1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct btrfs_end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 blk_status_t status;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
btrfs_end_io_wq_init(void)83 int __init btrfs_end_io_wq_init(void)
84 {
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
88 SLAB_MEM_SPREAD,
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93 }
94
btrfs_end_io_wq_exit(void)95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
111 struct async_submit_bio {
112 void *private_data;
113 struct bio *bio;
114 extent_submit_bio_start_t *submit_bio_start;
115 int mirror_num;
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
121 struct btrfs_work work;
122 blk_status_t status;
123 };
124
125 /*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
135 *
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
139 *
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
143 *
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
147 */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 # error
151 # endif
152
153 static struct btrfs_lockdep_keyset {
154 u64 id; /* root objectid */
155 const char *name_stem; /* lock name stem */
156 char names[BTRFS_MAX_LEVEL + 1][20];
157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171 { .id = 0, .name_stem = "tree" },
172 };
173
btrfs_init_lockdep(void)174 void __init btrfs_init_lockdep(void)
175 {
176 int i, j;
177
178 /* initialize lockdep class names */
179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 snprintf(ks->names[j], sizeof(ks->names[j]),
184 "btrfs-%s-%02d", ks->name_stem, j);
185 }
186 }
187
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190 {
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207 * Compute the csum of a btree block and store the result to provided buffer.
208 */
csum_tree_block(struct extent_buffer * buf,u8 * result)209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211 struct btrfs_fs_info *fs_info = buf->fs_info;
212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214 char *kaddr;
215 int i;
216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
219 kaddr = page_address(buf->pages[0]);
220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 PAGE_SIZE - BTRFS_CSUM_SIZE);
222
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226 }
227 memset(result, 0, BTRFS_CSUM_SIZE);
228 crypto_shash_final(shash, result);
229 }
230
231 /*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
240 {
241 struct extent_state *cached_state = NULL;
242 int ret;
243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
248 if (atomic)
249 return -EAGAIN;
250
251 if (need_lock) {
252 btrfs_tree_read_lock(eb);
253 btrfs_set_lock_blocking_read(eb);
254 }
255
256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257 &cached_state);
258 if (extent_buffer_uptodate(eb) &&
259 btrfs_header_generation(eb) == parent_transid) {
260 ret = 0;
261 goto out;
262 }
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
265 eb->start,
266 parent_transid, btrfs_header_generation(eb));
267 ret = 1;
268
269 /*
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
272 * block that has been freed and re-allocated. So don't clear uptodate
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
276 */
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
279 out:
280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281 &cached_state);
282 if (need_lock)
283 btrfs_tree_read_unlock_blocking(eb);
284 return ret;
285 }
286
btrfs_supported_super_csum(u16 csum_type)287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289 switch (csum_type) {
290 case BTRFS_CSUM_TYPE_CRC32:
291 case BTRFS_CSUM_TYPE_XXHASH:
292 case BTRFS_CSUM_TYPE_SHA256:
293 case BTRFS_CSUM_TYPE_BLAKE2:
294 return true;
295 default:
296 return false;
297 }
298 }
299
300 /*
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
303 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 char *raw_disk_sb)
306 {
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
309 char result[BTRFS_CSUM_SIZE];
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312 shash->tfm = fs_info->csum_shash;
313
314 /*
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
318 */
319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321
322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323 return 1;
324
325 return 0;
326 }
327
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329 struct btrfs_key *first_key, u64 parent_transid)
330 {
331 struct btrfs_fs_info *fs_info = eb->fs_info;
332 int found_level;
333 struct btrfs_key found_key;
334 int ret;
335
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
340 btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
343 return -EIO;
344 }
345
346 if (!first_key)
347 return 0;
348
349 /*
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
354 */
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 return 0;
357
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
360 btrfs_err(fs_info,
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 eb->start);
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 return -EUCLEAN;
365 }
366
367 if (found_level)
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
369 else
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
373 if (ret) {
374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
376 btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
381 found_key.offset);
382 }
383 return ret;
384 }
385
386 /*
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
389 *
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
393 */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
397 {
398 struct btrfs_fs_info *fs_info = eb->fs_info;
399 struct extent_io_tree *io_tree;
400 int failed = 0;
401 int ret;
402 int num_copies = 0;
403 int mirror_num = 0;
404 int failed_mirror = 0;
405
406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407 while (1) {
408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410 if (!ret) {
411 if (verify_parent_transid(io_tree, eb,
412 parent_transid, 0))
413 ret = -EIO;
414 else if (btrfs_verify_level_key(eb, level,
415 first_key, parent_transid))
416 ret = -EUCLEAN;
417 else
418 break;
419 }
420
421 num_copies = btrfs_num_copies(fs_info,
422 eb->start, eb->len);
423 if (num_copies == 1)
424 break;
425
426 if (!failed_mirror) {
427 failed = 1;
428 failed_mirror = eb->read_mirror;
429 }
430
431 mirror_num++;
432 if (mirror_num == failed_mirror)
433 mirror_num++;
434
435 if (mirror_num > num_copies)
436 break;
437 }
438
439 if (failed && !ret && failed_mirror)
440 btrfs_repair_eb_io_failure(eb, failed_mirror);
441
442 return ret;
443 }
444
445 /*
446 * checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
448 */
449
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451 {
452 u64 start = page_offset(page);
453 u64 found_start;
454 u8 result[BTRFS_CSUM_SIZE];
455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456 struct extent_buffer *eb;
457 int ret;
458
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
461 return 0;
462
463 found_start = btrfs_header_bytenr(eb);
464 /*
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
467 */
468 if (WARN_ON(found_start != start))
469 return -EUCLEAN;
470 if (WARN_ON(!PageUptodate(page)))
471 return -EUCLEAN;
472
473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
476
477 csum_tree_block(eb, result);
478
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
481 else
482 ret = btrfs_check_leaf_full(eb);
483
484 if (ret < 0) {
485 btrfs_print_tree(eb, 0);
486 btrfs_err(fs_info,
487 "block=%llu write time tree block corruption detected",
488 eb->start);
489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490 return ret;
491 }
492 write_extent_buffer(eb, result, 0, csum_size);
493
494 return 0;
495 }
496
check_tree_block_fsid(struct extent_buffer * eb)497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499 struct btrfs_fs_info *fs_info = eb->fs_info;
500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501 u8 fsid[BTRFS_FSID_SIZE];
502 u8 *metadata_uuid;
503
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 BTRFS_FSID_SIZE);
506 /*
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
510 */
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
513 else
514 metadata_uuid = fs_devices->fsid;
515
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 return 0;
518
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 return 0;
522
523 return 1;
524 }
525
btrfs_validate_metadata_buffer(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 struct page *page, u64 start, u64 end,
528 int mirror)
529 {
530 u64 found_start;
531 int found_level;
532 struct extent_buffer *eb;
533 struct btrfs_fs_info *fs_info;
534 u16 csum_size;
535 int ret = 0;
536 u8 result[BTRFS_CSUM_SIZE];
537 int reads_done;
538
539 if (!page->private)
540 goto out;
541
542 eb = (struct extent_buffer *)page->private;
543 fs_info = eb->fs_info;
544 csum_size = btrfs_super_csum_size(fs_info->super_copy);
545
546 /* the pending IO might have been the only thing that kept this buffer
547 * in memory. Make sure we have a ref for all this other checks
548 */
549 atomic_inc(&eb->refs);
550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
552 if (!reads_done)
553 goto err;
554
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 ret = -EIO;
558 goto err;
559 }
560
561 found_start = btrfs_header_bytenr(eb);
562 if (found_start != eb->start) {
563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 eb->start, found_start);
565 ret = -EIO;
566 goto err;
567 }
568 if (check_tree_block_fsid(eb)) {
569 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570 eb->start);
571 ret = -EIO;
572 goto err;
573 }
574 found_level = btrfs_header_level(eb);
575 if (found_level >= BTRFS_MAX_LEVEL) {
576 btrfs_err(fs_info, "bad tree block level %d on %llu",
577 (int)btrfs_header_level(eb), eb->start);
578 ret = -EIO;
579 goto err;
580 }
581
582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583 eb, found_level);
584
585 csum_tree_block(eb, result);
586
587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588 u8 val[BTRFS_CSUM_SIZE] = { 0 };
589
590 read_extent_buffer(eb, &val, 0, csum_size);
591 btrfs_warn_rl(fs_info,
592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593 fs_info->sb->s_id, eb->start,
594 CSUM_FMT_VALUE(csum_size, val),
595 CSUM_FMT_VALUE(csum_size, result),
596 btrfs_header_level(eb));
597 ret = -EUCLEAN;
598 goto err;
599 }
600
601 /*
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
604 * return -EIO.
605 */
606 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 ret = -EIO;
609 }
610
611 if (found_level > 0 && btrfs_check_node(eb))
612 ret = -EIO;
613
614 if (!ret)
615 set_extent_buffer_uptodate(eb);
616 else
617 btrfs_err(fs_info,
618 "block=%llu read time tree block corruption detected",
619 eb->start);
620 err:
621 if (reads_done &&
622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623 btree_readahead_hook(eb, ret);
624
625 if (ret) {
626 /*
627 * our io error hook is going to dec the io pages
628 * again, we have to make sure it has something
629 * to decrement
630 */
631 atomic_inc(&eb->io_pages);
632 clear_extent_buffer_uptodate(eb);
633 }
634 free_extent_buffer(eb);
635 out:
636 return ret;
637 }
638
end_workqueue_bio(struct bio * bio)639 static void end_workqueue_bio(struct bio *bio)
640 {
641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642 struct btrfs_fs_info *fs_info;
643 struct btrfs_workqueue *wq;
644
645 fs_info = end_io_wq->info;
646 end_io_wq->status = bio->bi_status;
647
648 if (bio_op(bio) == REQ_OP_WRITE) {
649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650 wq = fs_info->endio_meta_write_workers;
651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652 wq = fs_info->endio_freespace_worker;
653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654 wq = fs_info->endio_raid56_workers;
655 else
656 wq = fs_info->endio_write_workers;
657 } else {
658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659 wq = fs_info->endio_raid56_workers;
660 else if (end_io_wq->metadata)
661 wq = fs_info->endio_meta_workers;
662 else
663 wq = fs_info->endio_workers;
664 }
665
666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667 btrfs_queue_work(wq, &end_io_wq->work);
668 }
669
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671 enum btrfs_wq_endio_type metadata)
672 {
673 struct btrfs_end_io_wq *end_io_wq;
674
675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676 if (!end_io_wq)
677 return BLK_STS_RESOURCE;
678
679 end_io_wq->private = bio->bi_private;
680 end_io_wq->end_io = bio->bi_end_io;
681 end_io_wq->info = info;
682 end_io_wq->status = 0;
683 end_io_wq->bio = bio;
684 end_io_wq->metadata = metadata;
685
686 bio->bi_private = end_io_wq;
687 bio->bi_end_io = end_workqueue_bio;
688 return 0;
689 }
690
run_one_async_start(struct btrfs_work * work)691 static void run_one_async_start(struct btrfs_work *work)
692 {
693 struct async_submit_bio *async;
694 blk_status_t ret;
695
696 async = container_of(work, struct async_submit_bio, work);
697 ret = async->submit_bio_start(async->private_data, async->bio,
698 async->bio_offset);
699 if (ret)
700 async->status = ret;
701 }
702
703 /*
704 * In order to insert checksums into the metadata in large chunks, we wait
705 * until bio submission time. All the pages in the bio are checksummed and
706 * sums are attached onto the ordered extent record.
707 *
708 * At IO completion time the csums attached on the ordered extent record are
709 * inserted into the tree.
710 */
run_one_async_done(struct btrfs_work * work)711 static void run_one_async_done(struct btrfs_work *work)
712 {
713 struct async_submit_bio *async;
714 struct inode *inode;
715 blk_status_t ret;
716
717 async = container_of(work, struct async_submit_bio, work);
718 inode = async->private_data;
719
720 /* If an error occurred we just want to clean up the bio and move on */
721 if (async->status) {
722 async->bio->bi_status = async->status;
723 bio_endio(async->bio);
724 return;
725 }
726
727 /*
728 * All of the bios that pass through here are from async helpers.
729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 * This changes nothing when cgroups aren't in use.
731 */
732 async->bio->bi_opf |= REQ_CGROUP_PUNT;
733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734 if (ret) {
735 async->bio->bi_status = ret;
736 bio_endio(async->bio);
737 }
738 }
739
run_one_async_free(struct btrfs_work * work)740 static void run_one_async_free(struct btrfs_work *work)
741 {
742 struct async_submit_bio *async;
743
744 async = container_of(work, struct async_submit_bio, work);
745 kfree(async);
746 }
747
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 int mirror_num, unsigned long bio_flags,
750 u64 bio_offset, void *private_data,
751 extent_submit_bio_start_t *submit_bio_start)
752 {
753 struct async_submit_bio *async;
754
755 async = kmalloc(sizeof(*async), GFP_NOFS);
756 if (!async)
757 return BLK_STS_RESOURCE;
758
759 async->private_data = private_data;
760 async->bio = bio;
761 async->mirror_num = mirror_num;
762 async->submit_bio_start = submit_bio_start;
763
764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765 run_one_async_free);
766
767 async->bio_offset = bio_offset;
768
769 async->status = 0;
770
771 if (op_is_sync(bio->bi_opf))
772 btrfs_set_work_high_priority(&async->work);
773
774 btrfs_queue_work(fs_info->workers, &async->work);
775 return 0;
776 }
777
btree_csum_one_bio(struct bio * bio)778 static blk_status_t btree_csum_one_bio(struct bio *bio)
779 {
780 struct bio_vec *bvec;
781 struct btrfs_root *root;
782 int ret = 0;
783 struct bvec_iter_all iter_all;
784
785 ASSERT(!bio_flagged(bio, BIO_CLONED));
786 bio_for_each_segment_all(bvec, bio, iter_all) {
787 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789 if (ret)
790 break;
791 }
792
793 return errno_to_blk_status(ret);
794 }
795
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797 u64 bio_offset)
798 {
799 /*
800 * when we're called for a write, we're already in the async
801 * submission context. Just jump into btrfs_map_bio
802 */
803 return btree_csum_one_bio(bio);
804 }
805
check_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)806 static int check_async_write(struct btrfs_fs_info *fs_info,
807 struct btrfs_inode *bi)
808 {
809 if (atomic_read(&bi->sync_writers))
810 return 0;
811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812 return 0;
813 return 1;
814 }
815
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 int mirror_num, unsigned long bio_flags)
818 {
819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820 int async = check_async_write(fs_info, BTRFS_I(inode));
821 blk_status_t ret;
822
823 if (bio_op(bio) != REQ_OP_WRITE) {
824 /*
825 * called for a read, do the setup so that checksum validation
826 * can happen in the async kernel threads
827 */
828 ret = btrfs_bio_wq_end_io(fs_info, bio,
829 BTRFS_WQ_ENDIO_METADATA);
830 if (ret)
831 goto out_w_error;
832 ret = btrfs_map_bio(fs_info, bio, mirror_num);
833 } else if (!async) {
834 ret = btree_csum_one_bio(bio);
835 if (ret)
836 goto out_w_error;
837 ret = btrfs_map_bio(fs_info, bio, mirror_num);
838 } else {
839 /*
840 * kthread helpers are used to submit writes so that
841 * checksumming can happen in parallel across all CPUs
842 */
843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844 0, inode, btree_submit_bio_start);
845 }
846
847 if (ret)
848 goto out_w_error;
849 return 0;
850
851 out_w_error:
852 bio->bi_status = ret;
853 bio_endio(bio);
854 return ret;
855 }
856
857 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)858 static int btree_migratepage(struct address_space *mapping,
859 struct page *newpage, struct page *page,
860 enum migrate_mode mode)
861 {
862 /*
863 * we can't safely write a btree page from here,
864 * we haven't done the locking hook
865 */
866 if (PageDirty(page))
867 return -EAGAIN;
868 /*
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
871 */
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
874 return -EAGAIN;
875 return migrate_page(mapping, newpage, page, mode);
876 }
877 #endif
878
879
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)880 static int btree_writepages(struct address_space *mapping,
881 struct writeback_control *wbc)
882 {
883 struct btrfs_fs_info *fs_info;
884 int ret;
885
886 if (wbc->sync_mode == WB_SYNC_NONE) {
887
888 if (wbc->for_kupdate)
889 return 0;
890
891 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892 /* this is a bit racy, but that's ok */
893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 BTRFS_DIRTY_METADATA_THRESH,
895 fs_info->dirty_metadata_batch);
896 if (ret < 0)
897 return 0;
898 }
899 return btree_write_cache_pages(mapping, wbc);
900 }
901
btree_releasepage(struct page * page,gfp_t gfp_flags)902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903 {
904 if (PageWriteback(page) || PageDirty(page))
905 return 0;
906
907 return try_release_extent_buffer(page);
908 }
909
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)910 static void btree_invalidatepage(struct page *page, unsigned int offset,
911 unsigned int length)
912 {
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
915 extent_invalidatepage(tree, page, offset);
916 btree_releasepage(page, GFP_NOFS);
917 if (PagePrivate(page)) {
918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 "page private not zero on page %llu",
920 (unsigned long long)page_offset(page));
921 detach_page_private(page);
922 }
923 }
924
btree_set_page_dirty(struct page * page)925 static int btree_set_page_dirty(struct page *page)
926 {
927 #ifdef DEBUG
928 struct extent_buffer *eb;
929
930 BUG_ON(!PagePrivate(page));
931 eb = (struct extent_buffer *)page->private;
932 BUG_ON(!eb);
933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 BUG_ON(!atomic_read(&eb->refs));
935 btrfs_assert_tree_locked(eb);
936 #endif
937 return __set_page_dirty_nobuffers(page);
938 }
939
940 static const struct address_space_operations btree_aops = {
941 .writepages = btree_writepages,
942 .releasepage = btree_releasepage,
943 .invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945 .migratepage = btree_migratepage,
946 #endif
947 .set_page_dirty = btree_set_page_dirty,
948 };
949
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951 {
952 struct extent_buffer *buf = NULL;
953 int ret;
954
955 buf = btrfs_find_create_tree_block(fs_info, bytenr);
956 if (IS_ERR(buf))
957 return;
958
959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960 if (ret < 0)
961 free_extent_buffer_stale(buf);
962 else
963 free_extent_buffer(buf);
964 }
965
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)966 struct extent_buffer *btrfs_find_create_tree_block(
967 struct btrfs_fs_info *fs_info,
968 u64 bytenr)
969 {
970 if (btrfs_is_testing(fs_info))
971 return alloc_test_extent_buffer(fs_info, bytenr);
972 return alloc_extent_buffer(fs_info, bytenr);
973 }
974
975 /*
976 * Read tree block at logical address @bytenr and do variant basic but critical
977 * verification.
978 *
979 * @parent_transid: expected transid of this tree block, skip check if 0
980 * @level: expected level, mandatory check
981 * @first_key: expected key in slot 0, skip check if NULL
982 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984 u64 parent_transid, int level,
985 struct btrfs_key *first_key)
986 {
987 struct extent_buffer *buf = NULL;
988 int ret;
989
990 buf = btrfs_find_create_tree_block(fs_info, bytenr);
991 if (IS_ERR(buf))
992 return buf;
993
994 ret = btree_read_extent_buffer_pages(buf, parent_transid,
995 level, first_key);
996 if (ret) {
997 free_extent_buffer_stale(buf);
998 return ERR_PTR(ret);
999 }
1000 return buf;
1001
1002 }
1003
btrfs_clean_tree_block(struct extent_buffer * buf)1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1005 {
1006 struct btrfs_fs_info *fs_info = buf->fs_info;
1007 if (btrfs_header_generation(buf) ==
1008 fs_info->running_transaction->transid) {
1009 btrfs_assert_tree_locked(buf);
1010
1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 -buf->len,
1014 fs_info->dirty_metadata_batch);
1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016 btrfs_set_lock_blocking_write(buf);
1017 clear_extent_buffer_dirty(buf);
1018 }
1019 }
1020 }
1021
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023 u64 objectid)
1024 {
1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026 root->fs_info = fs_info;
1027 root->node = NULL;
1028 root->commit_root = NULL;
1029 root->state = 0;
1030 root->orphan_cleanup_state = 0;
1031
1032 root->last_trans = 0;
1033 root->highest_objectid = 0;
1034 root->nr_delalloc_inodes = 0;
1035 root->nr_ordered_extents = 0;
1036 root->inode_tree = RB_ROOT;
1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038 root->block_rsv = NULL;
1039
1040 INIT_LIST_HEAD(&root->dirty_list);
1041 INIT_LIST_HEAD(&root->root_list);
1042 INIT_LIST_HEAD(&root->delalloc_inodes);
1043 INIT_LIST_HEAD(&root->delalloc_root);
1044 INIT_LIST_HEAD(&root->ordered_extents);
1045 INIT_LIST_HEAD(&root->ordered_root);
1046 INIT_LIST_HEAD(&root->reloc_dirty_list);
1047 INIT_LIST_HEAD(&root->logged_list[0]);
1048 INIT_LIST_HEAD(&root->logged_list[1]);
1049 spin_lock_init(&root->inode_lock);
1050 spin_lock_init(&root->delalloc_lock);
1051 spin_lock_init(&root->ordered_extent_lock);
1052 spin_lock_init(&root->accounting_lock);
1053 spin_lock_init(&root->log_extents_lock[0]);
1054 spin_lock_init(&root->log_extents_lock[1]);
1055 spin_lock_init(&root->qgroup_meta_rsv_lock);
1056 mutex_init(&root->objectid_mutex);
1057 mutex_init(&root->log_mutex);
1058 mutex_init(&root->ordered_extent_mutex);
1059 mutex_init(&root->delalloc_mutex);
1060 init_waitqueue_head(&root->qgroup_flush_wait);
1061 init_waitqueue_head(&root->log_writer_wait);
1062 init_waitqueue_head(&root->log_commit_wait[0]);
1063 init_waitqueue_head(&root->log_commit_wait[1]);
1064 INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 INIT_LIST_HEAD(&root->log_ctxs[1]);
1066 atomic_set(&root->log_commit[0], 0);
1067 atomic_set(&root->log_commit[1], 0);
1068 atomic_set(&root->log_writers, 0);
1069 atomic_set(&root->log_batch, 0);
1070 refcount_set(&root->refs, 1);
1071 atomic_set(&root->snapshot_force_cow, 0);
1072 atomic_set(&root->nr_swapfiles, 0);
1073 root->log_transid = 0;
1074 root->log_transid_committed = -1;
1075 root->last_log_commit = 0;
1076 if (!dummy) {
1077 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079 extent_io_tree_init(fs_info, &root->log_csum_range,
1080 IO_TREE_LOG_CSUM_RANGE, NULL);
1081 }
1082
1083 memset(&root->root_key, 0, sizeof(root->root_key));
1084 memset(&root->root_item, 0, sizeof(root->root_item));
1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086 root->root_key.objectid = objectid;
1087 root->anon_dev = 0;
1088
1089 spin_lock_init(&root->root_item_lock);
1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092 INIT_LIST_HEAD(&root->leak_list);
1093 spin_lock(&fs_info->fs_roots_radix_lock);
1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 spin_unlock(&fs_info->fs_roots_radix_lock);
1096 #endif
1097 }
1098
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100 u64 objectid, gfp_t flags)
1101 {
1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103 if (root)
1104 __setup_root(root, fs_info, objectid);
1105 return root;
1106 }
1107
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111 {
1112 struct btrfs_root *root;
1113
1114 if (!fs_info)
1115 return ERR_PTR(-EINVAL);
1116
1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118 if (!root)
1119 return ERR_PTR(-ENOMEM);
1120
1121 /* We don't use the stripesize in selftest, set it as sectorsize */
1122 root->alloc_bytenr = 0;
1123
1124 return root;
1125 }
1126 #endif
1127
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129 u64 objectid)
1130 {
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct extent_buffer *leaf;
1133 struct btrfs_root *tree_root = fs_info->tree_root;
1134 struct btrfs_root *root;
1135 struct btrfs_key key;
1136 unsigned int nofs_flag;
1137 int ret = 0;
1138
1139 /*
1140 * We're holding a transaction handle, so use a NOFS memory allocation
1141 * context to avoid deadlock if reclaim happens.
1142 */
1143 nofs_flag = memalloc_nofs_save();
1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145 memalloc_nofs_restore(nofs_flag);
1146 if (!root)
1147 return ERR_PTR(-ENOMEM);
1148
1149 root->root_key.objectid = objectid;
1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 root->root_key.offset = 0;
1152
1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 BTRFS_NESTING_NORMAL);
1155 if (IS_ERR(leaf)) {
1156 ret = PTR_ERR(leaf);
1157 leaf = NULL;
1158 goto fail;
1159 }
1160
1161 root->node = leaf;
1162 btrfs_mark_buffer_dirty(leaf);
1163
1164 root->commit_root = btrfs_root_node(root);
1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167 root->root_item.flags = 0;
1168 root->root_item.byte_limit = 0;
1169 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 btrfs_set_root_generation(&root->root_item, trans->transid);
1171 btrfs_set_root_level(&root->root_item, 0);
1172 btrfs_set_root_refs(&root->root_item, 1);
1173 btrfs_set_root_used(&root->root_item, leaf->len);
1174 btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 btrfs_set_root_dirid(&root->root_item, 0);
1176 if (is_fstree(objectid))
1177 generate_random_guid(root->root_item.uuid);
1178 else
1179 export_guid(root->root_item.uuid, &guid_null);
1180 root->root_item.drop_level = 0;
1181
1182 key.objectid = objectid;
1183 key.type = BTRFS_ROOT_ITEM_KEY;
1184 key.offset = 0;
1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186 if (ret)
1187 goto fail;
1188
1189 btrfs_tree_unlock(leaf);
1190
1191 return root;
1192
1193 fail:
1194 if (leaf)
1195 btrfs_tree_unlock(leaf);
1196 btrfs_put_root(root);
1197
1198 return ERR_PTR(ret);
1199 }
1200
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 struct btrfs_fs_info *fs_info)
1203 {
1204 struct btrfs_root *root;
1205 struct extent_buffer *leaf;
1206
1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208 if (!root)
1209 return ERR_PTR(-ENOMEM);
1210
1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215 /*
1216 * DON'T set SHAREABLE bit for log trees.
1217 *
1218 * Log trees are not exposed to user space thus can't be snapshotted,
1219 * and they go away before a real commit is actually done.
1220 *
1221 * They do store pointers to file data extents, and those reference
1222 * counts still get updated (along with back refs to the log tree).
1223 */
1224
1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227 if (IS_ERR(leaf)) {
1228 btrfs_put_root(root);
1229 return ERR_CAST(leaf);
1230 }
1231
1232 root->node = leaf;
1233
1234 btrfs_mark_buffer_dirty(root->node);
1235 btrfs_tree_unlock(root->node);
1236 return root;
1237 }
1238
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info)
1241 {
1242 struct btrfs_root *log_root;
1243
1244 log_root = alloc_log_tree(trans, fs_info);
1245 if (IS_ERR(log_root))
1246 return PTR_ERR(log_root);
1247 WARN_ON(fs_info->log_root_tree);
1248 fs_info->log_root_tree = log_root;
1249 return 0;
1250 }
1251
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_root *root)
1254 {
1255 struct btrfs_fs_info *fs_info = root->fs_info;
1256 struct btrfs_root *log_root;
1257 struct btrfs_inode_item *inode_item;
1258
1259 log_root = alloc_log_tree(trans, fs_info);
1260 if (IS_ERR(log_root))
1261 return PTR_ERR(log_root);
1262
1263 log_root->last_trans = trans->transid;
1264 log_root->root_key.offset = root->root_key.objectid;
1265
1266 inode_item = &log_root->root_item.inode;
1267 btrfs_set_stack_inode_generation(inode_item, 1);
1268 btrfs_set_stack_inode_size(inode_item, 3);
1269 btrfs_set_stack_inode_nlink(inode_item, 1);
1270 btrfs_set_stack_inode_nbytes(inode_item,
1271 fs_info->nodesize);
1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274 btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276 WARN_ON(root->log_root);
1277 root->log_root = log_root;
1278 root->log_transid = 0;
1279 root->log_transid_committed = -1;
1280 root->last_log_commit = 0;
1281 return 0;
1282 }
1283
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1284 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285 struct btrfs_path *path,
1286 struct btrfs_key *key)
1287 {
1288 struct btrfs_root *root;
1289 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1290 u64 generation;
1291 int ret;
1292 int level;
1293
1294 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295 if (!root)
1296 return ERR_PTR(-ENOMEM);
1297
1298 ret = btrfs_find_root(tree_root, key, path,
1299 &root->root_item, &root->root_key);
1300 if (ret) {
1301 if (ret > 0)
1302 ret = -ENOENT;
1303 goto fail;
1304 }
1305
1306 generation = btrfs_root_generation(&root->root_item);
1307 level = btrfs_root_level(&root->root_item);
1308 root->node = read_tree_block(fs_info,
1309 btrfs_root_bytenr(&root->root_item),
1310 generation, level, NULL);
1311 if (IS_ERR(root->node)) {
1312 ret = PTR_ERR(root->node);
1313 root->node = NULL;
1314 goto fail;
1315 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316 ret = -EIO;
1317 goto fail;
1318 }
1319 root->commit_root = btrfs_root_node(root);
1320 return root;
1321 fail:
1322 btrfs_put_root(root);
1323 return ERR_PTR(ret);
1324 }
1325
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1326 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327 struct btrfs_key *key)
1328 {
1329 struct btrfs_root *root;
1330 struct btrfs_path *path;
1331
1332 path = btrfs_alloc_path();
1333 if (!path)
1334 return ERR_PTR(-ENOMEM);
1335 root = read_tree_root_path(tree_root, path, key);
1336 btrfs_free_path(path);
1337
1338 return root;
1339 }
1340
1341 /*
1342 * Initialize subvolume root in-memory structure
1343 *
1344 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1345 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1346 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1347 {
1348 int ret;
1349 unsigned int nofs_flag;
1350
1351 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353 GFP_NOFS);
1354 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355 ret = -ENOMEM;
1356 goto fail;
1357 }
1358
1359 /*
1360 * We might be called under a transaction (e.g. indirect backref
1361 * resolution) which could deadlock if it triggers memory reclaim
1362 */
1363 nofs_flag = memalloc_nofs_save();
1364 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365 memalloc_nofs_restore(nofs_flag);
1366 if (ret)
1367 goto fail;
1368
1369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372 btrfs_check_and_init_root_item(&root->root_item);
1373 }
1374
1375 btrfs_init_free_ino_ctl(root);
1376 spin_lock_init(&root->ino_cache_lock);
1377 init_waitqueue_head(&root->ino_cache_wait);
1378
1379 /*
1380 * Don't assign anonymous block device to roots that are not exposed to
1381 * userspace, the id pool is limited to 1M
1382 */
1383 if (is_fstree(root->root_key.objectid) &&
1384 btrfs_root_refs(&root->root_item) > 0) {
1385 if (!anon_dev) {
1386 ret = get_anon_bdev(&root->anon_dev);
1387 if (ret)
1388 goto fail;
1389 } else {
1390 root->anon_dev = anon_dev;
1391 }
1392 }
1393
1394 mutex_lock(&root->objectid_mutex);
1395 ret = btrfs_find_highest_objectid(root,
1396 &root->highest_objectid);
1397 if (ret) {
1398 mutex_unlock(&root->objectid_mutex);
1399 goto fail;
1400 }
1401
1402 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404 mutex_unlock(&root->objectid_mutex);
1405
1406 return 0;
1407 fail:
1408 /* The caller is responsible to call btrfs_free_fs_root */
1409 return ret;
1410 }
1411
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1412 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413 u64 root_id)
1414 {
1415 struct btrfs_root *root;
1416
1417 spin_lock(&fs_info->fs_roots_radix_lock);
1418 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419 (unsigned long)root_id);
1420 if (root)
1421 root = btrfs_grab_root(root);
1422 spin_unlock(&fs_info->fs_roots_radix_lock);
1423 return root;
1424 }
1425
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1426 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427 u64 objectid)
1428 {
1429 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430 return btrfs_grab_root(fs_info->tree_root);
1431 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432 return btrfs_grab_root(fs_info->extent_root);
1433 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->chunk_root);
1435 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->dev_root);
1437 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->csum_root);
1439 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->quota_root) ?
1441 fs_info->quota_root : ERR_PTR(-ENOENT);
1442 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443 return btrfs_grab_root(fs_info->uuid_root) ?
1444 fs_info->uuid_root : ERR_PTR(-ENOENT);
1445 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446 return btrfs_grab_root(fs_info->free_space_root) ?
1447 fs_info->free_space_root : ERR_PTR(-ENOENT);
1448 return NULL;
1449 }
1450
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1451 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452 struct btrfs_root *root)
1453 {
1454 int ret;
1455
1456 ret = radix_tree_preload(GFP_NOFS);
1457 if (ret)
1458 return ret;
1459
1460 spin_lock(&fs_info->fs_roots_radix_lock);
1461 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462 (unsigned long)root->root_key.objectid,
1463 root);
1464 if (ret == 0) {
1465 btrfs_grab_root(root);
1466 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1467 }
1468 spin_unlock(&fs_info->fs_roots_radix_lock);
1469 radix_tree_preload_end();
1470
1471 return ret;
1472 }
1473
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1474 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475 {
1476 #ifdef CONFIG_BTRFS_DEBUG
1477 struct btrfs_root *root;
1478
1479 while (!list_empty(&fs_info->allocated_roots)) {
1480 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
1482 root = list_first_entry(&fs_info->allocated_roots,
1483 struct btrfs_root, leak_list);
1484 btrfs_err(fs_info, "leaked root %s refcount %d",
1485 btrfs_root_name(&root->root_key, buf),
1486 refcount_read(&root->refs));
1487 while (refcount_read(&root->refs) > 1)
1488 btrfs_put_root(root);
1489 btrfs_put_root(root);
1490 }
1491 #endif
1492 }
1493
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1494 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495 {
1496 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497 percpu_counter_destroy(&fs_info->delalloc_bytes);
1498 percpu_counter_destroy(&fs_info->dio_bytes);
1499 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500 btrfs_free_csum_hash(fs_info);
1501 btrfs_free_stripe_hash_table(fs_info);
1502 btrfs_free_ref_cache(fs_info);
1503 kfree(fs_info->balance_ctl);
1504 kfree(fs_info->delayed_root);
1505 btrfs_put_root(fs_info->extent_root);
1506 btrfs_put_root(fs_info->tree_root);
1507 btrfs_put_root(fs_info->chunk_root);
1508 btrfs_put_root(fs_info->dev_root);
1509 btrfs_put_root(fs_info->csum_root);
1510 btrfs_put_root(fs_info->quota_root);
1511 btrfs_put_root(fs_info->uuid_root);
1512 btrfs_put_root(fs_info->free_space_root);
1513 btrfs_put_root(fs_info->fs_root);
1514 btrfs_put_root(fs_info->data_reloc_root);
1515 btrfs_check_leaked_roots(fs_info);
1516 btrfs_extent_buffer_leak_debug_check(fs_info);
1517 kfree(fs_info->super_copy);
1518 kfree(fs_info->super_for_commit);
1519 kvfree(fs_info);
1520 }
1521
1522
1523 /*
1524 * Get an in-memory reference of a root structure.
1525 *
1526 * For essential trees like root/extent tree, we grab it from fs_info directly.
1527 * For subvolume trees, we check the cached filesystem roots first. If not
1528 * found, then read it from disk and add it to cached fs roots.
1529 *
1530 * Caller should release the root by calling btrfs_put_root() after the usage.
1531 *
1532 * NOTE: Reloc and log trees can't be read by this function as they share the
1533 * same root objectid.
1534 *
1535 * @objectid: root id
1536 * @anon_dev: preallocated anonymous block device number for new roots,
1537 * pass 0 for new allocation.
1538 * @check_ref: whether to check root item references, If true, return -ENOENT
1539 * for orphan roots
1540 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1541 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542 u64 objectid, dev_t anon_dev,
1543 bool check_ref)
1544 {
1545 struct btrfs_root *root;
1546 struct btrfs_path *path;
1547 struct btrfs_key key;
1548 int ret;
1549
1550 root = btrfs_get_global_root(fs_info, objectid);
1551 if (root)
1552 return root;
1553 again:
1554 root = btrfs_lookup_fs_root(fs_info, objectid);
1555 if (root) {
1556 /* Shouldn't get preallocated anon_dev for cached roots */
1557 ASSERT(!anon_dev);
1558 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1559 btrfs_put_root(root);
1560 return ERR_PTR(-ENOENT);
1561 }
1562 return root;
1563 }
1564
1565 key.objectid = objectid;
1566 key.type = BTRFS_ROOT_ITEM_KEY;
1567 key.offset = (u64)-1;
1568 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1569 if (IS_ERR(root))
1570 return root;
1571
1572 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1573 ret = -ENOENT;
1574 goto fail;
1575 }
1576
1577 ret = btrfs_init_fs_root(root, anon_dev);
1578 if (ret)
1579 goto fail;
1580
1581 path = btrfs_alloc_path();
1582 if (!path) {
1583 ret = -ENOMEM;
1584 goto fail;
1585 }
1586 key.objectid = BTRFS_ORPHAN_OBJECTID;
1587 key.type = BTRFS_ORPHAN_ITEM_KEY;
1588 key.offset = objectid;
1589
1590 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1591 btrfs_free_path(path);
1592 if (ret < 0)
1593 goto fail;
1594 if (ret == 0)
1595 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1596
1597 ret = btrfs_insert_fs_root(fs_info, root);
1598 if (ret) {
1599 btrfs_put_root(root);
1600 if (ret == -EEXIST)
1601 goto again;
1602 goto fail;
1603 }
1604 return root;
1605 fail:
1606 /*
1607 * If our caller provided us an anonymous device, then it's his
1608 * responsability to free it in case we fail. So we have to set our
1609 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1610 * and once again by our caller.
1611 */
1612 if (anon_dev)
1613 root->anon_dev = 0;
1614 btrfs_put_root(root);
1615 return ERR_PTR(ret);
1616 }
1617
1618 /*
1619 * Get in-memory reference of a root structure
1620 *
1621 * @objectid: tree objectid
1622 * @check_ref: if set, verify that the tree exists and the item has at least
1623 * one reference
1624 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1625 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1626 u64 objectid, bool check_ref)
1627 {
1628 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1629 }
1630
1631 /*
1632 * Get in-memory reference of a root structure, created as new, optionally pass
1633 * the anonymous block device id
1634 *
1635 * @objectid: tree objectid
1636 * @anon_dev: if zero, allocate a new anonymous block device or use the
1637 * parameter value
1638 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1639 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1640 u64 objectid, dev_t anon_dev)
1641 {
1642 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1643 }
1644
1645 /*
1646 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1647 * @fs_info: the fs_info
1648 * @objectid: the objectid we need to lookup
1649 *
1650 * This is exclusively used for backref walking, and exists specifically because
1651 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1652 * creation time, which means we may have to read the tree_root in order to look
1653 * up a fs root that is not in memory. If the root is not in memory we will
1654 * read the tree root commit root and look up the fs root from there. This is a
1655 * temporary root, it will not be inserted into the radix tree as it doesn't
1656 * have the most uptodate information, it'll simply be discarded once the
1657 * backref code is finished using the root.
1658 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1659 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1660 struct btrfs_path *path,
1661 u64 objectid)
1662 {
1663 struct btrfs_root *root;
1664 struct btrfs_key key;
1665
1666 ASSERT(path->search_commit_root && path->skip_locking);
1667
1668 /*
1669 * This can return -ENOENT if we ask for a root that doesn't exist, but
1670 * since this is called via the backref walking code we won't be looking
1671 * up a root that doesn't exist, unless there's corruption. So if root
1672 * != NULL just return it.
1673 */
1674 root = btrfs_get_global_root(fs_info, objectid);
1675 if (root)
1676 return root;
1677
1678 root = btrfs_lookup_fs_root(fs_info, objectid);
1679 if (root)
1680 return root;
1681
1682 key.objectid = objectid;
1683 key.type = BTRFS_ROOT_ITEM_KEY;
1684 key.offset = (u64)-1;
1685 root = read_tree_root_path(fs_info->tree_root, path, &key);
1686 btrfs_release_path(path);
1687
1688 return root;
1689 }
1690
1691 /*
1692 * called by the kthread helper functions to finally call the bio end_io
1693 * functions. This is where read checksum verification actually happens
1694 */
end_workqueue_fn(struct btrfs_work * work)1695 static void end_workqueue_fn(struct btrfs_work *work)
1696 {
1697 struct bio *bio;
1698 struct btrfs_end_io_wq *end_io_wq;
1699
1700 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1701 bio = end_io_wq->bio;
1702
1703 bio->bi_status = end_io_wq->status;
1704 bio->bi_private = end_io_wq->private;
1705 bio->bi_end_io = end_io_wq->end_io;
1706 bio_endio(bio);
1707 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1708 }
1709
cleaner_kthread(void * arg)1710 static int cleaner_kthread(void *arg)
1711 {
1712 struct btrfs_root *root = arg;
1713 struct btrfs_fs_info *fs_info = root->fs_info;
1714 int again;
1715
1716 while (1) {
1717 again = 0;
1718
1719 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1720
1721 /* Make the cleaner go to sleep early. */
1722 if (btrfs_need_cleaner_sleep(fs_info))
1723 goto sleep;
1724
1725 /*
1726 * Do not do anything if we might cause open_ctree() to block
1727 * before we have finished mounting the filesystem.
1728 */
1729 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1730 goto sleep;
1731
1732 if (!mutex_trylock(&fs_info->cleaner_mutex))
1733 goto sleep;
1734
1735 /*
1736 * Avoid the problem that we change the status of the fs
1737 * during the above check and trylock.
1738 */
1739 if (btrfs_need_cleaner_sleep(fs_info)) {
1740 mutex_unlock(&fs_info->cleaner_mutex);
1741 goto sleep;
1742 }
1743
1744 btrfs_run_delayed_iputs(fs_info);
1745
1746 again = btrfs_clean_one_deleted_snapshot(root);
1747 mutex_unlock(&fs_info->cleaner_mutex);
1748
1749 /*
1750 * The defragger has dealt with the R/O remount and umount,
1751 * needn't do anything special here.
1752 */
1753 btrfs_run_defrag_inodes(fs_info);
1754
1755 /*
1756 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1757 * with relocation (btrfs_relocate_chunk) and relocation
1758 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1759 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1760 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1761 * unused block groups.
1762 */
1763 btrfs_delete_unused_bgs(fs_info);
1764 sleep:
1765 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1766 if (kthread_should_park())
1767 kthread_parkme();
1768 if (kthread_should_stop())
1769 return 0;
1770 if (!again) {
1771 set_current_state(TASK_INTERRUPTIBLE);
1772 schedule();
1773 __set_current_state(TASK_RUNNING);
1774 }
1775 }
1776 }
1777
transaction_kthread(void * arg)1778 static int transaction_kthread(void *arg)
1779 {
1780 struct btrfs_root *root = arg;
1781 struct btrfs_fs_info *fs_info = root->fs_info;
1782 struct btrfs_trans_handle *trans;
1783 struct btrfs_transaction *cur;
1784 u64 transid;
1785 time64_t now;
1786 unsigned long delay;
1787 bool cannot_commit;
1788
1789 do {
1790 cannot_commit = false;
1791 delay = HZ * fs_info->commit_interval;
1792 mutex_lock(&fs_info->transaction_kthread_mutex);
1793
1794 spin_lock(&fs_info->trans_lock);
1795 cur = fs_info->running_transaction;
1796 if (!cur) {
1797 spin_unlock(&fs_info->trans_lock);
1798 goto sleep;
1799 }
1800
1801 now = ktime_get_seconds();
1802 if (cur->state < TRANS_STATE_COMMIT_START &&
1803 (now < cur->start_time ||
1804 now - cur->start_time < fs_info->commit_interval)) {
1805 spin_unlock(&fs_info->trans_lock);
1806 delay = HZ * 5;
1807 goto sleep;
1808 }
1809 transid = cur->transid;
1810 spin_unlock(&fs_info->trans_lock);
1811
1812 /* If the file system is aborted, this will always fail. */
1813 trans = btrfs_attach_transaction(root);
1814 if (IS_ERR(trans)) {
1815 if (PTR_ERR(trans) != -ENOENT)
1816 cannot_commit = true;
1817 goto sleep;
1818 }
1819 if (transid == trans->transid) {
1820 btrfs_commit_transaction(trans);
1821 } else {
1822 btrfs_end_transaction(trans);
1823 }
1824 sleep:
1825 wake_up_process(fs_info->cleaner_kthread);
1826 mutex_unlock(&fs_info->transaction_kthread_mutex);
1827
1828 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1829 &fs_info->fs_state)))
1830 btrfs_cleanup_transaction(fs_info);
1831 if (!kthread_should_stop() &&
1832 (!btrfs_transaction_blocked(fs_info) ||
1833 cannot_commit))
1834 schedule_timeout_interruptible(delay);
1835 } while (!kthread_should_stop());
1836 return 0;
1837 }
1838
1839 /*
1840 * This will find the highest generation in the array of root backups. The
1841 * index of the highest array is returned, or -EINVAL if we can't find
1842 * anything.
1843 *
1844 * We check to make sure the array is valid by comparing the
1845 * generation of the latest root in the array with the generation
1846 * in the super block. If they don't match we pitch it.
1847 */
find_newest_super_backup(struct btrfs_fs_info * info)1848 static int find_newest_super_backup(struct btrfs_fs_info *info)
1849 {
1850 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1851 u64 cur;
1852 struct btrfs_root_backup *root_backup;
1853 int i;
1854
1855 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1856 root_backup = info->super_copy->super_roots + i;
1857 cur = btrfs_backup_tree_root_gen(root_backup);
1858 if (cur == newest_gen)
1859 return i;
1860 }
1861
1862 return -EINVAL;
1863 }
1864
1865 /*
1866 * copy all the root pointers into the super backup array.
1867 * this will bump the backup pointer by one when it is
1868 * done
1869 */
backup_super_roots(struct btrfs_fs_info * info)1870 static void backup_super_roots(struct btrfs_fs_info *info)
1871 {
1872 const int next_backup = info->backup_root_index;
1873 struct btrfs_root_backup *root_backup;
1874
1875 root_backup = info->super_for_commit->super_roots + next_backup;
1876
1877 /*
1878 * make sure all of our padding and empty slots get zero filled
1879 * regardless of which ones we use today
1880 */
1881 memset(root_backup, 0, sizeof(*root_backup));
1882
1883 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1884
1885 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1886 btrfs_set_backup_tree_root_gen(root_backup,
1887 btrfs_header_generation(info->tree_root->node));
1888
1889 btrfs_set_backup_tree_root_level(root_backup,
1890 btrfs_header_level(info->tree_root->node));
1891
1892 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1893 btrfs_set_backup_chunk_root_gen(root_backup,
1894 btrfs_header_generation(info->chunk_root->node));
1895 btrfs_set_backup_chunk_root_level(root_backup,
1896 btrfs_header_level(info->chunk_root->node));
1897
1898 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1899 btrfs_set_backup_extent_root_gen(root_backup,
1900 btrfs_header_generation(info->extent_root->node));
1901 btrfs_set_backup_extent_root_level(root_backup,
1902 btrfs_header_level(info->extent_root->node));
1903
1904 /*
1905 * we might commit during log recovery, which happens before we set
1906 * the fs_root. Make sure it is valid before we fill it in.
1907 */
1908 if (info->fs_root && info->fs_root->node) {
1909 btrfs_set_backup_fs_root(root_backup,
1910 info->fs_root->node->start);
1911 btrfs_set_backup_fs_root_gen(root_backup,
1912 btrfs_header_generation(info->fs_root->node));
1913 btrfs_set_backup_fs_root_level(root_backup,
1914 btrfs_header_level(info->fs_root->node));
1915 }
1916
1917 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1918 btrfs_set_backup_dev_root_gen(root_backup,
1919 btrfs_header_generation(info->dev_root->node));
1920 btrfs_set_backup_dev_root_level(root_backup,
1921 btrfs_header_level(info->dev_root->node));
1922
1923 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1924 btrfs_set_backup_csum_root_gen(root_backup,
1925 btrfs_header_generation(info->csum_root->node));
1926 btrfs_set_backup_csum_root_level(root_backup,
1927 btrfs_header_level(info->csum_root->node));
1928
1929 btrfs_set_backup_total_bytes(root_backup,
1930 btrfs_super_total_bytes(info->super_copy));
1931 btrfs_set_backup_bytes_used(root_backup,
1932 btrfs_super_bytes_used(info->super_copy));
1933 btrfs_set_backup_num_devices(root_backup,
1934 btrfs_super_num_devices(info->super_copy));
1935
1936 /*
1937 * if we don't copy this out to the super_copy, it won't get remembered
1938 * for the next commit
1939 */
1940 memcpy(&info->super_copy->super_roots,
1941 &info->super_for_commit->super_roots,
1942 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1943 }
1944
1945 /*
1946 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1947 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1948 *
1949 * fs_info - filesystem whose backup roots need to be read
1950 * priority - priority of backup root required
1951 *
1952 * Returns backup root index on success and -EINVAL otherwise.
1953 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1954 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1955 {
1956 int backup_index = find_newest_super_backup(fs_info);
1957 struct btrfs_super_block *super = fs_info->super_copy;
1958 struct btrfs_root_backup *root_backup;
1959
1960 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1961 if (priority == 0)
1962 return backup_index;
1963
1964 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1965 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1966 } else {
1967 return -EINVAL;
1968 }
1969
1970 root_backup = super->super_roots + backup_index;
1971
1972 btrfs_set_super_generation(super,
1973 btrfs_backup_tree_root_gen(root_backup));
1974 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1975 btrfs_set_super_root_level(super,
1976 btrfs_backup_tree_root_level(root_backup));
1977 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1978
1979 /*
1980 * Fixme: the total bytes and num_devices need to match or we should
1981 * need a fsck
1982 */
1983 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1984 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1985
1986 return backup_index;
1987 }
1988
1989 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1990 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1991 {
1992 btrfs_destroy_workqueue(fs_info->fixup_workers);
1993 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1994 btrfs_destroy_workqueue(fs_info->workers);
1995 btrfs_destroy_workqueue(fs_info->endio_workers);
1996 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1997 btrfs_destroy_workqueue(fs_info->rmw_workers);
1998 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1999 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2000 btrfs_destroy_workqueue(fs_info->delayed_workers);
2001 btrfs_destroy_workqueue(fs_info->caching_workers);
2002 btrfs_destroy_workqueue(fs_info->readahead_workers);
2003 btrfs_destroy_workqueue(fs_info->flush_workers);
2004 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2005 if (fs_info->discard_ctl.discard_workers)
2006 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2007 /*
2008 * Now that all other work queues are destroyed, we can safely destroy
2009 * the queues used for metadata I/O, since tasks from those other work
2010 * queues can do metadata I/O operations.
2011 */
2012 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2013 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2014 }
2015
free_root_extent_buffers(struct btrfs_root * root)2016 static void free_root_extent_buffers(struct btrfs_root *root)
2017 {
2018 if (root) {
2019 free_extent_buffer(root->node);
2020 free_extent_buffer(root->commit_root);
2021 root->node = NULL;
2022 root->commit_root = NULL;
2023 }
2024 }
2025
2026 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2027 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2028 {
2029 free_root_extent_buffers(info->tree_root);
2030
2031 free_root_extent_buffers(info->dev_root);
2032 free_root_extent_buffers(info->extent_root);
2033 free_root_extent_buffers(info->csum_root);
2034 free_root_extent_buffers(info->quota_root);
2035 free_root_extent_buffers(info->uuid_root);
2036 free_root_extent_buffers(info->fs_root);
2037 free_root_extent_buffers(info->data_reloc_root);
2038 if (free_chunk_root)
2039 free_root_extent_buffers(info->chunk_root);
2040 free_root_extent_buffers(info->free_space_root);
2041 }
2042
btrfs_put_root(struct btrfs_root * root)2043 void btrfs_put_root(struct btrfs_root *root)
2044 {
2045 if (!root)
2046 return;
2047
2048 if (refcount_dec_and_test(&root->refs)) {
2049 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2050 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2051 if (root->anon_dev)
2052 free_anon_bdev(root->anon_dev);
2053 btrfs_drew_lock_destroy(&root->snapshot_lock);
2054 free_root_extent_buffers(root);
2055 kfree(root->free_ino_ctl);
2056 kfree(root->free_ino_pinned);
2057 #ifdef CONFIG_BTRFS_DEBUG
2058 spin_lock(&root->fs_info->fs_roots_radix_lock);
2059 list_del_init(&root->leak_list);
2060 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2061 #endif
2062 kfree(root);
2063 }
2064 }
2065
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2066 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2067 {
2068 int ret;
2069 struct btrfs_root *gang[8];
2070 int i;
2071
2072 while (!list_empty(&fs_info->dead_roots)) {
2073 gang[0] = list_entry(fs_info->dead_roots.next,
2074 struct btrfs_root, root_list);
2075 list_del(&gang[0]->root_list);
2076
2077 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2078 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2079 btrfs_put_root(gang[0]);
2080 }
2081
2082 while (1) {
2083 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2084 (void **)gang, 0,
2085 ARRAY_SIZE(gang));
2086 if (!ret)
2087 break;
2088 for (i = 0; i < ret; i++)
2089 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2090 }
2091 }
2092
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2093 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2094 {
2095 mutex_init(&fs_info->scrub_lock);
2096 atomic_set(&fs_info->scrubs_running, 0);
2097 atomic_set(&fs_info->scrub_pause_req, 0);
2098 atomic_set(&fs_info->scrubs_paused, 0);
2099 atomic_set(&fs_info->scrub_cancel_req, 0);
2100 init_waitqueue_head(&fs_info->scrub_pause_wait);
2101 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2102 }
2103
btrfs_init_balance(struct btrfs_fs_info * fs_info)2104 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2105 {
2106 spin_lock_init(&fs_info->balance_lock);
2107 mutex_init(&fs_info->balance_mutex);
2108 atomic_set(&fs_info->balance_pause_req, 0);
2109 atomic_set(&fs_info->balance_cancel_req, 0);
2110 fs_info->balance_ctl = NULL;
2111 init_waitqueue_head(&fs_info->balance_wait_q);
2112 }
2113
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2114 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2115 {
2116 struct inode *inode = fs_info->btree_inode;
2117
2118 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2119 set_nlink(inode, 1);
2120 /*
2121 * we set the i_size on the btree inode to the max possible int.
2122 * the real end of the address space is determined by all of
2123 * the devices in the system
2124 */
2125 inode->i_size = OFFSET_MAX;
2126 inode->i_mapping->a_ops = &btree_aops;
2127
2128 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2129 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2130 IO_TREE_BTREE_INODE_IO, inode);
2131 BTRFS_I(inode)->io_tree.track_uptodate = false;
2132 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2133
2134 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2135 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2136 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2137 btrfs_insert_inode_hash(inode);
2138 }
2139
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2140 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2141 {
2142 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2143 init_rwsem(&fs_info->dev_replace.rwsem);
2144 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2145 }
2146
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2147 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2148 {
2149 spin_lock_init(&fs_info->qgroup_lock);
2150 mutex_init(&fs_info->qgroup_ioctl_lock);
2151 fs_info->qgroup_tree = RB_ROOT;
2152 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2153 fs_info->qgroup_seq = 1;
2154 fs_info->qgroup_ulist = NULL;
2155 fs_info->qgroup_rescan_running = false;
2156 mutex_init(&fs_info->qgroup_rescan_lock);
2157 }
2158
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2159 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2160 struct btrfs_fs_devices *fs_devices)
2161 {
2162 u32 max_active = fs_info->thread_pool_size;
2163 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2164
2165 fs_info->workers =
2166 btrfs_alloc_workqueue(fs_info, "worker",
2167 flags | WQ_HIGHPRI, max_active, 16);
2168
2169 fs_info->delalloc_workers =
2170 btrfs_alloc_workqueue(fs_info, "delalloc",
2171 flags, max_active, 2);
2172
2173 fs_info->flush_workers =
2174 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2175 flags, max_active, 0);
2176
2177 fs_info->caching_workers =
2178 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2179
2180 fs_info->fixup_workers =
2181 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2182
2183 /*
2184 * endios are largely parallel and should have a very
2185 * low idle thresh
2186 */
2187 fs_info->endio_workers =
2188 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2189 fs_info->endio_meta_workers =
2190 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2191 max_active, 4);
2192 fs_info->endio_meta_write_workers =
2193 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2194 max_active, 2);
2195 fs_info->endio_raid56_workers =
2196 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2197 max_active, 4);
2198 fs_info->rmw_workers =
2199 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2200 fs_info->endio_write_workers =
2201 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2202 max_active, 2);
2203 fs_info->endio_freespace_worker =
2204 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2205 max_active, 0);
2206 fs_info->delayed_workers =
2207 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2208 max_active, 0);
2209 fs_info->readahead_workers =
2210 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2211 max_active, 2);
2212 fs_info->qgroup_rescan_workers =
2213 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2214 fs_info->discard_ctl.discard_workers =
2215 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2216
2217 if (!(fs_info->workers && fs_info->delalloc_workers &&
2218 fs_info->flush_workers &&
2219 fs_info->endio_workers && fs_info->endio_meta_workers &&
2220 fs_info->endio_meta_write_workers &&
2221 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2222 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2223 fs_info->caching_workers && fs_info->readahead_workers &&
2224 fs_info->fixup_workers && fs_info->delayed_workers &&
2225 fs_info->qgroup_rescan_workers &&
2226 fs_info->discard_ctl.discard_workers)) {
2227 return -ENOMEM;
2228 }
2229
2230 return 0;
2231 }
2232
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2233 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2234 {
2235 struct crypto_shash *csum_shash;
2236 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2237
2238 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2239
2240 if (IS_ERR(csum_shash)) {
2241 btrfs_err(fs_info, "error allocating %s hash for checksum",
2242 csum_driver);
2243 return PTR_ERR(csum_shash);
2244 }
2245
2246 fs_info->csum_shash = csum_shash;
2247
2248 return 0;
2249 }
2250
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2251 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2252 struct btrfs_fs_devices *fs_devices)
2253 {
2254 int ret;
2255 struct btrfs_root *log_tree_root;
2256 struct btrfs_super_block *disk_super = fs_info->super_copy;
2257 u64 bytenr = btrfs_super_log_root(disk_super);
2258 int level = btrfs_super_log_root_level(disk_super);
2259
2260 if (fs_devices->rw_devices == 0) {
2261 btrfs_warn(fs_info, "log replay required on RO media");
2262 return -EIO;
2263 }
2264
2265 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2266 GFP_KERNEL);
2267 if (!log_tree_root)
2268 return -ENOMEM;
2269
2270 log_tree_root->node = read_tree_block(fs_info, bytenr,
2271 fs_info->generation + 1,
2272 level, NULL);
2273 if (IS_ERR(log_tree_root->node)) {
2274 btrfs_warn(fs_info, "failed to read log tree");
2275 ret = PTR_ERR(log_tree_root->node);
2276 log_tree_root->node = NULL;
2277 btrfs_put_root(log_tree_root);
2278 return ret;
2279 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2280 btrfs_err(fs_info, "failed to read log tree");
2281 btrfs_put_root(log_tree_root);
2282 return -EIO;
2283 }
2284 /* returns with log_tree_root freed on success */
2285 ret = btrfs_recover_log_trees(log_tree_root);
2286 if (ret) {
2287 btrfs_handle_fs_error(fs_info, ret,
2288 "Failed to recover log tree");
2289 btrfs_put_root(log_tree_root);
2290 return ret;
2291 }
2292
2293 if (sb_rdonly(fs_info->sb)) {
2294 ret = btrfs_commit_super(fs_info);
2295 if (ret)
2296 return ret;
2297 }
2298
2299 return 0;
2300 }
2301
btrfs_read_roots(struct btrfs_fs_info * fs_info)2302 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2303 {
2304 struct btrfs_root *tree_root = fs_info->tree_root;
2305 struct btrfs_root *root;
2306 struct btrfs_key location;
2307 int ret;
2308
2309 BUG_ON(!fs_info->tree_root);
2310
2311 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2312 location.type = BTRFS_ROOT_ITEM_KEY;
2313 location.offset = 0;
2314
2315 root = btrfs_read_tree_root(tree_root, &location);
2316 if (IS_ERR(root)) {
2317 ret = PTR_ERR(root);
2318 goto out;
2319 }
2320 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2321 fs_info->extent_root = root;
2322
2323 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2324 root = btrfs_read_tree_root(tree_root, &location);
2325 if (IS_ERR(root)) {
2326 ret = PTR_ERR(root);
2327 goto out;
2328 }
2329 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330 fs_info->dev_root = root;
2331 btrfs_init_devices_late(fs_info);
2332
2333 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2334 root = btrfs_read_tree_root(tree_root, &location);
2335 if (IS_ERR(root)) {
2336 ret = PTR_ERR(root);
2337 goto out;
2338 }
2339 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2340 fs_info->csum_root = root;
2341
2342 /*
2343 * This tree can share blocks with some other fs tree during relocation
2344 * and we need a proper setup by btrfs_get_fs_root
2345 */
2346 root = btrfs_get_fs_root(tree_root->fs_info,
2347 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2348 if (IS_ERR(root)) {
2349 ret = PTR_ERR(root);
2350 goto out;
2351 }
2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353 fs_info->data_reloc_root = root;
2354
2355 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2356 root = btrfs_read_tree_root(tree_root, &location);
2357 if (!IS_ERR(root)) {
2358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2359 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2360 fs_info->quota_root = root;
2361 }
2362
2363 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2364 root = btrfs_read_tree_root(tree_root, &location);
2365 if (IS_ERR(root)) {
2366 ret = PTR_ERR(root);
2367 if (ret != -ENOENT)
2368 goto out;
2369 } else {
2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 fs_info->uuid_root = root;
2372 }
2373
2374 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2375 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2376 root = btrfs_read_tree_root(tree_root, &location);
2377 if (IS_ERR(root)) {
2378 ret = PTR_ERR(root);
2379 goto out;
2380 }
2381 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2382 fs_info->free_space_root = root;
2383 }
2384
2385 return 0;
2386 out:
2387 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2388 location.objectid, ret);
2389 return ret;
2390 }
2391
2392 /*
2393 * Real super block validation
2394 * NOTE: super csum type and incompat features will not be checked here.
2395 *
2396 * @sb: super block to check
2397 * @mirror_num: the super block number to check its bytenr:
2398 * 0 the primary (1st) sb
2399 * 1, 2 2nd and 3rd backup copy
2400 * -1 skip bytenr check
2401 */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2402 static int validate_super(struct btrfs_fs_info *fs_info,
2403 struct btrfs_super_block *sb, int mirror_num)
2404 {
2405 u64 nodesize = btrfs_super_nodesize(sb);
2406 u64 sectorsize = btrfs_super_sectorsize(sb);
2407 int ret = 0;
2408
2409 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2410 btrfs_err(fs_info, "no valid FS found");
2411 ret = -EINVAL;
2412 }
2413 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2414 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2415 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2416 ret = -EINVAL;
2417 }
2418 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2420 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2421 ret = -EINVAL;
2422 }
2423 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2424 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2425 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2426 ret = -EINVAL;
2427 }
2428 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2430 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2431 ret = -EINVAL;
2432 }
2433
2434 /*
2435 * Check sectorsize and nodesize first, other check will need it.
2436 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2437 */
2438 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2439 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2440 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2441 ret = -EINVAL;
2442 }
2443 /* Only PAGE SIZE is supported yet */
2444 if (sectorsize != PAGE_SIZE) {
2445 btrfs_err(fs_info,
2446 "sectorsize %llu not supported yet, only support %lu",
2447 sectorsize, PAGE_SIZE);
2448 ret = -EINVAL;
2449 }
2450 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2451 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2452 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2453 ret = -EINVAL;
2454 }
2455 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2456 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2457 le32_to_cpu(sb->__unused_leafsize), nodesize);
2458 ret = -EINVAL;
2459 }
2460
2461 /* Root alignment check */
2462 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2463 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2464 btrfs_super_root(sb));
2465 ret = -EINVAL;
2466 }
2467 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2468 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2469 btrfs_super_chunk_root(sb));
2470 ret = -EINVAL;
2471 }
2472 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2473 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2474 btrfs_super_log_root(sb));
2475 ret = -EINVAL;
2476 }
2477
2478 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2479 BTRFS_FSID_SIZE)) {
2480 btrfs_err(fs_info,
2481 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2482 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2483 ret = -EINVAL;
2484 }
2485
2486 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2487 memcmp(fs_info->fs_devices->metadata_uuid,
2488 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2489 btrfs_err(fs_info,
2490 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2491 fs_info->super_copy->metadata_uuid,
2492 fs_info->fs_devices->metadata_uuid);
2493 ret = -EINVAL;
2494 }
2495
2496 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2497 BTRFS_FSID_SIZE) != 0) {
2498 btrfs_err(fs_info,
2499 "dev_item UUID does not match metadata fsid: %pU != %pU",
2500 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2501 ret = -EINVAL;
2502 }
2503
2504 /*
2505 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2506 * done later
2507 */
2508 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2509 btrfs_err(fs_info, "bytes_used is too small %llu",
2510 btrfs_super_bytes_used(sb));
2511 ret = -EINVAL;
2512 }
2513 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2514 btrfs_err(fs_info, "invalid stripesize %u",
2515 btrfs_super_stripesize(sb));
2516 ret = -EINVAL;
2517 }
2518 if (btrfs_super_num_devices(sb) > (1UL << 31))
2519 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2520 btrfs_super_num_devices(sb));
2521 if (btrfs_super_num_devices(sb) == 0) {
2522 btrfs_err(fs_info, "number of devices is 0");
2523 ret = -EINVAL;
2524 }
2525
2526 if (mirror_num >= 0 &&
2527 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2528 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2529 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2530 ret = -EINVAL;
2531 }
2532
2533 /*
2534 * Obvious sys_chunk_array corruptions, it must hold at least one key
2535 * and one chunk
2536 */
2537 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2538 btrfs_err(fs_info, "system chunk array too big %u > %u",
2539 btrfs_super_sys_array_size(sb),
2540 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2541 ret = -EINVAL;
2542 }
2543 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2544 + sizeof(struct btrfs_chunk)) {
2545 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2546 btrfs_super_sys_array_size(sb),
2547 sizeof(struct btrfs_disk_key)
2548 + sizeof(struct btrfs_chunk));
2549 ret = -EINVAL;
2550 }
2551
2552 /*
2553 * The generation is a global counter, we'll trust it more than the others
2554 * but it's still possible that it's the one that's wrong.
2555 */
2556 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2557 btrfs_warn(fs_info,
2558 "suspicious: generation < chunk_root_generation: %llu < %llu",
2559 btrfs_super_generation(sb),
2560 btrfs_super_chunk_root_generation(sb));
2561 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2562 && btrfs_super_cache_generation(sb) != (u64)-1)
2563 btrfs_warn(fs_info,
2564 "suspicious: generation < cache_generation: %llu < %llu",
2565 btrfs_super_generation(sb),
2566 btrfs_super_cache_generation(sb));
2567
2568 return ret;
2569 }
2570
2571 /*
2572 * Validation of super block at mount time.
2573 * Some checks already done early at mount time, like csum type and incompat
2574 * flags will be skipped.
2575 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2576 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2577 {
2578 return validate_super(fs_info, fs_info->super_copy, 0);
2579 }
2580
2581 /*
2582 * Validation of super block at write time.
2583 * Some checks like bytenr check will be skipped as their values will be
2584 * overwritten soon.
2585 * Extra checks like csum type and incompat flags will be done here.
2586 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2587 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2588 struct btrfs_super_block *sb)
2589 {
2590 int ret;
2591
2592 ret = validate_super(fs_info, sb, -1);
2593 if (ret < 0)
2594 goto out;
2595 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2596 ret = -EUCLEAN;
2597 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2598 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2599 goto out;
2600 }
2601 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2602 ret = -EUCLEAN;
2603 btrfs_err(fs_info,
2604 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2605 btrfs_super_incompat_flags(sb),
2606 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2607 goto out;
2608 }
2609 out:
2610 if (ret < 0)
2611 btrfs_err(fs_info,
2612 "super block corruption detected before writing it to disk");
2613 return ret;
2614 }
2615
init_tree_roots(struct btrfs_fs_info * fs_info)2616 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2617 {
2618 int backup_index = find_newest_super_backup(fs_info);
2619 struct btrfs_super_block *sb = fs_info->super_copy;
2620 struct btrfs_root *tree_root = fs_info->tree_root;
2621 bool handle_error = false;
2622 int ret = 0;
2623 int i;
2624
2625 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2626 u64 generation;
2627 int level;
2628
2629 if (handle_error) {
2630 if (!IS_ERR(tree_root->node))
2631 free_extent_buffer(tree_root->node);
2632 tree_root->node = NULL;
2633
2634 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2635 break;
2636
2637 free_root_pointers(fs_info, 0);
2638
2639 /*
2640 * Don't use the log in recovery mode, it won't be
2641 * valid
2642 */
2643 btrfs_set_super_log_root(sb, 0);
2644
2645 /* We can't trust the free space cache either */
2646 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2647
2648 ret = read_backup_root(fs_info, i);
2649 backup_index = ret;
2650 if (ret < 0)
2651 return ret;
2652 }
2653 generation = btrfs_super_generation(sb);
2654 level = btrfs_super_root_level(sb);
2655 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2656 generation, level, NULL);
2657 if (IS_ERR(tree_root->node)) {
2658 handle_error = true;
2659 ret = PTR_ERR(tree_root->node);
2660 tree_root->node = NULL;
2661 btrfs_warn(fs_info, "couldn't read tree root");
2662 continue;
2663
2664 } else if (!extent_buffer_uptodate(tree_root->node)) {
2665 handle_error = true;
2666 ret = -EIO;
2667 btrfs_warn(fs_info, "error while reading tree root");
2668 continue;
2669 }
2670
2671 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2672 tree_root->commit_root = btrfs_root_node(tree_root);
2673 btrfs_set_root_refs(&tree_root->root_item, 1);
2674
2675 /*
2676 * No need to hold btrfs_root::objectid_mutex since the fs
2677 * hasn't been fully initialised and we are the only user
2678 */
2679 ret = btrfs_find_highest_objectid(tree_root,
2680 &tree_root->highest_objectid);
2681 if (ret < 0) {
2682 handle_error = true;
2683 continue;
2684 }
2685
2686 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2687
2688 ret = btrfs_read_roots(fs_info);
2689 if (ret < 0) {
2690 handle_error = true;
2691 continue;
2692 }
2693
2694 /* All successful */
2695 fs_info->generation = generation;
2696 fs_info->last_trans_committed = generation;
2697
2698 /* Always begin writing backup roots after the one being used */
2699 if (backup_index < 0) {
2700 fs_info->backup_root_index = 0;
2701 } else {
2702 fs_info->backup_root_index = backup_index + 1;
2703 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2704 }
2705 break;
2706 }
2707
2708 return ret;
2709 }
2710
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2711 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2712 {
2713 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2714 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2715 INIT_LIST_HEAD(&fs_info->trans_list);
2716 INIT_LIST_HEAD(&fs_info->dead_roots);
2717 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2718 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2719 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2720 spin_lock_init(&fs_info->delalloc_root_lock);
2721 spin_lock_init(&fs_info->trans_lock);
2722 spin_lock_init(&fs_info->fs_roots_radix_lock);
2723 spin_lock_init(&fs_info->delayed_iput_lock);
2724 spin_lock_init(&fs_info->defrag_inodes_lock);
2725 spin_lock_init(&fs_info->super_lock);
2726 spin_lock_init(&fs_info->buffer_lock);
2727 spin_lock_init(&fs_info->unused_bgs_lock);
2728 rwlock_init(&fs_info->tree_mod_log_lock);
2729 mutex_init(&fs_info->unused_bg_unpin_mutex);
2730 mutex_init(&fs_info->delete_unused_bgs_mutex);
2731 mutex_init(&fs_info->reloc_mutex);
2732 mutex_init(&fs_info->delalloc_root_mutex);
2733 seqlock_init(&fs_info->profiles_lock);
2734
2735 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2736 INIT_LIST_HEAD(&fs_info->space_info);
2737 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2738 INIT_LIST_HEAD(&fs_info->unused_bgs);
2739 #ifdef CONFIG_BTRFS_DEBUG
2740 INIT_LIST_HEAD(&fs_info->allocated_roots);
2741 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2742 spin_lock_init(&fs_info->eb_leak_lock);
2743 #endif
2744 extent_map_tree_init(&fs_info->mapping_tree);
2745 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2746 BTRFS_BLOCK_RSV_GLOBAL);
2747 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2748 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2749 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2750 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2751 BTRFS_BLOCK_RSV_DELOPS);
2752 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2753 BTRFS_BLOCK_RSV_DELREFS);
2754
2755 atomic_set(&fs_info->async_delalloc_pages, 0);
2756 atomic_set(&fs_info->defrag_running, 0);
2757 atomic_set(&fs_info->reada_works_cnt, 0);
2758 atomic_set(&fs_info->nr_delayed_iputs, 0);
2759 atomic64_set(&fs_info->tree_mod_seq, 0);
2760 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2761 fs_info->metadata_ratio = 0;
2762 fs_info->defrag_inodes = RB_ROOT;
2763 atomic64_set(&fs_info->free_chunk_space, 0);
2764 fs_info->tree_mod_log = RB_ROOT;
2765 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2766 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2767 /* readahead state */
2768 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2769 spin_lock_init(&fs_info->reada_lock);
2770 btrfs_init_ref_verify(fs_info);
2771
2772 fs_info->thread_pool_size = min_t(unsigned long,
2773 num_online_cpus() + 2, 8);
2774
2775 INIT_LIST_HEAD(&fs_info->ordered_roots);
2776 spin_lock_init(&fs_info->ordered_root_lock);
2777
2778 btrfs_init_scrub(fs_info);
2779 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2780 fs_info->check_integrity_print_mask = 0;
2781 #endif
2782 btrfs_init_balance(fs_info);
2783 btrfs_init_async_reclaim_work(fs_info);
2784
2785 spin_lock_init(&fs_info->block_group_cache_lock);
2786 fs_info->block_group_cache_tree = RB_ROOT;
2787 fs_info->first_logical_byte = (u64)-1;
2788
2789 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2790 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2791 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2792
2793 mutex_init(&fs_info->ordered_operations_mutex);
2794 mutex_init(&fs_info->tree_log_mutex);
2795 mutex_init(&fs_info->chunk_mutex);
2796 mutex_init(&fs_info->transaction_kthread_mutex);
2797 mutex_init(&fs_info->cleaner_mutex);
2798 mutex_init(&fs_info->ro_block_group_mutex);
2799 init_rwsem(&fs_info->commit_root_sem);
2800 init_rwsem(&fs_info->cleanup_work_sem);
2801 init_rwsem(&fs_info->subvol_sem);
2802 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2803
2804 btrfs_init_dev_replace_locks(fs_info);
2805 btrfs_init_qgroup(fs_info);
2806 btrfs_discard_init(fs_info);
2807
2808 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2809 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2810
2811 init_waitqueue_head(&fs_info->transaction_throttle);
2812 init_waitqueue_head(&fs_info->transaction_wait);
2813 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2814 init_waitqueue_head(&fs_info->async_submit_wait);
2815 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2816
2817 /* Usable values until the real ones are cached from the superblock */
2818 fs_info->nodesize = 4096;
2819 fs_info->sectorsize = 4096;
2820 fs_info->stripesize = 4096;
2821
2822 spin_lock_init(&fs_info->swapfile_pins_lock);
2823 fs_info->swapfile_pins = RB_ROOT;
2824
2825 fs_info->send_in_progress = 0;
2826 }
2827
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2828 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2829 {
2830 int ret;
2831
2832 fs_info->sb = sb;
2833 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2834 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2835
2836 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2837 if (ret)
2838 return ret;
2839
2840 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2841 if (ret)
2842 return ret;
2843
2844 fs_info->dirty_metadata_batch = PAGE_SIZE *
2845 (1 + ilog2(nr_cpu_ids));
2846
2847 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2848 if (ret)
2849 return ret;
2850
2851 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2852 GFP_KERNEL);
2853 if (ret)
2854 return ret;
2855
2856 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2857 GFP_KERNEL);
2858 if (!fs_info->delayed_root)
2859 return -ENOMEM;
2860 btrfs_init_delayed_root(fs_info->delayed_root);
2861
2862 return btrfs_alloc_stripe_hash_table(fs_info);
2863 }
2864
btrfs_uuid_rescan_kthread(void * data)2865 static int btrfs_uuid_rescan_kthread(void *data)
2866 {
2867 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2868 int ret;
2869
2870 /*
2871 * 1st step is to iterate through the existing UUID tree and
2872 * to delete all entries that contain outdated data.
2873 * 2nd step is to add all missing entries to the UUID tree.
2874 */
2875 ret = btrfs_uuid_tree_iterate(fs_info);
2876 if (ret < 0) {
2877 if (ret != -EINTR)
2878 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2879 ret);
2880 up(&fs_info->uuid_tree_rescan_sem);
2881 return ret;
2882 }
2883 return btrfs_uuid_scan_kthread(data);
2884 }
2885
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2886 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2887 {
2888 struct task_struct *task;
2889
2890 down(&fs_info->uuid_tree_rescan_sem);
2891 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2892 if (IS_ERR(task)) {
2893 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2894 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2895 up(&fs_info->uuid_tree_rescan_sem);
2896 return PTR_ERR(task);
2897 }
2898
2899 return 0;
2900 }
2901
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2902 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2903 char *options)
2904 {
2905 u32 sectorsize;
2906 u32 nodesize;
2907 u32 stripesize;
2908 u64 generation;
2909 u64 features;
2910 u16 csum_type;
2911 struct btrfs_super_block *disk_super;
2912 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2913 struct btrfs_root *tree_root;
2914 struct btrfs_root *chunk_root;
2915 int ret;
2916 int err = -EINVAL;
2917 int clear_free_space_tree = 0;
2918 int level;
2919
2920 ret = init_mount_fs_info(fs_info, sb);
2921 if (ret) {
2922 err = ret;
2923 goto fail;
2924 }
2925
2926 /* These need to be init'ed before we start creating inodes and such. */
2927 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2928 GFP_KERNEL);
2929 fs_info->tree_root = tree_root;
2930 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2931 GFP_KERNEL);
2932 fs_info->chunk_root = chunk_root;
2933 if (!tree_root || !chunk_root) {
2934 err = -ENOMEM;
2935 goto fail;
2936 }
2937
2938 fs_info->btree_inode = new_inode(sb);
2939 if (!fs_info->btree_inode) {
2940 err = -ENOMEM;
2941 goto fail;
2942 }
2943 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2944 btrfs_init_btree_inode(fs_info);
2945
2946 invalidate_bdev(fs_devices->latest_bdev);
2947
2948 /*
2949 * Read super block and check the signature bytes only
2950 */
2951 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2952 if (IS_ERR(disk_super)) {
2953 err = PTR_ERR(disk_super);
2954 goto fail_alloc;
2955 }
2956
2957 /*
2958 * Verify the type first, if that or the checksum value are
2959 * corrupted, we'll find out
2960 */
2961 csum_type = btrfs_super_csum_type(disk_super);
2962 if (!btrfs_supported_super_csum(csum_type)) {
2963 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2964 csum_type);
2965 err = -EINVAL;
2966 btrfs_release_disk_super(disk_super);
2967 goto fail_alloc;
2968 }
2969
2970 ret = btrfs_init_csum_hash(fs_info, csum_type);
2971 if (ret) {
2972 err = ret;
2973 btrfs_release_disk_super(disk_super);
2974 goto fail_alloc;
2975 }
2976
2977 /*
2978 * We want to check superblock checksum, the type is stored inside.
2979 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2980 */
2981 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2982 btrfs_err(fs_info, "superblock checksum mismatch");
2983 err = -EINVAL;
2984 btrfs_release_disk_super(disk_super);
2985 goto fail_alloc;
2986 }
2987
2988 /*
2989 * super_copy is zeroed at allocation time and we never touch the
2990 * following bytes up to INFO_SIZE, the checksum is calculated from
2991 * the whole block of INFO_SIZE
2992 */
2993 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2994 btrfs_release_disk_super(disk_super);
2995
2996 disk_super = fs_info->super_copy;
2997
2998
2999 features = btrfs_super_flags(disk_super);
3000 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3001 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3002 btrfs_set_super_flags(disk_super, features);
3003 btrfs_info(fs_info,
3004 "found metadata UUID change in progress flag, clearing");
3005 }
3006
3007 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3008 sizeof(*fs_info->super_for_commit));
3009
3010 ret = btrfs_validate_mount_super(fs_info);
3011 if (ret) {
3012 btrfs_err(fs_info, "superblock contains fatal errors");
3013 err = -EINVAL;
3014 goto fail_alloc;
3015 }
3016
3017 if (!btrfs_super_root(disk_super))
3018 goto fail_alloc;
3019
3020 /* check FS state, whether FS is broken. */
3021 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3022 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3023
3024 /*
3025 * In the long term, we'll store the compression type in the super
3026 * block, and it'll be used for per file compression control.
3027 */
3028 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3029
3030 /*
3031 * Flag our filesystem as having big metadata blocks if they are bigger
3032 * than the page size
3033 */
3034 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3035 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3036 btrfs_info(fs_info,
3037 "flagging fs with big metadata feature");
3038 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3039 }
3040
3041 /* Set up fs_info before parsing mount options */
3042 nodesize = btrfs_super_nodesize(disk_super);
3043 sectorsize = btrfs_super_sectorsize(disk_super);
3044 stripesize = sectorsize;
3045 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3046 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3047
3048 /* Cache block sizes */
3049 fs_info->nodesize = nodesize;
3050 fs_info->sectorsize = sectorsize;
3051 fs_info->stripesize = stripesize;
3052
3053 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3054 if (ret) {
3055 err = ret;
3056 goto fail_alloc;
3057 }
3058
3059 features = btrfs_super_incompat_flags(disk_super) &
3060 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3061 if (features) {
3062 btrfs_err(fs_info,
3063 "cannot mount because of unsupported optional features (%llx)",
3064 features);
3065 err = -EINVAL;
3066 goto fail_alloc;
3067 }
3068
3069 features = btrfs_super_incompat_flags(disk_super);
3070 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3071 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3072 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3073 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3074 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3075
3076 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3077 btrfs_info(fs_info, "has skinny extents");
3078
3079 /*
3080 * mixed block groups end up with duplicate but slightly offset
3081 * extent buffers for the same range. It leads to corruptions
3082 */
3083 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3084 (sectorsize != nodesize)) {
3085 btrfs_err(fs_info,
3086 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3087 nodesize, sectorsize);
3088 goto fail_alloc;
3089 }
3090
3091 /*
3092 * Needn't use the lock because there is no other task which will
3093 * update the flag.
3094 */
3095 btrfs_set_super_incompat_flags(disk_super, features);
3096
3097 features = btrfs_super_compat_ro_flags(disk_super) &
3098 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3099 if (!sb_rdonly(sb) && features) {
3100 btrfs_err(fs_info,
3101 "cannot mount read-write because of unsupported optional features (%llx)",
3102 features);
3103 err = -EINVAL;
3104 goto fail_alloc;
3105 }
3106
3107 ret = btrfs_init_workqueues(fs_info, fs_devices);
3108 if (ret) {
3109 err = ret;
3110 goto fail_sb_buffer;
3111 }
3112
3113 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3114 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3115
3116 sb->s_blocksize = sectorsize;
3117 sb->s_blocksize_bits = blksize_bits(sectorsize);
3118 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3119
3120 mutex_lock(&fs_info->chunk_mutex);
3121 ret = btrfs_read_sys_array(fs_info);
3122 mutex_unlock(&fs_info->chunk_mutex);
3123 if (ret) {
3124 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3125 goto fail_sb_buffer;
3126 }
3127
3128 generation = btrfs_super_chunk_root_generation(disk_super);
3129 level = btrfs_super_chunk_root_level(disk_super);
3130
3131 chunk_root->node = read_tree_block(fs_info,
3132 btrfs_super_chunk_root(disk_super),
3133 generation, level, NULL);
3134 if (IS_ERR(chunk_root->node) ||
3135 !extent_buffer_uptodate(chunk_root->node)) {
3136 btrfs_err(fs_info, "failed to read chunk root");
3137 if (!IS_ERR(chunk_root->node))
3138 free_extent_buffer(chunk_root->node);
3139 chunk_root->node = NULL;
3140 goto fail_tree_roots;
3141 }
3142 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3143 chunk_root->commit_root = btrfs_root_node(chunk_root);
3144
3145 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3146 offsetof(struct btrfs_header, chunk_tree_uuid),
3147 BTRFS_UUID_SIZE);
3148
3149 ret = btrfs_read_chunk_tree(fs_info);
3150 if (ret) {
3151 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3152 goto fail_tree_roots;
3153 }
3154
3155 /*
3156 * Keep the devid that is marked to be the target device for the
3157 * device replace procedure
3158 */
3159 btrfs_free_extra_devids(fs_devices, 0);
3160
3161 if (!fs_devices->latest_bdev) {
3162 btrfs_err(fs_info, "failed to read devices");
3163 goto fail_tree_roots;
3164 }
3165
3166 ret = init_tree_roots(fs_info);
3167 if (ret)
3168 goto fail_tree_roots;
3169
3170 /*
3171 * If we have a uuid root and we're not being told to rescan we need to
3172 * check the generation here so we can set the
3173 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3174 * transaction during a balance or the log replay without updating the
3175 * uuid generation, and then if we crash we would rescan the uuid tree,
3176 * even though it was perfectly fine.
3177 */
3178 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3179 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3180 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3181
3182 ret = btrfs_verify_dev_extents(fs_info);
3183 if (ret) {
3184 btrfs_err(fs_info,
3185 "failed to verify dev extents against chunks: %d",
3186 ret);
3187 goto fail_block_groups;
3188 }
3189 ret = btrfs_recover_balance(fs_info);
3190 if (ret) {
3191 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3192 goto fail_block_groups;
3193 }
3194
3195 ret = btrfs_init_dev_stats(fs_info);
3196 if (ret) {
3197 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3198 goto fail_block_groups;
3199 }
3200
3201 ret = btrfs_init_dev_replace(fs_info);
3202 if (ret) {
3203 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3204 goto fail_block_groups;
3205 }
3206
3207 btrfs_free_extra_devids(fs_devices, 1);
3208
3209 ret = btrfs_sysfs_add_fsid(fs_devices);
3210 if (ret) {
3211 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3212 ret);
3213 goto fail_block_groups;
3214 }
3215
3216 ret = btrfs_sysfs_add_mounted(fs_info);
3217 if (ret) {
3218 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3219 goto fail_fsdev_sysfs;
3220 }
3221
3222 ret = btrfs_init_space_info(fs_info);
3223 if (ret) {
3224 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3225 goto fail_sysfs;
3226 }
3227
3228 ret = btrfs_read_block_groups(fs_info);
3229 if (ret) {
3230 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3231 goto fail_sysfs;
3232 }
3233
3234 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3235 !btrfs_check_rw_degradable(fs_info, NULL)) {
3236 btrfs_warn(fs_info,
3237 "writable mount is not allowed due to too many missing devices");
3238 goto fail_sysfs;
3239 }
3240
3241 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3242 "btrfs-cleaner");
3243 if (IS_ERR(fs_info->cleaner_kthread))
3244 goto fail_sysfs;
3245
3246 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3247 tree_root,
3248 "btrfs-transaction");
3249 if (IS_ERR(fs_info->transaction_kthread))
3250 goto fail_cleaner;
3251
3252 if (!btrfs_test_opt(fs_info, NOSSD) &&
3253 !fs_info->fs_devices->rotating) {
3254 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3255 }
3256
3257 /*
3258 * Mount does not set all options immediately, we can do it now and do
3259 * not have to wait for transaction commit
3260 */
3261 btrfs_apply_pending_changes(fs_info);
3262
3263 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3264 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3265 ret = btrfsic_mount(fs_info, fs_devices,
3266 btrfs_test_opt(fs_info,
3267 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3268 1 : 0,
3269 fs_info->check_integrity_print_mask);
3270 if (ret)
3271 btrfs_warn(fs_info,
3272 "failed to initialize integrity check module: %d",
3273 ret);
3274 }
3275 #endif
3276 ret = btrfs_read_qgroup_config(fs_info);
3277 if (ret)
3278 goto fail_trans_kthread;
3279
3280 if (btrfs_build_ref_tree(fs_info))
3281 btrfs_err(fs_info, "couldn't build ref tree");
3282
3283 /* do not make disk changes in broken FS or nologreplay is given */
3284 if (btrfs_super_log_root(disk_super) != 0 &&
3285 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3286 btrfs_info(fs_info, "start tree-log replay");
3287 ret = btrfs_replay_log(fs_info, fs_devices);
3288 if (ret) {
3289 err = ret;
3290 goto fail_qgroup;
3291 }
3292 }
3293
3294 ret = btrfs_find_orphan_roots(fs_info);
3295 if (ret)
3296 goto fail_qgroup;
3297
3298 if (!sb_rdonly(sb)) {
3299 ret = btrfs_cleanup_fs_roots(fs_info);
3300 if (ret)
3301 goto fail_qgroup;
3302
3303 mutex_lock(&fs_info->cleaner_mutex);
3304 ret = btrfs_recover_relocation(tree_root);
3305 mutex_unlock(&fs_info->cleaner_mutex);
3306 if (ret < 0) {
3307 btrfs_warn(fs_info, "failed to recover relocation: %d",
3308 ret);
3309 err = -EINVAL;
3310 goto fail_qgroup;
3311 }
3312 }
3313
3314 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3315 if (IS_ERR(fs_info->fs_root)) {
3316 err = PTR_ERR(fs_info->fs_root);
3317 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3318 fs_info->fs_root = NULL;
3319 goto fail_qgroup;
3320 }
3321
3322 if (sb_rdonly(sb))
3323 return 0;
3324
3325 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3326 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3327 clear_free_space_tree = 1;
3328 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3329 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3330 btrfs_warn(fs_info, "free space tree is invalid");
3331 clear_free_space_tree = 1;
3332 }
3333
3334 if (clear_free_space_tree) {
3335 btrfs_info(fs_info, "clearing free space tree");
3336 ret = btrfs_clear_free_space_tree(fs_info);
3337 if (ret) {
3338 btrfs_warn(fs_info,
3339 "failed to clear free space tree: %d", ret);
3340 close_ctree(fs_info);
3341 return ret;
3342 }
3343 }
3344
3345 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3346 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3347 btrfs_info(fs_info, "creating free space tree");
3348 ret = btrfs_create_free_space_tree(fs_info);
3349 if (ret) {
3350 btrfs_warn(fs_info,
3351 "failed to create free space tree: %d", ret);
3352 close_ctree(fs_info);
3353 return ret;
3354 }
3355 }
3356
3357 down_read(&fs_info->cleanup_work_sem);
3358 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3359 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3360 up_read(&fs_info->cleanup_work_sem);
3361 close_ctree(fs_info);
3362 return ret;
3363 }
3364 up_read(&fs_info->cleanup_work_sem);
3365
3366 ret = btrfs_resume_balance_async(fs_info);
3367 if (ret) {
3368 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3369 close_ctree(fs_info);
3370 return ret;
3371 }
3372
3373 ret = btrfs_resume_dev_replace_async(fs_info);
3374 if (ret) {
3375 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3376 close_ctree(fs_info);
3377 return ret;
3378 }
3379
3380 btrfs_qgroup_rescan_resume(fs_info);
3381 btrfs_discard_resume(fs_info);
3382
3383 if (!fs_info->uuid_root) {
3384 btrfs_info(fs_info, "creating UUID tree");
3385 ret = btrfs_create_uuid_tree(fs_info);
3386 if (ret) {
3387 btrfs_warn(fs_info,
3388 "failed to create the UUID tree: %d", ret);
3389 close_ctree(fs_info);
3390 return ret;
3391 }
3392 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3393 fs_info->generation !=
3394 btrfs_super_uuid_tree_generation(disk_super)) {
3395 btrfs_info(fs_info, "checking UUID tree");
3396 ret = btrfs_check_uuid_tree(fs_info);
3397 if (ret) {
3398 btrfs_warn(fs_info,
3399 "failed to check the UUID tree: %d", ret);
3400 close_ctree(fs_info);
3401 return ret;
3402 }
3403 }
3404 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3405
3406 /*
3407 * backuproot only affect mount behavior, and if open_ctree succeeded,
3408 * no need to keep the flag
3409 */
3410 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3411
3412 return 0;
3413
3414 fail_qgroup:
3415 btrfs_free_qgroup_config(fs_info);
3416 fail_trans_kthread:
3417 kthread_stop(fs_info->transaction_kthread);
3418 btrfs_cleanup_transaction(fs_info);
3419 btrfs_free_fs_roots(fs_info);
3420 fail_cleaner:
3421 kthread_stop(fs_info->cleaner_kthread);
3422
3423 /*
3424 * make sure we're done with the btree inode before we stop our
3425 * kthreads
3426 */
3427 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3428
3429 fail_sysfs:
3430 btrfs_sysfs_remove_mounted(fs_info);
3431
3432 fail_fsdev_sysfs:
3433 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3434
3435 fail_block_groups:
3436 btrfs_put_block_group_cache(fs_info);
3437
3438 fail_tree_roots:
3439 if (fs_info->data_reloc_root)
3440 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3441 free_root_pointers(fs_info, true);
3442 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3443
3444 fail_sb_buffer:
3445 btrfs_stop_all_workers(fs_info);
3446 btrfs_free_block_groups(fs_info);
3447 fail_alloc:
3448 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3449
3450 iput(fs_info->btree_inode);
3451 fail:
3452 btrfs_close_devices(fs_info->fs_devices);
3453 return err;
3454 }
3455 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3456
btrfs_end_super_write(struct bio * bio)3457 static void btrfs_end_super_write(struct bio *bio)
3458 {
3459 struct btrfs_device *device = bio->bi_private;
3460 struct bio_vec *bvec;
3461 struct bvec_iter_all iter_all;
3462 struct page *page;
3463
3464 bio_for_each_segment_all(bvec, bio, iter_all) {
3465 page = bvec->bv_page;
3466
3467 if (bio->bi_status) {
3468 btrfs_warn_rl_in_rcu(device->fs_info,
3469 "lost page write due to IO error on %s (%d)",
3470 rcu_str_deref(device->name),
3471 blk_status_to_errno(bio->bi_status));
3472 ClearPageUptodate(page);
3473 SetPageError(page);
3474 btrfs_dev_stat_inc_and_print(device,
3475 BTRFS_DEV_STAT_WRITE_ERRS);
3476 } else {
3477 SetPageUptodate(page);
3478 }
3479
3480 put_page(page);
3481 unlock_page(page);
3482 }
3483
3484 bio_put(bio);
3485 }
3486
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num)3487 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3488 int copy_num)
3489 {
3490 struct btrfs_super_block *super;
3491 struct page *page;
3492 u64 bytenr;
3493 struct address_space *mapping = bdev->bd_inode->i_mapping;
3494
3495 bytenr = btrfs_sb_offset(copy_num);
3496 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3497 return ERR_PTR(-EINVAL);
3498
3499 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3500 if (IS_ERR(page))
3501 return ERR_CAST(page);
3502
3503 super = page_address(page);
3504 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3505 btrfs_release_disk_super(super);
3506 return ERR_PTR(-ENODATA);
3507 }
3508
3509 if (btrfs_super_bytenr(super) != bytenr) {
3510 btrfs_release_disk_super(super);
3511 return ERR_PTR(-EINVAL);
3512 }
3513
3514 return super;
3515 }
3516
3517
btrfs_read_dev_super(struct block_device * bdev)3518 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3519 {
3520 struct btrfs_super_block *super, *latest = NULL;
3521 int i;
3522 u64 transid = 0;
3523
3524 /* we would like to check all the supers, but that would make
3525 * a btrfs mount succeed after a mkfs from a different FS.
3526 * So, we need to add a special mount option to scan for
3527 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3528 */
3529 for (i = 0; i < 1; i++) {
3530 super = btrfs_read_dev_one_super(bdev, i);
3531 if (IS_ERR(super))
3532 continue;
3533
3534 if (!latest || btrfs_super_generation(super) > transid) {
3535 if (latest)
3536 btrfs_release_disk_super(super);
3537
3538 latest = super;
3539 transid = btrfs_super_generation(super);
3540 }
3541 }
3542
3543 return super;
3544 }
3545
3546 /*
3547 * Write superblock @sb to the @device. Do not wait for completion, all the
3548 * pages we use for writing are locked.
3549 *
3550 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3551 * the expected device size at commit time. Note that max_mirrors must be
3552 * same for write and wait phases.
3553 *
3554 * Return number of errors when page is not found or submission fails.
3555 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3556 static int write_dev_supers(struct btrfs_device *device,
3557 struct btrfs_super_block *sb, int max_mirrors)
3558 {
3559 struct btrfs_fs_info *fs_info = device->fs_info;
3560 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3561 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3562 int i;
3563 int errors = 0;
3564 u64 bytenr;
3565
3566 if (max_mirrors == 0)
3567 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3568
3569 shash->tfm = fs_info->csum_shash;
3570
3571 for (i = 0; i < max_mirrors; i++) {
3572 struct page *page;
3573 struct bio *bio;
3574 struct btrfs_super_block *disk_super;
3575
3576 bytenr = btrfs_sb_offset(i);
3577 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3578 device->commit_total_bytes)
3579 break;
3580
3581 btrfs_set_super_bytenr(sb, bytenr);
3582
3583 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3584 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3585 sb->csum);
3586
3587 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3588 GFP_NOFS);
3589 if (!page) {
3590 btrfs_err(device->fs_info,
3591 "couldn't get super block page for bytenr %llu",
3592 bytenr);
3593 errors++;
3594 continue;
3595 }
3596
3597 /* Bump the refcount for wait_dev_supers() */
3598 get_page(page);
3599
3600 disk_super = page_address(page);
3601 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3602
3603 /*
3604 * Directly use bios here instead of relying on the page cache
3605 * to do I/O, so we don't lose the ability to do integrity
3606 * checking.
3607 */
3608 bio = bio_alloc(GFP_NOFS, 1);
3609 bio_set_dev(bio, device->bdev);
3610 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3611 bio->bi_private = device;
3612 bio->bi_end_io = btrfs_end_super_write;
3613 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3614 offset_in_page(bytenr));
3615
3616 /*
3617 * We FUA only the first super block. The others we allow to
3618 * go down lazy and there's a short window where the on-disk
3619 * copies might still contain the older version.
3620 */
3621 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3622 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3623 bio->bi_opf |= REQ_FUA;
3624
3625 btrfsic_submit_bio(bio);
3626 }
3627 return errors < i ? 0 : -1;
3628 }
3629
3630 /*
3631 * Wait for write completion of superblocks done by write_dev_supers,
3632 * @max_mirrors same for write and wait phases.
3633 *
3634 * Return number of errors when page is not found or not marked up to
3635 * date.
3636 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3637 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3638 {
3639 int i;
3640 int errors = 0;
3641 bool primary_failed = false;
3642 u64 bytenr;
3643
3644 if (max_mirrors == 0)
3645 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3646
3647 for (i = 0; i < max_mirrors; i++) {
3648 struct page *page;
3649
3650 bytenr = btrfs_sb_offset(i);
3651 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3652 device->commit_total_bytes)
3653 break;
3654
3655 page = find_get_page(device->bdev->bd_inode->i_mapping,
3656 bytenr >> PAGE_SHIFT);
3657 if (!page) {
3658 errors++;
3659 if (i == 0)
3660 primary_failed = true;
3661 continue;
3662 }
3663 /* Page is submitted locked and unlocked once the IO completes */
3664 wait_on_page_locked(page);
3665 if (PageError(page)) {
3666 errors++;
3667 if (i == 0)
3668 primary_failed = true;
3669 }
3670
3671 /* Drop our reference */
3672 put_page(page);
3673
3674 /* Drop the reference from the writing run */
3675 put_page(page);
3676 }
3677
3678 /* log error, force error return */
3679 if (primary_failed) {
3680 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3681 device->devid);
3682 return -1;
3683 }
3684
3685 return errors < i ? 0 : -1;
3686 }
3687
3688 /*
3689 * endio for the write_dev_flush, this will wake anyone waiting
3690 * for the barrier when it is done
3691 */
btrfs_end_empty_barrier(struct bio * bio)3692 static void btrfs_end_empty_barrier(struct bio *bio)
3693 {
3694 complete(bio->bi_private);
3695 }
3696
3697 /*
3698 * Submit a flush request to the device if it supports it. Error handling is
3699 * done in the waiting counterpart.
3700 */
write_dev_flush(struct btrfs_device * device)3701 static void write_dev_flush(struct btrfs_device *device)
3702 {
3703 struct bio *bio = device->flush_bio;
3704
3705 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3706 /*
3707 * When a disk has write caching disabled, we skip submission of a bio
3708 * with flush and sync requests before writing the superblock, since
3709 * it's not needed. However when the integrity checker is enabled, this
3710 * results in reports that there are metadata blocks referred by a
3711 * superblock that were not properly flushed. So don't skip the bio
3712 * submission only when the integrity checker is enabled for the sake
3713 * of simplicity, since this is a debug tool and not meant for use in
3714 * non-debug builds.
3715 */
3716 struct request_queue *q = bdev_get_queue(device->bdev);
3717 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3718 return;
3719 #endif
3720
3721 bio_reset(bio);
3722 bio->bi_end_io = btrfs_end_empty_barrier;
3723 bio_set_dev(bio, device->bdev);
3724 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3725 init_completion(&device->flush_wait);
3726 bio->bi_private = &device->flush_wait;
3727
3728 btrfsic_submit_bio(bio);
3729 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3730 }
3731
3732 /*
3733 * If the flush bio has been submitted by write_dev_flush, wait for it.
3734 */
wait_dev_flush(struct btrfs_device * device)3735 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3736 {
3737 struct bio *bio = device->flush_bio;
3738
3739 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3740 return BLK_STS_OK;
3741
3742 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3743 wait_for_completion_io(&device->flush_wait);
3744
3745 return bio->bi_status;
3746 }
3747
check_barrier_error(struct btrfs_fs_info * fs_info)3748 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3749 {
3750 if (!btrfs_check_rw_degradable(fs_info, NULL))
3751 return -EIO;
3752 return 0;
3753 }
3754
3755 /*
3756 * send an empty flush down to each device in parallel,
3757 * then wait for them
3758 */
barrier_all_devices(struct btrfs_fs_info * info)3759 static int barrier_all_devices(struct btrfs_fs_info *info)
3760 {
3761 struct list_head *head;
3762 struct btrfs_device *dev;
3763 int errors_wait = 0;
3764 blk_status_t ret;
3765
3766 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3767 /* send down all the barriers */
3768 head = &info->fs_devices->devices;
3769 list_for_each_entry(dev, head, dev_list) {
3770 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3771 continue;
3772 if (!dev->bdev)
3773 continue;
3774 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3775 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3776 continue;
3777
3778 write_dev_flush(dev);
3779 dev->last_flush_error = BLK_STS_OK;
3780 }
3781
3782 /* wait for all the barriers */
3783 list_for_each_entry(dev, head, dev_list) {
3784 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3785 continue;
3786 if (!dev->bdev) {
3787 errors_wait++;
3788 continue;
3789 }
3790 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3791 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3792 continue;
3793
3794 ret = wait_dev_flush(dev);
3795 if (ret) {
3796 dev->last_flush_error = ret;
3797 btrfs_dev_stat_inc_and_print(dev,
3798 BTRFS_DEV_STAT_FLUSH_ERRS);
3799 errors_wait++;
3800 }
3801 }
3802
3803 if (errors_wait) {
3804 /*
3805 * At some point we need the status of all disks
3806 * to arrive at the volume status. So error checking
3807 * is being pushed to a separate loop.
3808 */
3809 return check_barrier_error(info);
3810 }
3811 return 0;
3812 }
3813
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3814 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3815 {
3816 int raid_type;
3817 int min_tolerated = INT_MAX;
3818
3819 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3820 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3821 min_tolerated = min_t(int, min_tolerated,
3822 btrfs_raid_array[BTRFS_RAID_SINGLE].
3823 tolerated_failures);
3824
3825 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3826 if (raid_type == BTRFS_RAID_SINGLE)
3827 continue;
3828 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3829 continue;
3830 min_tolerated = min_t(int, min_tolerated,
3831 btrfs_raid_array[raid_type].
3832 tolerated_failures);
3833 }
3834
3835 if (min_tolerated == INT_MAX) {
3836 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3837 min_tolerated = 0;
3838 }
3839
3840 return min_tolerated;
3841 }
3842
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3843 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3844 {
3845 struct list_head *head;
3846 struct btrfs_device *dev;
3847 struct btrfs_super_block *sb;
3848 struct btrfs_dev_item *dev_item;
3849 int ret;
3850 int do_barriers;
3851 int max_errors;
3852 int total_errors = 0;
3853 u64 flags;
3854
3855 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3856
3857 /*
3858 * max_mirrors == 0 indicates we're from commit_transaction,
3859 * not from fsync where the tree roots in fs_info have not
3860 * been consistent on disk.
3861 */
3862 if (max_mirrors == 0)
3863 backup_super_roots(fs_info);
3864
3865 sb = fs_info->super_for_commit;
3866 dev_item = &sb->dev_item;
3867
3868 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3869 head = &fs_info->fs_devices->devices;
3870 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3871
3872 if (do_barriers) {
3873 ret = barrier_all_devices(fs_info);
3874 if (ret) {
3875 mutex_unlock(
3876 &fs_info->fs_devices->device_list_mutex);
3877 btrfs_handle_fs_error(fs_info, ret,
3878 "errors while submitting device barriers.");
3879 return ret;
3880 }
3881 }
3882
3883 list_for_each_entry(dev, head, dev_list) {
3884 if (!dev->bdev) {
3885 total_errors++;
3886 continue;
3887 }
3888 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3889 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3890 continue;
3891
3892 btrfs_set_stack_device_generation(dev_item, 0);
3893 btrfs_set_stack_device_type(dev_item, dev->type);
3894 btrfs_set_stack_device_id(dev_item, dev->devid);
3895 btrfs_set_stack_device_total_bytes(dev_item,
3896 dev->commit_total_bytes);
3897 btrfs_set_stack_device_bytes_used(dev_item,
3898 dev->commit_bytes_used);
3899 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3900 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3901 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3902 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3903 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3904 BTRFS_FSID_SIZE);
3905
3906 flags = btrfs_super_flags(sb);
3907 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3908
3909 ret = btrfs_validate_write_super(fs_info, sb);
3910 if (ret < 0) {
3911 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3912 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3913 "unexpected superblock corruption detected");
3914 return -EUCLEAN;
3915 }
3916
3917 ret = write_dev_supers(dev, sb, max_mirrors);
3918 if (ret)
3919 total_errors++;
3920 }
3921 if (total_errors > max_errors) {
3922 btrfs_err(fs_info, "%d errors while writing supers",
3923 total_errors);
3924 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925
3926 /* FUA is masked off if unsupported and can't be the reason */
3927 btrfs_handle_fs_error(fs_info, -EIO,
3928 "%d errors while writing supers",
3929 total_errors);
3930 return -EIO;
3931 }
3932
3933 total_errors = 0;
3934 list_for_each_entry(dev, head, dev_list) {
3935 if (!dev->bdev)
3936 continue;
3937 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3938 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3939 continue;
3940
3941 ret = wait_dev_supers(dev, max_mirrors);
3942 if (ret)
3943 total_errors++;
3944 }
3945 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3946 if (total_errors > max_errors) {
3947 btrfs_handle_fs_error(fs_info, -EIO,
3948 "%d errors while writing supers",
3949 total_errors);
3950 return -EIO;
3951 }
3952 return 0;
3953 }
3954
3955 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3956 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3957 struct btrfs_root *root)
3958 {
3959 bool drop_ref = false;
3960
3961 spin_lock(&fs_info->fs_roots_radix_lock);
3962 radix_tree_delete(&fs_info->fs_roots_radix,
3963 (unsigned long)root->root_key.objectid);
3964 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3965 drop_ref = true;
3966 spin_unlock(&fs_info->fs_roots_radix_lock);
3967
3968 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3969 ASSERT(root->log_root == NULL);
3970 if (root->reloc_root) {
3971 btrfs_put_root(root->reloc_root);
3972 root->reloc_root = NULL;
3973 }
3974 }
3975
3976 if (root->free_ino_pinned)
3977 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3978 if (root->free_ino_ctl)
3979 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3980 if (root->ino_cache_inode) {
3981 iput(root->ino_cache_inode);
3982 root->ino_cache_inode = NULL;
3983 }
3984 if (drop_ref)
3985 btrfs_put_root(root);
3986 }
3987
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3988 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3989 {
3990 u64 root_objectid = 0;
3991 struct btrfs_root *gang[8];
3992 int i = 0;
3993 int err = 0;
3994 unsigned int ret = 0;
3995
3996 while (1) {
3997 spin_lock(&fs_info->fs_roots_radix_lock);
3998 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3999 (void **)gang, root_objectid,
4000 ARRAY_SIZE(gang));
4001 if (!ret) {
4002 spin_unlock(&fs_info->fs_roots_radix_lock);
4003 break;
4004 }
4005 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4006
4007 for (i = 0; i < ret; i++) {
4008 /* Avoid to grab roots in dead_roots */
4009 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4010 gang[i] = NULL;
4011 continue;
4012 }
4013 /* grab all the search result for later use */
4014 gang[i] = btrfs_grab_root(gang[i]);
4015 }
4016 spin_unlock(&fs_info->fs_roots_radix_lock);
4017
4018 for (i = 0; i < ret; i++) {
4019 if (!gang[i])
4020 continue;
4021 root_objectid = gang[i]->root_key.objectid;
4022 err = btrfs_orphan_cleanup(gang[i]);
4023 if (err)
4024 break;
4025 btrfs_put_root(gang[i]);
4026 }
4027 root_objectid++;
4028 }
4029
4030 /* release the uncleaned roots due to error */
4031 for (; i < ret; i++) {
4032 if (gang[i])
4033 btrfs_put_root(gang[i]);
4034 }
4035 return err;
4036 }
4037
btrfs_commit_super(struct btrfs_fs_info * fs_info)4038 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4039 {
4040 struct btrfs_root *root = fs_info->tree_root;
4041 struct btrfs_trans_handle *trans;
4042
4043 mutex_lock(&fs_info->cleaner_mutex);
4044 btrfs_run_delayed_iputs(fs_info);
4045 mutex_unlock(&fs_info->cleaner_mutex);
4046 wake_up_process(fs_info->cleaner_kthread);
4047
4048 /* wait until ongoing cleanup work done */
4049 down_write(&fs_info->cleanup_work_sem);
4050 up_write(&fs_info->cleanup_work_sem);
4051
4052 trans = btrfs_join_transaction(root);
4053 if (IS_ERR(trans))
4054 return PTR_ERR(trans);
4055 return btrfs_commit_transaction(trans);
4056 }
4057
close_ctree(struct btrfs_fs_info * fs_info)4058 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4059 {
4060 int ret;
4061
4062 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4063 /*
4064 * We don't want the cleaner to start new transactions, add more delayed
4065 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4066 * because that frees the task_struct, and the transaction kthread might
4067 * still try to wake up the cleaner.
4068 */
4069 kthread_park(fs_info->cleaner_kthread);
4070
4071 /* wait for the qgroup rescan worker to stop */
4072 btrfs_qgroup_wait_for_completion(fs_info, false);
4073
4074 /* wait for the uuid_scan task to finish */
4075 down(&fs_info->uuid_tree_rescan_sem);
4076 /* avoid complains from lockdep et al., set sem back to initial state */
4077 up(&fs_info->uuid_tree_rescan_sem);
4078
4079 /* pause restriper - we want to resume on mount */
4080 btrfs_pause_balance(fs_info);
4081
4082 btrfs_dev_replace_suspend_for_unmount(fs_info);
4083
4084 btrfs_scrub_cancel(fs_info);
4085
4086 /* wait for any defraggers to finish */
4087 wait_event(fs_info->transaction_wait,
4088 (atomic_read(&fs_info->defrag_running) == 0));
4089
4090 /* clear out the rbtree of defraggable inodes */
4091 btrfs_cleanup_defrag_inodes(fs_info);
4092
4093 cancel_work_sync(&fs_info->async_reclaim_work);
4094 cancel_work_sync(&fs_info->async_data_reclaim_work);
4095
4096 /* Cancel or finish ongoing discard work */
4097 btrfs_discard_cleanup(fs_info);
4098
4099 if (!sb_rdonly(fs_info->sb)) {
4100 /*
4101 * The cleaner kthread is stopped, so do one final pass over
4102 * unused block groups.
4103 */
4104 btrfs_delete_unused_bgs(fs_info);
4105
4106 /*
4107 * There might be existing delayed inode workers still running
4108 * and holding an empty delayed inode item. We must wait for
4109 * them to complete first because they can create a transaction.
4110 * This happens when someone calls btrfs_balance_delayed_items()
4111 * and then a transaction commit runs the same delayed nodes
4112 * before any delayed worker has done something with the nodes.
4113 * We must wait for any worker here and not at transaction
4114 * commit time since that could cause a deadlock.
4115 * This is a very rare case.
4116 */
4117 btrfs_flush_workqueue(fs_info->delayed_workers);
4118
4119 ret = btrfs_commit_super(fs_info);
4120 if (ret)
4121 btrfs_err(fs_info, "commit super ret %d", ret);
4122 }
4123
4124 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4125 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4126 btrfs_error_commit_super(fs_info);
4127
4128 kthread_stop(fs_info->transaction_kthread);
4129 kthread_stop(fs_info->cleaner_kthread);
4130
4131 ASSERT(list_empty(&fs_info->delayed_iputs));
4132 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4133
4134 if (btrfs_check_quota_leak(fs_info)) {
4135 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4136 btrfs_err(fs_info, "qgroup reserved space leaked");
4137 }
4138
4139 btrfs_free_qgroup_config(fs_info);
4140 ASSERT(list_empty(&fs_info->delalloc_roots));
4141
4142 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4143 btrfs_info(fs_info, "at unmount delalloc count %lld",
4144 percpu_counter_sum(&fs_info->delalloc_bytes));
4145 }
4146
4147 if (percpu_counter_sum(&fs_info->dio_bytes))
4148 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4149 percpu_counter_sum(&fs_info->dio_bytes));
4150
4151 btrfs_sysfs_remove_mounted(fs_info);
4152 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4153
4154 btrfs_put_block_group_cache(fs_info);
4155
4156 /*
4157 * we must make sure there is not any read request to
4158 * submit after we stopping all workers.
4159 */
4160 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4161 btrfs_stop_all_workers(fs_info);
4162
4163 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4164 free_root_pointers(fs_info, true);
4165 btrfs_free_fs_roots(fs_info);
4166
4167 /*
4168 * We must free the block groups after dropping the fs_roots as we could
4169 * have had an IO error and have left over tree log blocks that aren't
4170 * cleaned up until the fs roots are freed. This makes the block group
4171 * accounting appear to be wrong because there's pending reserved bytes,
4172 * so make sure we do the block group cleanup afterwards.
4173 */
4174 btrfs_free_block_groups(fs_info);
4175
4176 iput(fs_info->btree_inode);
4177
4178 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4179 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4180 btrfsic_unmount(fs_info->fs_devices);
4181 #endif
4182
4183 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4184 btrfs_close_devices(fs_info->fs_devices);
4185 }
4186
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4187 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4188 int atomic)
4189 {
4190 int ret;
4191 struct inode *btree_inode = buf->pages[0]->mapping->host;
4192
4193 ret = extent_buffer_uptodate(buf);
4194 if (!ret)
4195 return ret;
4196
4197 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4198 parent_transid, atomic);
4199 if (ret == -EAGAIN)
4200 return ret;
4201 return !ret;
4202 }
4203
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4204 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4205 {
4206 struct btrfs_fs_info *fs_info;
4207 struct btrfs_root *root;
4208 u64 transid = btrfs_header_generation(buf);
4209 int was_dirty;
4210
4211 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4212 /*
4213 * This is a fast path so only do this check if we have sanity tests
4214 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4215 * outside of the sanity tests.
4216 */
4217 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4218 return;
4219 #endif
4220 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4221 fs_info = root->fs_info;
4222 btrfs_assert_tree_locked(buf);
4223 if (transid != fs_info->generation)
4224 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4225 buf->start, transid, fs_info->generation);
4226 was_dirty = set_extent_buffer_dirty(buf);
4227 if (!was_dirty)
4228 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4229 buf->len,
4230 fs_info->dirty_metadata_batch);
4231 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4232 /*
4233 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4234 * but item data not updated.
4235 * So here we should only check item pointers, not item data.
4236 */
4237 if (btrfs_header_level(buf) == 0 &&
4238 btrfs_check_leaf_relaxed(buf)) {
4239 btrfs_print_leaf(buf);
4240 ASSERT(0);
4241 }
4242 #endif
4243 }
4244
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4245 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4246 int flush_delayed)
4247 {
4248 /*
4249 * looks as though older kernels can get into trouble with
4250 * this code, they end up stuck in balance_dirty_pages forever
4251 */
4252 int ret;
4253
4254 if (current->flags & PF_MEMALLOC)
4255 return;
4256
4257 if (flush_delayed)
4258 btrfs_balance_delayed_items(fs_info);
4259
4260 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4261 BTRFS_DIRTY_METADATA_THRESH,
4262 fs_info->dirty_metadata_batch);
4263 if (ret > 0) {
4264 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4265 }
4266 }
4267
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4268 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4269 {
4270 __btrfs_btree_balance_dirty(fs_info, 1);
4271 }
4272
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4273 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4274 {
4275 __btrfs_btree_balance_dirty(fs_info, 0);
4276 }
4277
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4278 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4279 struct btrfs_key *first_key)
4280 {
4281 return btree_read_extent_buffer_pages(buf, parent_transid,
4282 level, first_key);
4283 }
4284
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4285 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4286 {
4287 /* cleanup FS via transaction */
4288 btrfs_cleanup_transaction(fs_info);
4289
4290 mutex_lock(&fs_info->cleaner_mutex);
4291 btrfs_run_delayed_iputs(fs_info);
4292 mutex_unlock(&fs_info->cleaner_mutex);
4293
4294 down_write(&fs_info->cleanup_work_sem);
4295 up_write(&fs_info->cleanup_work_sem);
4296 }
4297
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4298 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4299 {
4300 struct btrfs_root *gang[8];
4301 u64 root_objectid = 0;
4302 int ret;
4303
4304 spin_lock(&fs_info->fs_roots_radix_lock);
4305 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4306 (void **)gang, root_objectid,
4307 ARRAY_SIZE(gang))) != 0) {
4308 int i;
4309
4310 for (i = 0; i < ret; i++)
4311 gang[i] = btrfs_grab_root(gang[i]);
4312 spin_unlock(&fs_info->fs_roots_radix_lock);
4313
4314 for (i = 0; i < ret; i++) {
4315 if (!gang[i])
4316 continue;
4317 root_objectid = gang[i]->root_key.objectid;
4318 btrfs_free_log(NULL, gang[i]);
4319 btrfs_put_root(gang[i]);
4320 }
4321 root_objectid++;
4322 spin_lock(&fs_info->fs_roots_radix_lock);
4323 }
4324 spin_unlock(&fs_info->fs_roots_radix_lock);
4325 btrfs_free_log_root_tree(NULL, fs_info);
4326 }
4327
btrfs_destroy_ordered_extents(struct btrfs_root * root)4328 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4329 {
4330 struct btrfs_ordered_extent *ordered;
4331
4332 spin_lock(&root->ordered_extent_lock);
4333 /*
4334 * This will just short circuit the ordered completion stuff which will
4335 * make sure the ordered extent gets properly cleaned up.
4336 */
4337 list_for_each_entry(ordered, &root->ordered_extents,
4338 root_extent_list)
4339 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4340 spin_unlock(&root->ordered_extent_lock);
4341 }
4342
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4343 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4344 {
4345 struct btrfs_root *root;
4346 struct list_head splice;
4347
4348 INIT_LIST_HEAD(&splice);
4349
4350 spin_lock(&fs_info->ordered_root_lock);
4351 list_splice_init(&fs_info->ordered_roots, &splice);
4352 while (!list_empty(&splice)) {
4353 root = list_first_entry(&splice, struct btrfs_root,
4354 ordered_root);
4355 list_move_tail(&root->ordered_root,
4356 &fs_info->ordered_roots);
4357
4358 spin_unlock(&fs_info->ordered_root_lock);
4359 btrfs_destroy_ordered_extents(root);
4360
4361 cond_resched();
4362 spin_lock(&fs_info->ordered_root_lock);
4363 }
4364 spin_unlock(&fs_info->ordered_root_lock);
4365
4366 /*
4367 * We need this here because if we've been flipped read-only we won't
4368 * get sync() from the umount, so we need to make sure any ordered
4369 * extents that haven't had their dirty pages IO start writeout yet
4370 * actually get run and error out properly.
4371 */
4372 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4373 }
4374
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4375 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4376 struct btrfs_fs_info *fs_info)
4377 {
4378 struct rb_node *node;
4379 struct btrfs_delayed_ref_root *delayed_refs;
4380 struct btrfs_delayed_ref_node *ref;
4381 int ret = 0;
4382
4383 delayed_refs = &trans->delayed_refs;
4384
4385 spin_lock(&delayed_refs->lock);
4386 if (atomic_read(&delayed_refs->num_entries) == 0) {
4387 spin_unlock(&delayed_refs->lock);
4388 btrfs_debug(fs_info, "delayed_refs has NO entry");
4389 return ret;
4390 }
4391
4392 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4393 struct btrfs_delayed_ref_head *head;
4394 struct rb_node *n;
4395 bool pin_bytes = false;
4396
4397 head = rb_entry(node, struct btrfs_delayed_ref_head,
4398 href_node);
4399 if (btrfs_delayed_ref_lock(delayed_refs, head))
4400 continue;
4401
4402 spin_lock(&head->lock);
4403 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4404 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4405 ref_node);
4406 ref->in_tree = 0;
4407 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4408 RB_CLEAR_NODE(&ref->ref_node);
4409 if (!list_empty(&ref->add_list))
4410 list_del(&ref->add_list);
4411 atomic_dec(&delayed_refs->num_entries);
4412 btrfs_put_delayed_ref(ref);
4413 }
4414 if (head->must_insert_reserved)
4415 pin_bytes = true;
4416 btrfs_free_delayed_extent_op(head->extent_op);
4417 btrfs_delete_ref_head(delayed_refs, head);
4418 spin_unlock(&head->lock);
4419 spin_unlock(&delayed_refs->lock);
4420 mutex_unlock(&head->mutex);
4421
4422 if (pin_bytes) {
4423 struct btrfs_block_group *cache;
4424
4425 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4426 BUG_ON(!cache);
4427
4428 spin_lock(&cache->space_info->lock);
4429 spin_lock(&cache->lock);
4430 cache->pinned += head->num_bytes;
4431 btrfs_space_info_update_bytes_pinned(fs_info,
4432 cache->space_info, head->num_bytes);
4433 cache->reserved -= head->num_bytes;
4434 cache->space_info->bytes_reserved -= head->num_bytes;
4435 spin_unlock(&cache->lock);
4436 spin_unlock(&cache->space_info->lock);
4437 percpu_counter_add_batch(
4438 &cache->space_info->total_bytes_pinned,
4439 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4440
4441 btrfs_put_block_group(cache);
4442
4443 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4444 head->bytenr + head->num_bytes - 1);
4445 }
4446 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4447 btrfs_put_delayed_ref_head(head);
4448 cond_resched();
4449 spin_lock(&delayed_refs->lock);
4450 }
4451 btrfs_qgroup_destroy_extent_records(trans);
4452
4453 spin_unlock(&delayed_refs->lock);
4454
4455 return ret;
4456 }
4457
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4458 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4459 {
4460 struct btrfs_inode *btrfs_inode;
4461 struct list_head splice;
4462
4463 INIT_LIST_HEAD(&splice);
4464
4465 spin_lock(&root->delalloc_lock);
4466 list_splice_init(&root->delalloc_inodes, &splice);
4467
4468 while (!list_empty(&splice)) {
4469 struct inode *inode = NULL;
4470 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4471 delalloc_inodes);
4472 __btrfs_del_delalloc_inode(root, btrfs_inode);
4473 spin_unlock(&root->delalloc_lock);
4474
4475 /*
4476 * Make sure we get a live inode and that it'll not disappear
4477 * meanwhile.
4478 */
4479 inode = igrab(&btrfs_inode->vfs_inode);
4480 if (inode) {
4481 invalidate_inode_pages2(inode->i_mapping);
4482 iput(inode);
4483 }
4484 spin_lock(&root->delalloc_lock);
4485 }
4486 spin_unlock(&root->delalloc_lock);
4487 }
4488
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4489 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4490 {
4491 struct btrfs_root *root;
4492 struct list_head splice;
4493
4494 INIT_LIST_HEAD(&splice);
4495
4496 spin_lock(&fs_info->delalloc_root_lock);
4497 list_splice_init(&fs_info->delalloc_roots, &splice);
4498 while (!list_empty(&splice)) {
4499 root = list_first_entry(&splice, struct btrfs_root,
4500 delalloc_root);
4501 root = btrfs_grab_root(root);
4502 BUG_ON(!root);
4503 spin_unlock(&fs_info->delalloc_root_lock);
4504
4505 btrfs_destroy_delalloc_inodes(root);
4506 btrfs_put_root(root);
4507
4508 spin_lock(&fs_info->delalloc_root_lock);
4509 }
4510 spin_unlock(&fs_info->delalloc_root_lock);
4511 }
4512
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4513 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4514 struct extent_io_tree *dirty_pages,
4515 int mark)
4516 {
4517 int ret;
4518 struct extent_buffer *eb;
4519 u64 start = 0;
4520 u64 end;
4521
4522 while (1) {
4523 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4524 mark, NULL);
4525 if (ret)
4526 break;
4527
4528 clear_extent_bits(dirty_pages, start, end, mark);
4529 while (start <= end) {
4530 eb = find_extent_buffer(fs_info, start);
4531 start += fs_info->nodesize;
4532 if (!eb)
4533 continue;
4534 wait_on_extent_buffer_writeback(eb);
4535
4536 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4537 &eb->bflags))
4538 clear_extent_buffer_dirty(eb);
4539 free_extent_buffer_stale(eb);
4540 }
4541 }
4542
4543 return ret;
4544 }
4545
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4546 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4547 struct extent_io_tree *unpin)
4548 {
4549 u64 start;
4550 u64 end;
4551 int ret;
4552
4553 while (1) {
4554 struct extent_state *cached_state = NULL;
4555
4556 /*
4557 * The btrfs_finish_extent_commit() may get the same range as
4558 * ours between find_first_extent_bit and clear_extent_dirty.
4559 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4560 * the same extent range.
4561 */
4562 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4563 ret = find_first_extent_bit(unpin, 0, &start, &end,
4564 EXTENT_DIRTY, &cached_state);
4565 if (ret) {
4566 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4567 break;
4568 }
4569
4570 clear_extent_dirty(unpin, start, end, &cached_state);
4571 free_extent_state(cached_state);
4572 btrfs_error_unpin_extent_range(fs_info, start, end);
4573 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4574 cond_resched();
4575 }
4576
4577 return 0;
4578 }
4579
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4580 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4581 {
4582 struct inode *inode;
4583
4584 inode = cache->io_ctl.inode;
4585 if (inode) {
4586 invalidate_inode_pages2(inode->i_mapping);
4587 BTRFS_I(inode)->generation = 0;
4588 cache->io_ctl.inode = NULL;
4589 iput(inode);
4590 }
4591 ASSERT(cache->io_ctl.pages == NULL);
4592 btrfs_put_block_group(cache);
4593 }
4594
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4595 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4596 struct btrfs_fs_info *fs_info)
4597 {
4598 struct btrfs_block_group *cache;
4599
4600 spin_lock(&cur_trans->dirty_bgs_lock);
4601 while (!list_empty(&cur_trans->dirty_bgs)) {
4602 cache = list_first_entry(&cur_trans->dirty_bgs,
4603 struct btrfs_block_group,
4604 dirty_list);
4605
4606 if (!list_empty(&cache->io_list)) {
4607 spin_unlock(&cur_trans->dirty_bgs_lock);
4608 list_del_init(&cache->io_list);
4609 btrfs_cleanup_bg_io(cache);
4610 spin_lock(&cur_trans->dirty_bgs_lock);
4611 }
4612
4613 list_del_init(&cache->dirty_list);
4614 spin_lock(&cache->lock);
4615 cache->disk_cache_state = BTRFS_DC_ERROR;
4616 spin_unlock(&cache->lock);
4617
4618 spin_unlock(&cur_trans->dirty_bgs_lock);
4619 btrfs_put_block_group(cache);
4620 btrfs_delayed_refs_rsv_release(fs_info, 1);
4621 spin_lock(&cur_trans->dirty_bgs_lock);
4622 }
4623 spin_unlock(&cur_trans->dirty_bgs_lock);
4624
4625 /*
4626 * Refer to the definition of io_bgs member for details why it's safe
4627 * to use it without any locking
4628 */
4629 while (!list_empty(&cur_trans->io_bgs)) {
4630 cache = list_first_entry(&cur_trans->io_bgs,
4631 struct btrfs_block_group,
4632 io_list);
4633
4634 list_del_init(&cache->io_list);
4635 spin_lock(&cache->lock);
4636 cache->disk_cache_state = BTRFS_DC_ERROR;
4637 spin_unlock(&cache->lock);
4638 btrfs_cleanup_bg_io(cache);
4639 }
4640 }
4641
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4642 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4643 struct btrfs_fs_info *fs_info)
4644 {
4645 struct btrfs_device *dev, *tmp;
4646
4647 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4648 ASSERT(list_empty(&cur_trans->dirty_bgs));
4649 ASSERT(list_empty(&cur_trans->io_bgs));
4650
4651 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4652 post_commit_list) {
4653 list_del_init(&dev->post_commit_list);
4654 }
4655
4656 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4657
4658 cur_trans->state = TRANS_STATE_COMMIT_START;
4659 wake_up(&fs_info->transaction_blocked_wait);
4660
4661 cur_trans->state = TRANS_STATE_UNBLOCKED;
4662 wake_up(&fs_info->transaction_wait);
4663
4664 btrfs_destroy_delayed_inodes(fs_info);
4665
4666 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4667 EXTENT_DIRTY);
4668 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4669
4670 cur_trans->state =TRANS_STATE_COMPLETED;
4671 wake_up(&cur_trans->commit_wait);
4672 }
4673
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4674 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4675 {
4676 struct btrfs_transaction *t;
4677
4678 mutex_lock(&fs_info->transaction_kthread_mutex);
4679
4680 spin_lock(&fs_info->trans_lock);
4681 while (!list_empty(&fs_info->trans_list)) {
4682 t = list_first_entry(&fs_info->trans_list,
4683 struct btrfs_transaction, list);
4684 if (t->state >= TRANS_STATE_COMMIT_START) {
4685 refcount_inc(&t->use_count);
4686 spin_unlock(&fs_info->trans_lock);
4687 btrfs_wait_for_commit(fs_info, t->transid);
4688 btrfs_put_transaction(t);
4689 spin_lock(&fs_info->trans_lock);
4690 continue;
4691 }
4692 if (t == fs_info->running_transaction) {
4693 t->state = TRANS_STATE_COMMIT_DOING;
4694 spin_unlock(&fs_info->trans_lock);
4695 /*
4696 * We wait for 0 num_writers since we don't hold a trans
4697 * handle open currently for this transaction.
4698 */
4699 wait_event(t->writer_wait,
4700 atomic_read(&t->num_writers) == 0);
4701 } else {
4702 spin_unlock(&fs_info->trans_lock);
4703 }
4704 btrfs_cleanup_one_transaction(t, fs_info);
4705
4706 spin_lock(&fs_info->trans_lock);
4707 if (t == fs_info->running_transaction)
4708 fs_info->running_transaction = NULL;
4709 list_del_init(&t->list);
4710 spin_unlock(&fs_info->trans_lock);
4711
4712 btrfs_put_transaction(t);
4713 trace_btrfs_transaction_commit(fs_info->tree_root);
4714 spin_lock(&fs_info->trans_lock);
4715 }
4716 spin_unlock(&fs_info->trans_lock);
4717 btrfs_destroy_all_ordered_extents(fs_info);
4718 btrfs_destroy_delayed_inodes(fs_info);
4719 btrfs_assert_delayed_root_empty(fs_info);
4720 btrfs_destroy_all_delalloc_inodes(fs_info);
4721 btrfs_drop_all_logs(fs_info);
4722 mutex_unlock(&fs_info->transaction_kthread_mutex);
4723
4724 return 0;
4725 }
4726