrinsic");
1435    }
1436 }
1437 
1438 enum brw_reg_type
brw_type_for_nir_type(const struct intel_device_info * devinfo,nir_alu_type type)1439 brw_type_for_nir_type(const struct intel_device_info *devinfo,
1440                       nir_alu_type type)
1441 {
1442    switch (type) {
1443    case nir_type_uint:
1444    case nir_type_uint32:
1445       return BRW_REGISTER_TYPE_UD;
1446    case nir_type_bool:
1447    case nir_type_int:
1448    case nir_type_bool32:
1449    case nir_type_int32:
1450       return BRW_REGISTER_TYPE_D;
1451    case nir_type_float:
1452    case nir_type_float32:
1453       return BRW_REGISTER_TYPE_F;
1454    case nir_type_float16:
1455       return BRW_REGISTER_TYPE_HF;
1456    case nir_type_float64:
1457       return BRW_REGISTER_TYPE_DF;
1458    case nir_type_int64:
1459       return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_Q;
1460    case nir_type_uint64:
1461       return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_UQ;
1462    case nir_type_int16:
1463       return BRW_REGISTER_TYPE_W;
1464    case nir_type_uint16:
1465       return BRW_REGISTER_TYPE_UW;
1466    case nir_type_int8:
1467       return BRW_REGISTER_TYPE_B;
1468    case nir_type_uint8:
1469       return BRW_REGISTER_TYPE_UB;
1470    default:
1471       unreachable("unknown type");
1472    }
1473 
1474    return BRW_REGISTER_TYPE_F;
1475 }
1476 
1477 nir_shader *
brw_nir_create_passthrough_tcs(void * mem_ctx,const struct brw_compiler * compiler,const nir_shader_compiler_options * options,const struct brw_tcs_prog_key * key)1478 brw_nir_create_passthrough_tcs(void *mem_ctx, const struct brw_compiler *compiler,
1479                                const nir_shader_compiler_options *options,
1480                                const struct brw_tcs_prog_key *key)
1481 {
1482    nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_TESS_CTRL,
1483                                                   options, "passthrough TCS");
1484    ralloc_steal(mem_ctx, b.shader);
1485    nir_shader *nir = b.shader;
1486    nir_variable *var;
1487    nir_ssa_def *load;
1488    nir_ssa_def *zero = nir_imm_int(&b, 0);
1489    nir_ssa_def *invoc_id = nir_load_invocation_id(&b);
1490 
1491    nir->info.inputs_read = key->outputs_written &
1492       ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
1493    nir->info.outputs_written = key->outputs_written;
1494    nir->info.tess.tcs_vertices_out = key->input_vertices;
1495    nir->num_uniforms = 8 * sizeof(uint32_t);
1496 
1497    var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_0");
1498    var->data.location = 0;
1499    var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_1");
1500    var->data.location = 1;
1501 
1502    /* Write the patch URB header. */
1503    for (int i = 0; i <= 1; i++) {
1504       load = nir_load_uniform(&b, 4, 32, zero, .base = i * 4 * sizeof(uint32_t));
1505 
1506       nir_store_output(&b, load, zero,
1507                        .base = VARYING_SLOT_TESS_LEVEL_INNER - i,
1508                        .write_mask = WRITEMASK_XYZW);
1509    }
1510 
1511    /* Copy inputs to outputs. */
1512    uint64_t varyings = nir->info.inputs_read;
1513 
1514    while (varyings != 0) {
1515       const int varying = ffsll(varyings) - 1;
1516 
1517       load = nir_load_per_vertex_input(&b, 4, 32, invoc_id, zero, .base = varying);
1518 
1519       nir_store_per_vertex_output(&b, load, invoc_id, zero,
1520                                   .base = varying,
1521                                   .write_mask = WRITEMASK_XYZW);
1522 
1523       varyings &= ~BITFIELD64_BIT(varying);
1524    }
1525 
1526    nir_validate_shader(nir, "in brw_nir_create_passthrough_tcs");
1527 
1528    brw_preprocess_nir(compiler, nir, NULL);
1529 
1530    return nir;
1531 }
1532