1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "inode-map.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 struct btrfs_dio_data {
61 u64 reserve;
62 loff_t length;
63 ssize_t submitted;
64 struct extent_changeset *data_reserved;
65 bool sync;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_special_inode_operations;
71 static const struct inode_operations btrfs_file_inode_operations;
72 static const struct address_space_operations btrfs_aops;
73 static const struct file_operations btrfs_dir_file_operations;
74
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct btrfs_inode *inode,
85 struct page *locked_page,
86 u64 start, u64 end, int *page_started,
87 unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 u64 len, u64 orig_start, u64 block_start,
90 u64 block_len, u64 orig_block_len,
91 u64 ram_bytes, int compress_type,
92 int type);
93
94 static void __endio_write_update_ordered(struct btrfs_inode *inode,
95 const u64 offset, const u64 bytes,
96 const bool uptodate);
97
98 /*
99 * Cleanup all submitted ordered extents in specified range to handle errors
100 * from the btrfs_run_delalloc_range() callback.
101 *
102 * NOTE: caller must ensure that when an error happens, it can not call
103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105 * to be released, which we want to happen only when finishing the ordered
106 * extent (btrfs_finish_ordered_io()).
107 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct page * locked_page,u64 offset,u64 bytes)108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
109 struct page *locked_page,
110 u64 offset, u64 bytes)
111 {
112 unsigned long index = offset >> PAGE_SHIFT;
113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 u64 page_start = page_offset(locked_page);
115 u64 page_end = page_start + PAGE_SIZE - 1;
116
117 struct page *page;
118
119 while (index <= end_index) {
120 page = find_get_page(inode->vfs_inode.i_mapping, index);
121 index++;
122 if (!page)
123 continue;
124 ClearPagePrivate2(page);
125 put_page(page);
126 }
127
128 /*
129 * In case this page belongs to the delalloc range being instantiated
130 * then skip it, since the first page of a range is going to be
131 * properly cleaned up by the caller of run_delalloc_range
132 */
133 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 offset += PAGE_SIZE;
135 bytes -= PAGE_SIZE;
136 }
137
138 return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140
141 static int btrfs_dirty_inode(struct inode *inode);
142
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)143 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
144 struct inode *inode, struct inode *dir,
145 const struct qstr *qstr)
146 {
147 int err;
148
149 err = btrfs_init_acl(trans, inode, dir);
150 if (!err)
151 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
152 return err;
153 }
154
155 /*
156 * this does all the hard work for inserting an inline extent into
157 * the btree. The caller should have done a btrfs_drop_extents so that
158 * no overlapping inline items exist in the btree
159 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)160 static int insert_inline_extent(struct btrfs_trans_handle *trans,
161 struct btrfs_path *path, int extent_inserted,
162 struct btrfs_root *root, struct inode *inode,
163 u64 start, size_t size, size_t compressed_size,
164 int compress_type,
165 struct page **compressed_pages)
166 {
167 struct extent_buffer *leaf;
168 struct page *page = NULL;
169 char *kaddr;
170 unsigned long ptr;
171 struct btrfs_file_extent_item *ei;
172 int ret;
173 size_t cur_size = size;
174 unsigned long offset;
175
176 ASSERT((compressed_size > 0 && compressed_pages) ||
177 (compressed_size == 0 && !compressed_pages));
178
179 if (compressed_size && compressed_pages)
180 cur_size = compressed_size;
181
182 inode_add_bytes(inode, size);
183
184 if (!extent_inserted) {
185 struct btrfs_key key;
186 size_t datasize;
187
188 key.objectid = btrfs_ino(BTRFS_I(inode));
189 key.offset = start;
190 key.type = BTRFS_EXTENT_DATA_KEY;
191
192 datasize = btrfs_file_extent_calc_inline_size(cur_size);
193 path->leave_spinning = 1;
194 ret = btrfs_insert_empty_item(trans, root, path, &key,
195 datasize);
196 if (ret)
197 goto fail;
198 }
199 leaf = path->nodes[0];
200 ei = btrfs_item_ptr(leaf, path->slots[0],
201 struct btrfs_file_extent_item);
202 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
203 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
204 btrfs_set_file_extent_encryption(leaf, ei, 0);
205 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
206 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
207 ptr = btrfs_file_extent_inline_start(ei);
208
209 if (compress_type != BTRFS_COMPRESS_NONE) {
210 struct page *cpage;
211 int i = 0;
212 while (compressed_size > 0) {
213 cpage = compressed_pages[i];
214 cur_size = min_t(unsigned long, compressed_size,
215 PAGE_SIZE);
216
217 kaddr = kmap_atomic(cpage);
218 write_extent_buffer(leaf, kaddr, ptr, cur_size);
219 kunmap_atomic(kaddr);
220
221 i++;
222 ptr += cur_size;
223 compressed_size -= cur_size;
224 }
225 btrfs_set_file_extent_compression(leaf, ei,
226 compress_type);
227 } else {
228 page = find_get_page(inode->i_mapping,
229 start >> PAGE_SHIFT);
230 btrfs_set_file_extent_compression(leaf, ei, 0);
231 kaddr = kmap_atomic(page);
232 offset = offset_in_page(start);
233 write_extent_buffer(leaf, kaddr + offset, ptr, size);
234 kunmap_atomic(kaddr);
235 put_page(page);
236 }
237 btrfs_mark_buffer_dirty(leaf);
238 btrfs_release_path(path);
239
240 /*
241 * We align size to sectorsize for inline extents just for simplicity
242 * sake.
243 */
244 size = ALIGN(size, root->fs_info->sectorsize);
245 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
246 if (ret)
247 goto fail;
248
249 /*
250 * we're an inline extent, so nobody can
251 * extend the file past i_size without locking
252 * a page we already have locked.
253 *
254 * We must do any isize and inode updates
255 * before we unlock the pages. Otherwise we
256 * could end up racing with unlink.
257 */
258 BTRFS_I(inode)->disk_i_size = inode->i_size;
259 ret = btrfs_update_inode(trans, root, inode);
260
261 fail:
262 return ret;
263 }
264
265
266 /*
267 * conditionally insert an inline extent into the file. This
268 * does the checks required to make sure the data is small enough
269 * to fit as an inline extent.
270 */
cow_file_range_inline(struct btrfs_inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)271 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
272 u64 end, size_t compressed_size,
273 int compress_type,
274 struct page **compressed_pages)
275 {
276 struct btrfs_root *root = inode->root;
277 struct btrfs_fs_info *fs_info = root->fs_info;
278 struct btrfs_trans_handle *trans;
279 u64 isize = i_size_read(&inode->vfs_inode);
280 u64 actual_end = min(end + 1, isize);
281 u64 inline_len = actual_end - start;
282 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
283 u64 data_len = inline_len;
284 int ret;
285 struct btrfs_path *path;
286 int extent_inserted = 0;
287 u32 extent_item_size;
288
289 if (compressed_size)
290 data_len = compressed_size;
291
292 if (start > 0 ||
293 actual_end > fs_info->sectorsize ||
294 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
295 (!compressed_size &&
296 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
297 end + 1 < isize ||
298 data_len > fs_info->max_inline) {
299 return 1;
300 }
301
302 path = btrfs_alloc_path();
303 if (!path)
304 return -ENOMEM;
305
306 trans = btrfs_join_transaction(root);
307 if (IS_ERR(trans)) {
308 btrfs_free_path(path);
309 return PTR_ERR(trans);
310 }
311 trans->block_rsv = &inode->block_rsv;
312
313 if (compressed_size && compressed_pages)
314 extent_item_size = btrfs_file_extent_calc_inline_size(
315 compressed_size);
316 else
317 extent_item_size = btrfs_file_extent_calc_inline_size(
318 inline_len);
319
320 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
321 NULL, 1, 1, extent_item_size,
322 &extent_inserted);
323 if (ret) {
324 btrfs_abort_transaction(trans, ret);
325 goto out;
326 }
327
328 if (isize > actual_end)
329 inline_len = min_t(u64, isize, actual_end);
330 ret = insert_inline_extent(trans, path, extent_inserted,
331 root, &inode->vfs_inode, start,
332 inline_len, compressed_size,
333 compress_type, compressed_pages);
334 if (ret && ret != -ENOSPC) {
335 btrfs_abort_transaction(trans, ret);
336 goto out;
337 } else if (ret == -ENOSPC) {
338 ret = 1;
339 goto out;
340 }
341
342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
343 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
344 out:
345 /*
346 * Don't forget to free the reserved space, as for inlined extent
347 * it won't count as data extent, free them directly here.
348 * And at reserve time, it's always aligned to page size, so
349 * just free one page here.
350 */
351 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
352 btrfs_free_path(path);
353 btrfs_end_transaction(trans);
354 return ret;
355 }
356
357 struct async_extent {
358 u64 start;
359 u64 ram_size;
360 u64 compressed_size;
361 struct page **pages;
362 unsigned long nr_pages;
363 int compress_type;
364 struct list_head list;
365 };
366
367 struct async_chunk {
368 struct inode *inode;
369 struct page *locked_page;
370 u64 start;
371 u64 end;
372 unsigned int write_flags;
373 struct list_head extents;
374 struct cgroup_subsys_state *blkcg_css;
375 struct btrfs_work work;
376 atomic_t *pending;
377 };
378
379 struct async_cow {
380 /* Number of chunks in flight; must be first in the structure */
381 atomic_t num_chunks;
382 struct async_chunk chunks[];
383 };
384
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)385 static noinline int add_async_extent(struct async_chunk *cow,
386 u64 start, u64 ram_size,
387 u64 compressed_size,
388 struct page **pages,
389 unsigned long nr_pages,
390 int compress_type)
391 {
392 struct async_extent *async_extent;
393
394 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
395 BUG_ON(!async_extent); /* -ENOMEM */
396 async_extent->start = start;
397 async_extent->ram_size = ram_size;
398 async_extent->compressed_size = compressed_size;
399 async_extent->pages = pages;
400 async_extent->nr_pages = nr_pages;
401 async_extent->compress_type = compress_type;
402 list_add_tail(&async_extent->list, &cow->extents);
403 return 0;
404 }
405
406 /*
407 * Check if the inode has flags compatible with compression
408 */
inode_can_compress(struct btrfs_inode * inode)409 static inline bool inode_can_compress(struct btrfs_inode *inode)
410 {
411 if (inode->flags & BTRFS_INODE_NODATACOW ||
412 inode->flags & BTRFS_INODE_NODATASUM)
413 return false;
414 return true;
415 }
416
417 /*
418 * Check if the inode needs to be submitted to compression, based on mount
419 * options, defragmentation, properties or heuristics.
420 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)421 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
422 u64 end)
423 {
424 struct btrfs_fs_info *fs_info = inode->root->fs_info;
425
426 if (!inode_can_compress(inode)) {
427 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
428 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
429 btrfs_ino(inode));
430 return 0;
431 }
432 /* force compress */
433 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
434 return 1;
435 /* defrag ioctl */
436 if (inode->defrag_compress)
437 return 1;
438 /* bad compression ratios */
439 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
440 return 0;
441 if (btrfs_test_opt(fs_info, COMPRESS) ||
442 inode->flags & BTRFS_INODE_COMPRESS ||
443 inode->prop_compress)
444 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
445 return 0;
446 }
447
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)448 static inline void inode_should_defrag(struct btrfs_inode *inode,
449 u64 start, u64 end, u64 num_bytes, u64 small_write)
450 {
451 /* If this is a small write inside eof, kick off a defrag */
452 if (num_bytes < small_write &&
453 (start > 0 || end + 1 < inode->disk_i_size))
454 btrfs_add_inode_defrag(NULL, inode);
455 }
456
457 /*
458 * we create compressed extents in two phases. The first
459 * phase compresses a range of pages that have already been
460 * locked (both pages and state bits are locked).
461 *
462 * This is done inside an ordered work queue, and the compression
463 * is spread across many cpus. The actual IO submission is step
464 * two, and the ordered work queue takes care of making sure that
465 * happens in the same order things were put onto the queue by
466 * writepages and friends.
467 *
468 * If this code finds it can't get good compression, it puts an
469 * entry onto the work queue to write the uncompressed bytes. This
470 * makes sure that both compressed inodes and uncompressed inodes
471 * are written in the same order that the flusher thread sent them
472 * down.
473 */
compress_file_range(struct async_chunk * async_chunk)474 static noinline int compress_file_range(struct async_chunk *async_chunk)
475 {
476 struct inode *inode = async_chunk->inode;
477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
478 u64 blocksize = fs_info->sectorsize;
479 u64 start = async_chunk->start;
480 u64 end = async_chunk->end;
481 u64 actual_end;
482 u64 i_size;
483 int ret = 0;
484 struct page **pages = NULL;
485 unsigned long nr_pages;
486 unsigned long total_compressed = 0;
487 unsigned long total_in = 0;
488 int i;
489 int will_compress;
490 int compress_type = fs_info->compress_type;
491 int compressed_extents = 0;
492 int redirty = 0;
493
494 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
495 SZ_16K);
496
497 /*
498 * We need to save i_size before now because it could change in between
499 * us evaluating the size and assigning it. This is because we lock and
500 * unlock the page in truncate and fallocate, and then modify the i_size
501 * later on.
502 *
503 * The barriers are to emulate READ_ONCE, remove that once i_size_read
504 * does that for us.
505 */
506 barrier();
507 i_size = i_size_read(inode);
508 barrier();
509 actual_end = min_t(u64, i_size, end + 1);
510 again:
511 will_compress = 0;
512 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
513 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
514 nr_pages = min_t(unsigned long, nr_pages,
515 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
516
517 /*
518 * we don't want to send crud past the end of i_size through
519 * compression, that's just a waste of CPU time. So, if the
520 * end of the file is before the start of our current
521 * requested range of bytes, we bail out to the uncompressed
522 * cleanup code that can deal with all of this.
523 *
524 * It isn't really the fastest way to fix things, but this is a
525 * very uncommon corner.
526 */
527 if (actual_end <= start)
528 goto cleanup_and_bail_uncompressed;
529
530 total_compressed = actual_end - start;
531
532 /*
533 * skip compression for a small file range(<=blocksize) that
534 * isn't an inline extent, since it doesn't save disk space at all.
535 */
536 if (total_compressed <= blocksize &&
537 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
538 goto cleanup_and_bail_uncompressed;
539
540 total_compressed = min_t(unsigned long, total_compressed,
541 BTRFS_MAX_UNCOMPRESSED);
542 total_in = 0;
543 ret = 0;
544
545 /*
546 * we do compression for mount -o compress and when the
547 * inode has not been flagged as nocompress. This flag can
548 * change at any time if we discover bad compression ratios.
549 */
550 if (inode_need_compress(BTRFS_I(inode), start, end)) {
551 WARN_ON(pages);
552 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
553 if (!pages) {
554 /* just bail out to the uncompressed code */
555 nr_pages = 0;
556 goto cont;
557 }
558
559 if (BTRFS_I(inode)->defrag_compress)
560 compress_type = BTRFS_I(inode)->defrag_compress;
561 else if (BTRFS_I(inode)->prop_compress)
562 compress_type = BTRFS_I(inode)->prop_compress;
563
564 /*
565 * we need to call clear_page_dirty_for_io on each
566 * page in the range. Otherwise applications with the file
567 * mmap'd can wander in and change the page contents while
568 * we are compressing them.
569 *
570 * If the compression fails for any reason, we set the pages
571 * dirty again later on.
572 *
573 * Note that the remaining part is redirtied, the start pointer
574 * has moved, the end is the original one.
575 */
576 if (!redirty) {
577 extent_range_clear_dirty_for_io(inode, start, end);
578 redirty = 1;
579 }
580
581 /* Compression level is applied here and only here */
582 ret = btrfs_compress_pages(
583 compress_type | (fs_info->compress_level << 4),
584 inode->i_mapping, start,
585 pages,
586 &nr_pages,
587 &total_in,
588 &total_compressed);
589
590 if (!ret) {
591 unsigned long offset = offset_in_page(total_compressed);
592 struct page *page = pages[nr_pages - 1];
593 char *kaddr;
594
595 /* zero the tail end of the last page, we might be
596 * sending it down to disk
597 */
598 if (offset) {
599 kaddr = kmap_atomic(page);
600 memset(kaddr + offset, 0,
601 PAGE_SIZE - offset);
602 kunmap_atomic(kaddr);
603 }
604 will_compress = 1;
605 }
606 }
607 cont:
608 if (start == 0) {
609 /* lets try to make an inline extent */
610 if (ret || total_in < actual_end) {
611 /* we didn't compress the entire range, try
612 * to make an uncompressed inline extent.
613 */
614 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
615 0, BTRFS_COMPRESS_NONE,
616 NULL);
617 } else {
618 /* try making a compressed inline extent */
619 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
620 total_compressed,
621 compress_type, pages);
622 }
623 if (ret <= 0) {
624 unsigned long clear_flags = EXTENT_DELALLOC |
625 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
626 EXTENT_DO_ACCOUNTING;
627 unsigned long page_error_op;
628
629 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
630
631 /*
632 * inline extent creation worked or returned error,
633 * we don't need to create any more async work items.
634 * Unlock and free up our temp pages.
635 *
636 * We use DO_ACCOUNTING here because we need the
637 * delalloc_release_metadata to be done _after_ we drop
638 * our outstanding extent for clearing delalloc for this
639 * range.
640 */
641 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
642 NULL,
643 clear_flags,
644 PAGE_UNLOCK |
645 PAGE_CLEAR_DIRTY |
646 PAGE_SET_WRITEBACK |
647 page_error_op |
648 PAGE_END_WRITEBACK);
649
650 /*
651 * Ensure we only free the compressed pages if we have
652 * them allocated, as we can still reach here with
653 * inode_need_compress() == false.
654 */
655 if (pages) {
656 for (i = 0; i < nr_pages; i++) {
657 WARN_ON(pages[i]->mapping);
658 put_page(pages[i]);
659 }
660 kfree(pages);
661 }
662 return 0;
663 }
664 }
665
666 if (will_compress) {
667 /*
668 * we aren't doing an inline extent round the compressed size
669 * up to a block size boundary so the allocator does sane
670 * things
671 */
672 total_compressed = ALIGN(total_compressed, blocksize);
673
674 /*
675 * one last check to make sure the compression is really a
676 * win, compare the page count read with the blocks on disk,
677 * compression must free at least one sector size
678 */
679 total_in = ALIGN(total_in, PAGE_SIZE);
680 if (total_compressed + blocksize <= total_in) {
681 compressed_extents++;
682
683 /*
684 * The async work queues will take care of doing actual
685 * allocation on disk for these compressed pages, and
686 * will submit them to the elevator.
687 */
688 add_async_extent(async_chunk, start, total_in,
689 total_compressed, pages, nr_pages,
690 compress_type);
691
692 if (start + total_in < end) {
693 start += total_in;
694 pages = NULL;
695 cond_resched();
696 goto again;
697 }
698 return compressed_extents;
699 }
700 }
701 if (pages) {
702 /*
703 * the compression code ran but failed to make things smaller,
704 * free any pages it allocated and our page pointer array
705 */
706 for (i = 0; i < nr_pages; i++) {
707 WARN_ON(pages[i]->mapping);
708 put_page(pages[i]);
709 }
710 kfree(pages);
711 pages = NULL;
712 total_compressed = 0;
713 nr_pages = 0;
714
715 /* flag the file so we don't compress in the future */
716 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
717 !(BTRFS_I(inode)->prop_compress)) {
718 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
719 }
720 }
721 cleanup_and_bail_uncompressed:
722 /*
723 * No compression, but we still need to write the pages in the file
724 * we've been given so far. redirty the locked page if it corresponds
725 * to our extent and set things up for the async work queue to run
726 * cow_file_range to do the normal delalloc dance.
727 */
728 if (async_chunk->locked_page &&
729 (page_offset(async_chunk->locked_page) >= start &&
730 page_offset(async_chunk->locked_page)) <= end) {
731 __set_page_dirty_nobuffers(async_chunk->locked_page);
732 /* unlocked later on in the async handlers */
733 }
734
735 if (redirty)
736 extent_range_redirty_for_io(inode, start, end);
737 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
738 BTRFS_COMPRESS_NONE);
739 compressed_extents++;
740
741 return compressed_extents;
742 }
743
free_async_extent_pages(struct async_extent * async_extent)744 static void free_async_extent_pages(struct async_extent *async_extent)
745 {
746 int i;
747
748 if (!async_extent->pages)
749 return;
750
751 for (i = 0; i < async_extent->nr_pages; i++) {
752 WARN_ON(async_extent->pages[i]->mapping);
753 put_page(async_extent->pages[i]);
754 }
755 kfree(async_extent->pages);
756 async_extent->nr_pages = 0;
757 async_extent->pages = NULL;
758 }
759
760 /*
761 * phase two of compressed writeback. This is the ordered portion
762 * of the code, which only gets called in the order the work was
763 * queued. We walk all the async extents created by compress_file_range
764 * and send them down to the disk.
765 */
submit_compressed_extents(struct async_chunk * async_chunk)766 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
767 {
768 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
769 struct btrfs_fs_info *fs_info = inode->root->fs_info;
770 struct async_extent *async_extent;
771 u64 alloc_hint = 0;
772 struct btrfs_key ins;
773 struct extent_map *em;
774 struct btrfs_root *root = inode->root;
775 struct extent_io_tree *io_tree = &inode->io_tree;
776 int ret = 0;
777
778 again:
779 while (!list_empty(&async_chunk->extents)) {
780 async_extent = list_entry(async_chunk->extents.next,
781 struct async_extent, list);
782 list_del(&async_extent->list);
783
784 retry:
785 lock_extent(io_tree, async_extent->start,
786 async_extent->start + async_extent->ram_size - 1);
787 /* did the compression code fall back to uncompressed IO? */
788 if (!async_extent->pages) {
789 int page_started = 0;
790 unsigned long nr_written = 0;
791
792 /* allocate blocks */
793 ret = cow_file_range(inode, async_chunk->locked_page,
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1,
797 &page_started, &nr_written, 0);
798
799 /* JDM XXX */
800
801 /*
802 * if page_started, cow_file_range inserted an
803 * inline extent and took care of all the unlocking
804 * and IO for us. Otherwise, we need to submit
805 * all those pages down to the drive.
806 */
807 if (!page_started && !ret)
808 extent_write_locked_range(&inode->vfs_inode,
809 async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1,
812 WB_SYNC_ALL);
813 else if (ret && async_chunk->locked_page)
814 unlock_page(async_chunk->locked_page);
815 kfree(async_extent);
816 cond_resched();
817 continue;
818 }
819
820 ret = btrfs_reserve_extent(root, async_extent->ram_size,
821 async_extent->compressed_size,
822 async_extent->compressed_size,
823 0, alloc_hint, &ins, 1, 1);
824 if (ret) {
825 free_async_extent_pages(async_extent);
826
827 if (ret == -ENOSPC) {
828 unlock_extent(io_tree, async_extent->start,
829 async_extent->start +
830 async_extent->ram_size - 1);
831
832 /*
833 * we need to redirty the pages if we decide to
834 * fallback to uncompressed IO, otherwise we
835 * will not submit these pages down to lower
836 * layers.
837 */
838 extent_range_redirty_for_io(&inode->vfs_inode,
839 async_extent->start,
840 async_extent->start +
841 async_extent->ram_size - 1);
842
843 goto retry;
844 }
845 goto out_free;
846 }
847 /*
848 * here we're doing allocation and writeback of the
849 * compressed pages
850 */
851 em = create_io_em(inode, async_extent->start,
852 async_extent->ram_size, /* len */
853 async_extent->start, /* orig_start */
854 ins.objectid, /* block_start */
855 ins.offset, /* block_len */
856 ins.offset, /* orig_block_len */
857 async_extent->ram_size, /* ram_bytes */
858 async_extent->compress_type,
859 BTRFS_ORDERED_COMPRESSED);
860 if (IS_ERR(em))
861 /* ret value is not necessary due to void function */
862 goto out_free_reserve;
863 free_extent_map(em);
864
865 ret = btrfs_add_ordered_extent_compress(inode,
866 async_extent->start,
867 ins.objectid,
868 async_extent->ram_size,
869 ins.offset,
870 BTRFS_ORDERED_COMPRESSED,
871 async_extent->compress_type);
872 if (ret) {
873 btrfs_drop_extent_cache(inode, async_extent->start,
874 async_extent->start +
875 async_extent->ram_size - 1, 0);
876 goto out_free_reserve;
877 }
878 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
879
880 /*
881 * clear dirty, set writeback and unlock the pages.
882 */
883 extent_clear_unlock_delalloc(inode, async_extent->start,
884 async_extent->start +
885 async_extent->ram_size - 1,
886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
887 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
888 PAGE_SET_WRITEBACK);
889 if (btrfs_submit_compressed_write(inode, async_extent->start,
890 async_extent->ram_size,
891 ins.objectid,
892 ins.offset, async_extent->pages,
893 async_extent->nr_pages,
894 async_chunk->write_flags,
895 async_chunk->blkcg_css)) {
896 struct page *p = async_extent->pages[0];
897 const u64 start = async_extent->start;
898 const u64 end = start + async_extent->ram_size - 1;
899
900 p->mapping = inode->vfs_inode.i_mapping;
901 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
902
903 p->mapping = NULL;
904 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
905 PAGE_END_WRITEBACK |
906 PAGE_SET_ERROR);
907 free_async_extent_pages(async_extent);
908 }
909 alloc_hint = ins.objectid + ins.offset;
910 kfree(async_extent);
911 cond_resched();
912 }
913 return;
914 out_free_reserve:
915 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
917 out_free:
918 extent_clear_unlock_delalloc(inode, async_extent->start,
919 async_extent->start +
920 async_extent->ram_size - 1,
921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
922 EXTENT_DELALLOC_NEW |
923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
926 PAGE_SET_ERROR);
927 free_async_extent_pages(async_extent);
928 kfree(async_extent);
929 goto again;
930 }
931
get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)932 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
933 u64 num_bytes)
934 {
935 struct extent_map_tree *em_tree = &inode->extent_tree;
936 struct extent_map *em;
937 u64 alloc_hint = 0;
938
939 read_lock(&em_tree->lock);
940 em = search_extent_mapping(em_tree, start, num_bytes);
941 if (em) {
942 /*
943 * if block start isn't an actual block number then find the
944 * first block in this inode and use that as a hint. If that
945 * block is also bogus then just don't worry about it.
946 */
947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
948 free_extent_map(em);
949 em = search_extent_mapping(em_tree, 0, 0);
950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
951 alloc_hint = em->block_start;
952 if (em)
953 free_extent_map(em);
954 } else {
955 alloc_hint = em->block_start;
956 free_extent_map(em);
957 }
958 }
959 read_unlock(&em_tree->lock);
960
961 return alloc_hint;
962 }
963
964 /*
965 * when extent_io.c finds a delayed allocation range in the file,
966 * the call backs end up in this code. The basic idea is to
967 * allocate extents on disk for the range, and create ordered data structs
968 * in ram to track those extents.
969 *
970 * locked_page is the page that writepage had locked already. We use
971 * it to make sure we don't do extra locks or unlocks.
972 *
973 * *page_started is set to one if we unlock locked_page and do everything
974 * required to start IO on it. It may be clean and already done with
975 * IO when we return.
976 */
cow_file_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)977 static noinline int cow_file_range(struct btrfs_inode *inode,
978 struct page *locked_page,
979 u64 start, u64 end, int *page_started,
980 unsigned long *nr_written, int unlock)
981 {
982 struct btrfs_root *root = inode->root;
983 struct btrfs_fs_info *fs_info = root->fs_info;
984 u64 alloc_hint = 0;
985 u64 num_bytes;
986 unsigned long ram_size;
987 u64 cur_alloc_size = 0;
988 u64 min_alloc_size;
989 u64 blocksize = fs_info->sectorsize;
990 struct btrfs_key ins;
991 struct extent_map *em;
992 unsigned clear_bits;
993 unsigned long page_ops;
994 bool extent_reserved = false;
995 int ret = 0;
996
997 if (btrfs_is_free_space_inode(inode)) {
998 WARN_ON_ONCE(1);
999 ret = -EINVAL;
1000 goto out_unlock;
1001 }
1002
1003 num_bytes = ALIGN(end - start + 1, blocksize);
1004 num_bytes = max(blocksize, num_bytes);
1005 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1006
1007 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1008
1009 if (start == 0) {
1010 /* lets try to make an inline extent */
1011 ret = cow_file_range_inline(inode, start, end, 0,
1012 BTRFS_COMPRESS_NONE, NULL);
1013 if (ret == 0) {
1014 /*
1015 * We use DO_ACCOUNTING here because we need the
1016 * delalloc_release_metadata to be run _after_ we drop
1017 * our outstanding extent for clearing delalloc for this
1018 * range.
1019 */
1020 extent_clear_unlock_delalloc(inode, start, end, NULL,
1021 EXTENT_LOCKED | EXTENT_DELALLOC |
1022 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1023 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1024 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1025 PAGE_END_WRITEBACK);
1026 *nr_written = *nr_written +
1027 (end - start + PAGE_SIZE) / PAGE_SIZE;
1028 *page_started = 1;
1029 goto out;
1030 } else if (ret < 0) {
1031 goto out_unlock;
1032 }
1033 }
1034
1035 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1036 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1037
1038 /*
1039 * Relocation relies on the relocated extents to have exactly the same
1040 * size as the original extents. Normally writeback for relocation data
1041 * extents follows a NOCOW path because relocation preallocates the
1042 * extents. However, due to an operation such as scrub turning a block
1043 * group to RO mode, it may fallback to COW mode, so we must make sure
1044 * an extent allocated during COW has exactly the requested size and can
1045 * not be split into smaller extents, otherwise relocation breaks and
1046 * fails during the stage where it updates the bytenr of file extent
1047 * items.
1048 */
1049 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1050 min_alloc_size = num_bytes;
1051 else
1052 min_alloc_size = fs_info->sectorsize;
1053
1054 while (num_bytes > 0) {
1055 cur_alloc_size = num_bytes;
1056 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1057 min_alloc_size, 0, alloc_hint,
1058 &ins, 1, 1);
1059 if (ret < 0)
1060 goto out_unlock;
1061 cur_alloc_size = ins.offset;
1062 extent_reserved = true;
1063
1064 ram_size = ins.offset;
1065 em = create_io_em(inode, start, ins.offset, /* len */
1066 start, /* orig_start */
1067 ins.objectid, /* block_start */
1068 ins.offset, /* block_len */
1069 ins.offset, /* orig_block_len */
1070 ram_size, /* ram_bytes */
1071 BTRFS_COMPRESS_NONE, /* compress_type */
1072 BTRFS_ORDERED_REGULAR /* type */);
1073 if (IS_ERR(em)) {
1074 ret = PTR_ERR(em);
1075 goto out_reserve;
1076 }
1077 free_extent_map(em);
1078
1079 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1080 ram_size, cur_alloc_size, 0);
1081 if (ret)
1082 goto out_drop_extent_cache;
1083
1084 if (root->root_key.objectid ==
1085 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1086 ret = btrfs_reloc_clone_csums(inode, start,
1087 cur_alloc_size);
1088 /*
1089 * Only drop cache here, and process as normal.
1090 *
1091 * We must not allow extent_clear_unlock_delalloc()
1092 * at out_unlock label to free meta of this ordered
1093 * extent, as its meta should be freed by
1094 * btrfs_finish_ordered_io().
1095 *
1096 * So we must continue until @start is increased to
1097 * skip current ordered extent.
1098 */
1099 if (ret)
1100 btrfs_drop_extent_cache(inode, start,
1101 start + ram_size - 1, 0);
1102 }
1103
1104 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1105
1106 /* we're not doing compressed IO, don't unlock the first
1107 * page (which the caller expects to stay locked), don't
1108 * clear any dirty bits and don't set any writeback bits
1109 *
1110 * Do set the Private2 bit so we know this page was properly
1111 * setup for writepage
1112 */
1113 page_ops = unlock ? PAGE_UNLOCK : 0;
1114 page_ops |= PAGE_SET_PRIVATE2;
1115
1116 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1117 locked_page,
1118 EXTENT_LOCKED | EXTENT_DELALLOC,
1119 page_ops);
1120 if (num_bytes < cur_alloc_size)
1121 num_bytes = 0;
1122 else
1123 num_bytes -= cur_alloc_size;
1124 alloc_hint = ins.objectid + ins.offset;
1125 start += cur_alloc_size;
1126 extent_reserved = false;
1127
1128 /*
1129 * btrfs_reloc_clone_csums() error, since start is increased
1130 * extent_clear_unlock_delalloc() at out_unlock label won't
1131 * free metadata of current ordered extent, we're OK to exit.
1132 */
1133 if (ret)
1134 goto out_unlock;
1135 }
1136 out:
1137 return ret;
1138
1139 out_drop_extent_cache:
1140 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1141 out_reserve:
1142 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1143 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1144 out_unlock:
1145 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1146 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1147 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1148 PAGE_END_WRITEBACK;
1149 /*
1150 * If we reserved an extent for our delalloc range (or a subrange) and
1151 * failed to create the respective ordered extent, then it means that
1152 * when we reserved the extent we decremented the extent's size from
1153 * the data space_info's bytes_may_use counter and incremented the
1154 * space_info's bytes_reserved counter by the same amount. We must make
1155 * sure extent_clear_unlock_delalloc() does not try to decrement again
1156 * the data space_info's bytes_may_use counter, therefore we do not pass
1157 * it the flag EXTENT_CLEAR_DATA_RESV.
1158 */
1159 if (extent_reserved) {
1160 extent_clear_unlock_delalloc(inode, start,
1161 start + cur_alloc_size - 1,
1162 locked_page,
1163 clear_bits,
1164 page_ops);
1165 start += cur_alloc_size;
1166 if (start >= end)
1167 goto out;
1168 }
1169 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1170 clear_bits | EXTENT_CLEAR_DATA_RESV,
1171 page_ops);
1172 goto out;
1173 }
1174
1175 /*
1176 * work queue call back to started compression on a file and pages
1177 */
async_cow_start(struct btrfs_work * work)1178 static noinline void async_cow_start(struct btrfs_work *work)
1179 {
1180 struct async_chunk *async_chunk;
1181 int compressed_extents;
1182
1183 async_chunk = container_of(work, struct async_chunk, work);
1184
1185 compressed_extents = compress_file_range(async_chunk);
1186 if (compressed_extents == 0) {
1187 btrfs_add_delayed_iput(async_chunk->inode);
1188 async_chunk->inode = NULL;
1189 }
1190 }
1191
1192 /*
1193 * work queue call back to submit previously compressed pages
1194 */
async_cow_submit(struct btrfs_work * work)1195 static noinline void async_cow_submit(struct btrfs_work *work)
1196 {
1197 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1198 work);
1199 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1200 unsigned long nr_pages;
1201
1202 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1203 PAGE_SHIFT;
1204
1205 /*
1206 * ->inode could be NULL if async_chunk_start has failed to compress,
1207 * in which case we don't have anything to submit, yet we need to
1208 * always adjust ->async_delalloc_pages as its paired with the init
1209 * happening in cow_file_range_async
1210 */
1211 if (async_chunk->inode)
1212 submit_compressed_extents(async_chunk);
1213
1214 /* atomic_sub_return implies a barrier */
1215 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1216 5 * SZ_1M)
1217 cond_wake_up_nomb(&fs_info->async_submit_wait);
1218 }
1219
async_cow_free(struct btrfs_work * work)1220 static noinline void async_cow_free(struct btrfs_work *work)
1221 {
1222 struct async_chunk *async_chunk;
1223
1224 async_chunk = container_of(work, struct async_chunk, work);
1225 if (async_chunk->inode)
1226 btrfs_add_delayed_iput(async_chunk->inode);
1227 if (async_chunk->blkcg_css)
1228 css_put(async_chunk->blkcg_css);
1229 /*
1230 * Since the pointer to 'pending' is at the beginning of the array of
1231 * async_chunk's, freeing it ensures the whole array has been freed.
1232 */
1233 if (atomic_dec_and_test(async_chunk->pending))
1234 kvfree(async_chunk->pending);
1235 }
1236
cow_file_range_async(struct btrfs_inode * inode,struct writeback_control * wbc,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1237 static int cow_file_range_async(struct btrfs_inode *inode,
1238 struct writeback_control *wbc,
1239 struct page *locked_page,
1240 u64 start, u64 end, int *page_started,
1241 unsigned long *nr_written)
1242 {
1243 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1244 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1245 struct async_cow *ctx;
1246 struct async_chunk *async_chunk;
1247 unsigned long nr_pages;
1248 u64 cur_end;
1249 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1250 int i;
1251 bool should_compress;
1252 unsigned nofs_flag;
1253 const unsigned int write_flags = wbc_to_write_flags(wbc);
1254
1255 unlock_extent(&inode->io_tree, start, end);
1256
1257 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1258 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1259 num_chunks = 1;
1260 should_compress = false;
1261 } else {
1262 should_compress = true;
1263 }
1264
1265 nofs_flag = memalloc_nofs_save();
1266 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1267 memalloc_nofs_restore(nofs_flag);
1268
1269 if (!ctx) {
1270 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1271 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1272 EXTENT_DO_ACCOUNTING;
1273 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1274 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1275 PAGE_SET_ERROR;
1276
1277 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1278 clear_bits, page_ops);
1279 return -ENOMEM;
1280 }
1281
1282 async_chunk = ctx->chunks;
1283 atomic_set(&ctx->num_chunks, num_chunks);
1284
1285 for (i = 0; i < num_chunks; i++) {
1286 if (should_compress)
1287 cur_end = min(end, start + SZ_512K - 1);
1288 else
1289 cur_end = end;
1290
1291 /*
1292 * igrab is called higher up in the call chain, take only the
1293 * lightweight reference for the callback lifetime
1294 */
1295 ihold(&inode->vfs_inode);
1296 async_chunk[i].pending = &ctx->num_chunks;
1297 async_chunk[i].inode = &inode->vfs_inode;
1298 async_chunk[i].start = start;
1299 async_chunk[i].end = cur_end;
1300 async_chunk[i].write_flags = write_flags;
1301 INIT_LIST_HEAD(&async_chunk[i].extents);
1302
1303 /*
1304 * The locked_page comes all the way from writepage and its
1305 * the original page we were actually given. As we spread
1306 * this large delalloc region across multiple async_chunk
1307 * structs, only the first struct needs a pointer to locked_page
1308 *
1309 * This way we don't need racey decisions about who is supposed
1310 * to unlock it.
1311 */
1312 if (locked_page) {
1313 /*
1314 * Depending on the compressibility, the pages might or
1315 * might not go through async. We want all of them to
1316 * be accounted against wbc once. Let's do it here
1317 * before the paths diverge. wbc accounting is used
1318 * only for foreign writeback detection and doesn't
1319 * need full accuracy. Just account the whole thing
1320 * against the first page.
1321 */
1322 wbc_account_cgroup_owner(wbc, locked_page,
1323 cur_end - start);
1324 async_chunk[i].locked_page = locked_page;
1325 locked_page = NULL;
1326 } else {
1327 async_chunk[i].locked_page = NULL;
1328 }
1329
1330 if (blkcg_css != blkcg_root_css) {
1331 css_get(blkcg_css);
1332 async_chunk[i].blkcg_css = blkcg_css;
1333 } else {
1334 async_chunk[i].blkcg_css = NULL;
1335 }
1336
1337 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1338 async_cow_submit, async_cow_free);
1339
1340 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1341 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1342
1343 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1344
1345 *nr_written += nr_pages;
1346 start = cur_end + 1;
1347 }
1348 *page_started = 1;
1349 return 0;
1350 }
1351
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1352 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1353 u64 bytenr, u64 num_bytes)
1354 {
1355 int ret;
1356 struct btrfs_ordered_sum *sums;
1357 LIST_HEAD(list);
1358
1359 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1360 bytenr + num_bytes - 1, &list, 0);
1361 if (ret == 0 && list_empty(&list))
1362 return 0;
1363
1364 while (!list_empty(&list)) {
1365 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1366 list_del(&sums->list);
1367 kfree(sums);
1368 }
1369 if (ret < 0)
1370 return ret;
1371 return 1;
1372 }
1373
fallback_to_cow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1374 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1375 const u64 start, const u64 end,
1376 int *page_started, unsigned long *nr_written)
1377 {
1378 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1379 const bool is_reloc_ino = (inode->root->root_key.objectid ==
1380 BTRFS_DATA_RELOC_TREE_OBJECTID);
1381 const u64 range_bytes = end + 1 - start;
1382 struct extent_io_tree *io_tree = &inode->io_tree;
1383 u64 range_start = start;
1384 u64 count;
1385
1386 /*
1387 * If EXTENT_NORESERVE is set it means that when the buffered write was
1388 * made we had not enough available data space and therefore we did not
1389 * reserve data space for it, since we though we could do NOCOW for the
1390 * respective file range (either there is prealloc extent or the inode
1391 * has the NOCOW bit set).
1392 *
1393 * However when we need to fallback to COW mode (because for example the
1394 * block group for the corresponding extent was turned to RO mode by a
1395 * scrub or relocation) we need to do the following:
1396 *
1397 * 1) We increment the bytes_may_use counter of the data space info.
1398 * If COW succeeds, it allocates a new data extent and after doing
1399 * that it decrements the space info's bytes_may_use counter and
1400 * increments its bytes_reserved counter by the same amount (we do
1401 * this at btrfs_add_reserved_bytes()). So we need to increment the
1402 * bytes_may_use counter to compensate (when space is reserved at
1403 * buffered write time, the bytes_may_use counter is incremented);
1404 *
1405 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1406 * that if the COW path fails for any reason, it decrements (through
1407 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1408 * data space info, which we incremented in the step above.
1409 *
1410 * If we need to fallback to cow and the inode corresponds to a free
1411 * space cache inode or an inode of the data relocation tree, we must
1412 * also increment bytes_may_use of the data space_info for the same
1413 * reason. Space caches and relocated data extents always get a prealloc
1414 * extent for them, however scrub or balance may have set the block
1415 * group that contains that extent to RO mode and therefore force COW
1416 * when starting writeback.
1417 */
1418 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1419 EXTENT_NORESERVE, 0);
1420 if (count > 0 || is_space_ino || is_reloc_ino) {
1421 u64 bytes = count;
1422 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1423 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1424
1425 if (is_space_ino || is_reloc_ino)
1426 bytes = range_bytes;
1427
1428 spin_lock(&sinfo->lock);
1429 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1430 spin_unlock(&sinfo->lock);
1431
1432 if (count > 0)
1433 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1434 0, 0, NULL);
1435 }
1436
1437 return cow_file_range(inode, locked_page, start, end, page_started,
1438 nr_written, 1);
1439 }
1440
1441 /*
1442 * when nowcow writeback call back. This checks for snapshots or COW copies
1443 * of the extents that exist in the file, and COWs the file as required.
1444 *
1445 * If no cow copies or snapshots exist, we write directly to the existing
1446 * blocks on disk
1447 */
run_delalloc_nocow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,int force,unsigned long * nr_written)1448 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1449 struct page *locked_page,
1450 const u64 start, const u64 end,
1451 int *page_started, int force,
1452 unsigned long *nr_written)
1453 {
1454 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1455 struct btrfs_root *root = inode->root;
1456 struct btrfs_path *path;
1457 u64 cow_start = (u64)-1;
1458 u64 cur_offset = start;
1459 int ret;
1460 bool check_prev = true;
1461 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1462 u64 ino = btrfs_ino(inode);
1463 bool nocow = false;
1464 u64 disk_bytenr = 0;
1465
1466 path = btrfs_alloc_path();
1467 if (!path) {
1468 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1469 EXTENT_LOCKED | EXTENT_DELALLOC |
1470 EXTENT_DO_ACCOUNTING |
1471 EXTENT_DEFRAG, PAGE_UNLOCK |
1472 PAGE_CLEAR_DIRTY |
1473 PAGE_SET_WRITEBACK |
1474 PAGE_END_WRITEBACK);
1475 return -ENOMEM;
1476 }
1477
1478 while (1) {
1479 struct btrfs_key found_key;
1480 struct btrfs_file_extent_item *fi;
1481 struct extent_buffer *leaf;
1482 u64 extent_end;
1483 u64 extent_offset;
1484 u64 num_bytes = 0;
1485 u64 disk_num_bytes;
1486 u64 ram_bytes;
1487 int extent_type;
1488
1489 nocow = false;
1490
1491 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1492 cur_offset, 0);
1493 if (ret < 0)
1494 goto error;
1495
1496 /*
1497 * If there is no extent for our range when doing the initial
1498 * search, then go back to the previous slot as it will be the
1499 * one containing the search offset
1500 */
1501 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1502 leaf = path->nodes[0];
1503 btrfs_item_key_to_cpu(leaf, &found_key,
1504 path->slots[0] - 1);
1505 if (found_key.objectid == ino &&
1506 found_key.type == BTRFS_EXTENT_DATA_KEY)
1507 path->slots[0]--;
1508 }
1509 check_prev = false;
1510 next_slot:
1511 /* Go to next leaf if we have exhausted the current one */
1512 leaf = path->nodes[0];
1513 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1514 ret = btrfs_next_leaf(root, path);
1515 if (ret < 0) {
1516 if (cow_start != (u64)-1)
1517 cur_offset = cow_start;
1518 goto error;
1519 }
1520 if (ret > 0)
1521 break;
1522 leaf = path->nodes[0];
1523 }
1524
1525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1526
1527 /* Didn't find anything for our INO */
1528 if (found_key.objectid > ino)
1529 break;
1530 /*
1531 * Keep searching until we find an EXTENT_ITEM or there are no
1532 * more extents for this inode
1533 */
1534 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1535 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1536 path->slots[0]++;
1537 goto next_slot;
1538 }
1539
1540 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1541 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1542 found_key.offset > end)
1543 break;
1544
1545 /*
1546 * If the found extent starts after requested offset, then
1547 * adjust extent_end to be right before this extent begins
1548 */
1549 if (found_key.offset > cur_offset) {
1550 extent_end = found_key.offset;
1551 extent_type = 0;
1552 goto out_check;
1553 }
1554
1555 /*
1556 * Found extent which begins before our range and potentially
1557 * intersect it
1558 */
1559 fi = btrfs_item_ptr(leaf, path->slots[0],
1560 struct btrfs_file_extent_item);
1561 extent_type = btrfs_file_extent_type(leaf, fi);
1562
1563 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1564 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1565 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1566 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1567 extent_offset = btrfs_file_extent_offset(leaf, fi);
1568 extent_end = found_key.offset +
1569 btrfs_file_extent_num_bytes(leaf, fi);
1570 disk_num_bytes =
1571 btrfs_file_extent_disk_num_bytes(leaf, fi);
1572 /*
1573 * If the extent we got ends before our current offset,
1574 * skip to the next extent.
1575 */
1576 if (extent_end <= cur_offset) {
1577 path->slots[0]++;
1578 goto next_slot;
1579 }
1580 /* Skip holes */
1581 if (disk_bytenr == 0)
1582 goto out_check;
1583 /* Skip compressed/encrypted/encoded extents */
1584 if (btrfs_file_extent_compression(leaf, fi) ||
1585 btrfs_file_extent_encryption(leaf, fi) ||
1586 btrfs_file_extent_other_encoding(leaf, fi))
1587 goto out_check;
1588 /*
1589 * If extent is created before the last volume's snapshot
1590 * this implies the extent is shared, hence we can't do
1591 * nocow. This is the same check as in
1592 * btrfs_cross_ref_exist but without calling
1593 * btrfs_search_slot.
1594 */
1595 if (!freespace_inode &&
1596 btrfs_file_extent_generation(leaf, fi) <=
1597 btrfs_root_last_snapshot(&root->root_item))
1598 goto out_check;
1599 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1600 goto out_check;
1601 /* If extent is RO, we must COW it */
1602 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1603 goto out_check;
1604 ret = btrfs_cross_ref_exist(root, ino,
1605 found_key.offset -
1606 extent_offset, disk_bytenr, false);
1607 if (ret) {
1608 /*
1609 * ret could be -EIO if the above fails to read
1610 * metadata.
1611 */
1612 if (ret < 0) {
1613 if (cow_start != (u64)-1)
1614 cur_offset = cow_start;
1615 goto error;
1616 }
1617
1618 WARN_ON_ONCE(freespace_inode);
1619 goto out_check;
1620 }
1621 disk_bytenr += extent_offset;
1622 disk_bytenr += cur_offset - found_key.offset;
1623 num_bytes = min(end + 1, extent_end) - cur_offset;
1624 /*
1625 * If there are pending snapshots for this root, we
1626 * fall into common COW way
1627 */
1628 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1629 goto out_check;
1630 /*
1631 * force cow if csum exists in the range.
1632 * this ensure that csum for a given extent are
1633 * either valid or do not exist.
1634 */
1635 ret = csum_exist_in_range(fs_info, disk_bytenr,
1636 num_bytes);
1637 if (ret) {
1638 /*
1639 * ret could be -EIO if the above fails to read
1640 * metadata.
1641 */
1642 if (ret < 0) {
1643 if (cow_start != (u64)-1)
1644 cur_offset = cow_start;
1645 goto error;
1646 }
1647 WARN_ON_ONCE(freespace_inode);
1648 goto out_check;
1649 }
1650 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1651 goto out_check;
1652 nocow = true;
1653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1654 extent_end = found_key.offset + ram_bytes;
1655 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1656 /* Skip extents outside of our requested range */
1657 if (extent_end <= start) {
1658 path->slots[0]++;
1659 goto next_slot;
1660 }
1661 } else {
1662 /* If this triggers then we have a memory corruption */
1663 BUG();
1664 }
1665 out_check:
1666 /*
1667 * If nocow is false then record the beginning of the range
1668 * that needs to be COWed
1669 */
1670 if (!nocow) {
1671 if (cow_start == (u64)-1)
1672 cow_start = cur_offset;
1673 cur_offset = extent_end;
1674 if (cur_offset > end)
1675 break;
1676 path->slots[0]++;
1677 goto next_slot;
1678 }
1679
1680 btrfs_release_path(path);
1681
1682 /*
1683 * COW range from cow_start to found_key.offset - 1. As the key
1684 * will contain the beginning of the first extent that can be
1685 * NOCOW, following one which needs to be COW'ed
1686 */
1687 if (cow_start != (u64)-1) {
1688 ret = fallback_to_cow(inode, locked_page,
1689 cow_start, found_key.offset - 1,
1690 page_started, nr_written);
1691 if (ret)
1692 goto error;
1693 cow_start = (u64)-1;
1694 }
1695
1696 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1697 u64 orig_start = found_key.offset - extent_offset;
1698 struct extent_map *em;
1699
1700 em = create_io_em(inode, cur_offset, num_bytes,
1701 orig_start,
1702 disk_bytenr, /* block_start */
1703 num_bytes, /* block_len */
1704 disk_num_bytes, /* orig_block_len */
1705 ram_bytes, BTRFS_COMPRESS_NONE,
1706 BTRFS_ORDERED_PREALLOC);
1707 if (IS_ERR(em)) {
1708 ret = PTR_ERR(em);
1709 goto error;
1710 }
1711 free_extent_map(em);
1712 ret = btrfs_add_ordered_extent(inode, cur_offset,
1713 disk_bytenr, num_bytes,
1714 num_bytes,
1715 BTRFS_ORDERED_PREALLOC);
1716 if (ret) {
1717 btrfs_drop_extent_cache(inode, cur_offset,
1718 cur_offset + num_bytes - 1,
1719 0);
1720 goto error;
1721 }
1722 } else {
1723 ret = btrfs_add_ordered_extent(inode, cur_offset,
1724 disk_bytenr, num_bytes,
1725 num_bytes,
1726 BTRFS_ORDERED_NOCOW);
1727 if (ret)
1728 goto error;
1729 }
1730
1731 if (nocow)
1732 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1733 nocow = false;
1734
1735 if (root->root_key.objectid ==
1736 BTRFS_DATA_RELOC_TREE_OBJECTID)
1737 /*
1738 * Error handled later, as we must prevent
1739 * extent_clear_unlock_delalloc() in error handler
1740 * from freeing metadata of created ordered extent.
1741 */
1742 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1743 num_bytes);
1744
1745 extent_clear_unlock_delalloc(inode, cur_offset,
1746 cur_offset + num_bytes - 1,
1747 locked_page, EXTENT_LOCKED |
1748 EXTENT_DELALLOC |
1749 EXTENT_CLEAR_DATA_RESV,
1750 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1751
1752 cur_offset = extent_end;
1753
1754 /*
1755 * btrfs_reloc_clone_csums() error, now we're OK to call error
1756 * handler, as metadata for created ordered extent will only
1757 * be freed by btrfs_finish_ordered_io().
1758 */
1759 if (ret)
1760 goto error;
1761 if (cur_offset > end)
1762 break;
1763 }
1764 btrfs_release_path(path);
1765
1766 if (cur_offset <= end && cow_start == (u64)-1)
1767 cow_start = cur_offset;
1768
1769 if (cow_start != (u64)-1) {
1770 cur_offset = end;
1771 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1772 page_started, nr_written);
1773 if (ret)
1774 goto error;
1775 }
1776
1777 error:
1778 if (nocow)
1779 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1780
1781 if (ret && cur_offset < end)
1782 extent_clear_unlock_delalloc(inode, cur_offset, end,
1783 locked_page, EXTENT_LOCKED |
1784 EXTENT_DELALLOC | EXTENT_DEFRAG |
1785 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1786 PAGE_CLEAR_DIRTY |
1787 PAGE_SET_WRITEBACK |
1788 PAGE_END_WRITEBACK);
1789 btrfs_free_path(path);
1790 return ret;
1791 }
1792
need_force_cow(struct btrfs_inode * inode,u64 start,u64 end)1793 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1794 {
1795
1796 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1797 !(inode->flags & BTRFS_INODE_PREALLOC))
1798 return 0;
1799
1800 /*
1801 * @defrag_bytes is a hint value, no spinlock held here,
1802 * if is not zero, it means the file is defragging.
1803 * Force cow if given extent needs to be defragged.
1804 */
1805 if (inode->defrag_bytes &&
1806 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1807 return 1;
1808
1809 return 0;
1810 }
1811
1812 /*
1813 * Function to process delayed allocation (create CoW) for ranges which are
1814 * being touched for the first time.
1815 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1816 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1817 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1818 struct writeback_control *wbc)
1819 {
1820 int ret;
1821 int force_cow = need_force_cow(inode, start, end);
1822
1823 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1824 ret = run_delalloc_nocow(inode, locked_page, start, end,
1825 page_started, 1, nr_written);
1826 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1827 ret = run_delalloc_nocow(inode, locked_page, start, end,
1828 page_started, 0, nr_written);
1829 } else if (!inode_can_compress(inode) ||
1830 !inode_need_compress(inode, start, end)) {
1831 ret = cow_file_range(inode, locked_page, start, end,
1832 page_started, nr_written, 1);
1833 } else {
1834 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1835 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1836 page_started, nr_written);
1837 }
1838 if (ret)
1839 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1840 end - start + 1);
1841 return ret;
1842 }
1843
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)1844 void btrfs_split_delalloc_extent(struct inode *inode,
1845 struct extent_state *orig, u64 split)
1846 {
1847 u64 size;
1848
1849 /* not delalloc, ignore it */
1850 if (!(orig->state & EXTENT_DELALLOC))
1851 return;
1852
1853 size = orig->end - orig->start + 1;
1854 if (size > BTRFS_MAX_EXTENT_SIZE) {
1855 u32 num_extents;
1856 u64 new_size;
1857
1858 /*
1859 * See the explanation in btrfs_merge_delalloc_extent, the same
1860 * applies here, just in reverse.
1861 */
1862 new_size = orig->end - split + 1;
1863 num_extents = count_max_extents(new_size);
1864 new_size = split - orig->start;
1865 num_extents += count_max_extents(new_size);
1866 if (count_max_extents(size) >= num_extents)
1867 return;
1868 }
1869
1870 spin_lock(&BTRFS_I(inode)->lock);
1871 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1872 spin_unlock(&BTRFS_I(inode)->lock);
1873 }
1874
1875 /*
1876 * Handle merged delayed allocation extents so we can keep track of new extents
1877 * that are just merged onto old extents, such as when we are doing sequential
1878 * writes, so we can properly account for the metadata space we'll need.
1879 */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)1880 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1881 struct extent_state *other)
1882 {
1883 u64 new_size, old_size;
1884 u32 num_extents;
1885
1886 /* not delalloc, ignore it */
1887 if (!(other->state & EXTENT_DELALLOC))
1888 return;
1889
1890 if (new->start > other->start)
1891 new_size = new->end - other->start + 1;
1892 else
1893 new_size = other->end - new->start + 1;
1894
1895 /* we're not bigger than the max, unreserve the space and go */
1896 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1897 spin_lock(&BTRFS_I(inode)->lock);
1898 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1899 spin_unlock(&BTRFS_I(inode)->lock);
1900 return;
1901 }
1902
1903 /*
1904 * We have to add up either side to figure out how many extents were
1905 * accounted for before we merged into one big extent. If the number of
1906 * extents we accounted for is <= the amount we need for the new range
1907 * then we can return, otherwise drop. Think of it like this
1908 *
1909 * [ 4k][MAX_SIZE]
1910 *
1911 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1912 * need 2 outstanding extents, on one side we have 1 and the other side
1913 * we have 1 so they are == and we can return. But in this case
1914 *
1915 * [MAX_SIZE+4k][MAX_SIZE+4k]
1916 *
1917 * Each range on their own accounts for 2 extents, but merged together
1918 * they are only 3 extents worth of accounting, so we need to drop in
1919 * this case.
1920 */
1921 old_size = other->end - other->start + 1;
1922 num_extents = count_max_extents(old_size);
1923 old_size = new->end - new->start + 1;
1924 num_extents += count_max_extents(old_size);
1925 if (count_max_extents(new_size) >= num_extents)
1926 return;
1927
1928 spin_lock(&BTRFS_I(inode)->lock);
1929 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1930 spin_unlock(&BTRFS_I(inode)->lock);
1931 }
1932
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1933 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1934 struct inode *inode)
1935 {
1936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1937
1938 spin_lock(&root->delalloc_lock);
1939 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1940 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1941 &root->delalloc_inodes);
1942 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1943 &BTRFS_I(inode)->runtime_flags);
1944 root->nr_delalloc_inodes++;
1945 if (root->nr_delalloc_inodes == 1) {
1946 spin_lock(&fs_info->delalloc_root_lock);
1947 BUG_ON(!list_empty(&root->delalloc_root));
1948 list_add_tail(&root->delalloc_root,
1949 &fs_info->delalloc_roots);
1950 spin_unlock(&fs_info->delalloc_root_lock);
1951 }
1952 }
1953 spin_unlock(&root->delalloc_lock);
1954 }
1955
1956
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1957 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1958 struct btrfs_inode *inode)
1959 {
1960 struct btrfs_fs_info *fs_info = root->fs_info;
1961
1962 if (!list_empty(&inode->delalloc_inodes)) {
1963 list_del_init(&inode->delalloc_inodes);
1964 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1965 &inode->runtime_flags);
1966 root->nr_delalloc_inodes--;
1967 if (!root->nr_delalloc_inodes) {
1968 ASSERT(list_empty(&root->delalloc_inodes));
1969 spin_lock(&fs_info->delalloc_root_lock);
1970 BUG_ON(list_empty(&root->delalloc_root));
1971 list_del_init(&root->delalloc_root);
1972 spin_unlock(&fs_info->delalloc_root_lock);
1973 }
1974 }
1975 }
1976
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1977 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1978 struct btrfs_inode *inode)
1979 {
1980 spin_lock(&root->delalloc_lock);
1981 __btrfs_del_delalloc_inode(root, inode);
1982 spin_unlock(&root->delalloc_lock);
1983 }
1984
1985 /*
1986 * Properly track delayed allocation bytes in the inode and to maintain the
1987 * list of inodes that have pending delalloc work to be done.
1988 */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)1989 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1990 unsigned *bits)
1991 {
1992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1993
1994 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1995 WARN_ON(1);
1996 /*
1997 * set_bit and clear bit hooks normally require _irqsave/restore
1998 * but in this case, we are only testing for the DELALLOC
1999 * bit, which is only set or cleared with irqs on
2000 */
2001 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2002 struct btrfs_root *root = BTRFS_I(inode)->root;
2003 u64 len = state->end + 1 - state->start;
2004 u32 num_extents = count_max_extents(len);
2005 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2006
2007 spin_lock(&BTRFS_I(inode)->lock);
2008 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2009 spin_unlock(&BTRFS_I(inode)->lock);
2010
2011 /* For sanity tests */
2012 if (btrfs_is_testing(fs_info))
2013 return;
2014
2015 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2016 fs_info->delalloc_batch);
2017 spin_lock(&BTRFS_I(inode)->lock);
2018 BTRFS_I(inode)->delalloc_bytes += len;
2019 if (*bits & EXTENT_DEFRAG)
2020 BTRFS_I(inode)->defrag_bytes += len;
2021 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2022 &BTRFS_I(inode)->runtime_flags))
2023 btrfs_add_delalloc_inodes(root, inode);
2024 spin_unlock(&BTRFS_I(inode)->lock);
2025 }
2026
2027 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2028 (*bits & EXTENT_DELALLOC_NEW)) {
2029 spin_lock(&BTRFS_I(inode)->lock);
2030 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2031 state->start;
2032 spin_unlock(&BTRFS_I(inode)->lock);
2033 }
2034 }
2035
2036 /*
2037 * Once a range is no longer delalloc this function ensures that proper
2038 * accounting happens.
2039 */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)2040 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2041 struct extent_state *state, unsigned *bits)
2042 {
2043 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2044 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2045 u64 len = state->end + 1 - state->start;
2046 u32 num_extents = count_max_extents(len);
2047
2048 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2049 spin_lock(&inode->lock);
2050 inode->defrag_bytes -= len;
2051 spin_unlock(&inode->lock);
2052 }
2053
2054 /*
2055 * set_bit and clear bit hooks normally require _irqsave/restore
2056 * but in this case, we are only testing for the DELALLOC
2057 * bit, which is only set or cleared with irqs on
2058 */
2059 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2060 struct btrfs_root *root = inode->root;
2061 bool do_list = !btrfs_is_free_space_inode(inode);
2062
2063 spin_lock(&inode->lock);
2064 btrfs_mod_outstanding_extents(inode, -num_extents);
2065 spin_unlock(&inode->lock);
2066
2067 /*
2068 * We don't reserve metadata space for space cache inodes so we
2069 * don't need to call delalloc_release_metadata if there is an
2070 * error.
2071 */
2072 if (*bits & EXTENT_CLEAR_META_RESV &&
2073 root != fs_info->tree_root)
2074 btrfs_delalloc_release_metadata(inode, len, false);
2075
2076 /* For sanity tests. */
2077 if (btrfs_is_testing(fs_info))
2078 return;
2079
2080 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2081 do_list && !(state->state & EXTENT_NORESERVE) &&
2082 (*bits & EXTENT_CLEAR_DATA_RESV))
2083 btrfs_free_reserved_data_space_noquota(fs_info, len);
2084
2085 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2086 fs_info->delalloc_batch);
2087 spin_lock(&inode->lock);
2088 inode->delalloc_bytes -= len;
2089 if (do_list && inode->delalloc_bytes == 0 &&
2090 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2091 &inode->runtime_flags))
2092 btrfs_del_delalloc_inode(root, inode);
2093 spin_unlock(&inode->lock);
2094 }
2095
2096 if ((state->state & EXTENT_DELALLOC_NEW) &&
2097 (*bits & EXTENT_DELALLOC_NEW)) {
2098 spin_lock(&inode->lock);
2099 ASSERT(inode->new_delalloc_bytes >= len);
2100 inode->new_delalloc_bytes -= len;
2101 spin_unlock(&inode->lock);
2102 }
2103 }
2104
2105 /*
2106 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2107 * in a chunk's stripe. This function ensures that bios do not span a
2108 * stripe/chunk
2109 *
2110 * @page - The page we are about to add to the bio
2111 * @size - size we want to add to the bio
2112 * @bio - bio we want to ensure is smaller than a stripe
2113 * @bio_flags - flags of the bio
2114 *
2115 * return 1 if page cannot be added to the bio
2116 * return 0 if page can be added to the bio
2117 * return error otherwise
2118 */
btrfs_bio_fits_in_stripe(struct page * page,size_t size,struct bio * bio,unsigned long bio_flags)2119 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2120 unsigned long bio_flags)
2121 {
2122 struct inode *inode = page->mapping->host;
2123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2124 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2125 u64 length = 0;
2126 u64 map_length;
2127 int ret;
2128 struct btrfs_io_geometry geom;
2129
2130 if (bio_flags & EXTENT_BIO_COMPRESSED)
2131 return 0;
2132
2133 length = bio->bi_iter.bi_size;
2134 map_length = length;
2135 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2136 &geom);
2137 if (ret < 0)
2138 return ret;
2139
2140 if (geom.len < length + size)
2141 return 1;
2142 return 0;
2143 }
2144
2145 /*
2146 * in order to insert checksums into the metadata in large chunks,
2147 * we wait until bio submission time. All the pages in the bio are
2148 * checksummed and sums are attached onto the ordered extent record.
2149 *
2150 * At IO completion time the cums attached on the ordered extent record
2151 * are inserted into the btree
2152 */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)2153 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2154 u64 bio_offset)
2155 {
2156 struct inode *inode = private_data;
2157
2158 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2159 }
2160
2161 /*
2162 * extent_io.c submission hook. This does the right thing for csum calculation
2163 * on write, or reading the csums from the tree before a read.
2164 *
2165 * Rules about async/sync submit,
2166 * a) read: sync submit
2167 *
2168 * b) write without checksum: sync submit
2169 *
2170 * c) write with checksum:
2171 * c-1) if bio is issued by fsync: sync submit
2172 * (sync_writers != 0)
2173 *
2174 * c-2) if root is reloc root: sync submit
2175 * (only in case of buffered IO)
2176 *
2177 * c-3) otherwise: async submit
2178 */
btrfs_submit_data_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)2179 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2180 int mirror_num, unsigned long bio_flags)
2181
2182 {
2183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2184 struct btrfs_root *root = BTRFS_I(inode)->root;
2185 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2186 blk_status_t ret = 0;
2187 int skip_sum;
2188 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2189
2190 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2191
2192 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2193 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2194
2195 if (bio_op(bio) != REQ_OP_WRITE) {
2196 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2197 if (ret)
2198 goto out;
2199
2200 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2201 ret = btrfs_submit_compressed_read(inode, bio,
2202 mirror_num,
2203 bio_flags);
2204 goto out;
2205 } else if (!skip_sum) {
2206 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2207 if (ret)
2208 goto out;
2209 }
2210 goto mapit;
2211 } else if (async && !skip_sum) {
2212 /* csum items have already been cloned */
2213 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2214 goto mapit;
2215 /* we're doing a write, do the async checksumming */
2216 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2217 0, inode, btrfs_submit_bio_start);
2218 goto out;
2219 } else if (!skip_sum) {
2220 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2221 if (ret)
2222 goto out;
2223 }
2224
2225 mapit:
2226 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2227
2228 out:
2229 if (ret) {
2230 bio->bi_status = ret;
2231 bio_endio(bio);
2232 }
2233 return ret;
2234 }
2235
2236 /*
2237 * given a list of ordered sums record them in the inode. This happens
2238 * at IO completion time based on sums calculated at bio submission time.
2239 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2240 static int add_pending_csums(struct btrfs_trans_handle *trans,
2241 struct list_head *list)
2242 {
2243 struct btrfs_ordered_sum *sum;
2244 int ret;
2245
2246 list_for_each_entry(sum, list, list) {
2247 trans->adding_csums = true;
2248 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2249 trans->adding_csums = false;
2250 if (ret)
2251 return ret;
2252 }
2253 return 0;
2254 }
2255
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2256 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2257 const u64 start,
2258 const u64 len,
2259 struct extent_state **cached_state)
2260 {
2261 u64 search_start = start;
2262 const u64 end = start + len - 1;
2263
2264 while (search_start < end) {
2265 const u64 search_len = end - search_start + 1;
2266 struct extent_map *em;
2267 u64 em_len;
2268 int ret = 0;
2269
2270 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2271 if (IS_ERR(em))
2272 return PTR_ERR(em);
2273
2274 if (em->block_start != EXTENT_MAP_HOLE)
2275 goto next;
2276
2277 em_len = em->len;
2278 if (em->start < search_start)
2279 em_len -= search_start - em->start;
2280 if (em_len > search_len)
2281 em_len = search_len;
2282
2283 ret = set_extent_bit(&inode->io_tree, search_start,
2284 search_start + em_len - 1,
2285 EXTENT_DELALLOC_NEW,
2286 NULL, cached_state, GFP_NOFS);
2287 next:
2288 search_start = extent_map_end(em);
2289 free_extent_map(em);
2290 if (ret)
2291 return ret;
2292 }
2293 return 0;
2294 }
2295
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2296 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2297 unsigned int extra_bits,
2298 struct extent_state **cached_state)
2299 {
2300 WARN_ON(PAGE_ALIGNED(end));
2301
2302 if (start >= i_size_read(&inode->vfs_inode) &&
2303 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2304 /*
2305 * There can't be any extents following eof in this case so just
2306 * set the delalloc new bit for the range directly.
2307 */
2308 extra_bits |= EXTENT_DELALLOC_NEW;
2309 } else {
2310 int ret;
2311
2312 ret = btrfs_find_new_delalloc_bytes(inode, start,
2313 end + 1 - start,
2314 cached_state);
2315 if (ret)
2316 return ret;
2317 }
2318
2319 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2320 cached_state);
2321 }
2322
2323 /* see btrfs_writepage_start_hook for details on why this is required */
2324 struct btrfs_writepage_fixup {
2325 struct page *page;
2326 struct inode *inode;
2327 struct btrfs_work work;
2328 };
2329
btrfs_writepage_fixup_worker(struct btrfs_work * work)2330 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2331 {
2332 struct btrfs_writepage_fixup *fixup;
2333 struct btrfs_ordered_extent *ordered;
2334 struct extent_state *cached_state = NULL;
2335 struct extent_changeset *data_reserved = NULL;
2336 struct page *page;
2337 struct btrfs_inode *inode;
2338 u64 page_start;
2339 u64 page_end;
2340 int ret = 0;
2341 bool free_delalloc_space = true;
2342
2343 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2344 page = fixup->page;
2345 inode = BTRFS_I(fixup->inode);
2346 page_start = page_offset(page);
2347 page_end = page_offset(page) + PAGE_SIZE - 1;
2348
2349 /*
2350 * This is similar to page_mkwrite, we need to reserve the space before
2351 * we take the page lock.
2352 */
2353 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2354 PAGE_SIZE);
2355 again:
2356 lock_page(page);
2357
2358 /*
2359 * Before we queued this fixup, we took a reference on the page.
2360 * page->mapping may go NULL, but it shouldn't be moved to a different
2361 * address space.
2362 */
2363 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2364 /*
2365 * Unfortunately this is a little tricky, either
2366 *
2367 * 1) We got here and our page had already been dealt with and
2368 * we reserved our space, thus ret == 0, so we need to just
2369 * drop our space reservation and bail. This can happen the
2370 * first time we come into the fixup worker, or could happen
2371 * while waiting for the ordered extent.
2372 * 2) Our page was already dealt with, but we happened to get an
2373 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2374 * this case we obviously don't have anything to release, but
2375 * because the page was already dealt with we don't want to
2376 * mark the page with an error, so make sure we're resetting
2377 * ret to 0. This is why we have this check _before_ the ret
2378 * check, because we do not want to have a surprise ENOSPC
2379 * when the page was already properly dealt with.
2380 */
2381 if (!ret) {
2382 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2383 btrfs_delalloc_release_space(inode, data_reserved,
2384 page_start, PAGE_SIZE,
2385 true);
2386 }
2387 ret = 0;
2388 goto out_page;
2389 }
2390
2391 /*
2392 * We can't mess with the page state unless it is locked, so now that
2393 * it is locked bail if we failed to make our space reservation.
2394 */
2395 if (ret)
2396 goto out_page;
2397
2398 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2399
2400 /* already ordered? We're done */
2401 if (PagePrivate2(page))
2402 goto out_reserved;
2403
2404 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2405 if (ordered) {
2406 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2407 &cached_state);
2408 unlock_page(page);
2409 btrfs_start_ordered_extent(ordered, 1);
2410 btrfs_put_ordered_extent(ordered);
2411 goto again;
2412 }
2413
2414 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2415 &cached_state);
2416 if (ret)
2417 goto out_reserved;
2418
2419 /*
2420 * Everything went as planned, we're now the owner of a dirty page with
2421 * delayed allocation bits set and space reserved for our COW
2422 * destination.
2423 *
2424 * The page was dirty when we started, nothing should have cleaned it.
2425 */
2426 BUG_ON(!PageDirty(page));
2427 free_delalloc_space = false;
2428 out_reserved:
2429 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2430 if (free_delalloc_space)
2431 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2432 PAGE_SIZE, true);
2433 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2434 &cached_state);
2435 out_page:
2436 if (ret) {
2437 /*
2438 * We hit ENOSPC or other errors. Update the mapping and page
2439 * to reflect the errors and clean the page.
2440 */
2441 mapping_set_error(page->mapping, ret);
2442 end_extent_writepage(page, ret, page_start, page_end);
2443 clear_page_dirty_for_io(page);
2444 SetPageError(page);
2445 }
2446 ClearPageChecked(page);
2447 unlock_page(page);
2448 put_page(page);
2449 kfree(fixup);
2450 extent_changeset_free(data_reserved);
2451 /*
2452 * As a precaution, do a delayed iput in case it would be the last iput
2453 * that could need flushing space. Recursing back to fixup worker would
2454 * deadlock.
2455 */
2456 btrfs_add_delayed_iput(&inode->vfs_inode);
2457 }
2458
2459 /*
2460 * There are a few paths in the higher layers of the kernel that directly
2461 * set the page dirty bit without asking the filesystem if it is a
2462 * good idea. This causes problems because we want to make sure COW
2463 * properly happens and the data=ordered rules are followed.
2464 *
2465 * In our case any range that doesn't have the ORDERED bit set
2466 * hasn't been properly setup for IO. We kick off an async process
2467 * to fix it up. The async helper will wait for ordered extents, set
2468 * the delalloc bit and make it safe to write the page.
2469 */
btrfs_writepage_cow_fixup(struct page * page,u64 start,u64 end)2470 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2471 {
2472 struct inode *inode = page->mapping->host;
2473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2474 struct btrfs_writepage_fixup *fixup;
2475
2476 /* this page is properly in the ordered list */
2477 if (TestClearPagePrivate2(page))
2478 return 0;
2479
2480 /*
2481 * PageChecked is set below when we create a fixup worker for this page,
2482 * don't try to create another one if we're already PageChecked()
2483 *
2484 * The extent_io writepage code will redirty the page if we send back
2485 * EAGAIN.
2486 */
2487 if (PageChecked(page))
2488 return -EAGAIN;
2489
2490 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2491 if (!fixup)
2492 return -EAGAIN;
2493
2494 /*
2495 * We are already holding a reference to this inode from
2496 * write_cache_pages. We need to hold it because the space reservation
2497 * takes place outside of the page lock, and we can't trust
2498 * page->mapping outside of the page lock.
2499 */
2500 ihold(inode);
2501 SetPageChecked(page);
2502 get_page(page);
2503 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2504 fixup->page = page;
2505 fixup->inode = inode;
2506 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2507
2508 return -EAGAIN;
2509 }
2510
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,u64 qgroup_reserved)2511 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2512 struct btrfs_inode *inode, u64 file_pos,
2513 struct btrfs_file_extent_item *stack_fi,
2514 u64 qgroup_reserved)
2515 {
2516 struct btrfs_root *root = inode->root;
2517 struct btrfs_path *path;
2518 struct extent_buffer *leaf;
2519 struct btrfs_key ins;
2520 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2521 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2522 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2523 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2524 int extent_inserted = 0;
2525 int ret;
2526
2527 path = btrfs_alloc_path();
2528 if (!path)
2529 return -ENOMEM;
2530
2531 /*
2532 * we may be replacing one extent in the tree with another.
2533 * The new extent is pinned in the extent map, and we don't want
2534 * to drop it from the cache until it is completely in the btree.
2535 *
2536 * So, tell btrfs_drop_extents to leave this extent in the cache.
2537 * the caller is expected to unpin it and allow it to be merged
2538 * with the others.
2539 */
2540 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2541 file_pos + num_bytes, NULL, 0,
2542 1, sizeof(*stack_fi), &extent_inserted);
2543 if (ret)
2544 goto out;
2545
2546 if (!extent_inserted) {
2547 ins.objectid = btrfs_ino(inode);
2548 ins.offset = file_pos;
2549 ins.type = BTRFS_EXTENT_DATA_KEY;
2550
2551 path->leave_spinning = 1;
2552 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2553 sizeof(*stack_fi));
2554 if (ret)
2555 goto out;
2556 }
2557 leaf = path->nodes[0];
2558 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2559 write_extent_buffer(leaf, stack_fi,
2560 btrfs_item_ptr_offset(leaf, path->slots[0]),
2561 sizeof(struct btrfs_file_extent_item));
2562
2563 btrfs_mark_buffer_dirty(leaf);
2564 btrfs_release_path(path);
2565
2566 inode_add_bytes(&inode->vfs_inode, num_bytes);
2567
2568 ins.objectid = disk_bytenr;
2569 ins.offset = disk_num_bytes;
2570 ins.type = BTRFS_EXTENT_ITEM_KEY;
2571
2572 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2573 if (ret)
2574 goto out;
2575
2576 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2577 file_pos, qgroup_reserved, &ins);
2578 out:
2579 btrfs_free_path(path);
2580
2581 return ret;
2582 }
2583
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2584 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2585 u64 start, u64 len)
2586 {
2587 struct btrfs_block_group *cache;
2588
2589 cache = btrfs_lookup_block_group(fs_info, start);
2590 ASSERT(cache);
2591
2592 spin_lock(&cache->lock);
2593 cache->delalloc_bytes -= len;
2594 spin_unlock(&cache->lock);
2595
2596 btrfs_put_block_group(cache);
2597 }
2598
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)2599 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2600 struct btrfs_ordered_extent *oe)
2601 {
2602 struct btrfs_file_extent_item stack_fi;
2603 u64 logical_len;
2604
2605 memset(&stack_fi, 0, sizeof(stack_fi));
2606 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2607 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2608 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2609 oe->disk_num_bytes);
2610 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2611 logical_len = oe->truncated_len;
2612 else
2613 logical_len = oe->num_bytes;
2614 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2615 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2616 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2617 /* Encryption and other encoding is reserved and all 0 */
2618
2619 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2620 oe->file_offset, &stack_fi,
2621 oe->qgroup_rsv);
2622 }
2623
2624 /*
2625 * As ordered data IO finishes, this gets called so we can finish
2626 * an ordered extent if the range of bytes in the file it covers are
2627 * fully written.
2628 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2629 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2630 {
2631 struct inode *inode = ordered_extent->inode;
2632 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2633 struct btrfs_root *root = BTRFS_I(inode)->root;
2634 struct btrfs_trans_handle *trans = NULL;
2635 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2636 struct extent_state *cached_state = NULL;
2637 u64 start, end;
2638 int compress_type = 0;
2639 int ret = 0;
2640 u64 logical_len = ordered_extent->num_bytes;
2641 bool freespace_inode;
2642 bool truncated = false;
2643 bool range_locked = false;
2644 bool clear_new_delalloc_bytes = false;
2645 bool clear_reserved_extent = true;
2646 unsigned int clear_bits;
2647
2648 start = ordered_extent->file_offset;
2649 end = start + ordered_extent->num_bytes - 1;
2650
2651 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2652 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2653 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2654 clear_new_delalloc_bytes = true;
2655
2656 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2657
2658 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2659 ret = -EIO;
2660 goto out;
2661 }
2662
2663 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2664
2665 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2666 truncated = true;
2667 logical_len = ordered_extent->truncated_len;
2668 /* Truncated the entire extent, don't bother adding */
2669 if (!logical_len)
2670 goto out;
2671 }
2672
2673 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2674 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2675
2676 btrfs_inode_safe_disk_i_size_write(inode, 0);
2677 if (freespace_inode)
2678 trans = btrfs_join_transaction_spacecache(root);
2679 else
2680 trans = btrfs_join_transaction(root);
2681 if (IS_ERR(trans)) {
2682 ret = PTR_ERR(trans);
2683 trans = NULL;
2684 goto out;
2685 }
2686 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2687 ret = btrfs_update_inode_fallback(trans, root, inode);
2688 if (ret) /* -ENOMEM or corruption */
2689 btrfs_abort_transaction(trans, ret);
2690 goto out;
2691 }
2692
2693 range_locked = true;
2694 lock_extent_bits(io_tree, start, end, &cached_state);
2695
2696 if (freespace_inode)
2697 trans = btrfs_join_transaction_spacecache(root);
2698 else
2699 trans = btrfs_join_transaction(root);
2700 if (IS_ERR(trans)) {
2701 ret = PTR_ERR(trans);
2702 trans = NULL;
2703 goto out;
2704 }
2705
2706 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2707
2708 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2709 compress_type = ordered_extent->compress_type;
2710 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2711 BUG_ON(compress_type);
2712 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2713 ordered_extent->file_offset,
2714 ordered_extent->file_offset +
2715 logical_len);
2716 } else {
2717 BUG_ON(root == fs_info->tree_root);
2718 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2719 if (!ret) {
2720 clear_reserved_extent = false;
2721 btrfs_release_delalloc_bytes(fs_info,
2722 ordered_extent->disk_bytenr,
2723 ordered_extent->disk_num_bytes);
2724 }
2725 }
2726 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2727 ordered_extent->file_offset,
2728 ordered_extent->num_bytes, trans->transid);
2729 if (ret < 0) {
2730 btrfs_abort_transaction(trans, ret);
2731 goto out;
2732 }
2733
2734 ret = add_pending_csums(trans, &ordered_extent->list);
2735 if (ret) {
2736 btrfs_abort_transaction(trans, ret);
2737 goto out;
2738 }
2739
2740 btrfs_inode_safe_disk_i_size_write(inode, 0);
2741 ret = btrfs_update_inode_fallback(trans, root, inode);
2742 if (ret) { /* -ENOMEM or corruption */
2743 btrfs_abort_transaction(trans, ret);
2744 goto out;
2745 }
2746 ret = 0;
2747 out:
2748 clear_bits = EXTENT_DEFRAG;
2749 if (range_locked)
2750 clear_bits |= EXTENT_LOCKED;
2751 if (clear_new_delalloc_bytes)
2752 clear_bits |= EXTENT_DELALLOC_NEW;
2753 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2754 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2755 &cached_state);
2756
2757 if (trans)
2758 btrfs_end_transaction(trans);
2759
2760 if (ret || truncated) {
2761 u64 unwritten_start = start;
2762
2763 /*
2764 * If we failed to finish this ordered extent for any reason we
2765 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
2766 * extent, and mark the inode with the error if it wasn't
2767 * already set. Any error during writeback would have already
2768 * set the mapping error, so we need to set it if we're the ones
2769 * marking this ordered extent as failed.
2770 */
2771 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
2772 &ordered_extent->flags))
2773 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
2774
2775 if (truncated)
2776 unwritten_start += logical_len;
2777 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2778
2779 /* Drop the cache for the part of the extent we didn't write. */
2780 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2781
2782 /*
2783 * If the ordered extent had an IOERR or something else went
2784 * wrong we need to return the space for this ordered extent
2785 * back to the allocator. We only free the extent in the
2786 * truncated case if we didn't write out the extent at all.
2787 *
2788 * If we made it past insert_reserved_file_extent before we
2789 * errored out then we don't need to do this as the accounting
2790 * has already been done.
2791 */
2792 if ((ret || !logical_len) &&
2793 clear_reserved_extent &&
2794 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2795 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2796 /*
2797 * Discard the range before returning it back to the
2798 * free space pool
2799 */
2800 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2801 btrfs_discard_extent(fs_info,
2802 ordered_extent->disk_bytenr,
2803 ordered_extent->disk_num_bytes,
2804 NULL);
2805 btrfs_free_reserved_extent(fs_info,
2806 ordered_extent->disk_bytenr,
2807 ordered_extent->disk_num_bytes, 1);
2808 }
2809 }
2810
2811 /*
2812 * This needs to be done to make sure anybody waiting knows we are done
2813 * updating everything for this ordered extent.
2814 */
2815 btrfs_remove_ordered_extent(BTRFS_I(inode), ordered_extent);
2816
2817 /* once for us */
2818 btrfs_put_ordered_extent(ordered_extent);
2819 /* once for the tree */
2820 btrfs_put_ordered_extent(ordered_extent);
2821
2822 return ret;
2823 }
2824
finish_ordered_fn(struct btrfs_work * work)2825 static void finish_ordered_fn(struct btrfs_work *work)
2826 {
2827 struct btrfs_ordered_extent *ordered_extent;
2828 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2829 btrfs_finish_ordered_io(ordered_extent);
2830 }
2831
btrfs_writepage_endio_finish_ordered(struct page * page,u64 start,u64 end,int uptodate)2832 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2833 u64 end, int uptodate)
2834 {
2835 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2836 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2837 struct btrfs_ordered_extent *ordered_extent = NULL;
2838 struct btrfs_workqueue *wq;
2839
2840 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2841
2842 ClearPagePrivate2(page);
2843 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2844 end - start + 1, uptodate))
2845 return;
2846
2847 if (btrfs_is_free_space_inode(inode))
2848 wq = fs_info->endio_freespace_worker;
2849 else
2850 wq = fs_info->endio_write_workers;
2851
2852 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2853 btrfs_queue_work(wq, &ordered_extent->work);
2854 }
2855
check_data_csum(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)2856 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2857 int icsum, struct page *page, int pgoff, u64 start,
2858 size_t len)
2859 {
2860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2861 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2862 char *kaddr;
2863 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2864 u8 *csum_expected;
2865 u8 csum[BTRFS_CSUM_SIZE];
2866
2867 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2868
2869 kaddr = kmap_atomic(page);
2870 shash->tfm = fs_info->csum_shash;
2871
2872 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2873
2874 if (memcmp(csum, csum_expected, csum_size))
2875 goto zeroit;
2876
2877 kunmap_atomic(kaddr);
2878 return 0;
2879 zeroit:
2880 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2881 io_bio->mirror_num);
2882 if (io_bio->device)
2883 btrfs_dev_stat_inc_and_print(io_bio->device,
2884 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2885 memset(kaddr + pgoff, 1, len);
2886 flush_dcache_page(page);
2887 kunmap_atomic(kaddr);
2888 return -EIO;
2889 }
2890
2891 /*
2892 * when reads are done, we need to check csums to verify the data is correct
2893 * if there's a match, we allow the bio to finish. If not, the code in
2894 * extent_io.c will try to find good copies for us.
2895 */
btrfs_verify_data_csum(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)2896 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset,
2897 struct page *page, u64 start, u64 end, int mirror)
2898 {
2899 size_t offset = start - page_offset(page);
2900 struct inode *inode = page->mapping->host;
2901 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2902 struct btrfs_root *root = BTRFS_I(inode)->root;
2903
2904 if (PageChecked(page)) {
2905 ClearPageChecked(page);
2906 return 0;
2907 }
2908
2909 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2910 return 0;
2911
2912 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2913 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2914 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2915 return 0;
2916 }
2917
2918 phy_offset >>= inode->i_sb->s_blocksize_bits;
2919 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2920 (size_t)(end - start + 1));
2921 }
2922
2923 /*
2924 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2925 *
2926 * @inode: The inode we want to perform iput on
2927 *
2928 * This function uses the generic vfs_inode::i_count to track whether we should
2929 * just decrement it (in case it's > 1) or if this is the last iput then link
2930 * the inode to the delayed iput machinery. Delayed iputs are processed at
2931 * transaction commit time/superblock commit/cleaner kthread.
2932 */
btrfs_add_delayed_iput(struct inode * inode)2933 void btrfs_add_delayed_iput(struct inode *inode)
2934 {
2935 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2936 struct btrfs_inode *binode = BTRFS_I(inode);
2937
2938 if (atomic_add_unless(&inode->i_count, -1, 1))
2939 return;
2940
2941 atomic_inc(&fs_info->nr_delayed_iputs);
2942 spin_lock(&fs_info->delayed_iput_lock);
2943 ASSERT(list_empty(&binode->delayed_iput));
2944 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2945 spin_unlock(&fs_info->delayed_iput_lock);
2946 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2947 wake_up_process(fs_info->cleaner_kthread);
2948 }
2949
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)2950 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2951 struct btrfs_inode *inode)
2952 {
2953 list_del_init(&inode->delayed_iput);
2954 spin_unlock(&fs_info->delayed_iput_lock);
2955 iput(&inode->vfs_inode);
2956 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2957 wake_up(&fs_info->delayed_iputs_wait);
2958 spin_lock(&fs_info->delayed_iput_lock);
2959 }
2960
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)2961 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2962 struct btrfs_inode *inode)
2963 {
2964 if (!list_empty(&inode->delayed_iput)) {
2965 spin_lock(&fs_info->delayed_iput_lock);
2966 if (!list_empty(&inode->delayed_iput))
2967 run_delayed_iput_locked(fs_info, inode);
2968 spin_unlock(&fs_info->delayed_iput_lock);
2969 }
2970 }
2971
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)2972 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2973 {
2974
2975 spin_lock(&fs_info->delayed_iput_lock);
2976 while (!list_empty(&fs_info->delayed_iputs)) {
2977 struct btrfs_inode *inode;
2978
2979 inode = list_first_entry(&fs_info->delayed_iputs,
2980 struct btrfs_inode, delayed_iput);
2981 run_delayed_iput_locked(fs_info, inode);
2982 cond_resched_lock(&fs_info->delayed_iput_lock);
2983 }
2984 spin_unlock(&fs_info->delayed_iput_lock);
2985 }
2986
2987 /**
2988 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2989 * @fs_info - the fs_info for this fs
2990 * @return - EINTR if we were killed, 0 if nothing's pending
2991 *
2992 * This will wait on any delayed iputs that are currently running with KILLABLE
2993 * set. Once they are all done running we will return, unless we are killed in
2994 * which case we return EINTR. This helps in user operations like fallocate etc
2995 * that might get blocked on the iputs.
2996 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)2997 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2998 {
2999 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3000 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3001 if (ret)
3002 return -EINTR;
3003 return 0;
3004 }
3005
3006 /*
3007 * This creates an orphan entry for the given inode in case something goes wrong
3008 * in the middle of an unlink.
3009 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3010 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3011 struct btrfs_inode *inode)
3012 {
3013 int ret;
3014
3015 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3016 if (ret && ret != -EEXIST) {
3017 btrfs_abort_transaction(trans, ret);
3018 return ret;
3019 }
3020
3021 return 0;
3022 }
3023
3024 /*
3025 * We have done the delete so we can go ahead and remove the orphan item for
3026 * this particular inode.
3027 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3028 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3029 struct btrfs_inode *inode)
3030 {
3031 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3032 }
3033
3034 /*
3035 * this cleans up any orphans that may be left on the list from the last use
3036 * of this root.
3037 */
btrfs_orphan_cleanup(struct btrfs_root * root)3038 int btrfs_orphan_cleanup(struct btrfs_root *root)
3039 {
3040 struct btrfs_fs_info *fs_info = root->fs_info;
3041 struct btrfs_path *path;
3042 struct extent_buffer *leaf;
3043 struct btrfs_key key, found_key;
3044 struct btrfs_trans_handle *trans;
3045 struct inode *inode;
3046 u64 last_objectid = 0;
3047 int ret = 0, nr_unlink = 0;
3048
3049 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3050 return 0;
3051
3052 path = btrfs_alloc_path();
3053 if (!path) {
3054 ret = -ENOMEM;
3055 goto out;
3056 }
3057 path->reada = READA_BACK;
3058
3059 key.objectid = BTRFS_ORPHAN_OBJECTID;
3060 key.type = BTRFS_ORPHAN_ITEM_KEY;
3061 key.offset = (u64)-1;
3062
3063 while (1) {
3064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3065 if (ret < 0)
3066 goto out;
3067
3068 /*
3069 * if ret == 0 means we found what we were searching for, which
3070 * is weird, but possible, so only screw with path if we didn't
3071 * find the key and see if we have stuff that matches
3072 */
3073 if (ret > 0) {
3074 ret = 0;
3075 if (path->slots[0] == 0)
3076 break;
3077 path->slots[0]--;
3078 }
3079
3080 /* pull out the item */
3081 leaf = path->nodes[0];
3082 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3083
3084 /* make sure the item matches what we want */
3085 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3086 break;
3087 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3088 break;
3089
3090 /* release the path since we're done with it */
3091 btrfs_release_path(path);
3092
3093 /*
3094 * this is where we are basically btrfs_lookup, without the
3095 * crossing root thing. we store the inode number in the
3096 * offset of the orphan item.
3097 */
3098
3099 if (found_key.offset == last_objectid) {
3100 btrfs_err(fs_info,
3101 "Error removing orphan entry, stopping orphan cleanup");
3102 ret = -EINVAL;
3103 goto out;
3104 }
3105
3106 last_objectid = found_key.offset;
3107
3108 found_key.objectid = found_key.offset;
3109 found_key.type = BTRFS_INODE_ITEM_KEY;
3110 found_key.offset = 0;
3111 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3112 ret = PTR_ERR_OR_ZERO(inode);
3113 if (ret && ret != -ENOENT)
3114 goto out;
3115
3116 if (ret == -ENOENT && root == fs_info->tree_root) {
3117 struct btrfs_root *dead_root;
3118 int is_dead_root = 0;
3119
3120 /*
3121 * this is an orphan in the tree root. Currently these
3122 * could come from 2 sources:
3123 * a) a snapshot deletion in progress
3124 * b) a free space cache inode
3125 * We need to distinguish those two, as the snapshot
3126 * orphan must not get deleted.
3127 * find_dead_roots already ran before us, so if this
3128 * is a snapshot deletion, we should find the root
3129 * in the fs_roots radix tree.
3130 */
3131
3132 spin_lock(&fs_info->fs_roots_radix_lock);
3133 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3134 (unsigned long)found_key.objectid);
3135 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3136 is_dead_root = 1;
3137 spin_unlock(&fs_info->fs_roots_radix_lock);
3138
3139 if (is_dead_root) {
3140 /* prevent this orphan from being found again */
3141 key.offset = found_key.objectid - 1;
3142 continue;
3143 }
3144
3145 }
3146
3147 /*
3148 * If we have an inode with links, there are a couple of
3149 * possibilities. Old kernels (before v3.12) used to create an
3150 * orphan item for truncate indicating that there were possibly
3151 * extent items past i_size that needed to be deleted. In v3.12,
3152 * truncate was changed to update i_size in sync with the extent
3153 * items, but the (useless) orphan item was still created. Since
3154 * v4.18, we don't create the orphan item for truncate at all.
3155 *
3156 * So, this item could mean that we need to do a truncate, but
3157 * only if this filesystem was last used on a pre-v3.12 kernel
3158 * and was not cleanly unmounted. The odds of that are quite
3159 * slim, and it's a pain to do the truncate now, so just delete
3160 * the orphan item.
3161 *
3162 * It's also possible that this orphan item was supposed to be
3163 * deleted but wasn't. The inode number may have been reused,
3164 * but either way, we can delete the orphan item.
3165 */
3166 if (ret == -ENOENT || inode->i_nlink) {
3167 if (!ret)
3168 iput(inode);
3169 trans = btrfs_start_transaction(root, 1);
3170 if (IS_ERR(trans)) {
3171 ret = PTR_ERR(trans);
3172 goto out;
3173 }
3174 btrfs_debug(fs_info, "auto deleting %Lu",
3175 found_key.objectid);
3176 ret = btrfs_del_orphan_item(trans, root,
3177 found_key.objectid);
3178 btrfs_end_transaction(trans);
3179 if (ret)
3180 goto out;
3181 continue;
3182 }
3183
3184 nr_unlink++;
3185
3186 /* this will do delete_inode and everything for us */
3187 iput(inode);
3188 }
3189 /* release the path since we're done with it */
3190 btrfs_release_path(path);
3191
3192 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3193
3194 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3195 trans = btrfs_join_transaction(root);
3196 if (!IS_ERR(trans))
3197 btrfs_end_transaction(trans);
3198 }
3199
3200 if (nr_unlink)
3201 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3202
3203 out:
3204 if (ret)
3205 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3206 btrfs_free_path(path);
3207 return ret;
3208 }
3209
3210 /*
3211 * very simple check to peek ahead in the leaf looking for xattrs. If we
3212 * don't find any xattrs, we know there can't be any acls.
3213 *
3214 * slot is the slot the inode is in, objectid is the objectid of the inode
3215 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3216 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3217 int slot, u64 objectid,
3218 int *first_xattr_slot)
3219 {
3220 u32 nritems = btrfs_header_nritems(leaf);
3221 struct btrfs_key found_key;
3222 static u64 xattr_access = 0;
3223 static u64 xattr_default = 0;
3224 int scanned = 0;
3225
3226 if (!xattr_access) {
3227 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3228 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3229 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3230 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3231 }
3232
3233 slot++;
3234 *first_xattr_slot = -1;
3235 while (slot < nritems) {
3236 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3237
3238 /* we found a different objectid, there must not be acls */
3239 if (found_key.objectid != objectid)
3240 return 0;
3241
3242 /* we found an xattr, assume we've got an acl */
3243 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3244 if (*first_xattr_slot == -1)
3245 *first_xattr_slot = slot;
3246 if (found_key.offset == xattr_access ||
3247 found_key.offset == xattr_default)
3248 return 1;
3249 }
3250
3251 /*
3252 * we found a key greater than an xattr key, there can't
3253 * be any acls later on
3254 */
3255 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3256 return 0;
3257
3258 slot++;
3259 scanned++;
3260
3261 /*
3262 * it goes inode, inode backrefs, xattrs, extents,
3263 * so if there are a ton of hard links to an inode there can
3264 * be a lot of backrefs. Don't waste time searching too hard,
3265 * this is just an optimization
3266 */
3267 if (scanned >= 8)
3268 break;
3269 }
3270 /* we hit the end of the leaf before we found an xattr or
3271 * something larger than an xattr. We have to assume the inode
3272 * has acls
3273 */
3274 if (*first_xattr_slot == -1)
3275 *first_xattr_slot = slot;
3276 return 1;
3277 }
3278
3279 /*
3280 * read an inode from the btree into the in-memory inode
3281 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3282 static int btrfs_read_locked_inode(struct inode *inode,
3283 struct btrfs_path *in_path)
3284 {
3285 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3286 struct btrfs_path *path = in_path;
3287 struct extent_buffer *leaf;
3288 struct btrfs_inode_item *inode_item;
3289 struct btrfs_root *root = BTRFS_I(inode)->root;
3290 struct btrfs_key location;
3291 unsigned long ptr;
3292 int maybe_acls;
3293 u32 rdev;
3294 int ret;
3295 bool filled = false;
3296 int first_xattr_slot;
3297
3298 ret = btrfs_fill_inode(inode, &rdev);
3299 if (!ret)
3300 filled = true;
3301
3302 if (!path) {
3303 path = btrfs_alloc_path();
3304 if (!path)
3305 return -ENOMEM;
3306 }
3307
3308 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3309
3310 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3311 if (ret) {
3312 if (path != in_path)
3313 btrfs_free_path(path);
3314 return ret;
3315 }
3316
3317 leaf = path->nodes[0];
3318
3319 if (filled)
3320 goto cache_index;
3321
3322 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3323 struct btrfs_inode_item);
3324 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3325 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3326 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3327 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3328 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3329 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3330 round_up(i_size_read(inode), fs_info->sectorsize));
3331
3332 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3333 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3334
3335 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3336 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3337
3338 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3339 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3340
3341 BTRFS_I(inode)->i_otime.tv_sec =
3342 btrfs_timespec_sec(leaf, &inode_item->otime);
3343 BTRFS_I(inode)->i_otime.tv_nsec =
3344 btrfs_timespec_nsec(leaf, &inode_item->otime);
3345
3346 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3347 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3348 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3349
3350 inode_set_iversion_queried(inode,
3351 btrfs_inode_sequence(leaf, inode_item));
3352 inode->i_generation = BTRFS_I(inode)->generation;
3353 inode->i_rdev = 0;
3354 rdev = btrfs_inode_rdev(leaf, inode_item);
3355
3356 BTRFS_I(inode)->index_cnt = (u64)-1;
3357 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3358
3359 cache_index:
3360 /*
3361 * If we were modified in the current generation and evicted from memory
3362 * and then re-read we need to do a full sync since we don't have any
3363 * idea about which extents were modified before we were evicted from
3364 * cache.
3365 *
3366 * This is required for both inode re-read from disk and delayed inode
3367 * in delayed_nodes_tree.
3368 */
3369 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3370 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3371 &BTRFS_I(inode)->runtime_flags);
3372
3373 /*
3374 * We don't persist the id of the transaction where an unlink operation
3375 * against the inode was last made. So here we assume the inode might
3376 * have been evicted, and therefore the exact value of last_unlink_trans
3377 * lost, and set it to last_trans to avoid metadata inconsistencies
3378 * between the inode and its parent if the inode is fsync'ed and the log
3379 * replayed. For example, in the scenario:
3380 *
3381 * touch mydir/foo
3382 * ln mydir/foo mydir/bar
3383 * sync
3384 * unlink mydir/bar
3385 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3386 * xfs_io -c fsync mydir/foo
3387 * <power failure>
3388 * mount fs, triggers fsync log replay
3389 *
3390 * We must make sure that when we fsync our inode foo we also log its
3391 * parent inode, otherwise after log replay the parent still has the
3392 * dentry with the "bar" name but our inode foo has a link count of 1
3393 * and doesn't have an inode ref with the name "bar" anymore.
3394 *
3395 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3396 * but it guarantees correctness at the expense of occasional full
3397 * transaction commits on fsync if our inode is a directory, or if our
3398 * inode is not a directory, logging its parent unnecessarily.
3399 */
3400 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3401
3402 /*
3403 * Same logic as for last_unlink_trans. We don't persist the generation
3404 * of the last transaction where this inode was used for a reflink
3405 * operation, so after eviction and reloading the inode we must be
3406 * pessimistic and assume the last transaction that modified the inode.
3407 */
3408 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3409
3410 path->slots[0]++;
3411 if (inode->i_nlink != 1 ||
3412 path->slots[0] >= btrfs_header_nritems(leaf))
3413 goto cache_acl;
3414
3415 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3416 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3417 goto cache_acl;
3418
3419 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3420 if (location.type == BTRFS_INODE_REF_KEY) {
3421 struct btrfs_inode_ref *ref;
3422
3423 ref = (struct btrfs_inode_ref *)ptr;
3424 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3425 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3426 struct btrfs_inode_extref *extref;
3427
3428 extref = (struct btrfs_inode_extref *)ptr;
3429 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3430 extref);
3431 }
3432 cache_acl:
3433 /*
3434 * try to precache a NULL acl entry for files that don't have
3435 * any xattrs or acls
3436 */
3437 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3438 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3439 if (first_xattr_slot != -1) {
3440 path->slots[0] = first_xattr_slot;
3441 ret = btrfs_load_inode_props(inode, path);
3442 if (ret)
3443 btrfs_err(fs_info,
3444 "error loading props for ino %llu (root %llu): %d",
3445 btrfs_ino(BTRFS_I(inode)),
3446 root->root_key.objectid, ret);
3447 }
3448 if (path != in_path)
3449 btrfs_free_path(path);
3450
3451 if (!maybe_acls)
3452 cache_no_acl(inode);
3453
3454 switch (inode->i_mode & S_IFMT) {
3455 case S_IFREG:
3456 inode->i_mapping->a_ops = &btrfs_aops;
3457 inode->i_fop = &btrfs_file_operations;
3458 inode->i_op = &btrfs_file_inode_operations;
3459 break;
3460 case S_IFDIR:
3461 inode->i_fop = &btrfs_dir_file_operations;
3462 inode->i_op = &btrfs_dir_inode_operations;
3463 break;
3464 case S_IFLNK:
3465 inode->i_op = &btrfs_symlink_inode_operations;
3466 inode_nohighmem(inode);
3467 inode->i_mapping->a_ops = &btrfs_aops;
3468 break;
3469 default:
3470 inode->i_op = &btrfs_special_inode_operations;
3471 init_special_inode(inode, inode->i_mode, rdev);
3472 break;
3473 }
3474
3475 btrfs_sync_inode_flags_to_i_flags(inode);
3476 return 0;
3477 }
3478
3479 /*
3480 * given a leaf and an inode, copy the inode fields into the leaf
3481 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3482 static void fill_inode_item(struct btrfs_trans_handle *trans,
3483 struct extent_buffer *leaf,
3484 struct btrfs_inode_item *item,
3485 struct inode *inode)
3486 {
3487 struct btrfs_map_token token;
3488
3489 btrfs_init_map_token(&token, leaf);
3490
3491 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3492 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3493 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3494 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3495 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3496
3497 btrfs_set_token_timespec_sec(&token, &item->atime,
3498 inode->i_atime.tv_sec);
3499 btrfs_set_token_timespec_nsec(&token, &item->atime,
3500 inode->i_atime.tv_nsec);
3501
3502 btrfs_set_token_timespec_sec(&token, &item->mtime,
3503 inode->i_mtime.tv_sec);
3504 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3505 inode->i_mtime.tv_nsec);
3506
3507 btrfs_set_token_timespec_sec(&token, &item->ctime,
3508 inode->i_ctime.tv_sec);
3509 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3510 inode->i_ctime.tv_nsec);
3511
3512 btrfs_set_token_timespec_sec(&token, &item->otime,
3513 BTRFS_I(inode)->i_otime.tv_sec);
3514 btrfs_set_token_timespec_nsec(&token, &item->otime,
3515 BTRFS_I(inode)->i_otime.tv_nsec);
3516
3517 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3518 btrfs_set_token_inode_generation(&token, item,
3519 BTRFS_I(inode)->generation);
3520 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3521 btrfs_set_token_inode_transid(&token, item, trans->transid);
3522 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3523 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3524 btrfs_set_token_inode_block_group(&token, item, 0);
3525 }
3526
3527 /*
3528 * copy everything in the in-memory inode into the btree.
3529 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3530 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3531 struct btrfs_root *root, struct inode *inode)
3532 {
3533 struct btrfs_inode_item *inode_item;
3534 struct btrfs_path *path;
3535 struct extent_buffer *leaf;
3536 int ret;
3537
3538 path = btrfs_alloc_path();
3539 if (!path)
3540 return -ENOMEM;
3541
3542 path->leave_spinning = 1;
3543 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3544 1);
3545 if (ret) {
3546 if (ret > 0)
3547 ret = -ENOENT;
3548 goto failed;
3549 }
3550
3551 leaf = path->nodes[0];
3552 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3553 struct btrfs_inode_item);
3554
3555 fill_inode_item(trans, leaf, inode_item, inode);
3556 btrfs_mark_buffer_dirty(leaf);
3557 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3558 ret = 0;
3559 failed:
3560 btrfs_free_path(path);
3561 return ret;
3562 }
3563
3564 /*
3565 * copy everything in the in-memory inode into the btree.
3566 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3567 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3568 struct btrfs_root *root, struct inode *inode)
3569 {
3570 struct btrfs_fs_info *fs_info = root->fs_info;
3571 int ret;
3572
3573 /*
3574 * If the inode is a free space inode, we can deadlock during commit
3575 * if we put it into the delayed code.
3576 *
3577 * The data relocation inode should also be directly updated
3578 * without delay
3579 */
3580 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3581 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3582 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3583 btrfs_update_root_times(trans, root);
3584
3585 ret = btrfs_delayed_update_inode(trans, root, inode);
3586 if (!ret)
3587 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3588 return ret;
3589 }
3590
3591 return btrfs_update_inode_item(trans, root, inode);
3592 }
3593
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3594 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3595 struct btrfs_root *root,
3596 struct inode *inode)
3597 {
3598 int ret;
3599
3600 ret = btrfs_update_inode(trans, root, inode);
3601 if (ret == -ENOSPC)
3602 return btrfs_update_inode_item(trans, root, inode);
3603 return ret;
3604 }
3605
3606 /*
3607 * unlink helper that gets used here in inode.c and in the tree logging
3608 * recovery code. It remove a link in a directory with a given name, and
3609 * also drops the back refs in the inode to the directory
3610 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3611 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3612 struct btrfs_root *root,
3613 struct btrfs_inode *dir,
3614 struct btrfs_inode *inode,
3615 const char *name, int name_len)
3616 {
3617 struct btrfs_fs_info *fs_info = root->fs_info;
3618 struct btrfs_path *path;
3619 int ret = 0;
3620 struct btrfs_dir_item *di;
3621 u64 index;
3622 u64 ino = btrfs_ino(inode);
3623 u64 dir_ino = btrfs_ino(dir);
3624
3625 path = btrfs_alloc_path();
3626 if (!path) {
3627 ret = -ENOMEM;
3628 goto out;
3629 }
3630
3631 path->leave_spinning = 1;
3632 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3633 name, name_len, -1);
3634 if (IS_ERR_OR_NULL(di)) {
3635 ret = di ? PTR_ERR(di) : -ENOENT;
3636 goto err;
3637 }
3638 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3639 if (ret)
3640 goto err;
3641 btrfs_release_path(path);
3642
3643 /*
3644 * If we don't have dir index, we have to get it by looking up
3645 * the inode ref, since we get the inode ref, remove it directly,
3646 * it is unnecessary to do delayed deletion.
3647 *
3648 * But if we have dir index, needn't search inode ref to get it.
3649 * Since the inode ref is close to the inode item, it is better
3650 * that we delay to delete it, and just do this deletion when
3651 * we update the inode item.
3652 */
3653 if (inode->dir_index) {
3654 ret = btrfs_delayed_delete_inode_ref(inode);
3655 if (!ret) {
3656 index = inode->dir_index;
3657 goto skip_backref;
3658 }
3659 }
3660
3661 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3662 dir_ino, &index);
3663 if (ret) {
3664 btrfs_info(fs_info,
3665 "failed to delete reference to %.*s, inode %llu parent %llu",
3666 name_len, name, ino, dir_ino);
3667 btrfs_abort_transaction(trans, ret);
3668 goto err;
3669 }
3670 skip_backref:
3671 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3672 if (ret) {
3673 btrfs_abort_transaction(trans, ret);
3674 goto err;
3675 }
3676
3677 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3678 dir_ino);
3679 if (ret != 0 && ret != -ENOENT) {
3680 btrfs_abort_transaction(trans, ret);
3681 goto err;
3682 }
3683
3684 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3685 index);
3686 if (ret == -ENOENT)
3687 ret = 0;
3688 else if (ret)
3689 btrfs_abort_transaction(trans, ret);
3690
3691 /*
3692 * If we have a pending delayed iput we could end up with the final iput
3693 * being run in btrfs-cleaner context. If we have enough of these built
3694 * up we can end up burning a lot of time in btrfs-cleaner without any
3695 * way to throttle the unlinks. Since we're currently holding a ref on
3696 * the inode we can run the delayed iput here without any issues as the
3697 * final iput won't be done until after we drop the ref we're currently
3698 * holding.
3699 */
3700 btrfs_run_delayed_iput(fs_info, inode);
3701 err:
3702 btrfs_free_path(path);
3703 if (ret)
3704 goto out;
3705
3706 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3707 inode_inc_iversion(&inode->vfs_inode);
3708 inode_inc_iversion(&dir->vfs_inode);
3709 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3710 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3711 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3712 out:
3713 return ret;
3714 }
3715
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3716 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3717 struct btrfs_root *root,
3718 struct btrfs_inode *dir, struct btrfs_inode *inode,
3719 const char *name, int name_len)
3720 {
3721 int ret;
3722 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3723 if (!ret) {
3724 drop_nlink(&inode->vfs_inode);
3725 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3726 }
3727 return ret;
3728 }
3729
3730 /*
3731 * helper to start transaction for unlink and rmdir.
3732 *
3733 * unlink and rmdir are special in btrfs, they do not always free space, so
3734 * if we cannot make our reservations the normal way try and see if there is
3735 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3736 * allow the unlink to occur.
3737 */
__unlink_start_trans(struct inode * dir)3738 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3739 {
3740 struct btrfs_root *root = BTRFS_I(dir)->root;
3741
3742 /*
3743 * 1 for the possible orphan item
3744 * 1 for the dir item
3745 * 1 for the dir index
3746 * 1 for the inode ref
3747 * 1 for the inode
3748 */
3749 return btrfs_start_transaction_fallback_global_rsv(root, 5);
3750 }
3751
btrfs_unlink(struct inode * dir,struct dentry * dentry)3752 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3753 {
3754 struct btrfs_root *root = BTRFS_I(dir)->root;
3755 struct btrfs_trans_handle *trans;
3756 struct inode *inode = d_inode(dentry);
3757 int ret;
3758
3759 trans = __unlink_start_trans(dir);
3760 if (IS_ERR(trans))
3761 return PTR_ERR(trans);
3762
3763 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3764 0);
3765
3766 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3767 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3768 dentry->d_name.len);
3769 if (ret)
3770 goto out;
3771
3772 if (inode->i_nlink == 0) {
3773 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3774 if (ret)
3775 goto out;
3776 }
3777
3778 out:
3779 btrfs_end_transaction(trans);
3780 btrfs_btree_balance_dirty(root->fs_info);
3781 return ret;
3782 }
3783
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)3784 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3785 struct inode *dir, struct dentry *dentry)
3786 {
3787 struct btrfs_root *root = BTRFS_I(dir)->root;
3788 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3789 struct btrfs_path *path;
3790 struct extent_buffer *leaf;
3791 struct btrfs_dir_item *di;
3792 struct btrfs_key key;
3793 const char *name = dentry->d_name.name;
3794 int name_len = dentry->d_name.len;
3795 u64 index;
3796 int ret;
3797 u64 objectid;
3798 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3799
3800 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3801 objectid = inode->root->root_key.objectid;
3802 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3803 objectid = inode->location.objectid;
3804 } else {
3805 WARN_ON(1);
3806 return -EINVAL;
3807 }
3808
3809 path = btrfs_alloc_path();
3810 if (!path)
3811 return -ENOMEM;
3812
3813 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3814 name, name_len, -1);
3815 if (IS_ERR_OR_NULL(di)) {
3816 ret = di ? PTR_ERR(di) : -ENOENT;
3817 goto out;
3818 }
3819
3820 leaf = path->nodes[0];
3821 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3822 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3823 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3824 if (ret) {
3825 btrfs_abort_transaction(trans, ret);
3826 goto out;
3827 }
3828 btrfs_release_path(path);
3829
3830 /*
3831 * This is a placeholder inode for a subvolume we didn't have a
3832 * reference to at the time of the snapshot creation. In the meantime
3833 * we could have renamed the real subvol link into our snapshot, so
3834 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3835 * Instead simply lookup the dir_index_item for this entry so we can
3836 * remove it. Otherwise we know we have a ref to the root and we can
3837 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3838 */
3839 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3840 di = btrfs_search_dir_index_item(root, path, dir_ino,
3841 name, name_len);
3842 if (IS_ERR_OR_NULL(di)) {
3843 if (!di)
3844 ret = -ENOENT;
3845 else
3846 ret = PTR_ERR(di);
3847 btrfs_abort_transaction(trans, ret);
3848 goto out;
3849 }
3850
3851 leaf = path->nodes[0];
3852 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3853 index = key.offset;
3854 btrfs_release_path(path);
3855 } else {
3856 ret = btrfs_del_root_ref(trans, objectid,
3857 root->root_key.objectid, dir_ino,
3858 &index, name, name_len);
3859 if (ret) {
3860 btrfs_abort_transaction(trans, ret);
3861 goto out;
3862 }
3863 }
3864
3865 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3866 if (ret) {
3867 btrfs_abort_transaction(trans, ret);
3868 goto out;
3869 }
3870
3871 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3872 inode_inc_iversion(dir);
3873 dir->i_mtime = dir->i_ctime = current_time(dir);
3874 ret = btrfs_update_inode_fallback(trans, root, dir);
3875 if (ret)
3876 btrfs_abort_transaction(trans, ret);
3877 out:
3878 btrfs_free_path(path);
3879 return ret;
3880 }
3881
3882 /*
3883 * Helper to check if the subvolume references other subvolumes or if it's
3884 * default.
3885 */
may_destroy_subvol(struct btrfs_root * root)3886 static noinline int may_destroy_subvol(struct btrfs_root *root)
3887 {
3888 struct btrfs_fs_info *fs_info = root->fs_info;
3889 struct btrfs_path *path;
3890 struct btrfs_dir_item *di;
3891 struct btrfs_key key;
3892 u64 dir_id;
3893 int ret;
3894
3895 path = btrfs_alloc_path();
3896 if (!path)
3897 return -ENOMEM;
3898
3899 /* Make sure this root isn't set as the default subvol */
3900 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3901 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3902 dir_id, "default", 7, 0);
3903 if (di && !IS_ERR(di)) {
3904 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3905 if (key.objectid == root->root_key.objectid) {
3906 ret = -EPERM;
3907 btrfs_err(fs_info,
3908 "deleting default subvolume %llu is not allowed",
3909 key.objectid);
3910 goto out;
3911 }
3912 btrfs_release_path(path);
3913 }
3914
3915 key.objectid = root->root_key.objectid;
3916 key.type = BTRFS_ROOT_REF_KEY;
3917 key.offset = (u64)-1;
3918
3919 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3920 if (ret < 0)
3921 goto out;
3922 BUG_ON(ret == 0);
3923
3924 ret = 0;
3925 if (path->slots[0] > 0) {
3926 path->slots[0]--;
3927 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3928 if (key.objectid == root->root_key.objectid &&
3929 key.type == BTRFS_ROOT_REF_KEY)
3930 ret = -ENOTEMPTY;
3931 }
3932 out:
3933 btrfs_free_path(path);
3934 return ret;
3935 }
3936
3937 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)3938 static void btrfs_prune_dentries(struct btrfs_root *root)
3939 {
3940 struct btrfs_fs_info *fs_info = root->fs_info;
3941 struct rb_node *node;
3942 struct rb_node *prev;
3943 struct btrfs_inode *entry;
3944 struct inode *inode;
3945 u64 objectid = 0;
3946
3947 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3948 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3949
3950 spin_lock(&root->inode_lock);
3951 again:
3952 node = root->inode_tree.rb_node;
3953 prev = NULL;
3954 while (node) {
3955 prev = node;
3956 entry = rb_entry(node, struct btrfs_inode, rb_node);
3957
3958 if (objectid < btrfs_ino(entry))
3959 node = node->rb_left;
3960 else if (objectid > btrfs_ino(entry))
3961 node = node->rb_right;
3962 else
3963 break;
3964 }
3965 if (!node) {
3966 while (prev) {
3967 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3968 if (objectid <= btrfs_ino(entry)) {
3969 node = prev;
3970 break;
3971 }
3972 prev = rb_next(prev);
3973 }
3974 }
3975 while (node) {
3976 entry = rb_entry(node, struct btrfs_inode, rb_node);
3977 objectid = btrfs_ino(entry) + 1;
3978 inode = igrab(&entry->vfs_inode);
3979 if (inode) {
3980 spin_unlock(&root->inode_lock);
3981 if (atomic_read(&inode->i_count) > 1)
3982 d_prune_aliases(inode);
3983 /*
3984 * btrfs_drop_inode will have it removed from the inode
3985 * cache when its usage count hits zero.
3986 */
3987 iput(inode);
3988 cond_resched();
3989 spin_lock(&root->inode_lock);
3990 goto again;
3991 }
3992
3993 if (cond_resched_lock(&root->inode_lock))
3994 goto again;
3995
3996 node = rb_next(node);
3997 }
3998 spin_unlock(&root->inode_lock);
3999 }
4000
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4001 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4002 {
4003 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4004 struct btrfs_root *root = BTRFS_I(dir)->root;
4005 struct inode *inode = d_inode(dentry);
4006 struct btrfs_root *dest = BTRFS_I(inode)->root;
4007 struct btrfs_trans_handle *trans;
4008 struct btrfs_block_rsv block_rsv;
4009 u64 root_flags;
4010 int ret;
4011 int err;
4012
4013 /*
4014 * Don't allow to delete a subvolume with send in progress. This is
4015 * inside the inode lock so the error handling that has to drop the bit
4016 * again is not run concurrently.
4017 */
4018 spin_lock(&dest->root_item_lock);
4019 if (dest->send_in_progress) {
4020 spin_unlock(&dest->root_item_lock);
4021 btrfs_warn(fs_info,
4022 "attempt to delete subvolume %llu during send",
4023 dest->root_key.objectid);
4024 return -EPERM;
4025 }
4026 root_flags = btrfs_root_flags(&dest->root_item);
4027 btrfs_set_root_flags(&dest->root_item,
4028 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4029 spin_unlock(&dest->root_item_lock);
4030
4031 down_write(&fs_info->subvol_sem);
4032
4033 err = may_destroy_subvol(dest);
4034 if (err)
4035 goto out_up_write;
4036
4037 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4038 /*
4039 * One for dir inode,
4040 * two for dir entries,
4041 * two for root ref/backref.
4042 */
4043 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4044 if (err)
4045 goto out_up_write;
4046
4047 trans = btrfs_start_transaction(root, 0);
4048 if (IS_ERR(trans)) {
4049 err = PTR_ERR(trans);
4050 goto out_release;
4051 }
4052 trans->block_rsv = &block_rsv;
4053 trans->bytes_reserved = block_rsv.size;
4054
4055 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4056
4057 ret = btrfs_unlink_subvol(trans, dir, dentry);
4058 if (ret) {
4059 err = ret;
4060 btrfs_abort_transaction(trans, ret);
4061 goto out_end_trans;
4062 }
4063
4064 btrfs_record_root_in_trans(trans, dest);
4065
4066 memset(&dest->root_item.drop_progress, 0,
4067 sizeof(dest->root_item.drop_progress));
4068 dest->root_item.drop_level = 0;
4069 btrfs_set_root_refs(&dest->root_item, 0);
4070
4071 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4072 ret = btrfs_insert_orphan_item(trans,
4073 fs_info->tree_root,
4074 dest->root_key.objectid);
4075 if (ret) {
4076 btrfs_abort_transaction(trans, ret);
4077 err = ret;
4078 goto out_end_trans;
4079 }
4080 }
4081
4082 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4083 BTRFS_UUID_KEY_SUBVOL,
4084 dest->root_key.objectid);
4085 if (ret && ret != -ENOENT) {
4086 btrfs_abort_transaction(trans, ret);
4087 err = ret;
4088 goto out_end_trans;
4089 }
4090 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4091 ret = btrfs_uuid_tree_remove(trans,
4092 dest->root_item.received_uuid,
4093 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4094 dest->root_key.objectid);
4095 if (ret && ret != -ENOENT) {
4096 btrfs_abort_transaction(trans, ret);
4097 err = ret;
4098 goto out_end_trans;
4099 }
4100 }
4101
4102 free_anon_bdev(dest->anon_dev);
4103 dest->anon_dev = 0;
4104 out_end_trans:
4105 trans->block_rsv = NULL;
4106 trans->bytes_reserved = 0;
4107 ret = btrfs_end_transaction(trans);
4108 if (ret && !err)
4109 err = ret;
4110 inode->i_flags |= S_DEAD;
4111 out_release:
4112 btrfs_subvolume_release_metadata(root, &block_rsv);
4113 out_up_write:
4114 up_write(&fs_info->subvol_sem);
4115 if (err) {
4116 spin_lock(&dest->root_item_lock);
4117 root_flags = btrfs_root_flags(&dest->root_item);
4118 btrfs_set_root_flags(&dest->root_item,
4119 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4120 spin_unlock(&dest->root_item_lock);
4121 } else {
4122 d_invalidate(dentry);
4123 btrfs_prune_dentries(dest);
4124 ASSERT(dest->send_in_progress == 0);
4125
4126 /* the last ref */
4127 if (dest->ino_cache_inode) {
4128 iput(dest->ino_cache_inode);
4129 dest->ino_cache_inode = NULL;
4130 }
4131 }
4132
4133 return err;
4134 }
4135
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4136 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4137 {
4138 struct inode *inode = d_inode(dentry);
4139 int err = 0;
4140 struct btrfs_root *root = BTRFS_I(dir)->root;
4141 struct btrfs_trans_handle *trans;
4142 u64 last_unlink_trans;
4143
4144 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4145 return -ENOTEMPTY;
4146 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4147 return btrfs_delete_subvolume(dir, dentry);
4148
4149 trans = __unlink_start_trans(dir);
4150 if (IS_ERR(trans))
4151 return PTR_ERR(trans);
4152
4153 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4154 err = btrfs_unlink_subvol(trans, dir, dentry);
4155 goto out;
4156 }
4157
4158 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4159 if (err)
4160 goto out;
4161
4162 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4163
4164 /* now the directory is empty */
4165 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4166 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4167 dentry->d_name.len);
4168 if (!err) {
4169 btrfs_i_size_write(BTRFS_I(inode), 0);
4170 /*
4171 * Propagate the last_unlink_trans value of the deleted dir to
4172 * its parent directory. This is to prevent an unrecoverable
4173 * log tree in the case we do something like this:
4174 * 1) create dir foo
4175 * 2) create snapshot under dir foo
4176 * 3) delete the snapshot
4177 * 4) rmdir foo
4178 * 5) mkdir foo
4179 * 6) fsync foo or some file inside foo
4180 */
4181 if (last_unlink_trans >= trans->transid)
4182 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4183 }
4184 out:
4185 btrfs_end_transaction(trans);
4186 btrfs_btree_balance_dirty(root->fs_info);
4187
4188 return err;
4189 }
4190
4191 /*
4192 * Return this if we need to call truncate_block for the last bit of the
4193 * truncate.
4194 */
4195 #define NEED_TRUNCATE_BLOCK 1
4196
4197 /*
4198 * this can truncate away extent items, csum items and directory items.
4199 * It starts at a high offset and removes keys until it can't find
4200 * any higher than new_size
4201 *
4202 * csum items that cross the new i_size are truncated to the new size
4203 * as well.
4204 *
4205 * min_type is the minimum key type to truncate down to. If set to 0, this
4206 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4207 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4208 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4209 struct btrfs_root *root,
4210 struct inode *inode,
4211 u64 new_size, u32 min_type)
4212 {
4213 struct btrfs_fs_info *fs_info = root->fs_info;
4214 struct btrfs_path *path;
4215 struct extent_buffer *leaf;
4216 struct btrfs_file_extent_item *fi;
4217 struct btrfs_key key;
4218 struct btrfs_key found_key;
4219 u64 extent_start = 0;
4220 u64 extent_num_bytes = 0;
4221 u64 extent_offset = 0;
4222 u64 item_end = 0;
4223 u64 last_size = new_size;
4224 u32 found_type = (u8)-1;
4225 int found_extent;
4226 int del_item;
4227 int pending_del_nr = 0;
4228 int pending_del_slot = 0;
4229 int extent_type = -1;
4230 int ret;
4231 u64 ino = btrfs_ino(BTRFS_I(inode));
4232 u64 bytes_deleted = 0;
4233 bool be_nice = false;
4234 bool should_throttle = false;
4235 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4236 struct extent_state *cached_state = NULL;
4237
4238 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4239
4240 /*
4241 * For non-free space inodes and non-shareable roots, we want to back
4242 * off from time to time. This means all inodes in subvolume roots,
4243 * reloc roots, and data reloc roots.
4244 */
4245 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4246 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4247 be_nice = true;
4248
4249 path = btrfs_alloc_path();
4250 if (!path)
4251 return -ENOMEM;
4252 path->reada = READA_BACK;
4253
4254 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4255 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4256 &cached_state);
4257
4258 /*
4259 * We want to drop from the next block forward in case this
4260 * new size is not block aligned since we will be keeping the
4261 * last block of the extent just the way it is.
4262 */
4263 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4264 fs_info->sectorsize),
4265 (u64)-1, 0);
4266 }
4267
4268 /*
4269 * This function is also used to drop the items in the log tree before
4270 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4271 * it is used to drop the logged items. So we shouldn't kill the delayed
4272 * items.
4273 */
4274 if (min_type == 0 && root == BTRFS_I(inode)->root)
4275 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4276
4277 key.objectid = ino;
4278 key.offset = (u64)-1;
4279 key.type = (u8)-1;
4280
4281 search_again:
4282 /*
4283 * with a 16K leaf size and 128MB extents, you can actually queue
4284 * up a huge file in a single leaf. Most of the time that
4285 * bytes_deleted is > 0, it will be huge by the time we get here
4286 */
4287 if (be_nice && bytes_deleted > SZ_32M &&
4288 btrfs_should_end_transaction(trans)) {
4289 ret = -EAGAIN;
4290 goto out;
4291 }
4292
4293 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4294 if (ret < 0)
4295 goto out;
4296
4297 if (ret > 0) {
4298 ret = 0;
4299 /* there are no items in the tree for us to truncate, we're
4300 * done
4301 */
4302 if (path->slots[0] == 0)
4303 goto out;
4304 path->slots[0]--;
4305 }
4306
4307 while (1) {
4308 u64 clear_start = 0, clear_len = 0;
4309
4310 fi = NULL;
4311 leaf = path->nodes[0];
4312 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4313 found_type = found_key.type;
4314
4315 if (found_key.objectid != ino)
4316 break;
4317
4318 if (found_type < min_type)
4319 break;
4320
4321 item_end = found_key.offset;
4322 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4323 fi = btrfs_item_ptr(leaf, path->slots[0],
4324 struct btrfs_file_extent_item);
4325 extent_type = btrfs_file_extent_type(leaf, fi);
4326 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4327 item_end +=
4328 btrfs_file_extent_num_bytes(leaf, fi);
4329
4330 trace_btrfs_truncate_show_fi_regular(
4331 BTRFS_I(inode), leaf, fi,
4332 found_key.offset);
4333 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4334 item_end += btrfs_file_extent_ram_bytes(leaf,
4335 fi);
4336
4337 trace_btrfs_truncate_show_fi_inline(
4338 BTRFS_I(inode), leaf, fi, path->slots[0],
4339 found_key.offset);
4340 }
4341 item_end--;
4342 }
4343 if (found_type > min_type) {
4344 del_item = 1;
4345 } else {
4346 if (item_end < new_size)
4347 break;
4348 if (found_key.offset >= new_size)
4349 del_item = 1;
4350 else
4351 del_item = 0;
4352 }
4353 found_extent = 0;
4354 /* FIXME, shrink the extent if the ref count is only 1 */
4355 if (found_type != BTRFS_EXTENT_DATA_KEY)
4356 goto delete;
4357
4358 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4359 u64 num_dec;
4360
4361 clear_start = found_key.offset;
4362 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4363 if (!del_item) {
4364 u64 orig_num_bytes =
4365 btrfs_file_extent_num_bytes(leaf, fi);
4366 extent_num_bytes = ALIGN(new_size -
4367 found_key.offset,
4368 fs_info->sectorsize);
4369 clear_start = ALIGN(new_size, fs_info->sectorsize);
4370 btrfs_set_file_extent_num_bytes(leaf, fi,
4371 extent_num_bytes);
4372 num_dec = (orig_num_bytes -
4373 extent_num_bytes);
4374 if (test_bit(BTRFS_ROOT_SHAREABLE,
4375 &root->state) &&
4376 extent_start != 0)
4377 inode_sub_bytes(inode, num_dec);
4378 btrfs_mark_buffer_dirty(leaf);
4379 } else {
4380 extent_num_bytes =
4381 btrfs_file_extent_disk_num_bytes(leaf,
4382 fi);
4383 extent_offset = found_key.offset -
4384 btrfs_file_extent_offset(leaf, fi);
4385
4386 /* FIXME blocksize != 4096 */
4387 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4388 if (extent_start != 0) {
4389 found_extent = 1;
4390 if (test_bit(BTRFS_ROOT_SHAREABLE,
4391 &root->state))
4392 inode_sub_bytes(inode, num_dec);
4393 }
4394 }
4395 clear_len = num_dec;
4396 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4397 /*
4398 * we can't truncate inline items that have had
4399 * special encodings
4400 */
4401 if (!del_item &&
4402 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4403 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4404 btrfs_file_extent_compression(leaf, fi) == 0) {
4405 u32 size = (u32)(new_size - found_key.offset);
4406
4407 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4408 size = btrfs_file_extent_calc_inline_size(size);
4409 btrfs_truncate_item(path, size, 1);
4410 } else if (!del_item) {
4411 /*
4412 * We have to bail so the last_size is set to
4413 * just before this extent.
4414 */
4415 ret = NEED_TRUNCATE_BLOCK;
4416 break;
4417 } else {
4418 /*
4419 * Inline extents are special, we just treat
4420 * them as a full sector worth in the file
4421 * extent tree just for simplicity sake.
4422 */
4423 clear_len = fs_info->sectorsize;
4424 }
4425
4426 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4427 inode_sub_bytes(inode, item_end + 1 - new_size);
4428 }
4429 delete:
4430 /*
4431 * We use btrfs_truncate_inode_items() to clean up log trees for
4432 * multiple fsyncs, and in this case we don't want to clear the
4433 * file extent range because it's just the log.
4434 */
4435 if (root == BTRFS_I(inode)->root) {
4436 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4437 clear_start, clear_len);
4438 if (ret) {
4439 btrfs_abort_transaction(trans, ret);
4440 break;
4441 }
4442 }
4443
4444 if (del_item)
4445 last_size = found_key.offset;
4446 else
4447 last_size = new_size;
4448 if (del_item) {
4449 if (!pending_del_nr) {
4450 /* no pending yet, add ourselves */
4451 pending_del_slot = path->slots[0];
4452 pending_del_nr = 1;
4453 } else if (pending_del_nr &&
4454 path->slots[0] + 1 == pending_del_slot) {
4455 /* hop on the pending chunk */
4456 pending_del_nr++;
4457 pending_del_slot = path->slots[0];
4458 } else {
4459 BUG();
4460 }
4461 } else {
4462 break;
4463 }
4464 should_throttle = false;
4465
4466 if (found_extent &&
4467 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4468 struct btrfs_ref ref = { 0 };
4469
4470 bytes_deleted += extent_num_bytes;
4471
4472 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4473 extent_start, extent_num_bytes, 0);
4474 ref.real_root = root->root_key.objectid;
4475 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4476 ino, extent_offset);
4477 ret = btrfs_free_extent(trans, &ref);
4478 if (ret) {
4479 btrfs_abort_transaction(trans, ret);
4480 break;
4481 }
4482 if (be_nice) {
4483 if (btrfs_should_throttle_delayed_refs(trans))
4484 should_throttle = true;
4485 }
4486 }
4487
4488 if (found_type == BTRFS_INODE_ITEM_KEY)
4489 break;
4490
4491 if (path->slots[0] == 0 ||
4492 path->slots[0] != pending_del_slot ||
4493 should_throttle) {
4494 if (pending_del_nr) {
4495 ret = btrfs_del_items(trans, root, path,
4496 pending_del_slot,
4497 pending_del_nr);
4498 if (ret) {
4499 btrfs_abort_transaction(trans, ret);
4500 break;
4501 }
4502 pending_del_nr = 0;
4503 }
4504 btrfs_release_path(path);
4505
4506 /*
4507 * We can generate a lot of delayed refs, so we need to
4508 * throttle every once and a while and make sure we're
4509 * adding enough space to keep up with the work we are
4510 * generating. Since we hold a transaction here we
4511 * can't flush, and we don't want to FLUSH_LIMIT because
4512 * we could have generated too many delayed refs to
4513 * actually allocate, so just bail if we're short and
4514 * let the normal reservation dance happen higher up.
4515 */
4516 if (should_throttle) {
4517 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4518 BTRFS_RESERVE_NO_FLUSH);
4519 if (ret) {
4520 ret = -EAGAIN;
4521 break;
4522 }
4523 }
4524 goto search_again;
4525 } else {
4526 path->slots[0]--;
4527 }
4528 }
4529 out:
4530 if (ret >= 0 && pending_del_nr) {
4531 int err;
4532
4533 err = btrfs_del_items(trans, root, path, pending_del_slot,
4534 pending_del_nr);
4535 if (err) {
4536 btrfs_abort_transaction(trans, err);
4537 ret = err;
4538 }
4539 }
4540 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4541 ASSERT(last_size >= new_size);
4542 if (!ret && last_size > new_size)
4543 last_size = new_size;
4544 btrfs_inode_safe_disk_i_size_write(inode, last_size);
4545 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4546 (u64)-1, &cached_state);
4547 }
4548
4549 btrfs_free_path(path);
4550 return ret;
4551 }
4552
4553 /*
4554 * btrfs_truncate_block - read, zero a chunk and write a block
4555 * @inode - inode that we're zeroing
4556 * @from - the offset to start zeroing
4557 * @len - the length to zero, 0 to zero the entire range respective to the
4558 * offset
4559 * @front - zero up to the offset instead of from the offset on
4560 *
4561 * This will find the block for the "from" offset and cow the block and zero the
4562 * part we want to zero. This is used with truncate and hole punching.
4563 */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4564 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4565 int front)
4566 {
4567 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4568 struct address_space *mapping = inode->i_mapping;
4569 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4570 struct btrfs_ordered_extent *ordered;
4571 struct extent_state *cached_state = NULL;
4572 struct extent_changeset *data_reserved = NULL;
4573 char *kaddr;
4574 bool only_release_metadata = false;
4575 u32 blocksize = fs_info->sectorsize;
4576 pgoff_t index = from >> PAGE_SHIFT;
4577 unsigned offset = from & (blocksize - 1);
4578 struct page *page;
4579 gfp_t mask = btrfs_alloc_write_mask(mapping);
4580 size_t write_bytes = blocksize;
4581 int ret = 0;
4582 u64 block_start;
4583 u64 block_end;
4584
4585 if (IS_ALIGNED(offset, blocksize) &&
4586 (!len || IS_ALIGNED(len, blocksize)))
4587 goto out;
4588
4589 block_start = round_down(from, blocksize);
4590 block_end = block_start + blocksize - 1;
4591
4592 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4593 block_start, blocksize);
4594 if (ret < 0) {
4595 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4596 &write_bytes) > 0) {
4597 /* For nocow case, no need to reserve data space */
4598 only_release_metadata = true;
4599 } else {
4600 goto out;
4601 }
4602 }
4603 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4604 if (ret < 0) {
4605 if (!only_release_metadata)
4606 btrfs_free_reserved_data_space(BTRFS_I(inode),
4607 data_reserved, block_start, blocksize);
4608 goto out;
4609 }
4610 again:
4611 page = find_or_create_page(mapping, index, mask);
4612 if (!page) {
4613 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4614 block_start, blocksize, true);
4615 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4616 ret = -ENOMEM;
4617 goto out;
4618 }
4619
4620 if (!PageUptodate(page)) {
4621 ret = btrfs_readpage(NULL, page);
4622 lock_page(page);
4623 if (page->mapping != mapping) {
4624 unlock_page(page);
4625 put_page(page);
4626 goto again;
4627 }
4628 if (!PageUptodate(page)) {
4629 ret = -EIO;
4630 goto out_unlock;
4631 }
4632 }
4633 wait_on_page_writeback(page);
4634
4635 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4636 set_page_extent_mapped(page);
4637
4638 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
4639 if (ordered) {
4640 unlock_extent_cached(io_tree, block_start, block_end,
4641 &cached_state);
4642 unlock_page(page);
4643 put_page(page);
4644 btrfs_start_ordered_extent(ordered, 1);
4645 btrfs_put_ordered_extent(ordered);
4646 goto again;
4647 }
4648
4649 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4650 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4651 0, 0, &cached_state);
4652
4653 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
4654 &cached_state);
4655 if (ret) {
4656 unlock_extent_cached(io_tree, block_start, block_end,
4657 &cached_state);
4658 goto out_unlock;
4659 }
4660
4661 if (offset != blocksize) {
4662 if (!len)
4663 len = blocksize - offset;
4664 kaddr = kmap(page);
4665 if (front)
4666 memset(kaddr + (block_start - page_offset(page)),
4667 0, offset);
4668 else
4669 memset(kaddr + (block_start - page_offset(page)) + offset,
4670 0, len);
4671 flush_dcache_page(page);
4672 kunmap(page);
4673 }
4674 ClearPageChecked(page);
4675 set_page_dirty(page);
4676 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4677
4678 if (only_release_metadata)
4679 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4680 block_end, EXTENT_NORESERVE, NULL, NULL,
4681 GFP_NOFS);
4682
4683 out_unlock:
4684 if (ret) {
4685 if (only_release_metadata)
4686 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4687 blocksize, true);
4688 else
4689 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4690 block_start, blocksize, true);
4691 }
4692 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4693 unlock_page(page);
4694 put_page(page);
4695 out:
4696 if (only_release_metadata)
4697 btrfs_check_nocow_unlock(BTRFS_I(inode));
4698 extent_changeset_free(data_reserved);
4699 return ret;
4700 }
4701
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4702 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4703 u64 offset, u64 len)
4704 {
4705 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4706 struct btrfs_trans_handle *trans;
4707 int ret;
4708
4709 /*
4710 * Still need to make sure the inode looks like it's been updated so
4711 * that any holes get logged if we fsync.
4712 */
4713 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4714 BTRFS_I(inode)->last_trans = fs_info->generation;
4715 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4716 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4717 return 0;
4718 }
4719
4720 /*
4721 * 1 - for the one we're dropping
4722 * 1 - for the one we're adding
4723 * 1 - for updating the inode.
4724 */
4725 trans = btrfs_start_transaction(root, 3);
4726 if (IS_ERR(trans))
4727 return PTR_ERR(trans);
4728
4729 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4730 if (ret) {
4731 btrfs_abort_transaction(trans, ret);
4732 btrfs_end_transaction(trans);
4733 return ret;
4734 }
4735
4736 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4737 offset, 0, 0, len, 0, len, 0, 0, 0);
4738 if (ret)
4739 btrfs_abort_transaction(trans, ret);
4740 else
4741 btrfs_update_inode(trans, root, inode);
4742 btrfs_end_transaction(trans);
4743 return ret;
4744 }
4745
4746 /*
4747 * This function puts in dummy file extents for the area we're creating a hole
4748 * for. So if we are truncating this file to a larger size we need to insert
4749 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4750 * the range between oldsize and size
4751 */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)4752 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4753 {
4754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4755 struct btrfs_root *root = BTRFS_I(inode)->root;
4756 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4757 struct extent_map *em = NULL;
4758 struct extent_state *cached_state = NULL;
4759 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4760 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4761 u64 block_end = ALIGN(size, fs_info->sectorsize);
4762 u64 last_byte;
4763 u64 cur_offset;
4764 u64 hole_size;
4765 int err = 0;
4766
4767 /*
4768 * If our size started in the middle of a block we need to zero out the
4769 * rest of the block before we expand the i_size, otherwise we could
4770 * expose stale data.
4771 */
4772 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4773 if (err)
4774 return err;
4775
4776 if (size <= hole_start)
4777 return 0;
4778
4779 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4780 block_end - 1, &cached_state);
4781 cur_offset = hole_start;
4782 while (1) {
4783 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4784 block_end - cur_offset);
4785 if (IS_ERR(em)) {
4786 err = PTR_ERR(em);
4787 em = NULL;
4788 break;
4789 }
4790 last_byte = min(extent_map_end(em), block_end);
4791 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4792 hole_size = last_byte - cur_offset;
4793
4794 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4795 struct extent_map *hole_em;
4796
4797 err = maybe_insert_hole(root, inode, cur_offset,
4798 hole_size);
4799 if (err)
4800 break;
4801
4802 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4803 cur_offset, hole_size);
4804 if (err)
4805 break;
4806
4807 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4808 cur_offset + hole_size - 1, 0);
4809 hole_em = alloc_extent_map();
4810 if (!hole_em) {
4811 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4812 &BTRFS_I(inode)->runtime_flags);
4813 goto next;
4814 }
4815 hole_em->start = cur_offset;
4816 hole_em->len = hole_size;
4817 hole_em->orig_start = cur_offset;
4818
4819 hole_em->block_start = EXTENT_MAP_HOLE;
4820 hole_em->block_len = 0;
4821 hole_em->orig_block_len = 0;
4822 hole_em->ram_bytes = hole_size;
4823 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4824 hole_em->generation = fs_info->generation;
4825
4826 while (1) {
4827 write_lock(&em_tree->lock);
4828 err = add_extent_mapping(em_tree, hole_em, 1);
4829 write_unlock(&em_tree->lock);
4830 if (err != -EEXIST)
4831 break;
4832 btrfs_drop_extent_cache(BTRFS_I(inode),
4833 cur_offset,
4834 cur_offset +
4835 hole_size - 1, 0);
4836 }
4837 free_extent_map(hole_em);
4838 } else {
4839 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4840 cur_offset, hole_size);
4841 if (err)
4842 break;
4843 }
4844 next:
4845 free_extent_map(em);
4846 em = NULL;
4847 cur_offset = last_byte;
4848 if (cur_offset >= block_end)
4849 break;
4850 }
4851 free_extent_map(em);
4852 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4853 return err;
4854 }
4855
btrfs_setsize(struct inode * inode,struct iattr * attr)4856 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4857 {
4858 struct btrfs_root *root = BTRFS_I(inode)->root;
4859 struct btrfs_trans_handle *trans;
4860 loff_t oldsize = i_size_read(inode);
4861 loff_t newsize = attr->ia_size;
4862 int mask = attr->ia_valid;
4863 int ret;
4864
4865 /*
4866 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4867 * special case where we need to update the times despite not having
4868 * these flags set. For all other operations the VFS set these flags
4869 * explicitly if it wants a timestamp update.
4870 */
4871 if (newsize != oldsize) {
4872 inode_inc_iversion(inode);
4873 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4874 inode->i_ctime = inode->i_mtime =
4875 current_time(inode);
4876 }
4877
4878 if (newsize > oldsize) {
4879 /*
4880 * Don't do an expanding truncate while snapshotting is ongoing.
4881 * This is to ensure the snapshot captures a fully consistent
4882 * state of this file - if the snapshot captures this expanding
4883 * truncation, it must capture all writes that happened before
4884 * this truncation.
4885 */
4886 btrfs_drew_write_lock(&root->snapshot_lock);
4887 ret = btrfs_cont_expand(inode, oldsize, newsize);
4888 if (ret) {
4889 btrfs_drew_write_unlock(&root->snapshot_lock);
4890 return ret;
4891 }
4892
4893 trans = btrfs_start_transaction(root, 1);
4894 if (IS_ERR(trans)) {
4895 btrfs_drew_write_unlock(&root->snapshot_lock);
4896 return PTR_ERR(trans);
4897 }
4898
4899 i_size_write(inode, newsize);
4900 btrfs_inode_safe_disk_i_size_write(inode, 0);
4901 pagecache_isize_extended(inode, oldsize, newsize);
4902 ret = btrfs_update_inode(trans, root, inode);
4903 btrfs_drew_write_unlock(&root->snapshot_lock);
4904 btrfs_end_transaction(trans);
4905 } else {
4906
4907 /*
4908 * We're truncating a file that used to have good data down to
4909 * zero. Make sure any new writes to the file get on disk
4910 * on close.
4911 */
4912 if (newsize == 0)
4913 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
4914 &BTRFS_I(inode)->runtime_flags);
4915
4916 truncate_setsize(inode, newsize);
4917
4918 inode_dio_wait(inode);
4919
4920 ret = btrfs_truncate(inode, newsize == oldsize);
4921 if (ret && inode->i_nlink) {
4922 int err;
4923
4924 /*
4925 * Truncate failed, so fix up the in-memory size. We
4926 * adjusted disk_i_size down as we removed extents, so
4927 * wait for disk_i_size to be stable and then update the
4928 * in-memory size to match.
4929 */
4930 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4931 if (err)
4932 return err;
4933 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4934 }
4935 }
4936
4937 return ret;
4938 }
4939
btrfs_setattr(struct dentry * dentry,struct iattr * attr)4940 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4941 {
4942 struct inode *inode = d_inode(dentry);
4943 struct btrfs_root *root = BTRFS_I(inode)->root;
4944 int err;
4945
4946 if (btrfs_root_readonly(root))
4947 return -EROFS;
4948
4949 err = setattr_prepare(dentry, attr);
4950 if (err)
4951 return err;
4952
4953 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4954 err = btrfs_setsize(inode, attr);
4955 if (err)
4956 return err;
4957 }
4958
4959 if (attr->ia_valid) {
4960 setattr_copy(inode, attr);
4961 inode_inc_iversion(inode);
4962 err = btrfs_dirty_inode(inode);
4963
4964 if (!err && attr->ia_valid & ATTR_MODE)
4965 err = posix_acl_chmod(inode, inode->i_mode);
4966 }
4967
4968 return err;
4969 }
4970
4971 /*
4972 * While truncating the inode pages during eviction, we get the VFS calling
4973 * btrfs_invalidatepage() against each page of the inode. This is slow because
4974 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4975 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4976 * extent_state structures over and over, wasting lots of time.
4977 *
4978 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4979 * those expensive operations on a per page basis and do only the ordered io
4980 * finishing, while we release here the extent_map and extent_state structures,
4981 * without the excessive merging and splitting.
4982 */
evict_inode_truncate_pages(struct inode * inode)4983 static void evict_inode_truncate_pages(struct inode *inode)
4984 {
4985 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4986 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4987 struct rb_node *node;
4988
4989 ASSERT(inode->i_state & I_FREEING);
4990 truncate_inode_pages_final(&inode->i_data);
4991
4992 write_lock(&map_tree->lock);
4993 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4994 struct extent_map *em;
4995
4996 node = rb_first_cached(&map_tree->map);
4997 em = rb_entry(node, struct extent_map, rb_node);
4998 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4999 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5000 remove_extent_mapping(map_tree, em);
5001 free_extent_map(em);
5002 if (need_resched()) {
5003 write_unlock(&map_tree->lock);
5004 cond_resched();
5005 write_lock(&map_tree->lock);
5006 }
5007 }
5008 write_unlock(&map_tree->lock);
5009
5010 /*
5011 * Keep looping until we have no more ranges in the io tree.
5012 * We can have ongoing bios started by readahead that have
5013 * their endio callback (extent_io.c:end_bio_extent_readpage)
5014 * still in progress (unlocked the pages in the bio but did not yet
5015 * unlocked the ranges in the io tree). Therefore this means some
5016 * ranges can still be locked and eviction started because before
5017 * submitting those bios, which are executed by a separate task (work
5018 * queue kthread), inode references (inode->i_count) were not taken
5019 * (which would be dropped in the end io callback of each bio).
5020 * Therefore here we effectively end up waiting for those bios and
5021 * anyone else holding locked ranges without having bumped the inode's
5022 * reference count - if we don't do it, when they access the inode's
5023 * io_tree to unlock a range it may be too late, leading to an
5024 * use-after-free issue.
5025 */
5026 spin_lock(&io_tree->lock);
5027 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5028 struct extent_state *state;
5029 struct extent_state *cached_state = NULL;
5030 u64 start;
5031 u64 end;
5032 unsigned state_flags;
5033
5034 node = rb_first(&io_tree->state);
5035 state = rb_entry(node, struct extent_state, rb_node);
5036 start = state->start;
5037 end = state->end;
5038 state_flags = state->state;
5039 spin_unlock(&io_tree->lock);
5040
5041 lock_extent_bits(io_tree, start, end, &cached_state);
5042
5043 /*
5044 * If still has DELALLOC flag, the extent didn't reach disk,
5045 * and its reserved space won't be freed by delayed_ref.
5046 * So we need to free its reserved space here.
5047 * (Refer to comment in btrfs_invalidatepage, case 2)
5048 *
5049 * Note, end is the bytenr of last byte, so we need + 1 here.
5050 */
5051 if (state_flags & EXTENT_DELALLOC)
5052 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5053 end - start + 1);
5054
5055 clear_extent_bit(io_tree, start, end,
5056 EXTENT_LOCKED | EXTENT_DELALLOC |
5057 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5058 &cached_state);
5059
5060 cond_resched();
5061 spin_lock(&io_tree->lock);
5062 }
5063 spin_unlock(&io_tree->lock);
5064 }
5065
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5066 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5067 struct btrfs_block_rsv *rsv)
5068 {
5069 struct btrfs_fs_info *fs_info = root->fs_info;
5070 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5071 struct btrfs_trans_handle *trans;
5072 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5073 int ret;
5074
5075 /*
5076 * Eviction should be taking place at some place safe because of our
5077 * delayed iputs. However the normal flushing code will run delayed
5078 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5079 *
5080 * We reserve the delayed_refs_extra here again because we can't use
5081 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5082 * above. We reserve our extra bit here because we generate a ton of
5083 * delayed refs activity by truncating.
5084 *
5085 * If we cannot make our reservation we'll attempt to steal from the
5086 * global reserve, because we really want to be able to free up space.
5087 */
5088 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5089 BTRFS_RESERVE_FLUSH_EVICT);
5090 if (ret) {
5091 /*
5092 * Try to steal from the global reserve if there is space for
5093 * it.
5094 */
5095 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5096 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5097 btrfs_warn(fs_info,
5098 "could not allocate space for delete; will truncate on mount");
5099 return ERR_PTR(-ENOSPC);
5100 }
5101 delayed_refs_extra = 0;
5102 }
5103
5104 trans = btrfs_join_transaction(root);
5105 if (IS_ERR(trans))
5106 return trans;
5107
5108 if (delayed_refs_extra) {
5109 trans->block_rsv = &fs_info->trans_block_rsv;
5110 trans->bytes_reserved = delayed_refs_extra;
5111 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5112 delayed_refs_extra, 1);
5113 }
5114 return trans;
5115 }
5116
btrfs_evict_inode(struct inode * inode)5117 void btrfs_evict_inode(struct inode *inode)
5118 {
5119 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5120 struct btrfs_trans_handle *trans;
5121 struct btrfs_root *root = BTRFS_I(inode)->root;
5122 struct btrfs_block_rsv *rsv;
5123 int ret;
5124
5125 trace_btrfs_inode_evict(inode);
5126
5127 if (!root) {
5128 clear_inode(inode);
5129 return;
5130 }
5131
5132 evict_inode_truncate_pages(inode);
5133
5134 if (inode->i_nlink &&
5135 ((btrfs_root_refs(&root->root_item) != 0 &&
5136 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5137 btrfs_is_free_space_inode(BTRFS_I(inode))))
5138 goto no_delete;
5139
5140 if (is_bad_inode(inode))
5141 goto no_delete;
5142
5143 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5144
5145 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5146 goto no_delete;
5147
5148 if (inode->i_nlink > 0) {
5149 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5150 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5151 goto no_delete;
5152 }
5153
5154 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5155 if (ret)
5156 goto no_delete;
5157
5158 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5159 if (!rsv)
5160 goto no_delete;
5161 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5162 rsv->failfast = 1;
5163
5164 btrfs_i_size_write(BTRFS_I(inode), 0);
5165
5166 while (1) {
5167 trans = evict_refill_and_join(root, rsv);
5168 if (IS_ERR(trans))
5169 goto free_rsv;
5170
5171 trans->block_rsv = rsv;
5172
5173 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5174 trans->block_rsv = &fs_info->trans_block_rsv;
5175 btrfs_end_transaction(trans);
5176 btrfs_btree_balance_dirty(fs_info);
5177 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5178 goto free_rsv;
5179 else if (!ret)
5180 break;
5181 }
5182
5183 /*
5184 * Errors here aren't a big deal, it just means we leave orphan items in
5185 * the tree. They will be cleaned up on the next mount. If the inode
5186 * number gets reused, cleanup deletes the orphan item without doing
5187 * anything, and unlink reuses the existing orphan item.
5188 *
5189 * If it turns out that we are dropping too many of these, we might want
5190 * to add a mechanism for retrying these after a commit.
5191 */
5192 trans = evict_refill_and_join(root, rsv);
5193 if (!IS_ERR(trans)) {
5194 trans->block_rsv = rsv;
5195 btrfs_orphan_del(trans, BTRFS_I(inode));
5196 trans->block_rsv = &fs_info->trans_block_rsv;
5197 btrfs_end_transaction(trans);
5198 }
5199
5200 if (!(root == fs_info->tree_root ||
5201 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5202 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5203
5204 free_rsv:
5205 btrfs_free_block_rsv(fs_info, rsv);
5206 no_delete:
5207 /*
5208 * If we didn't successfully delete, the orphan item will still be in
5209 * the tree and we'll retry on the next mount. Again, we might also want
5210 * to retry these periodically in the future.
5211 */
5212 btrfs_remove_delayed_node(BTRFS_I(inode));
5213 clear_inode(inode);
5214 }
5215
5216 /*
5217 * Return the key found in the dir entry in the location pointer, fill @type
5218 * with BTRFS_FT_*, and return 0.
5219 *
5220 * If no dir entries were found, returns -ENOENT.
5221 * If found a corrupted location in dir entry, returns -EUCLEAN.
5222 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5223 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5224 struct btrfs_key *location, u8 *type)
5225 {
5226 const char *name = dentry->d_name.name;
5227 int namelen = dentry->d_name.len;
5228 struct btrfs_dir_item *di;
5229 struct btrfs_path *path;
5230 struct btrfs_root *root = BTRFS_I(dir)->root;
5231 int ret = 0;
5232
5233 path = btrfs_alloc_path();
5234 if (!path)
5235 return -ENOMEM;
5236
5237 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5238 name, namelen, 0);
5239 if (IS_ERR_OR_NULL(di)) {
5240 ret = di ? PTR_ERR(di) : -ENOENT;
5241 goto out;
5242 }
5243
5244 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5245 if (location->type != BTRFS_INODE_ITEM_KEY &&
5246 location->type != BTRFS_ROOT_ITEM_KEY) {
5247 ret = -EUCLEAN;
5248 btrfs_warn(root->fs_info,
5249 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5250 __func__, name, btrfs_ino(BTRFS_I(dir)),
5251 location->objectid, location->type, location->offset);
5252 }
5253 if (!ret)
5254 *type = btrfs_dir_type(path->nodes[0], di);
5255 out:
5256 btrfs_free_path(path);
5257 return ret;
5258 }
5259
5260 /*
5261 * when we hit a tree root in a directory, the btrfs part of the inode
5262 * needs to be changed to reflect the root directory of the tree root. This
5263 * is kind of like crossing a mount point.
5264 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5265 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5266 struct inode *dir,
5267 struct dentry *dentry,
5268 struct btrfs_key *location,
5269 struct btrfs_root **sub_root)
5270 {
5271 struct btrfs_path *path;
5272 struct btrfs_root *new_root;
5273 struct btrfs_root_ref *ref;
5274 struct extent_buffer *leaf;
5275 struct btrfs_key key;
5276 int ret;
5277 int err = 0;
5278
5279 path = btrfs_alloc_path();
5280 if (!path) {
5281 err = -ENOMEM;
5282 goto out;
5283 }
5284
5285 err = -ENOENT;
5286 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5287 key.type = BTRFS_ROOT_REF_KEY;
5288 key.offset = location->objectid;
5289
5290 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5291 if (ret) {
5292 if (ret < 0)
5293 err = ret;
5294 goto out;
5295 }
5296
5297 leaf = path->nodes[0];
5298 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5299 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5300 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5301 goto out;
5302
5303 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5304 (unsigned long)(ref + 1),
5305 dentry->d_name.len);
5306 if (ret)
5307 goto out;
5308
5309 btrfs_release_path(path);
5310
5311 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5312 if (IS_ERR(new_root)) {
5313 err = PTR_ERR(new_root);
5314 goto out;
5315 }
5316
5317 *sub_root = new_root;
5318 location->objectid = btrfs_root_dirid(&new_root->root_item);
5319 location->type = BTRFS_INODE_ITEM_KEY;
5320 location->offset = 0;
5321 err = 0;
5322 out:
5323 btrfs_free_path(path);
5324 return err;
5325 }
5326
inode_tree_add(struct inode * inode)5327 static void inode_tree_add(struct inode *inode)
5328 {
5329 struct btrfs_root *root = BTRFS_I(inode)->root;
5330 struct btrfs_inode *entry;
5331 struct rb_node **p;
5332 struct rb_node *parent;
5333 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5334 u64 ino = btrfs_ino(BTRFS_I(inode));
5335
5336 if (inode_unhashed(inode))
5337 return;
5338 parent = NULL;
5339 spin_lock(&root->inode_lock);
5340 p = &root->inode_tree.rb_node;
5341 while (*p) {
5342 parent = *p;
5343 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5344
5345 if (ino < btrfs_ino(entry))
5346 p = &parent->rb_left;
5347 else if (ino > btrfs_ino(entry))
5348 p = &parent->rb_right;
5349 else {
5350 WARN_ON(!(entry->vfs_inode.i_state &
5351 (I_WILL_FREE | I_FREEING)));
5352 rb_replace_node(parent, new, &root->inode_tree);
5353 RB_CLEAR_NODE(parent);
5354 spin_unlock(&root->inode_lock);
5355 return;
5356 }
5357 }
5358 rb_link_node(new, parent, p);
5359 rb_insert_color(new, &root->inode_tree);
5360 spin_unlock(&root->inode_lock);
5361 }
5362
inode_tree_del(struct btrfs_inode * inode)5363 static void inode_tree_del(struct btrfs_inode *inode)
5364 {
5365 struct btrfs_root *root = inode->root;
5366 int empty = 0;
5367
5368 spin_lock(&root->inode_lock);
5369 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5370 rb_erase(&inode->rb_node, &root->inode_tree);
5371 RB_CLEAR_NODE(&inode->rb_node);
5372 empty = RB_EMPTY_ROOT(&root->inode_tree);
5373 }
5374 spin_unlock(&root->inode_lock);
5375
5376 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5377 spin_lock(&root->inode_lock);
5378 empty = RB_EMPTY_ROOT(&root->inode_tree);
5379 spin_unlock(&root->inode_lock);
5380 if (empty)
5381 btrfs_add_dead_root(root);
5382 }
5383 }
5384
5385
btrfs_init_locked_inode(struct inode * inode,void * p)5386 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5387 {
5388 struct btrfs_iget_args *args = p;
5389
5390 inode->i_ino = args->ino;
5391 BTRFS_I(inode)->location.objectid = args->ino;
5392 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5393 BTRFS_I(inode)->location.offset = 0;
5394 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5395 BUG_ON(args->root && !BTRFS_I(inode)->root);
5396 return 0;
5397 }
5398
btrfs_find_actor(struct inode * inode,void * opaque)5399 static int btrfs_find_actor(struct inode *inode, void *opaque)
5400 {
5401 struct btrfs_iget_args *args = opaque;
5402
5403 return args->ino == BTRFS_I(inode)->location.objectid &&
5404 args->root == BTRFS_I(inode)->root;
5405 }
5406
btrfs_iget_locked(struct super_block * s,u64 ino,struct btrfs_root * root)5407 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5408 struct btrfs_root *root)
5409 {
5410 struct inode *inode;
5411 struct btrfs_iget_args args;
5412 unsigned long hashval = btrfs_inode_hash(ino, root);
5413
5414 args.ino = ino;
5415 args.root = root;
5416
5417 inode = iget5_locked(s, hashval, btrfs_find_actor,
5418 btrfs_init_locked_inode,
5419 (void *)&args);
5420 return inode;
5421 }
5422
5423 /*
5424 * Get an inode object given its inode number and corresponding root.
5425 * Path can be preallocated to prevent recursing back to iget through
5426 * allocator. NULL is also valid but may require an additional allocation
5427 * later.
5428 */
btrfs_iget_path(struct super_block * s,u64 ino,struct btrfs_root * root,struct btrfs_path * path)5429 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5430 struct btrfs_root *root, struct btrfs_path *path)
5431 {
5432 struct inode *inode;
5433
5434 inode = btrfs_iget_locked(s, ino, root);
5435 if (!inode)
5436 return ERR_PTR(-ENOMEM);
5437
5438 if (inode->i_state & I_NEW) {
5439 int ret;
5440
5441 ret = btrfs_read_locked_inode(inode, path);
5442 if (!ret) {
5443 inode_tree_add(inode);
5444 unlock_new_inode(inode);
5445 } else {
5446 iget_failed(inode);
5447 /*
5448 * ret > 0 can come from btrfs_search_slot called by
5449 * btrfs_read_locked_inode, this means the inode item
5450 * was not found.
5451 */
5452 if (ret > 0)
5453 ret = -ENOENT;
5454 inode = ERR_PTR(ret);
5455 }
5456 }
5457
5458 return inode;
5459 }
5460
btrfs_iget(struct super_block * s,u64 ino,struct btrfs_root * root)5461 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5462 {
5463 return btrfs_iget_path(s, ino, root, NULL);
5464 }
5465
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5466 static struct inode *new_simple_dir(struct super_block *s,
5467 struct btrfs_key *key,
5468 struct btrfs_root *root)
5469 {
5470 struct inode *inode = new_inode(s);
5471
5472 if (!inode)
5473 return ERR_PTR(-ENOMEM);
5474
5475 BTRFS_I(inode)->root = btrfs_grab_root(root);
5476 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5477 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5478
5479 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5480 /*
5481 * We only need lookup, the rest is read-only and there's no inode
5482 * associated with the dentry
5483 */
5484 inode->i_op = &simple_dir_inode_operations;
5485 inode->i_opflags &= ~IOP_XATTR;
5486 inode->i_fop = &simple_dir_operations;
5487 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5488 inode->i_mtime = current_time(inode);
5489 inode->i_atime = inode->i_mtime;
5490 inode->i_ctime = inode->i_mtime;
5491 BTRFS_I(inode)->i_otime = inode->i_mtime;
5492
5493 return inode;
5494 }
5495
btrfs_inode_type(struct inode * inode)5496 static inline u8 btrfs_inode_type(struct inode *inode)
5497 {
5498 /*
5499 * Compile-time asserts that generic FT_* types still match
5500 * BTRFS_FT_* types
5501 */
5502 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5503 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5504 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5505 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5506 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5507 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5508 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5509 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5510
5511 return fs_umode_to_ftype(inode->i_mode);
5512 }
5513
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5514 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5515 {
5516 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5517 struct inode *inode;
5518 struct btrfs_root *root = BTRFS_I(dir)->root;
5519 struct btrfs_root *sub_root = root;
5520 struct btrfs_key location;
5521 u8 di_type = 0;
5522 int ret = 0;
5523
5524 if (dentry->d_name.len > BTRFS_NAME_LEN)
5525 return ERR_PTR(-ENAMETOOLONG);
5526
5527 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5528 if (ret < 0)
5529 return ERR_PTR(ret);
5530
5531 if (location.type == BTRFS_INODE_ITEM_KEY) {
5532 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5533 if (IS_ERR(inode))
5534 return inode;
5535
5536 /* Do extra check against inode mode with di_type */
5537 if (btrfs_inode_type(inode) != di_type) {
5538 btrfs_crit(fs_info,
5539 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5540 inode->i_mode, btrfs_inode_type(inode),
5541 di_type);
5542 iput(inode);
5543 return ERR_PTR(-EUCLEAN);
5544 }
5545 return inode;
5546 }
5547
5548 ret = fixup_tree_root_location(fs_info, dir, dentry,
5549 &location, &sub_root);
5550 if (ret < 0) {
5551 if (ret != -ENOENT)
5552 inode = ERR_PTR(ret);
5553 else
5554 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5555 } else {
5556 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5557 }
5558 if (root != sub_root)
5559 btrfs_put_root(sub_root);
5560
5561 if (!IS_ERR(inode) && root != sub_root) {
5562 down_read(&fs_info->cleanup_work_sem);
5563 if (!sb_rdonly(inode->i_sb))
5564 ret = btrfs_orphan_cleanup(sub_root);
5565 up_read(&fs_info->cleanup_work_sem);
5566 if (ret) {
5567 iput(inode);
5568 inode = ERR_PTR(ret);
5569 }
5570 }
5571
5572 return inode;
5573 }
5574
btrfs_dentry_delete(const struct dentry * dentry)5575 static int btrfs_dentry_delete(const struct dentry *dentry)
5576 {
5577 struct btrfs_root *root;
5578 struct inode *inode = d_inode(dentry);
5579
5580 if (!inode && !IS_ROOT(dentry))
5581 inode = d_inode(dentry->d_parent);
5582
5583 if (inode) {
5584 root = BTRFS_I(inode)->root;
5585 if (btrfs_root_refs(&root->root_item) == 0)
5586 return 1;
5587
5588 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5589 return 1;
5590 }
5591 return 0;
5592 }
5593
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5594 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5595 unsigned int flags)
5596 {
5597 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5598
5599 if (inode == ERR_PTR(-ENOENT))
5600 inode = NULL;
5601 return d_splice_alias(inode, dentry);
5602 }
5603
5604 /*
5605 * All this infrastructure exists because dir_emit can fault, and we are holding
5606 * the tree lock when doing readdir. For now just allocate a buffer and copy
5607 * our information into that, and then dir_emit from the buffer. This is
5608 * similar to what NFS does, only we don't keep the buffer around in pagecache
5609 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5610 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5611 * tree lock.
5612 */
btrfs_opendir(struct inode * inode,struct file * file)5613 static int btrfs_opendir(struct inode *inode, struct file *file)
5614 {
5615 struct btrfs_file_private *private;
5616
5617 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5618 if (!private)
5619 return -ENOMEM;
5620 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5621 if (!private->filldir_buf) {
5622 kfree(private);
5623 return -ENOMEM;
5624 }
5625 file->private_data = private;
5626 return 0;
5627 }
5628
5629 struct dir_entry {
5630 u64 ino;
5631 u64 offset;
5632 unsigned type;
5633 int name_len;
5634 };
5635
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5636 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5637 {
5638 while (entries--) {
5639 struct dir_entry *entry = addr;
5640 char *name = (char *)(entry + 1);
5641
5642 ctx->pos = get_unaligned(&entry->offset);
5643 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5644 get_unaligned(&entry->ino),
5645 get_unaligned(&entry->type)))
5646 return 1;
5647 addr += sizeof(struct dir_entry) +
5648 get_unaligned(&entry->name_len);
5649 ctx->pos++;
5650 }
5651 return 0;
5652 }
5653
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5654 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5655 {
5656 struct inode *inode = file_inode(file);
5657 struct btrfs_root *root = BTRFS_I(inode)->root;
5658 struct btrfs_file_private *private = file->private_data;
5659 struct btrfs_dir_item *di;
5660 struct btrfs_key key;
5661 struct btrfs_key found_key;
5662 struct btrfs_path *path;
5663 void *addr;
5664 struct list_head ins_list;
5665 struct list_head del_list;
5666 int ret;
5667 struct extent_buffer *leaf;
5668 int slot;
5669 char *name_ptr;
5670 int name_len;
5671 int entries = 0;
5672 int total_len = 0;
5673 bool put = false;
5674 struct btrfs_key location;
5675
5676 if (!dir_emit_dots(file, ctx))
5677 return 0;
5678
5679 path = btrfs_alloc_path();
5680 if (!path)
5681 return -ENOMEM;
5682
5683 addr = private->filldir_buf;
5684 path->reada = READA_FORWARD;
5685
5686 INIT_LIST_HEAD(&ins_list);
5687 INIT_LIST_HEAD(&del_list);
5688 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5689
5690 again:
5691 key.type = BTRFS_DIR_INDEX_KEY;
5692 key.offset = ctx->pos;
5693 key.objectid = btrfs_ino(BTRFS_I(inode));
5694
5695 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5696 if (ret < 0)
5697 goto err;
5698
5699 while (1) {
5700 struct dir_entry *entry;
5701
5702 leaf = path->nodes[0];
5703 slot = path->slots[0];
5704 if (slot >= btrfs_header_nritems(leaf)) {
5705 ret = btrfs_next_leaf(root, path);
5706 if (ret < 0)
5707 goto err;
5708 else if (ret > 0)
5709 break;
5710 continue;
5711 }
5712
5713 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5714
5715 if (found_key.objectid != key.objectid)
5716 break;
5717 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5718 break;
5719 if (found_key.offset < ctx->pos)
5720 goto next;
5721 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5722 goto next;
5723 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5724 name_len = btrfs_dir_name_len(leaf, di);
5725 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5726 PAGE_SIZE) {
5727 btrfs_release_path(path);
5728 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5729 if (ret)
5730 goto nopos;
5731 addr = private->filldir_buf;
5732 entries = 0;
5733 total_len = 0;
5734 goto again;
5735 }
5736
5737 entry = addr;
5738 put_unaligned(name_len, &entry->name_len);
5739 name_ptr = (char *)(entry + 1);
5740 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5741 name_len);
5742 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5743 &entry->type);
5744 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5745 put_unaligned(location.objectid, &entry->ino);
5746 put_unaligned(found_key.offset, &entry->offset);
5747 entries++;
5748 addr += sizeof(struct dir_entry) + name_len;
5749 total_len += sizeof(struct dir_entry) + name_len;
5750 next:
5751 path->slots[0]++;
5752 }
5753 btrfs_release_path(path);
5754
5755 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5756 if (ret)
5757 goto nopos;
5758
5759 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5760 if (ret)
5761 goto nopos;
5762
5763 /*
5764 * Stop new entries from being returned after we return the last
5765 * entry.
5766 *
5767 * New directory entries are assigned a strictly increasing
5768 * offset. This means that new entries created during readdir
5769 * are *guaranteed* to be seen in the future by that readdir.
5770 * This has broken buggy programs which operate on names as
5771 * they're returned by readdir. Until we re-use freed offsets
5772 * we have this hack to stop new entries from being returned
5773 * under the assumption that they'll never reach this huge
5774 * offset.
5775 *
5776 * This is being careful not to overflow 32bit loff_t unless the
5777 * last entry requires it because doing so has broken 32bit apps
5778 * in the past.
5779 */
5780 if (ctx->pos >= INT_MAX)
5781 ctx->pos = LLONG_MAX;
5782 else
5783 ctx->pos = INT_MAX;
5784 nopos:
5785 ret = 0;
5786 err:
5787 if (put)
5788 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5789 btrfs_free_path(path);
5790 return ret;
5791 }
5792
5793 /*
5794 * This is somewhat expensive, updating the tree every time the
5795 * inode changes. But, it is most likely to find the inode in cache.
5796 * FIXME, needs more benchmarking...there are no reasons other than performance
5797 * to keep or drop this code.
5798 */
btrfs_dirty_inode(struct inode * inode)5799 static int btrfs_dirty_inode(struct inode *inode)
5800 {
5801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5802 struct btrfs_root *root = BTRFS_I(inode)->root;
5803 struct btrfs_trans_handle *trans;
5804 int ret;
5805
5806 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5807 return 0;
5808
5809 trans = btrfs_join_transaction(root);
5810 if (IS_ERR(trans))
5811 return PTR_ERR(trans);
5812
5813 ret = btrfs_update_inode(trans, root, inode);
5814 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
5815 /* whoops, lets try again with the full transaction */
5816 btrfs_end_transaction(trans);
5817 trans = btrfs_start_transaction(root, 1);
5818 if (IS_ERR(trans))
5819 return PTR_ERR(trans);
5820
5821 ret = btrfs_update_inode(trans, root, inode);
5822 }
5823 btrfs_end_transaction(trans);
5824 if (BTRFS_I(inode)->delayed_node)
5825 btrfs_balance_delayed_items(fs_info);
5826
5827 return ret;
5828 }
5829
5830 /*
5831 * This is a copy of file_update_time. We need this so we can return error on
5832 * ENOSPC for updating the inode in the case of file write and mmap writes.
5833 */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)5834 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5835 int flags)
5836 {
5837 struct btrfs_root *root = BTRFS_I(inode)->root;
5838 bool dirty = flags & ~S_VERSION;
5839
5840 if (btrfs_root_readonly(root))
5841 return -EROFS;
5842
5843 if (flags & S_VERSION)
5844 dirty |= inode_maybe_inc_iversion(inode, dirty);
5845 if (flags & S_CTIME)
5846 inode->i_ctime = *now;
5847 if (flags & S_MTIME)
5848 inode->i_mtime = *now;
5849 if (flags & S_ATIME)
5850 inode->i_atime = *now;
5851 return dirty ? btrfs_dirty_inode(inode) : 0;
5852 }
5853
5854 /*
5855 * find the highest existing sequence number in a directory
5856 * and then set the in-memory index_cnt variable to reflect
5857 * free sequence numbers
5858 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5859 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5860 {
5861 struct btrfs_root *root = inode->root;
5862 struct btrfs_key key, found_key;
5863 struct btrfs_path *path;
5864 struct extent_buffer *leaf;
5865 int ret;
5866
5867 key.objectid = btrfs_ino(inode);
5868 key.type = BTRFS_DIR_INDEX_KEY;
5869 key.offset = (u64)-1;
5870
5871 path = btrfs_alloc_path();
5872 if (!path)
5873 return -ENOMEM;
5874
5875 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5876 if (ret < 0)
5877 goto out;
5878 /* FIXME: we should be able to handle this */
5879 if (ret == 0)
5880 goto out;
5881 ret = 0;
5882
5883 /*
5884 * MAGIC NUMBER EXPLANATION:
5885 * since we search a directory based on f_pos we have to start at 2
5886 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5887 * else has to start at 2
5888 */
5889 if (path->slots[0] == 0) {
5890 inode->index_cnt = 2;
5891 goto out;
5892 }
5893
5894 path->slots[0]--;
5895
5896 leaf = path->nodes[0];
5897 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5898
5899 if (found_key.objectid != btrfs_ino(inode) ||
5900 found_key.type != BTRFS_DIR_INDEX_KEY) {
5901 inode->index_cnt = 2;
5902 goto out;
5903 }
5904
5905 inode->index_cnt = found_key.offset + 1;
5906 out:
5907 btrfs_free_path(path);
5908 return ret;
5909 }
5910
5911 /*
5912 * helper to find a free sequence number in a given directory. This current
5913 * code is very simple, later versions will do smarter things in the btree
5914 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)5915 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5916 {
5917 int ret = 0;
5918
5919 if (dir->index_cnt == (u64)-1) {
5920 ret = btrfs_inode_delayed_dir_index_count(dir);
5921 if (ret) {
5922 ret = btrfs_set_inode_index_count(dir);
5923 if (ret)
5924 return ret;
5925 }
5926 }
5927
5928 *index = dir->index_cnt;
5929 dir->index_cnt++;
5930
5931 return ret;
5932 }
5933
btrfs_insert_inode_locked(struct inode * inode)5934 static int btrfs_insert_inode_locked(struct inode *inode)
5935 {
5936 struct btrfs_iget_args args;
5937
5938 args.ino = BTRFS_I(inode)->location.objectid;
5939 args.root = BTRFS_I(inode)->root;
5940
5941 return insert_inode_locked4(inode,
5942 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5943 btrfs_find_actor, &args);
5944 }
5945
5946 /*
5947 * Inherit flags from the parent inode.
5948 *
5949 * Currently only the compression flags and the cow flags are inherited.
5950 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)5951 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5952 {
5953 unsigned int flags;
5954
5955 if (!dir)
5956 return;
5957
5958 flags = BTRFS_I(dir)->flags;
5959
5960 if (flags & BTRFS_INODE_NOCOMPRESS) {
5961 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5962 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5963 } else if (flags & BTRFS_INODE_COMPRESS) {
5964 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5965 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5966 }
5967
5968 if (flags & BTRFS_INODE_NODATACOW) {
5969 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5970 if (S_ISREG(inode->i_mode))
5971 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5972 }
5973
5974 btrfs_sync_inode_flags_to_i_flags(inode);
5975 }
5976
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)5977 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5978 struct btrfs_root *root,
5979 struct inode *dir,
5980 const char *name, int name_len,
5981 u64 ref_objectid, u64 objectid,
5982 umode_t mode, u64 *index)
5983 {
5984 struct btrfs_fs_info *fs_info = root->fs_info;
5985 struct inode *inode;
5986 struct btrfs_inode_item *inode_item;
5987 struct btrfs_key *location;
5988 struct btrfs_path *path;
5989 struct btrfs_inode_ref *ref;
5990 struct btrfs_key key[2];
5991 u32 sizes[2];
5992 int nitems = name ? 2 : 1;
5993 unsigned long ptr;
5994 unsigned int nofs_flag;
5995 int ret;
5996
5997 path = btrfs_alloc_path();
5998 if (!path)
5999 return ERR_PTR(-ENOMEM);
6000
6001 nofs_flag = memalloc_nofs_save();
6002 inode = new_inode(fs_info->sb);
6003 memalloc_nofs_restore(nofs_flag);
6004 if (!inode) {
6005 btrfs_free_path(path);
6006 return ERR_PTR(-ENOMEM);
6007 }
6008
6009 /*
6010 * O_TMPFILE, set link count to 0, so that after this point,
6011 * we fill in an inode item with the correct link count.
6012 */
6013 if (!name)
6014 set_nlink(inode, 0);
6015
6016 /*
6017 * we have to initialize this early, so we can reclaim the inode
6018 * number if we fail afterwards in this function.
6019 */
6020 inode->i_ino = objectid;
6021
6022 if (dir && name) {
6023 trace_btrfs_inode_request(dir);
6024
6025 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6026 if (ret) {
6027 btrfs_free_path(path);
6028 iput(inode);
6029 return ERR_PTR(ret);
6030 }
6031 } else if (dir) {
6032 *index = 0;
6033 }
6034 /*
6035 * index_cnt is ignored for everything but a dir,
6036 * btrfs_set_inode_index_count has an explanation for the magic
6037 * number
6038 */
6039 BTRFS_I(inode)->index_cnt = 2;
6040 BTRFS_I(inode)->dir_index = *index;
6041 BTRFS_I(inode)->root = btrfs_grab_root(root);
6042 BTRFS_I(inode)->generation = trans->transid;
6043 inode->i_generation = BTRFS_I(inode)->generation;
6044
6045 /*
6046 * We could have gotten an inode number from somebody who was fsynced
6047 * and then removed in this same transaction, so let's just set full
6048 * sync since it will be a full sync anyway and this will blow away the
6049 * old info in the log.
6050 */
6051 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6052
6053 key[0].objectid = objectid;
6054 key[0].type = BTRFS_INODE_ITEM_KEY;
6055 key[0].offset = 0;
6056
6057 sizes[0] = sizeof(struct btrfs_inode_item);
6058
6059 if (name) {
6060 /*
6061 * Start new inodes with an inode_ref. This is slightly more
6062 * efficient for small numbers of hard links since they will
6063 * be packed into one item. Extended refs will kick in if we
6064 * add more hard links than can fit in the ref item.
6065 */
6066 key[1].objectid = objectid;
6067 key[1].type = BTRFS_INODE_REF_KEY;
6068 key[1].offset = ref_objectid;
6069
6070 sizes[1] = name_len + sizeof(*ref);
6071 }
6072
6073 location = &BTRFS_I(inode)->location;
6074 location->objectid = objectid;
6075 location->offset = 0;
6076 location->type = BTRFS_INODE_ITEM_KEY;
6077
6078 ret = btrfs_insert_inode_locked(inode);
6079 if (ret < 0) {
6080 iput(inode);
6081 goto fail;
6082 }
6083
6084 path->leave_spinning = 1;
6085 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6086 if (ret != 0)
6087 goto fail_unlock;
6088
6089 inode_init_owner(inode, dir, mode);
6090 inode_set_bytes(inode, 0);
6091
6092 inode->i_mtime = current_time(inode);
6093 inode->i_atime = inode->i_mtime;
6094 inode->i_ctime = inode->i_mtime;
6095 BTRFS_I(inode)->i_otime = inode->i_mtime;
6096
6097 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6098 struct btrfs_inode_item);
6099 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6100 sizeof(*inode_item));
6101 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6102
6103 if (name) {
6104 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6105 struct btrfs_inode_ref);
6106 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6107 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6108 ptr = (unsigned long)(ref + 1);
6109 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6110 }
6111
6112 btrfs_mark_buffer_dirty(path->nodes[0]);
6113 btrfs_free_path(path);
6114
6115 btrfs_inherit_iflags(inode, dir);
6116
6117 if (S_ISREG(mode)) {
6118 if (btrfs_test_opt(fs_info, NODATASUM))
6119 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6120 if (btrfs_test_opt(fs_info, NODATACOW))
6121 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6122 BTRFS_INODE_NODATASUM;
6123 }
6124
6125 inode_tree_add(inode);
6126
6127 trace_btrfs_inode_new(inode);
6128 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6129
6130 btrfs_update_root_times(trans, root);
6131
6132 ret = btrfs_inode_inherit_props(trans, inode, dir);
6133 if (ret)
6134 btrfs_err(fs_info,
6135 "error inheriting props for ino %llu (root %llu): %d",
6136 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6137
6138 return inode;
6139
6140 fail_unlock:
6141 discard_new_inode(inode);
6142 fail:
6143 if (dir && name)
6144 BTRFS_I(dir)->index_cnt--;
6145 btrfs_free_path(path);
6146 return ERR_PTR(ret);
6147 }
6148
6149 /*
6150 * utility function to add 'inode' into 'parent_inode' with
6151 * a give name and a given sequence number.
6152 * if 'add_backref' is true, also insert a backref from the
6153 * inode to the parent directory.
6154 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6155 int btrfs_add_link(struct btrfs_trans_handle *trans,
6156 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6157 const char *name, int name_len, int add_backref, u64 index)
6158 {
6159 int ret = 0;
6160 struct btrfs_key key;
6161 struct btrfs_root *root = parent_inode->root;
6162 u64 ino = btrfs_ino(inode);
6163 u64 parent_ino = btrfs_ino(parent_inode);
6164
6165 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6166 memcpy(&key, &inode->root->root_key, sizeof(key));
6167 } else {
6168 key.objectid = ino;
6169 key.type = BTRFS_INODE_ITEM_KEY;
6170 key.offset = 0;
6171 }
6172
6173 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6174 ret = btrfs_add_root_ref(trans, key.objectid,
6175 root->root_key.objectid, parent_ino,
6176 index, name, name_len);
6177 } else if (add_backref) {
6178 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6179 parent_ino, index);
6180 }
6181
6182 /* Nothing to clean up yet */
6183 if (ret)
6184 return ret;
6185
6186 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6187 btrfs_inode_type(&inode->vfs_inode), index);
6188 if (ret == -EEXIST || ret == -EOVERFLOW)
6189 goto fail_dir_item;
6190 else if (ret) {
6191 btrfs_abort_transaction(trans, ret);
6192 return ret;
6193 }
6194
6195 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6196 name_len * 2);
6197 inode_inc_iversion(&parent_inode->vfs_inode);
6198 /*
6199 * If we are replaying a log tree, we do not want to update the mtime
6200 * and ctime of the parent directory with the current time, since the
6201 * log replay procedure is responsible for setting them to their correct
6202 * values (the ones it had when the fsync was done).
6203 */
6204 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6205 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6206
6207 parent_inode->vfs_inode.i_mtime = now;
6208 parent_inode->vfs_inode.i_ctime = now;
6209 }
6210 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6211 if (ret)
6212 btrfs_abort_transaction(trans, ret);
6213 return ret;
6214
6215 fail_dir_item:
6216 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6217 u64 local_index;
6218 int err;
6219 err = btrfs_del_root_ref(trans, key.objectid,
6220 root->root_key.objectid, parent_ino,
6221 &local_index, name, name_len);
6222 if (err)
6223 btrfs_abort_transaction(trans, err);
6224 } else if (add_backref) {
6225 u64 local_index;
6226 int err;
6227
6228 err = btrfs_del_inode_ref(trans, root, name, name_len,
6229 ino, parent_ino, &local_index);
6230 if (err)
6231 btrfs_abort_transaction(trans, err);
6232 }
6233
6234 /* Return the original error code */
6235 return ret;
6236 }
6237
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6238 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6239 struct btrfs_inode *dir, struct dentry *dentry,
6240 struct btrfs_inode *inode, int backref, u64 index)
6241 {
6242 int err = btrfs_add_link(trans, dir, inode,
6243 dentry->d_name.name, dentry->d_name.len,
6244 backref, index);
6245 if (err > 0)
6246 err = -EEXIST;
6247 return err;
6248 }
6249
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6250 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6251 umode_t mode, dev_t rdev)
6252 {
6253 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6254 struct btrfs_trans_handle *trans;
6255 struct btrfs_root *root = BTRFS_I(dir)->root;
6256 struct inode *inode = NULL;
6257 int err;
6258 u64 objectid;
6259 u64 index = 0;
6260
6261 /*
6262 * 2 for inode item and ref
6263 * 2 for dir items
6264 * 1 for xattr if selinux is on
6265 */
6266 trans = btrfs_start_transaction(root, 5);
6267 if (IS_ERR(trans))
6268 return PTR_ERR(trans);
6269
6270 err = btrfs_find_free_ino(root, &objectid);
6271 if (err)
6272 goto out_unlock;
6273
6274 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6275 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6276 mode, &index);
6277 if (IS_ERR(inode)) {
6278 err = PTR_ERR(inode);
6279 inode = NULL;
6280 goto out_unlock;
6281 }
6282
6283 /*
6284 * If the active LSM wants to access the inode during
6285 * d_instantiate it needs these. Smack checks to see
6286 * if the filesystem supports xattrs by looking at the
6287 * ops vector.
6288 */
6289 inode->i_op = &btrfs_special_inode_operations;
6290 init_special_inode(inode, inode->i_mode, rdev);
6291
6292 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6293 if (err)
6294 goto out_unlock;
6295
6296 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6297 0, index);
6298 if (err)
6299 goto out_unlock;
6300
6301 btrfs_update_inode(trans, root, inode);
6302 d_instantiate_new(dentry, inode);
6303
6304 out_unlock:
6305 btrfs_end_transaction(trans);
6306 btrfs_btree_balance_dirty(fs_info);
6307 if (err && inode) {
6308 inode_dec_link_count(inode);
6309 discard_new_inode(inode);
6310 }
6311 return err;
6312 }
6313
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6314 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6315 umode_t mode, bool excl)
6316 {
6317 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6318 struct btrfs_trans_handle *trans;
6319 struct btrfs_root *root = BTRFS_I(dir)->root;
6320 struct inode *inode = NULL;
6321 int err;
6322 u64 objectid;
6323 u64 index = 0;
6324
6325 /*
6326 * 2 for inode item and ref
6327 * 2 for dir items
6328 * 1 for xattr if selinux is on
6329 */
6330 trans = btrfs_start_transaction(root, 5);
6331 if (IS_ERR(trans))
6332 return PTR_ERR(trans);
6333
6334 err = btrfs_find_free_ino(root, &objectid);
6335 if (err)
6336 goto out_unlock;
6337
6338 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6339 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6340 mode, &index);
6341 if (IS_ERR(inode)) {
6342 err = PTR_ERR(inode);
6343 inode = NULL;
6344 goto out_unlock;
6345 }
6346 /*
6347 * If the active LSM wants to access the inode during
6348 * d_instantiate it needs these. Smack checks to see
6349 * if the filesystem supports xattrs by looking at the
6350 * ops vector.
6351 */
6352 inode->i_fop = &btrfs_file_operations;
6353 inode->i_op = &btrfs_file_inode_operations;
6354 inode->i_mapping->a_ops = &btrfs_aops;
6355
6356 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6357 if (err)
6358 goto out_unlock;
6359
6360 err = btrfs_update_inode(trans, root, inode);
6361 if (err)
6362 goto out_unlock;
6363
6364 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6365 0, index);
6366 if (err)
6367 goto out_unlock;
6368
6369 d_instantiate_new(dentry, inode);
6370
6371 out_unlock:
6372 btrfs_end_transaction(trans);
6373 if (err && inode) {
6374 inode_dec_link_count(inode);
6375 discard_new_inode(inode);
6376 }
6377 btrfs_btree_balance_dirty(fs_info);
6378 return err;
6379 }
6380
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6381 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6382 struct dentry *dentry)
6383 {
6384 struct btrfs_trans_handle *trans = NULL;
6385 struct btrfs_root *root = BTRFS_I(dir)->root;
6386 struct inode *inode = d_inode(old_dentry);
6387 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6388 u64 index;
6389 int err;
6390 int drop_inode = 0;
6391
6392 /* do not allow sys_link's with other subvols of the same device */
6393 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6394 return -EXDEV;
6395
6396 if (inode->i_nlink >= BTRFS_LINK_MAX)
6397 return -EMLINK;
6398
6399 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6400 if (err)
6401 goto fail;
6402
6403 /*
6404 * 2 items for inode and inode ref
6405 * 2 items for dir items
6406 * 1 item for parent inode
6407 * 1 item for orphan item deletion if O_TMPFILE
6408 */
6409 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6410 if (IS_ERR(trans)) {
6411 err = PTR_ERR(trans);
6412 trans = NULL;
6413 goto fail;
6414 }
6415
6416 /* There are several dir indexes for this inode, clear the cache. */
6417 BTRFS_I(inode)->dir_index = 0ULL;
6418 inc_nlink(inode);
6419 inode_inc_iversion(inode);
6420 inode->i_ctime = current_time(inode);
6421 ihold(inode);
6422 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6423
6424 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6425 1, index);
6426
6427 if (err) {
6428 drop_inode = 1;
6429 } else {
6430 struct dentry *parent = dentry->d_parent;
6431
6432 err = btrfs_update_inode(trans, root, inode);
6433 if (err)
6434 goto fail;
6435 if (inode->i_nlink == 1) {
6436 /*
6437 * If new hard link count is 1, it's a file created
6438 * with open(2) O_TMPFILE flag.
6439 */
6440 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6441 if (err)
6442 goto fail;
6443 }
6444 d_instantiate(dentry, inode);
6445 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6446 }
6447
6448 fail:
6449 if (trans)
6450 btrfs_end_transaction(trans);
6451 if (drop_inode) {
6452 inode_dec_link_count(inode);
6453 iput(inode);
6454 }
6455 btrfs_btree_balance_dirty(fs_info);
6456 return err;
6457 }
6458
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6459 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6460 {
6461 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6462 struct inode *inode = NULL;
6463 struct btrfs_trans_handle *trans;
6464 struct btrfs_root *root = BTRFS_I(dir)->root;
6465 int err = 0;
6466 u64 objectid = 0;
6467 u64 index = 0;
6468
6469 /*
6470 * 2 items for inode and ref
6471 * 2 items for dir items
6472 * 1 for xattr if selinux is on
6473 */
6474 trans = btrfs_start_transaction(root, 5);
6475 if (IS_ERR(trans))
6476 return PTR_ERR(trans);
6477
6478 err = btrfs_find_free_ino(root, &objectid);
6479 if (err)
6480 goto out_fail;
6481
6482 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6483 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6484 S_IFDIR | mode, &index);
6485 if (IS_ERR(inode)) {
6486 err = PTR_ERR(inode);
6487 inode = NULL;
6488 goto out_fail;
6489 }
6490
6491 /* these must be set before we unlock the inode */
6492 inode->i_op = &btrfs_dir_inode_operations;
6493 inode->i_fop = &btrfs_dir_file_operations;
6494
6495 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6496 if (err)
6497 goto out_fail;
6498
6499 btrfs_i_size_write(BTRFS_I(inode), 0);
6500 err = btrfs_update_inode(trans, root, inode);
6501 if (err)
6502 goto out_fail;
6503
6504 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6505 dentry->d_name.name,
6506 dentry->d_name.len, 0, index);
6507 if (err)
6508 goto out_fail;
6509
6510 d_instantiate_new(dentry, inode);
6511
6512 out_fail:
6513 btrfs_end_transaction(trans);
6514 if (err && inode) {
6515 inode_dec_link_count(inode);
6516 discard_new_inode(inode);
6517 }
6518 btrfs_btree_balance_dirty(fs_info);
6519 return err;
6520 }
6521
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6522 static noinline int uncompress_inline(struct btrfs_path *path,
6523 struct page *page,
6524 size_t pg_offset, u64 extent_offset,
6525 struct btrfs_file_extent_item *item)
6526 {
6527 int ret;
6528 struct extent_buffer *leaf = path->nodes[0];
6529 char *tmp;
6530 size_t max_size;
6531 unsigned long inline_size;
6532 unsigned long ptr;
6533 int compress_type;
6534
6535 WARN_ON(pg_offset != 0);
6536 compress_type = btrfs_file_extent_compression(leaf, item);
6537 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6538 inline_size = btrfs_file_extent_inline_item_len(leaf,
6539 btrfs_item_nr(path->slots[0]));
6540 tmp = kmalloc(inline_size, GFP_NOFS);
6541 if (!tmp)
6542 return -ENOMEM;
6543 ptr = btrfs_file_extent_inline_start(item);
6544
6545 read_extent_buffer(leaf, tmp, ptr, inline_size);
6546
6547 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6548 ret = btrfs_decompress(compress_type, tmp, page,
6549 extent_offset, inline_size, max_size);
6550
6551 /*
6552 * decompression code contains a memset to fill in any space between the end
6553 * of the uncompressed data and the end of max_size in case the decompressed
6554 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6555 * the end of an inline extent and the beginning of the next block, so we
6556 * cover that region here.
6557 */
6558
6559 if (max_size + pg_offset < PAGE_SIZE) {
6560 char *map = kmap(page);
6561 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6562 kunmap(page);
6563 }
6564 kfree(tmp);
6565 return ret;
6566 }
6567
6568 /**
6569 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6570 * @inode: file to search in
6571 * @page: page to read extent data into if the extent is inline
6572 * @pg_offset: offset into @page to copy to
6573 * @start: file offset
6574 * @len: length of range starting at @start
6575 *
6576 * This returns the first &struct extent_map which overlaps with the given
6577 * range, reading it from the B-tree and caching it if necessary. Note that
6578 * there may be more extents which overlap the given range after the returned
6579 * extent_map.
6580 *
6581 * If @page is not NULL and the extent is inline, this also reads the extent
6582 * data directly into the page and marks the extent up to date in the io_tree.
6583 *
6584 * Return: ERR_PTR on error, non-NULL extent_map on success.
6585 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len)6586 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6587 struct page *page, size_t pg_offset,
6588 u64 start, u64 len)
6589 {
6590 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6591 int ret = 0;
6592 u64 extent_start = 0;
6593 u64 extent_end = 0;
6594 u64 objectid = btrfs_ino(inode);
6595 int extent_type = -1;
6596 struct btrfs_path *path = NULL;
6597 struct btrfs_root *root = inode->root;
6598 struct btrfs_file_extent_item *item;
6599 struct extent_buffer *leaf;
6600 struct btrfs_key found_key;
6601 struct extent_map *em = NULL;
6602 struct extent_map_tree *em_tree = &inode->extent_tree;
6603 struct extent_io_tree *io_tree = &inode->io_tree;
6604
6605 read_lock(&em_tree->lock);
6606 em = lookup_extent_mapping(em_tree, start, len);
6607 read_unlock(&em_tree->lock);
6608
6609 if (em) {
6610 if (em->start > start || em->start + em->len <= start)
6611 free_extent_map(em);
6612 else if (em->block_start == EXTENT_MAP_INLINE && page)
6613 free_extent_map(em);
6614 else
6615 goto out;
6616 }
6617 em = alloc_extent_map();
6618 if (!em) {
6619 ret = -ENOMEM;
6620 goto out;
6621 }
6622 em->start = EXTENT_MAP_HOLE;
6623 em->orig_start = EXTENT_MAP_HOLE;
6624 em->len = (u64)-1;
6625 em->block_len = (u64)-1;
6626
6627 path = btrfs_alloc_path();
6628 if (!path) {
6629 ret = -ENOMEM;
6630 goto out;
6631 }
6632
6633 /* Chances are we'll be called again, so go ahead and do readahead */
6634 path->reada = READA_FORWARD;
6635
6636 /*
6637 * Unless we're going to uncompress the inline extent, no sleep would
6638 * happen.
6639 */
6640 path->leave_spinning = 1;
6641
6642 path->recurse = btrfs_is_free_space_inode(inode);
6643
6644 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6645 if (ret < 0) {
6646 goto out;
6647 } else if (ret > 0) {
6648 if (path->slots[0] == 0)
6649 goto not_found;
6650 path->slots[0]--;
6651 ret = 0;
6652 }
6653
6654 leaf = path->nodes[0];
6655 item = btrfs_item_ptr(leaf, path->slots[0],
6656 struct btrfs_file_extent_item);
6657 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6658 if (found_key.objectid != objectid ||
6659 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6660 /*
6661 * If we backup past the first extent we want to move forward
6662 * and see if there is an extent in front of us, otherwise we'll
6663 * say there is a hole for our whole search range which can
6664 * cause problems.
6665 */
6666 extent_end = start;
6667 goto next;
6668 }
6669
6670 extent_type = btrfs_file_extent_type(leaf, item);
6671 extent_start = found_key.offset;
6672 extent_end = btrfs_file_extent_end(path);
6673 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6674 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6675 /* Only regular file could have regular/prealloc extent */
6676 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6677 ret = -EUCLEAN;
6678 btrfs_crit(fs_info,
6679 "regular/prealloc extent found for non-regular inode %llu",
6680 btrfs_ino(inode));
6681 goto out;
6682 }
6683 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6684 extent_start);
6685 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6686 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6687 path->slots[0],
6688 extent_start);
6689 }
6690 next:
6691 if (start >= extent_end) {
6692 path->slots[0]++;
6693 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6694 ret = btrfs_next_leaf(root, path);
6695 if (ret < 0)
6696 goto out;
6697 else if (ret > 0)
6698 goto not_found;
6699
6700 leaf = path->nodes[0];
6701 }
6702 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6703 if (found_key.objectid != objectid ||
6704 found_key.type != BTRFS_EXTENT_DATA_KEY)
6705 goto not_found;
6706 if (start + len <= found_key.offset)
6707 goto not_found;
6708 if (start > found_key.offset)
6709 goto next;
6710
6711 /* New extent overlaps with existing one */
6712 em->start = start;
6713 em->orig_start = start;
6714 em->len = found_key.offset - start;
6715 em->block_start = EXTENT_MAP_HOLE;
6716 goto insert;
6717 }
6718
6719 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6720
6721 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6722 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6723 goto insert;
6724 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6725 unsigned long ptr;
6726 char *map;
6727 size_t size;
6728 size_t extent_offset;
6729 size_t copy_size;
6730
6731 if (!page)
6732 goto out;
6733
6734 size = btrfs_file_extent_ram_bytes(leaf, item);
6735 extent_offset = page_offset(page) + pg_offset - extent_start;
6736 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6737 size - extent_offset);
6738 em->start = extent_start + extent_offset;
6739 em->len = ALIGN(copy_size, fs_info->sectorsize);
6740 em->orig_block_len = em->len;
6741 em->orig_start = em->start;
6742 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6743
6744 btrfs_set_path_blocking(path);
6745 if (!PageUptodate(page)) {
6746 if (btrfs_file_extent_compression(leaf, item) !=
6747 BTRFS_COMPRESS_NONE) {
6748 ret = uncompress_inline(path, page, pg_offset,
6749 extent_offset, item);
6750 if (ret)
6751 goto out;
6752 } else {
6753 map = kmap(page);
6754 read_extent_buffer(leaf, map + pg_offset, ptr,
6755 copy_size);
6756 if (pg_offset + copy_size < PAGE_SIZE) {
6757 memset(map + pg_offset + copy_size, 0,
6758 PAGE_SIZE - pg_offset -
6759 copy_size);
6760 }
6761 kunmap(page);
6762 }
6763 flush_dcache_page(page);
6764 }
6765 set_extent_uptodate(io_tree, em->start,
6766 extent_map_end(em) - 1, NULL, GFP_NOFS);
6767 goto insert;
6768 }
6769 not_found:
6770 em->start = start;
6771 em->orig_start = start;
6772 em->len = len;
6773 em->block_start = EXTENT_MAP_HOLE;
6774 insert:
6775 ret = 0;
6776 btrfs_release_path(path);
6777 if (em->start > start || extent_map_end(em) <= start) {
6778 btrfs_err(fs_info,
6779 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6780 em->start, em->len, start, len);
6781 ret = -EIO;
6782 goto out;
6783 }
6784
6785 write_lock(&em_tree->lock);
6786 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6787 write_unlock(&em_tree->lock);
6788 out:
6789 btrfs_free_path(path);
6790
6791 trace_btrfs_get_extent(root, inode, em);
6792
6793 if (ret) {
6794 free_extent_map(em);
6795 return ERR_PTR(ret);
6796 }
6797 return em;
6798 }
6799
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)6800 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6801 u64 start, u64 len)
6802 {
6803 struct extent_map *em;
6804 struct extent_map *hole_em = NULL;
6805 u64 delalloc_start = start;
6806 u64 end;
6807 u64 delalloc_len;
6808 u64 delalloc_end;
6809 int err = 0;
6810
6811 em = btrfs_get_extent(inode, NULL, 0, start, len);
6812 if (IS_ERR(em))
6813 return em;
6814 /*
6815 * If our em maps to:
6816 * - a hole or
6817 * - a pre-alloc extent,
6818 * there might actually be delalloc bytes behind it.
6819 */
6820 if (em->block_start != EXTENT_MAP_HOLE &&
6821 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6822 return em;
6823 else
6824 hole_em = em;
6825
6826 /* check to see if we've wrapped (len == -1 or similar) */
6827 end = start + len;
6828 if (end < start)
6829 end = (u64)-1;
6830 else
6831 end -= 1;
6832
6833 em = NULL;
6834
6835 /* ok, we didn't find anything, lets look for delalloc */
6836 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6837 end, len, EXTENT_DELALLOC, 1);
6838 delalloc_end = delalloc_start + delalloc_len;
6839 if (delalloc_end < delalloc_start)
6840 delalloc_end = (u64)-1;
6841
6842 /*
6843 * We didn't find anything useful, return the original results from
6844 * get_extent()
6845 */
6846 if (delalloc_start > end || delalloc_end <= start) {
6847 em = hole_em;
6848 hole_em = NULL;
6849 goto out;
6850 }
6851
6852 /*
6853 * Adjust the delalloc_start to make sure it doesn't go backwards from
6854 * the start they passed in
6855 */
6856 delalloc_start = max(start, delalloc_start);
6857 delalloc_len = delalloc_end - delalloc_start;
6858
6859 if (delalloc_len > 0) {
6860 u64 hole_start;
6861 u64 hole_len;
6862 const u64 hole_end = extent_map_end(hole_em);
6863
6864 em = alloc_extent_map();
6865 if (!em) {
6866 err = -ENOMEM;
6867 goto out;
6868 }
6869
6870 ASSERT(hole_em);
6871 /*
6872 * When btrfs_get_extent can't find anything it returns one
6873 * huge hole
6874 *
6875 * Make sure what it found really fits our range, and adjust to
6876 * make sure it is based on the start from the caller
6877 */
6878 if (hole_end <= start || hole_em->start > end) {
6879 free_extent_map(hole_em);
6880 hole_em = NULL;
6881 } else {
6882 hole_start = max(hole_em->start, start);
6883 hole_len = hole_end - hole_start;
6884 }
6885
6886 if (hole_em && delalloc_start > hole_start) {
6887 /*
6888 * Our hole starts before our delalloc, so we have to
6889 * return just the parts of the hole that go until the
6890 * delalloc starts
6891 */
6892 em->len = min(hole_len, delalloc_start - hole_start);
6893 em->start = hole_start;
6894 em->orig_start = hole_start;
6895 /*
6896 * Don't adjust block start at all, it is fixed at
6897 * EXTENT_MAP_HOLE
6898 */
6899 em->block_start = hole_em->block_start;
6900 em->block_len = hole_len;
6901 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6902 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6903 } else {
6904 /*
6905 * Hole is out of passed range or it starts after
6906 * delalloc range
6907 */
6908 em->start = delalloc_start;
6909 em->len = delalloc_len;
6910 em->orig_start = delalloc_start;
6911 em->block_start = EXTENT_MAP_DELALLOC;
6912 em->block_len = delalloc_len;
6913 }
6914 } else {
6915 return hole_em;
6916 }
6917 out:
6918
6919 free_extent_map(hole_em);
6920 if (err) {
6921 free_extent_map(em);
6922 return ERR_PTR(err);
6923 }
6924 return em;
6925 }
6926
btrfs_create_dio_extent(struct btrfs_inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)6927 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6928 const u64 start,
6929 const u64 len,
6930 const u64 orig_start,
6931 const u64 block_start,
6932 const u64 block_len,
6933 const u64 orig_block_len,
6934 const u64 ram_bytes,
6935 const int type)
6936 {
6937 struct extent_map *em = NULL;
6938 int ret;
6939
6940 if (type != BTRFS_ORDERED_NOCOW) {
6941 em = create_io_em(inode, start, len, orig_start, block_start,
6942 block_len, orig_block_len, ram_bytes,
6943 BTRFS_COMPRESS_NONE, /* compress_type */
6944 type);
6945 if (IS_ERR(em))
6946 goto out;
6947 }
6948 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6949 block_len, type);
6950 if (ret) {
6951 if (em) {
6952 free_extent_map(em);
6953 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
6954 }
6955 em = ERR_PTR(ret);
6956 }
6957 out:
6958
6959 return em;
6960 }
6961
btrfs_new_extent_direct(struct btrfs_inode * inode,u64 start,u64 len)6962 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6963 u64 start, u64 len)
6964 {
6965 struct btrfs_root *root = inode->root;
6966 struct btrfs_fs_info *fs_info = root->fs_info;
6967 struct extent_map *em;
6968 struct btrfs_key ins;
6969 u64 alloc_hint;
6970 int ret;
6971
6972 alloc_hint = get_extent_allocation_hint(inode, start, len);
6973 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6974 0, alloc_hint, &ins, 1, 1);
6975 if (ret)
6976 return ERR_PTR(ret);
6977
6978 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6979 ins.objectid, ins.offset, ins.offset,
6980 ins.offset, BTRFS_ORDERED_REGULAR);
6981 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6982 if (IS_ERR(em))
6983 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6984 1);
6985
6986 return em;
6987 }
6988
6989 /*
6990 * Check if we can do nocow write into the range [@offset, @offset + @len)
6991 *
6992 * @offset: File offset
6993 * @len: The length to write, will be updated to the nocow writeable
6994 * range
6995 * @orig_start: (optional) Return the original file offset of the file extent
6996 * @orig_len: (optional) Return the original on-disk length of the file extent
6997 * @ram_bytes: (optional) Return the ram_bytes of the file extent
6998 * @strict: if true, omit optimizations that might force us into unnecessary
6999 * cow. e.g., don't trust generation number.
7000 *
7001 * This function will flush ordered extents in the range to ensure proper
7002 * nocow checks for (nowait == false) case.
7003 *
7004 * Return:
7005 * >0 and update @len if we can do nocow write
7006 * 0 if we can't do nocow write
7007 * <0 if error happened
7008 *
7009 * NOTE: This only checks the file extents, caller is responsible to wait for
7010 * any ordered extents.
7011 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool strict)7012 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7013 u64 *orig_start, u64 *orig_block_len,
7014 u64 *ram_bytes, bool strict)
7015 {
7016 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7017 struct btrfs_path *path;
7018 int ret;
7019 struct extent_buffer *leaf;
7020 struct btrfs_root *root = BTRFS_I(inode)->root;
7021 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7022 struct btrfs_file_extent_item *fi;
7023 struct btrfs_key key;
7024 u64 disk_bytenr;
7025 u64 backref_offset;
7026 u64 extent_end;
7027 u64 num_bytes;
7028 int slot;
7029 int found_type;
7030 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7031
7032 path = btrfs_alloc_path();
7033 if (!path)
7034 return -ENOMEM;
7035
7036 ret = btrfs_lookup_file_extent(NULL, root, path,
7037 btrfs_ino(BTRFS_I(inode)), offset, 0);
7038 if (ret < 0)
7039 goto out;
7040
7041 slot = path->slots[0];
7042 if (ret == 1) {
7043 if (slot == 0) {
7044 /* can't find the item, must cow */
7045 ret = 0;
7046 goto out;
7047 }
7048 slot--;
7049 }
7050 ret = 0;
7051 leaf = path->nodes[0];
7052 btrfs_item_key_to_cpu(leaf, &key, slot);
7053 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7054 key.type != BTRFS_EXTENT_DATA_KEY) {
7055 /* not our file or wrong item type, must cow */
7056 goto out;
7057 }
7058
7059 if (key.offset > offset) {
7060 /* Wrong offset, must cow */
7061 goto out;
7062 }
7063
7064 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7065 found_type = btrfs_file_extent_type(leaf, fi);
7066 if (found_type != BTRFS_FILE_EXTENT_REG &&
7067 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7068 /* not a regular extent, must cow */
7069 goto out;
7070 }
7071
7072 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7073 goto out;
7074
7075 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7076 if (extent_end <= offset)
7077 goto out;
7078
7079 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7080 if (disk_bytenr == 0)
7081 goto out;
7082
7083 if (btrfs_file_extent_compression(leaf, fi) ||
7084 btrfs_file_extent_encryption(leaf, fi) ||
7085 btrfs_file_extent_other_encoding(leaf, fi))
7086 goto out;
7087
7088 /*
7089 * Do the same check as in btrfs_cross_ref_exist but without the
7090 * unnecessary search.
7091 */
7092 if (!strict &&
7093 (btrfs_file_extent_generation(leaf, fi) <=
7094 btrfs_root_last_snapshot(&root->root_item)))
7095 goto out;
7096
7097 backref_offset = btrfs_file_extent_offset(leaf, fi);
7098
7099 if (orig_start) {
7100 *orig_start = key.offset - backref_offset;
7101 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7102 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7103 }
7104
7105 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7106 goto out;
7107
7108 num_bytes = min(offset + *len, extent_end) - offset;
7109 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7110 u64 range_end;
7111
7112 range_end = round_up(offset + num_bytes,
7113 root->fs_info->sectorsize) - 1;
7114 ret = test_range_bit(io_tree, offset, range_end,
7115 EXTENT_DELALLOC, 0, NULL);
7116 if (ret) {
7117 ret = -EAGAIN;
7118 goto out;
7119 }
7120 }
7121
7122 btrfs_release_path(path);
7123
7124 /*
7125 * look for other files referencing this extent, if we
7126 * find any we must cow
7127 */
7128
7129 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7130 key.offset - backref_offset, disk_bytenr,
7131 strict);
7132 if (ret) {
7133 ret = 0;
7134 goto out;
7135 }
7136
7137 /*
7138 * adjust disk_bytenr and num_bytes to cover just the bytes
7139 * in this extent we are about to write. If there
7140 * are any csums in that range we have to cow in order
7141 * to keep the csums correct
7142 */
7143 disk_bytenr += backref_offset;
7144 disk_bytenr += offset - key.offset;
7145 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7146 goto out;
7147 /*
7148 * all of the above have passed, it is safe to overwrite this extent
7149 * without cow
7150 */
7151 *len = num_bytes;
7152 ret = 1;
7153 out:
7154 btrfs_free_path(path);
7155 return ret;
7156 }
7157
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,bool writing)7158 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7159 struct extent_state **cached_state, bool writing)
7160 {
7161 struct btrfs_ordered_extent *ordered;
7162 int ret = 0;
7163
7164 while (1) {
7165 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7166 cached_state);
7167 /*
7168 * We're concerned with the entire range that we're going to be
7169 * doing DIO to, so we need to make sure there's no ordered
7170 * extents in this range.
7171 */
7172 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7173 lockend - lockstart + 1);
7174
7175 /*
7176 * We need to make sure there are no buffered pages in this
7177 * range either, we could have raced between the invalidate in
7178 * generic_file_direct_write and locking the extent. The
7179 * invalidate needs to happen so that reads after a write do not
7180 * get stale data.
7181 */
7182 if (!ordered &&
7183 (!writing || !filemap_range_has_page(inode->i_mapping,
7184 lockstart, lockend)))
7185 break;
7186
7187 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7188 cached_state);
7189
7190 if (ordered) {
7191 /*
7192 * If we are doing a DIO read and the ordered extent we
7193 * found is for a buffered write, we can not wait for it
7194 * to complete and retry, because if we do so we can
7195 * deadlock with concurrent buffered writes on page
7196 * locks. This happens only if our DIO read covers more
7197 * than one extent map, if at this point has already
7198 * created an ordered extent for a previous extent map
7199 * and locked its range in the inode's io tree, and a
7200 * concurrent write against that previous extent map's
7201 * range and this range started (we unlock the ranges
7202 * in the io tree only when the bios complete and
7203 * buffered writes always lock pages before attempting
7204 * to lock range in the io tree).
7205 */
7206 if (writing ||
7207 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7208 btrfs_start_ordered_extent(ordered, 1);
7209 else
7210 ret = -ENOTBLK;
7211 btrfs_put_ordered_extent(ordered);
7212 } else {
7213 /*
7214 * We could trigger writeback for this range (and wait
7215 * for it to complete) and then invalidate the pages for
7216 * this range (through invalidate_inode_pages2_range()),
7217 * but that can lead us to a deadlock with a concurrent
7218 * call to readahead (a buffered read or a defrag call
7219 * triggered a readahead) on a page lock due to an
7220 * ordered dio extent we created before but did not have
7221 * yet a corresponding bio submitted (whence it can not
7222 * complete), which makes readahead wait for that
7223 * ordered extent to complete while holding a lock on
7224 * that page.
7225 */
7226 ret = -ENOTBLK;
7227 }
7228
7229 if (ret)
7230 break;
7231
7232 cond_resched();
7233 }
7234
7235 return ret;
7236 }
7237
7238 /* The callers of this must take lock_extent() */
create_io_em(struct btrfs_inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7239 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7240 u64 len, u64 orig_start, u64 block_start,
7241 u64 block_len, u64 orig_block_len,
7242 u64 ram_bytes, int compress_type,
7243 int type)
7244 {
7245 struct extent_map_tree *em_tree;
7246 struct extent_map *em;
7247 int ret;
7248
7249 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7250 type == BTRFS_ORDERED_COMPRESSED ||
7251 type == BTRFS_ORDERED_NOCOW ||
7252 type == BTRFS_ORDERED_REGULAR);
7253
7254 em_tree = &inode->extent_tree;
7255 em = alloc_extent_map();
7256 if (!em)
7257 return ERR_PTR(-ENOMEM);
7258
7259 em->start = start;
7260 em->orig_start = orig_start;
7261 em->len = len;
7262 em->block_len = block_len;
7263 em->block_start = block_start;
7264 em->orig_block_len = orig_block_len;
7265 em->ram_bytes = ram_bytes;
7266 em->generation = -1;
7267 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7268 if (type == BTRFS_ORDERED_PREALLOC) {
7269 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7270 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7271 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7272 em->compress_type = compress_type;
7273 }
7274
7275 do {
7276 btrfs_drop_extent_cache(inode, em->start,
7277 em->start + em->len - 1, 0);
7278 write_lock(&em_tree->lock);
7279 ret = add_extent_mapping(em_tree, em, 1);
7280 write_unlock(&em_tree->lock);
7281 /*
7282 * The caller has taken lock_extent(), who could race with us
7283 * to add em?
7284 */
7285 } while (ret == -EEXIST);
7286
7287 if (ret) {
7288 free_extent_map(em);
7289 return ERR_PTR(ret);
7290 }
7291
7292 /* em got 2 refs now, callers needs to do free_extent_map once. */
7293 return em;
7294 }
7295
7296
btrfs_get_blocks_direct_write(struct extent_map ** map,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7297 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7298 struct inode *inode,
7299 struct btrfs_dio_data *dio_data,
7300 u64 start, u64 len)
7301 {
7302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7303 struct extent_map *em = *map;
7304 int ret = 0;
7305
7306 /*
7307 * We don't allocate a new extent in the following cases
7308 *
7309 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7310 * existing extent.
7311 * 2) The extent is marked as PREALLOC. We're good to go here and can
7312 * just use the extent.
7313 *
7314 */
7315 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7316 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7317 em->block_start != EXTENT_MAP_HOLE)) {
7318 int type;
7319 u64 block_start, orig_start, orig_block_len, ram_bytes;
7320
7321 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7322 type = BTRFS_ORDERED_PREALLOC;
7323 else
7324 type = BTRFS_ORDERED_NOCOW;
7325 len = min(len, em->len - (start - em->start));
7326 block_start = em->block_start + (start - em->start);
7327
7328 if (can_nocow_extent(inode, start, &len, &orig_start,
7329 &orig_block_len, &ram_bytes, false) == 1 &&
7330 btrfs_inc_nocow_writers(fs_info, block_start)) {
7331 struct extent_map *em2;
7332
7333 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7334 orig_start, block_start,
7335 len, orig_block_len,
7336 ram_bytes, type);
7337 btrfs_dec_nocow_writers(fs_info, block_start);
7338 if (type == BTRFS_ORDERED_PREALLOC) {
7339 free_extent_map(em);
7340 *map = em = em2;
7341 }
7342
7343 if (em2 && IS_ERR(em2)) {
7344 ret = PTR_ERR(em2);
7345 goto out;
7346 }
7347 /*
7348 * For inode marked NODATACOW or extent marked PREALLOC,
7349 * use the existing or preallocated extent, so does not
7350 * need to adjust btrfs_space_info's bytes_may_use.
7351 */
7352 btrfs_free_reserved_data_space_noquota(fs_info, len);
7353 goto skip_cow;
7354 }
7355 }
7356
7357 /* this will cow the extent */
7358 free_extent_map(em);
7359 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7360 if (IS_ERR(em)) {
7361 ret = PTR_ERR(em);
7362 goto out;
7363 }
7364
7365 len = min(len, em->len - (start - em->start));
7366
7367 skip_cow:
7368 /*
7369 * Need to update the i_size under the extent lock so buffered
7370 * readers will get the updated i_size when we unlock.
7371 */
7372 if (start + len > i_size_read(inode))
7373 i_size_write(inode, start + len);
7374
7375 dio_data->reserve -= len;
7376 out:
7377 return ret;
7378 }
7379
btrfs_dio_iomap_begin(struct inode * inode,loff_t start,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)7380 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7381 loff_t length, unsigned int flags, struct iomap *iomap,
7382 struct iomap *srcmap)
7383 {
7384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7385 struct extent_map *em;
7386 struct extent_state *cached_state = NULL;
7387 struct btrfs_dio_data *dio_data = NULL;
7388 u64 lockstart, lockend;
7389 const bool write = !!(flags & IOMAP_WRITE);
7390 int ret = 0;
7391 u64 len = length;
7392 bool unlock_extents = false;
7393 bool sync = (current->journal_info == BTRFS_DIO_SYNC_STUB);
7394
7395 /*
7396 * We used current->journal_info here to see if we were sync, but
7397 * there's a lot of tests in the enospc machinery to not do flushing if
7398 * we have a journal_info set, so we need to clear this out and re-set
7399 * it in iomap_end.
7400 */
7401 ASSERT(current->journal_info == NULL ||
7402 current->journal_info == BTRFS_DIO_SYNC_STUB);
7403 current->journal_info = NULL;
7404
7405 if (!write)
7406 len = min_t(u64, len, fs_info->sectorsize);
7407
7408 lockstart = start;
7409 lockend = start + len - 1;
7410
7411 /*
7412 * The generic stuff only does filemap_write_and_wait_range, which
7413 * isn't enough if we've written compressed pages to this area, so we
7414 * need to flush the dirty pages again to make absolutely sure that any
7415 * outstanding dirty pages are on disk.
7416 */
7417 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7418 &BTRFS_I(inode)->runtime_flags)) {
7419 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7420 start + length - 1);
7421 if (ret)
7422 return ret;
7423 }
7424
7425 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7426 if (!dio_data)
7427 return -ENOMEM;
7428
7429 dio_data->sync = sync;
7430 dio_data->length = length;
7431 if (write) {
7432 dio_data->reserve = round_up(length, fs_info->sectorsize);
7433 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7434 &dio_data->data_reserved,
7435 start, dio_data->reserve);
7436 if (ret) {
7437 extent_changeset_free(dio_data->data_reserved);
7438 kfree(dio_data);
7439 return ret;
7440 }
7441 }
7442 iomap->private = dio_data;
7443
7444
7445 /*
7446 * If this errors out it's because we couldn't invalidate pagecache for
7447 * this range and we need to fallback to buffered.
7448 */
7449 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7450 ret = -ENOTBLK;
7451 goto err;
7452 }
7453
7454 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7455 if (IS_ERR(em)) {
7456 ret = PTR_ERR(em);
7457 goto unlock_err;
7458 }
7459
7460 /*
7461 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7462 * io. INLINE is special, and we could probably kludge it in here, but
7463 * it's still buffered so for safety lets just fall back to the generic
7464 * buffered path.
7465 *
7466 * For COMPRESSED we _have_ to read the entire extent in so we can
7467 * decompress it, so there will be buffering required no matter what we
7468 * do, so go ahead and fallback to buffered.
7469 *
7470 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7471 * to buffered IO. Don't blame me, this is the price we pay for using
7472 * the generic code.
7473 */
7474 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7475 em->block_start == EXTENT_MAP_INLINE) {
7476 free_extent_map(em);
7477 ret = -ENOTBLK;
7478 goto unlock_err;
7479 }
7480
7481 len = min(len, em->len - (start - em->start));
7482 if (write) {
7483 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7484 start, len);
7485 if (ret < 0)
7486 goto unlock_err;
7487 unlock_extents = true;
7488 /* Recalc len in case the new em is smaller than requested */
7489 len = min(len, em->len - (start - em->start));
7490 } else {
7491 /*
7492 * We need to unlock only the end area that we aren't using.
7493 * The rest is going to be unlocked by the endio routine.
7494 */
7495 lockstart = start + len;
7496 if (lockstart < lockend)
7497 unlock_extents = true;
7498 }
7499
7500 if (unlock_extents)
7501 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7502 lockstart, lockend, &cached_state);
7503 else
7504 free_extent_state(cached_state);
7505
7506 /*
7507 * Translate extent map information to iomap.
7508 * We trim the extents (and move the addr) even though iomap code does
7509 * that, since we have locked only the parts we are performing I/O in.
7510 */
7511 if ((em->block_start == EXTENT_MAP_HOLE) ||
7512 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7513 iomap->addr = IOMAP_NULL_ADDR;
7514 iomap->type = IOMAP_HOLE;
7515 } else {
7516 iomap->addr = em->block_start + (start - em->start);
7517 iomap->type = IOMAP_MAPPED;
7518 }
7519 iomap->offset = start;
7520 iomap->bdev = fs_info->fs_devices->latest_bdev;
7521 iomap->length = len;
7522
7523 free_extent_map(em);
7524
7525 return 0;
7526
7527 unlock_err:
7528 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7529 &cached_state);
7530 err:
7531 if (dio_data) {
7532 btrfs_delalloc_release_space(BTRFS_I(inode),
7533 dio_data->data_reserved, start,
7534 dio_data->reserve, true);
7535 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7536 extent_changeset_free(dio_data->data_reserved);
7537 kfree(dio_data);
7538 }
7539 return ret;
7540 }
7541
btrfs_dio_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned int flags,struct iomap * iomap)7542 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7543 ssize_t written, unsigned int flags, struct iomap *iomap)
7544 {
7545 int ret = 0;
7546 struct btrfs_dio_data *dio_data = iomap->private;
7547 size_t submitted = dio_data->submitted;
7548 const bool write = !!(flags & IOMAP_WRITE);
7549
7550 if (!write && (iomap->type == IOMAP_HOLE)) {
7551 /* If reading from a hole, unlock and return */
7552 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7553 goto out;
7554 }
7555
7556 if (submitted < length) {
7557 pos += submitted;
7558 length -= submitted;
7559 if (write)
7560 __endio_write_update_ordered(BTRFS_I(inode), pos,
7561 length, false);
7562 else
7563 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7564 pos + length - 1);
7565 ret = -ENOTBLK;
7566 }
7567
7568 if (write) {
7569 if (dio_data->reserve)
7570 btrfs_delalloc_release_space(BTRFS_I(inode),
7571 dio_data->data_reserved, pos,
7572 dio_data->reserve, true);
7573 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7574 extent_changeset_free(dio_data->data_reserved);
7575 }
7576 out:
7577 /*
7578 * We're all done, we can re-set the current->journal_info now safely
7579 * for our endio.
7580 */
7581 if (dio_data->sync) {
7582 ASSERT(current->journal_info == NULL);
7583 current->journal_info = BTRFS_DIO_SYNC_STUB;
7584 }
7585 kfree(dio_data);
7586 iomap->private = NULL;
7587
7588 return ret;
7589 }
7590
btrfs_dio_private_put(struct btrfs_dio_private * dip)7591 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7592 {
7593 /*
7594 * This implies a barrier so that stores to dio_bio->bi_status before
7595 * this and loads of dio_bio->bi_status after this are fully ordered.
7596 */
7597 if (!refcount_dec_and_test(&dip->refs))
7598 return;
7599
7600 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7601 __endio_write_update_ordered(BTRFS_I(dip->inode),
7602 dip->logical_offset,
7603 dip->bytes,
7604 !dip->dio_bio->bi_status);
7605 } else {
7606 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7607 dip->logical_offset,
7608 dip->logical_offset + dip->bytes - 1);
7609 }
7610
7611 bio_endio(dip->dio_bio);
7612 kfree(dip);
7613 }
7614
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)7615 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7616 int mirror_num,
7617 unsigned long bio_flags)
7618 {
7619 struct btrfs_dio_private *dip = bio->bi_private;
7620 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7621 blk_status_t ret;
7622
7623 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7624
7625 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7626 if (ret)
7627 return ret;
7628
7629 refcount_inc(&dip->refs);
7630 ret = btrfs_map_bio(fs_info, bio, mirror_num);
7631 if (ret)
7632 refcount_dec(&dip->refs);
7633 return ret;
7634 }
7635
btrfs_check_read_dio_bio(struct inode * inode,struct btrfs_io_bio * io_bio,const bool uptodate)7636 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7637 struct btrfs_io_bio *io_bio,
7638 const bool uptodate)
7639 {
7640 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7641 const u32 sectorsize = fs_info->sectorsize;
7642 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7643 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7644 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7645 struct bio_vec bvec;
7646 struct bvec_iter iter;
7647 u64 start = io_bio->logical;
7648 int icsum = 0;
7649 blk_status_t err = BLK_STS_OK;
7650
7651 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7652 unsigned int i, nr_sectors, pgoff;
7653
7654 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7655 pgoff = bvec.bv_offset;
7656 for (i = 0; i < nr_sectors; i++) {
7657 ASSERT(pgoff < PAGE_SIZE);
7658 if (uptodate &&
7659 (!csum || !check_data_csum(inode, io_bio, icsum,
7660 bvec.bv_page, pgoff,
7661 start, sectorsize))) {
7662 clean_io_failure(fs_info, failure_tree, io_tree,
7663 start, bvec.bv_page,
7664 btrfs_ino(BTRFS_I(inode)),
7665 pgoff);
7666 } else {
7667 blk_status_t status;
7668
7669 status = btrfs_submit_read_repair(inode,
7670 &io_bio->bio,
7671 start - io_bio->logical,
7672 bvec.bv_page, pgoff,
7673 start,
7674 start + sectorsize - 1,
7675 io_bio->mirror_num,
7676 submit_dio_repair_bio);
7677 if (status)
7678 err = status;
7679 }
7680 start += sectorsize;
7681 icsum++;
7682 pgoff += sectorsize;
7683 }
7684 }
7685 return err;
7686 }
7687
__endio_write_update_ordered(struct btrfs_inode * inode,const u64 offset,const u64 bytes,const bool uptodate)7688 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7689 const u64 offset, const u64 bytes,
7690 const bool uptodate)
7691 {
7692 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7693 struct btrfs_ordered_extent *ordered = NULL;
7694 struct btrfs_workqueue *wq;
7695 u64 ordered_offset = offset;
7696 u64 ordered_bytes = bytes;
7697 u64 last_offset;
7698
7699 if (btrfs_is_free_space_inode(inode))
7700 wq = fs_info->endio_freespace_worker;
7701 else
7702 wq = fs_info->endio_write_workers;
7703
7704 while (ordered_offset < offset + bytes) {
7705 last_offset = ordered_offset;
7706 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7707 &ordered_offset,
7708 ordered_bytes,
7709 uptodate)) {
7710 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7711 NULL);
7712 btrfs_queue_work(wq, &ordered->work);
7713 }
7714 /*
7715 * If btrfs_dec_test_ordered_pending does not find any ordered
7716 * extent in the range, we can exit.
7717 */
7718 if (ordered_offset == last_offset)
7719 return;
7720 /*
7721 * Our bio might span multiple ordered extents. In this case
7722 * we keep going until we have accounted the whole dio.
7723 */
7724 if (ordered_offset < offset + bytes) {
7725 ordered_bytes = offset + bytes - ordered_offset;
7726 ordered = NULL;
7727 }
7728 }
7729 }
7730
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)7731 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7732 struct bio *bio, u64 offset)
7733 {
7734 struct inode *inode = private_data;
7735
7736 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
7737 }
7738
btrfs_end_dio_bio(struct bio * bio)7739 static void btrfs_end_dio_bio(struct bio *bio)
7740 {
7741 struct btrfs_dio_private *dip = bio->bi_private;
7742 blk_status_t err = bio->bi_status;
7743
7744 if (err)
7745 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7746 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7747 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7748 bio->bi_opf,
7749 (unsigned long long)bio->bi_iter.bi_sector,
7750 bio->bi_iter.bi_size, err);
7751
7752 if (bio_op(bio) == REQ_OP_READ) {
7753 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7754 !err);
7755 }
7756
7757 if (err)
7758 dip->dio_bio->bi_status = err;
7759
7760 bio_put(bio);
7761 btrfs_dio_private_put(dip);
7762 }
7763
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)7764 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7765 struct inode *inode, u64 file_offset, int async_submit)
7766 {
7767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7768 struct btrfs_dio_private *dip = bio->bi_private;
7769 bool write = bio_op(bio) == REQ_OP_WRITE;
7770 blk_status_t ret;
7771
7772 /* Check btrfs_submit_bio_hook() for rules about async submit. */
7773 if (async_submit)
7774 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7775
7776 if (!write) {
7777 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7778 if (ret)
7779 goto err;
7780 }
7781
7782 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7783 goto map;
7784
7785 if (write && async_submit) {
7786 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7787 file_offset, inode,
7788 btrfs_submit_bio_start_direct_io);
7789 goto err;
7790 } else if (write) {
7791 /*
7792 * If we aren't doing async submit, calculate the csum of the
7793 * bio now.
7794 */
7795 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7796 if (ret)
7797 goto err;
7798 } else {
7799 u64 csum_offset;
7800
7801 csum_offset = file_offset - dip->logical_offset;
7802 csum_offset >>= inode->i_sb->s_blocksize_bits;
7803 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7804 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7805 }
7806 map:
7807 ret = btrfs_map_bio(fs_info, bio, 0);
7808 err:
7809 return ret;
7810 }
7811
7812 /*
7813 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7814 * or ordered extents whether or not we submit any bios.
7815 */
btrfs_create_dio_private(struct bio * dio_bio,struct inode * inode,loff_t file_offset)7816 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7817 struct inode *inode,
7818 loff_t file_offset)
7819 {
7820 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7821 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7822 size_t dip_size;
7823 struct btrfs_dio_private *dip;
7824
7825 dip_size = sizeof(*dip);
7826 if (!write && csum) {
7827 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7828 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7829 size_t nblocks;
7830
7831 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7832 dip_size += csum_size * nblocks;
7833 }
7834
7835 dip = kzalloc(dip_size, GFP_NOFS);
7836 if (!dip)
7837 return NULL;
7838
7839 dip->inode = inode;
7840 dip->logical_offset = file_offset;
7841 dip->bytes = dio_bio->bi_iter.bi_size;
7842 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7843 dip->dio_bio = dio_bio;
7844 refcount_set(&dip->refs, 1);
7845 return dip;
7846 }
7847
btrfs_submit_direct(struct inode * inode,struct iomap * iomap,struct bio * dio_bio,loff_t file_offset)7848 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
7849 struct bio *dio_bio, loff_t file_offset)
7850 {
7851 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7852 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7853 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7854 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7855 BTRFS_BLOCK_GROUP_RAID56_MASK);
7856 struct btrfs_dio_private *dip;
7857 struct bio *bio;
7858 u64 start_sector;
7859 int async_submit = 0;
7860 u64 submit_len;
7861 int clone_offset = 0;
7862 int clone_len;
7863 int ret;
7864 blk_status_t status;
7865 struct btrfs_io_geometry geom;
7866 struct btrfs_dio_data *dio_data = iomap->private;
7867
7868 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7869 if (!dip) {
7870 if (!write) {
7871 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7872 file_offset + dio_bio->bi_iter.bi_size - 1);
7873 }
7874 dio_bio->bi_status = BLK_STS_RESOURCE;
7875 bio_endio(dio_bio);
7876 return BLK_QC_T_NONE;
7877 }
7878
7879 if (!write && csum) {
7880 /*
7881 * Load the csums up front to reduce csum tree searches and
7882 * contention when submitting bios.
7883 */
7884 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7885 dip->csums);
7886 if (status != BLK_STS_OK)
7887 goto out_err;
7888 }
7889
7890 start_sector = dio_bio->bi_iter.bi_sector;
7891 submit_len = dio_bio->bi_iter.bi_size;
7892
7893 do {
7894 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7895 start_sector << 9, submit_len,
7896 &geom);
7897 if (ret) {
7898 status = errno_to_blk_status(ret);
7899 goto out_err;
7900 }
7901 ASSERT(geom.len <= INT_MAX);
7902
7903 clone_len = min_t(int, submit_len, geom.len);
7904
7905 /*
7906 * This will never fail as it's passing GPF_NOFS and
7907 * the allocation is backed by btrfs_bioset.
7908 */
7909 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7910 bio->bi_private = dip;
7911 bio->bi_end_io = btrfs_end_dio_bio;
7912 btrfs_io_bio(bio)->logical = file_offset;
7913
7914 ASSERT(submit_len >= clone_len);
7915 submit_len -= clone_len;
7916
7917 /*
7918 * Increase the count before we submit the bio so we know
7919 * the end IO handler won't happen before we increase the
7920 * count. Otherwise, the dip might get freed before we're
7921 * done setting it up.
7922 *
7923 * We transfer the initial reference to the last bio, so we
7924 * don't need to increment the reference count for the last one.
7925 */
7926 if (submit_len > 0) {
7927 refcount_inc(&dip->refs);
7928 /*
7929 * If we are submitting more than one bio, submit them
7930 * all asynchronously. The exception is RAID 5 or 6, as
7931 * asynchronous checksums make it difficult to collect
7932 * full stripe writes.
7933 */
7934 if (!raid56)
7935 async_submit = 1;
7936 }
7937
7938 status = btrfs_submit_dio_bio(bio, inode, file_offset,
7939 async_submit);
7940 if (status) {
7941 bio_put(bio);
7942 if (submit_len > 0)
7943 refcount_dec(&dip->refs);
7944 goto out_err;
7945 }
7946
7947 dio_data->submitted += clone_len;
7948 clone_offset += clone_len;
7949 start_sector += clone_len >> 9;
7950 file_offset += clone_len;
7951 } while (submit_len > 0);
7952 return BLK_QC_T_NONE;
7953
7954 out_err:
7955 dip->dio_bio->bi_status = status;
7956 btrfs_dio_private_put(dip);
7957 return BLK_QC_T_NONE;
7958 }
7959
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)7960 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7961 const struct iov_iter *iter, loff_t offset)
7962 {
7963 int seg;
7964 int i;
7965 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7966 ssize_t retval = -EINVAL;
7967
7968 if (offset & blocksize_mask)
7969 goto out;
7970
7971 if (iov_iter_alignment(iter) & blocksize_mask)
7972 goto out;
7973
7974 /* If this is a write we don't need to check anymore */
7975 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7976 return 0;
7977 /*
7978 * Check to make sure we don't have duplicate iov_base's in this
7979 * iovec, if so return EINVAL, otherwise we'll get csum errors
7980 * when reading back.
7981 */
7982 for (seg = 0; seg < iter->nr_segs; seg++) {
7983 for (i = seg + 1; i < iter->nr_segs; i++) {
7984 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7985 goto out;
7986 }
7987 }
7988 retval = 0;
7989 out:
7990 return retval;
7991 }
7992
btrfs_maybe_fsync_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)7993 static inline int btrfs_maybe_fsync_end_io(struct kiocb *iocb, ssize_t size,
7994 int error, unsigned flags)
7995 {
7996 /*
7997 * Now if we're still in the context of our submitter we know we can't
7998 * safely run generic_write_sync(), so clear our flag here so that the
7999 * caller knows to follow up with a sync.
8000 */
8001 if (current->journal_info == BTRFS_DIO_SYNC_STUB) {
8002 current->journal_info = NULL;
8003 return error;
8004 }
8005
8006 if (error)
8007 return error;
8008
8009 if (size) {
8010 iocb->ki_flags |= IOCB_DSYNC;
8011 return generic_write_sync(iocb, size);
8012 }
8013
8014 return 0;
8015 }
8016
8017 static const struct iomap_ops btrfs_dio_iomap_ops = {
8018 .iomap_begin = btrfs_dio_iomap_begin,
8019 .iomap_end = btrfs_dio_iomap_end,
8020 };
8021
8022 static const struct iomap_dio_ops btrfs_dio_ops = {
8023 .submit_io = btrfs_submit_direct,
8024 };
8025
8026 static const struct iomap_dio_ops btrfs_sync_dops = {
8027 .submit_io = btrfs_submit_direct,
8028 .end_io = btrfs_maybe_fsync_end_io,
8029 };
8030
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8031 ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8032 {
8033 struct file *file = iocb->ki_filp;
8034 struct inode *inode = file->f_mapping->host;
8035 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8036 struct extent_changeset *data_reserved = NULL;
8037 loff_t offset = iocb->ki_pos;
8038 size_t count = 0;
8039 bool relock = false;
8040 ssize_t ret;
8041
8042 if (check_direct_IO(fs_info, iter, offset)) {
8043 ASSERT(current->journal_info == NULL ||
8044 current->journal_info == BTRFS_DIO_SYNC_STUB);
8045 current->journal_info = NULL;
8046 return 0;
8047 }
8048
8049 count = iov_iter_count(iter);
8050 if (iov_iter_rw(iter) == WRITE) {
8051 /*
8052 * If the write DIO is beyond the EOF, we need update
8053 * the isize, but it is protected by i_mutex. So we can
8054 * not unlock the i_mutex at this case.
8055 */
8056 if (offset + count <= inode->i_size) {
8057 inode_unlock(inode);
8058 relock = true;
8059 }
8060 down_read(&BTRFS_I(inode)->dio_sem);
8061 }
8062
8063 /*
8064 * We have are actually a sync iocb, so we need our fancy endio to know
8065 * if we need to sync.
8066 */
8067 if (current->journal_info)
8068 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
8069 &btrfs_sync_dops, is_sync_kiocb(iocb));
8070 else
8071 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
8072 &btrfs_dio_ops, is_sync_kiocb(iocb));
8073
8074 if (ret == -ENOTBLK)
8075 ret = 0;
8076
8077 if (iov_iter_rw(iter) == WRITE)
8078 up_read(&BTRFS_I(inode)->dio_sem);
8079
8080 if (relock)
8081 inode_lock(inode);
8082
8083 extent_changeset_free(data_reserved);
8084 return ret;
8085 }
8086
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)8087 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8088 u64 start, u64 len)
8089 {
8090 int ret;
8091
8092 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8093 if (ret)
8094 return ret;
8095
8096 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8097 }
8098
btrfs_readpage(struct file * file,struct page * page)8099 int btrfs_readpage(struct file *file, struct page *page)
8100 {
8101 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8102 u64 start = page_offset(page);
8103 u64 end = start + PAGE_SIZE - 1;
8104 unsigned long bio_flags = 0;
8105 struct bio *bio = NULL;
8106 int ret;
8107
8108 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8109
8110 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8111 if (bio)
8112 ret = submit_one_bio(bio, 0, bio_flags);
8113 return ret;
8114 }
8115
btrfs_writepage(struct page * page,struct writeback_control * wbc)8116 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8117 {
8118 struct inode *inode = page->mapping->host;
8119 int ret;
8120
8121 if (current->flags & PF_MEMALLOC) {
8122 redirty_page_for_writepage(wbc, page);
8123 unlock_page(page);
8124 return 0;
8125 }
8126
8127 /*
8128 * If we are under memory pressure we will call this directly from the
8129 * VM, we need to make sure we have the inode referenced for the ordered
8130 * extent. If not just return like we didn't do anything.
8131 */
8132 if (!igrab(inode)) {
8133 redirty_page_for_writepage(wbc, page);
8134 return AOP_WRITEPAGE_ACTIVATE;
8135 }
8136 ret = extent_write_full_page(page, wbc);
8137 btrfs_add_delayed_iput(inode);
8138 return ret;
8139 }
8140
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8141 static int btrfs_writepages(struct address_space *mapping,
8142 struct writeback_control *wbc)
8143 {
8144 return extent_writepages(mapping, wbc);
8145 }
8146
btrfs_readahead(struct readahead_control * rac)8147 static void btrfs_readahead(struct readahead_control *rac)
8148 {
8149 extent_readahead(rac);
8150 }
8151
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8152 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8153 {
8154 int ret = try_release_extent_mapping(page, gfp_flags);
8155 if (ret == 1)
8156 detach_page_private(page);
8157 return ret;
8158 }
8159
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8160 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8161 {
8162 if (PageWriteback(page) || PageDirty(page))
8163 return 0;
8164 return __btrfs_releasepage(page, gfp_flags);
8165 }
8166
8167 #ifdef CONFIG_MIGRATION
btrfs_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)8168 static int btrfs_migratepage(struct address_space *mapping,
8169 struct page *newpage, struct page *page,
8170 enum migrate_mode mode)
8171 {
8172 int ret;
8173
8174 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8175 if (ret != MIGRATEPAGE_SUCCESS)
8176 return ret;
8177
8178 if (page_has_private(page))
8179 attach_page_private(newpage, detach_page_private(page));
8180
8181 if (PagePrivate2(page)) {
8182 ClearPagePrivate2(page);
8183 SetPagePrivate2(newpage);
8184 }
8185
8186 if (mode != MIGRATE_SYNC_NO_COPY)
8187 migrate_page_copy(newpage, page);
8188 else
8189 migrate_page_states(newpage, page);
8190 return MIGRATEPAGE_SUCCESS;
8191 }
8192 #endif
8193
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8194 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8195 unsigned int length)
8196 {
8197 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8198 struct extent_io_tree *tree = &inode->io_tree;
8199 struct btrfs_ordered_extent *ordered;
8200 struct extent_state *cached_state = NULL;
8201 u64 page_start = page_offset(page);
8202 u64 page_end = page_start + PAGE_SIZE - 1;
8203 u64 start;
8204 u64 end;
8205 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8206
8207 /*
8208 * we have the page locked, so new writeback can't start,
8209 * and the dirty bit won't be cleared while we are here.
8210 *
8211 * Wait for IO on this page so that we can safely clear
8212 * the PagePrivate2 bit and do ordered accounting
8213 */
8214 wait_on_page_writeback(page);
8215
8216 /*
8217 * For subpage case, we have call sites like
8218 * btrfs_punch_hole_lock_range() which passes range not aligned to
8219 * sectorsize.
8220 * If the range doesn't cover the full page, we don't need to and
8221 * shouldn't clear page extent mapped, as page->private can still
8222 * record subpage dirty bits for other part of the range.
8223 *
8224 * For cases that can invalidate the full even the range doesn't
8225 * cover the full page, like invalidating the last page, we're
8226 * still safe to wait for ordered extent to finish.
8227 */
8228 if (!(offset == 0 && length == PAGE_SIZE)) {
8229 btrfs_releasepage(page, GFP_NOFS);
8230 return;
8231 }
8232
8233 if (!inode_evicting)
8234 lock_extent_bits(tree, page_start, page_end, &cached_state);
8235
8236 start = page_start;
8237 again:
8238 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8239 if (ordered) {
8240 end = min(page_end,
8241 ordered->file_offset + ordered->num_bytes - 1);
8242 /*
8243 * IO on this page will never be started, so we need
8244 * to account for any ordered extents now
8245 */
8246 if (!inode_evicting)
8247 clear_extent_bit(tree, start, end,
8248 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8249 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8250 EXTENT_DEFRAG, 1, 0, &cached_state);
8251 /*
8252 * whoever cleared the private bit is responsible
8253 * for the finish_ordered_io
8254 */
8255 if (TestClearPagePrivate2(page)) {
8256 struct btrfs_ordered_inode_tree *tree;
8257 u64 new_len;
8258
8259 tree = &inode->ordered_tree;
8260
8261 spin_lock_irq(&tree->lock);
8262 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8263 new_len = start - ordered->file_offset;
8264 if (new_len < ordered->truncated_len)
8265 ordered->truncated_len = new_len;
8266 spin_unlock_irq(&tree->lock);
8267
8268 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8269 start,
8270 end - start + 1, 1))
8271 btrfs_finish_ordered_io(ordered);
8272 }
8273 btrfs_put_ordered_extent(ordered);
8274 if (!inode_evicting) {
8275 cached_state = NULL;
8276 lock_extent_bits(tree, start, end,
8277 &cached_state);
8278 }
8279
8280 start = end + 1;
8281 if (start < page_end)
8282 goto again;
8283 }
8284
8285 /*
8286 * Qgroup reserved space handler
8287 * Page here will be either
8288 * 1) Already written to disk or ordered extent already submitted
8289 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8290 * Qgroup will be handled by its qgroup_record then.
8291 * btrfs_qgroup_free_data() call will do nothing here.
8292 *
8293 * 2) Not written to disk yet
8294 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8295 * bit of its io_tree, and free the qgroup reserved data space.
8296 * Since the IO will never happen for this page.
8297 */
8298 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8299 if (!inode_evicting) {
8300 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8301 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8302 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8303 &cached_state);
8304
8305 __btrfs_releasepage(page, GFP_NOFS);
8306 }
8307
8308 ClearPageChecked(page);
8309 detach_page_private(page);
8310 }
8311
8312 /*
8313 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8314 * called from a page fault handler when a page is first dirtied. Hence we must
8315 * be careful to check for EOF conditions here. We set the page up correctly
8316 * for a written page which means we get ENOSPC checking when writing into
8317 * holes and correct delalloc and unwritten extent mapping on filesystems that
8318 * support these features.
8319 *
8320 * We are not allowed to take the i_mutex here so we have to play games to
8321 * protect against truncate races as the page could now be beyond EOF. Because
8322 * truncate_setsize() writes the inode size before removing pages, once we have
8323 * the page lock we can determine safely if the page is beyond EOF. If it is not
8324 * beyond EOF, then the page is guaranteed safe against truncation until we
8325 * unlock the page.
8326 */
btrfs_page_mkwrite(struct vm_fault * vmf)8327 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8328 {
8329 struct page *page = vmf->page;
8330 struct inode *inode = file_inode(vmf->vma->vm_file);
8331 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8332 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8333 struct btrfs_ordered_extent *ordered;
8334 struct extent_state *cached_state = NULL;
8335 struct extent_changeset *data_reserved = NULL;
8336 char *kaddr;
8337 unsigned long zero_start;
8338 loff_t size;
8339 vm_fault_t ret;
8340 int ret2;
8341 int reserved = 0;
8342 u64 reserved_space;
8343 u64 page_start;
8344 u64 page_end;
8345 u64 end;
8346
8347 reserved_space = PAGE_SIZE;
8348
8349 sb_start_pagefault(inode->i_sb);
8350 page_start = page_offset(page);
8351 page_end = page_start + PAGE_SIZE - 1;
8352 end = page_end;
8353
8354 /*
8355 * Reserving delalloc space after obtaining the page lock can lead to
8356 * deadlock. For example, if a dirty page is locked by this function
8357 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8358 * dirty page write out, then the btrfs_writepage() function could
8359 * end up waiting indefinitely to get a lock on the page currently
8360 * being processed by btrfs_page_mkwrite() function.
8361 */
8362 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8363 page_start, reserved_space);
8364 if (!ret2) {
8365 ret2 = file_update_time(vmf->vma->vm_file);
8366 reserved = 1;
8367 }
8368 if (ret2) {
8369 ret = vmf_error(ret2);
8370 if (reserved)
8371 goto out;
8372 goto out_noreserve;
8373 }
8374
8375 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8376 again:
8377 lock_page(page);
8378 size = i_size_read(inode);
8379
8380 if ((page->mapping != inode->i_mapping) ||
8381 (page_start >= size)) {
8382 /* page got truncated out from underneath us */
8383 goto out_unlock;
8384 }
8385 wait_on_page_writeback(page);
8386
8387 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8388 set_page_extent_mapped(page);
8389
8390 /*
8391 * we can't set the delalloc bits if there are pending ordered
8392 * extents. Drop our locks and wait for them to finish
8393 */
8394 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8395 PAGE_SIZE);
8396 if (ordered) {
8397 unlock_extent_cached(io_tree, page_start, page_end,
8398 &cached_state);
8399 unlock_page(page);
8400 btrfs_start_ordered_extent(ordered, 1);
8401 btrfs_put_ordered_extent(ordered);
8402 goto again;
8403 }
8404
8405 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8406 reserved_space = round_up(size - page_start,
8407 fs_info->sectorsize);
8408 if (reserved_space < PAGE_SIZE) {
8409 end = page_start + reserved_space - 1;
8410 btrfs_delalloc_release_space(BTRFS_I(inode),
8411 data_reserved, page_start,
8412 PAGE_SIZE - reserved_space, true);
8413 }
8414 }
8415
8416 /*
8417 * page_mkwrite gets called when the page is firstly dirtied after it's
8418 * faulted in, but write(2) could also dirty a page and set delalloc
8419 * bits, thus in this case for space account reason, we still need to
8420 * clear any delalloc bits within this page range since we have to
8421 * reserve data&meta space before lock_page() (see above comments).
8422 */
8423 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8424 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8425 EXTENT_DEFRAG, 0, 0, &cached_state);
8426
8427 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8428 &cached_state);
8429 if (ret2) {
8430 unlock_extent_cached(io_tree, page_start, page_end,
8431 &cached_state);
8432 ret = VM_FAULT_SIGBUS;
8433 goto out_unlock;
8434 }
8435
8436 /* page is wholly or partially inside EOF */
8437 if (page_start + PAGE_SIZE > size)
8438 zero_start = offset_in_page(size);
8439 else
8440 zero_start = PAGE_SIZE;
8441
8442 if (zero_start != PAGE_SIZE) {
8443 kaddr = kmap(page);
8444 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8445 flush_dcache_page(page);
8446 kunmap(page);
8447 }
8448 ClearPageChecked(page);
8449 set_page_dirty(page);
8450 SetPageUptodate(page);
8451
8452 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8453
8454 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8455
8456 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8457 sb_end_pagefault(inode->i_sb);
8458 extent_changeset_free(data_reserved);
8459 return VM_FAULT_LOCKED;
8460
8461 out_unlock:
8462 unlock_page(page);
8463 out:
8464 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8465 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8466 reserved_space, (ret != 0));
8467 out_noreserve:
8468 sb_end_pagefault(inode->i_sb);
8469 extent_changeset_free(data_reserved);
8470 return ret;
8471 }
8472
btrfs_truncate(struct inode * inode,bool skip_writeback)8473 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8474 {
8475 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8476 struct btrfs_root *root = BTRFS_I(inode)->root;
8477 struct btrfs_block_rsv *rsv;
8478 int ret;
8479 struct btrfs_trans_handle *trans;
8480 u64 mask = fs_info->sectorsize - 1;
8481 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8482
8483 if (!skip_writeback) {
8484 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8485 (u64)-1);
8486 if (ret)
8487 return ret;
8488 }
8489
8490 /*
8491 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8492 * things going on here:
8493 *
8494 * 1) We need to reserve space to update our inode.
8495 *
8496 * 2) We need to have something to cache all the space that is going to
8497 * be free'd up by the truncate operation, but also have some slack
8498 * space reserved in case it uses space during the truncate (thank you
8499 * very much snapshotting).
8500 *
8501 * And we need these to be separate. The fact is we can use a lot of
8502 * space doing the truncate, and we have no earthly idea how much space
8503 * we will use, so we need the truncate reservation to be separate so it
8504 * doesn't end up using space reserved for updating the inode. We also
8505 * need to be able to stop the transaction and start a new one, which
8506 * means we need to be able to update the inode several times, and we
8507 * have no idea of knowing how many times that will be, so we can't just
8508 * reserve 1 item for the entirety of the operation, so that has to be
8509 * done separately as well.
8510 *
8511 * So that leaves us with
8512 *
8513 * 1) rsv - for the truncate reservation, which we will steal from the
8514 * transaction reservation.
8515 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8516 * updating the inode.
8517 */
8518 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8519 if (!rsv)
8520 return -ENOMEM;
8521 rsv->size = min_size;
8522 rsv->failfast = 1;
8523
8524 /*
8525 * 1 for the truncate slack space
8526 * 1 for updating the inode.
8527 */
8528 trans = btrfs_start_transaction(root, 2);
8529 if (IS_ERR(trans)) {
8530 ret = PTR_ERR(trans);
8531 goto out;
8532 }
8533
8534 /* Migrate the slack space for the truncate to our reserve */
8535 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8536 min_size, false);
8537 BUG_ON(ret);
8538
8539 /*
8540 * So if we truncate and then write and fsync we normally would just
8541 * write the extents that changed, which is a problem if we need to
8542 * first truncate that entire inode. So set this flag so we write out
8543 * all of the extents in the inode to the sync log so we're completely
8544 * safe.
8545 */
8546 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8547 trans->block_rsv = rsv;
8548
8549 while (1) {
8550 ret = btrfs_truncate_inode_items(trans, root, inode,
8551 inode->i_size,
8552 BTRFS_EXTENT_DATA_KEY);
8553 trans->block_rsv = &fs_info->trans_block_rsv;
8554 if (ret != -ENOSPC && ret != -EAGAIN)
8555 break;
8556
8557 ret = btrfs_update_inode(trans, root, inode);
8558 if (ret)
8559 break;
8560
8561 btrfs_end_transaction(trans);
8562 btrfs_btree_balance_dirty(fs_info);
8563
8564 trans = btrfs_start_transaction(root, 2);
8565 if (IS_ERR(trans)) {
8566 ret = PTR_ERR(trans);
8567 trans = NULL;
8568 break;
8569 }
8570
8571 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8572 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8573 rsv, min_size, false);
8574 BUG_ON(ret); /* shouldn't happen */
8575 trans->block_rsv = rsv;
8576 }
8577
8578 /*
8579 * We can't call btrfs_truncate_block inside a trans handle as we could
8580 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8581 * we've truncated everything except the last little bit, and can do
8582 * btrfs_truncate_block and then update the disk_i_size.
8583 */
8584 if (ret == NEED_TRUNCATE_BLOCK) {
8585 btrfs_end_transaction(trans);
8586 btrfs_btree_balance_dirty(fs_info);
8587
8588 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8589 if (ret)
8590 goto out;
8591 trans = btrfs_start_transaction(root, 1);
8592 if (IS_ERR(trans)) {
8593 ret = PTR_ERR(trans);
8594 goto out;
8595 }
8596 btrfs_inode_safe_disk_i_size_write(inode, 0);
8597 }
8598
8599 if (trans) {
8600 int ret2;
8601
8602 trans->block_rsv = &fs_info->trans_block_rsv;
8603 ret2 = btrfs_update_inode(trans, root, inode);
8604 if (ret2 && !ret)
8605 ret = ret2;
8606
8607 ret2 = btrfs_end_transaction(trans);
8608 if (ret2 && !ret)
8609 ret = ret2;
8610 btrfs_btree_balance_dirty(fs_info);
8611 }
8612 out:
8613 btrfs_free_block_rsv(fs_info, rsv);
8614
8615 return ret;
8616 }
8617
8618 /*
8619 * create a new subvolume directory/inode (helper for the ioctl).
8620 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)8621 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8622 struct btrfs_root *new_root,
8623 struct btrfs_root *parent_root,
8624 u64 new_dirid)
8625 {
8626 struct inode *inode;
8627 int err;
8628 u64 index = 0;
8629
8630 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8631 new_dirid, new_dirid,
8632 S_IFDIR | (~current_umask() & S_IRWXUGO),
8633 &index);
8634 if (IS_ERR(inode))
8635 return PTR_ERR(inode);
8636 inode->i_op = &btrfs_dir_inode_operations;
8637 inode->i_fop = &btrfs_dir_file_operations;
8638
8639 set_nlink(inode, 1);
8640 btrfs_i_size_write(BTRFS_I(inode), 0);
8641 unlock_new_inode(inode);
8642
8643 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8644 if (err)
8645 btrfs_err(new_root->fs_info,
8646 "error inheriting subvolume %llu properties: %d",
8647 new_root->root_key.objectid, err);
8648
8649 err = btrfs_update_inode(trans, new_root, inode);
8650
8651 iput(inode);
8652 return err;
8653 }
8654
btrfs_alloc_inode(struct super_block * sb)8655 struct inode *btrfs_alloc_inode(struct super_block *sb)
8656 {
8657 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8658 struct btrfs_inode *ei;
8659 struct inode *inode;
8660
8661 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8662 if (!ei)
8663 return NULL;
8664
8665 ei->root = NULL;
8666 ei->generation = 0;
8667 ei->last_trans = 0;
8668 ei->last_sub_trans = 0;
8669 ei->logged_trans = 0;
8670 ei->delalloc_bytes = 0;
8671 ei->new_delalloc_bytes = 0;
8672 ei->defrag_bytes = 0;
8673 ei->disk_i_size = 0;
8674 ei->flags = 0;
8675 ei->csum_bytes = 0;
8676 ei->index_cnt = (u64)-1;
8677 ei->dir_index = 0;
8678 ei->last_unlink_trans = 0;
8679 ei->last_reflink_trans = 0;
8680 ei->last_log_commit = 0;
8681
8682 spin_lock_init(&ei->lock);
8683 ei->outstanding_extents = 0;
8684 if (sb->s_magic != BTRFS_TEST_MAGIC)
8685 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8686 BTRFS_BLOCK_RSV_DELALLOC);
8687 ei->runtime_flags = 0;
8688 ei->prop_compress = BTRFS_COMPRESS_NONE;
8689 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8690
8691 ei->delayed_node = NULL;
8692
8693 ei->i_otime.tv_sec = 0;
8694 ei->i_otime.tv_nsec = 0;
8695
8696 inode = &ei->vfs_inode;
8697 extent_map_tree_init(&ei->extent_tree);
8698 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8699 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8700 IO_TREE_INODE_IO_FAILURE, inode);
8701 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8702 IO_TREE_INODE_FILE_EXTENT, inode);
8703 ei->io_tree.track_uptodate = true;
8704 ei->io_failure_tree.track_uptodate = true;
8705 atomic_set(&ei->sync_writers, 0);
8706 mutex_init(&ei->log_mutex);
8707 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8708 INIT_LIST_HEAD(&ei->delalloc_inodes);
8709 INIT_LIST_HEAD(&ei->delayed_iput);
8710 RB_CLEAR_NODE(&ei->rb_node);
8711 init_rwsem(&ei->dio_sem);
8712
8713 return inode;
8714 }
8715
8716 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)8717 void btrfs_test_destroy_inode(struct inode *inode)
8718 {
8719 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8720 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8721 }
8722 #endif
8723
btrfs_free_inode(struct inode * inode)8724 void btrfs_free_inode(struct inode *inode)
8725 {
8726 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8727 }
8728
btrfs_destroy_inode(struct inode * vfs_inode)8729 void btrfs_destroy_inode(struct inode *vfs_inode)
8730 {
8731 struct btrfs_ordered_extent *ordered;
8732 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8733 struct btrfs_root *root = inode->root;
8734
8735 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8736 WARN_ON(vfs_inode->i_data.nrpages);
8737 WARN_ON(inode->block_rsv.reserved);
8738 WARN_ON(inode->block_rsv.size);
8739 WARN_ON(inode->outstanding_extents);
8740 WARN_ON(inode->delalloc_bytes);
8741 WARN_ON(inode->new_delalloc_bytes);
8742 WARN_ON(inode->csum_bytes);
8743 WARN_ON(inode->defrag_bytes);
8744
8745 /*
8746 * This can happen where we create an inode, but somebody else also
8747 * created the same inode and we need to destroy the one we already
8748 * created.
8749 */
8750 if (!root)
8751 return;
8752
8753 while (1) {
8754 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8755 if (!ordered)
8756 break;
8757 else {
8758 btrfs_err(root->fs_info,
8759 "found ordered extent %llu %llu on inode cleanup",
8760 ordered->file_offset, ordered->num_bytes);
8761 btrfs_remove_ordered_extent(inode, ordered);
8762 btrfs_put_ordered_extent(ordered);
8763 btrfs_put_ordered_extent(ordered);
8764 }
8765 }
8766 btrfs_qgroup_check_reserved_leak(inode);
8767 inode_tree_del(inode);
8768 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8769 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8770 btrfs_put_root(inode->root);
8771 }
8772
btrfs_drop_inode(struct inode * inode)8773 int btrfs_drop_inode(struct inode *inode)
8774 {
8775 struct btrfs_root *root = BTRFS_I(inode)->root;
8776
8777 if (root == NULL)
8778 return 1;
8779
8780 /* the snap/subvol tree is on deleting */
8781 if (btrfs_root_refs(&root->root_item) == 0)
8782 return 1;
8783 else
8784 return generic_drop_inode(inode);
8785 }
8786
init_once(void * foo)8787 static void init_once(void *foo)
8788 {
8789 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8790
8791 inode_init_once(&ei->vfs_inode);
8792 }
8793
btrfs_destroy_cachep(void)8794 void __cold btrfs_destroy_cachep(void)
8795 {
8796 /*
8797 * Make sure all delayed rcu free inodes are flushed before we
8798 * destroy cache.
8799 */
8800 rcu_barrier();
8801 kmem_cache_destroy(btrfs_inode_cachep);
8802 kmem_cache_destroy(btrfs_trans_handle_cachep);
8803 kmem_cache_destroy(btrfs_path_cachep);
8804 kmem_cache_destroy(btrfs_free_space_cachep);
8805 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8806 }
8807
btrfs_init_cachep(void)8808 int __init btrfs_init_cachep(void)
8809 {
8810 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8811 sizeof(struct btrfs_inode), 0,
8812 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8813 init_once);
8814 if (!btrfs_inode_cachep)
8815 goto fail;
8816
8817 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8818 sizeof(struct btrfs_trans_handle), 0,
8819 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8820 if (!btrfs_trans_handle_cachep)
8821 goto fail;
8822
8823 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8824 sizeof(struct btrfs_path), 0,
8825 SLAB_MEM_SPREAD, NULL);
8826 if (!btrfs_path_cachep)
8827 goto fail;
8828
8829 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8830 sizeof(struct btrfs_free_space), 0,
8831 SLAB_MEM_SPREAD, NULL);
8832 if (!btrfs_free_space_cachep)
8833 goto fail;
8834
8835 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8836 PAGE_SIZE, PAGE_SIZE,
8837 SLAB_MEM_SPREAD, NULL);
8838 if (!btrfs_free_space_bitmap_cachep)
8839 goto fail;
8840
8841 return 0;
8842 fail:
8843 btrfs_destroy_cachep();
8844 return -ENOMEM;
8845 }
8846
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8847 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8848 u32 request_mask, unsigned int flags)
8849 {
8850 u64 delalloc_bytes;
8851 struct inode *inode = d_inode(path->dentry);
8852 u32 blocksize = inode->i_sb->s_blocksize;
8853 u32 bi_flags = BTRFS_I(inode)->flags;
8854
8855 stat->result_mask |= STATX_BTIME;
8856 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8857 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8858 if (bi_flags & BTRFS_INODE_APPEND)
8859 stat->attributes |= STATX_ATTR_APPEND;
8860 if (bi_flags & BTRFS_INODE_COMPRESS)
8861 stat->attributes |= STATX_ATTR_COMPRESSED;
8862 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8863 stat->attributes |= STATX_ATTR_IMMUTABLE;
8864 if (bi_flags & BTRFS_INODE_NODUMP)
8865 stat->attributes |= STATX_ATTR_NODUMP;
8866
8867 stat->attributes_mask |= (STATX_ATTR_APPEND |
8868 STATX_ATTR_COMPRESSED |
8869 STATX_ATTR_IMMUTABLE |
8870 STATX_ATTR_NODUMP);
8871
8872 generic_fillattr(inode, stat);
8873 stat->dev = BTRFS_I(inode)->root->anon_dev;
8874
8875 spin_lock(&BTRFS_I(inode)->lock);
8876 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8877 spin_unlock(&BTRFS_I(inode)->lock);
8878 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8879 ALIGN(delalloc_bytes, blocksize)) >> 9;
8880 return 0;
8881 }
8882
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8883 static int btrfs_rename_exchange(struct inode *old_dir,
8884 struct dentry *old_dentry,
8885 struct inode *new_dir,
8886 struct dentry *new_dentry)
8887 {
8888 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8889 struct btrfs_trans_handle *trans;
8890 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8891 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8892 struct inode *new_inode = new_dentry->d_inode;
8893 struct inode *old_inode = old_dentry->d_inode;
8894 struct timespec64 ctime = current_time(old_inode);
8895 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8896 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8897 u64 old_idx = 0;
8898 u64 new_idx = 0;
8899 int ret;
8900 int ret2;
8901 bool root_log_pinned = false;
8902 bool dest_log_pinned = false;
8903 bool need_abort = false;
8904
8905 /*
8906 * For non-subvolumes allow exchange only within one subvolume, in the
8907 * same inode namespace. Two subvolumes (represented as directory) can
8908 * be exchanged as they're a logical link and have a fixed inode number.
8909 */
8910 if (root != dest &&
8911 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8912 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8913 return -EXDEV;
8914
8915 /* close the race window with snapshot create/destroy ioctl */
8916 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8917 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8918 down_read(&fs_info->subvol_sem);
8919
8920 /*
8921 * We want to reserve the absolute worst case amount of items. So if
8922 * both inodes are subvols and we need to unlink them then that would
8923 * require 4 item modifications, but if they are both normal inodes it
8924 * would require 5 item modifications, so we'll assume their normal
8925 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8926 * should cover the worst case number of items we'll modify.
8927 */
8928 trans = btrfs_start_transaction(root, 12);
8929 if (IS_ERR(trans)) {
8930 ret = PTR_ERR(trans);
8931 goto out_notrans;
8932 }
8933
8934 if (dest != root)
8935 btrfs_record_root_in_trans(trans, dest);
8936
8937 /*
8938 * We need to find a free sequence number both in the source and
8939 * in the destination directory for the exchange.
8940 */
8941 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8942 if (ret)
8943 goto out_fail;
8944 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8945 if (ret)
8946 goto out_fail;
8947
8948 BTRFS_I(old_inode)->dir_index = 0ULL;
8949 BTRFS_I(new_inode)->dir_index = 0ULL;
8950
8951 /* Reference for the source. */
8952 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8953 /* force full log commit if subvolume involved. */
8954 btrfs_set_log_full_commit(trans);
8955 } else {
8956 btrfs_pin_log_trans(root);
8957 root_log_pinned = true;
8958 ret = btrfs_insert_inode_ref(trans, dest,
8959 new_dentry->d_name.name,
8960 new_dentry->d_name.len,
8961 old_ino,
8962 btrfs_ino(BTRFS_I(new_dir)),
8963 old_idx);
8964 if (ret)
8965 goto out_fail;
8966 need_abort = true;
8967 }
8968
8969 /* And now for the dest. */
8970 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8971 /* force full log commit if subvolume involved. */
8972 btrfs_set_log_full_commit(trans);
8973 } else {
8974 btrfs_pin_log_trans(dest);
8975 dest_log_pinned = true;
8976 ret = btrfs_insert_inode_ref(trans, root,
8977 old_dentry->d_name.name,
8978 old_dentry->d_name.len,
8979 new_ino,
8980 btrfs_ino(BTRFS_I(old_dir)),
8981 new_idx);
8982 if (ret) {
8983 if (need_abort)
8984 btrfs_abort_transaction(trans, ret);
8985 goto out_fail;
8986 }
8987 }
8988
8989 /* Update inode version and ctime/mtime. */
8990 inode_inc_iversion(old_dir);
8991 inode_inc_iversion(new_dir);
8992 inode_inc_iversion(old_inode);
8993 inode_inc_iversion(new_inode);
8994 old_dir->i_ctime = old_dir->i_mtime = ctime;
8995 new_dir->i_ctime = new_dir->i_mtime = ctime;
8996 old_inode->i_ctime = ctime;
8997 new_inode->i_ctime = ctime;
8998
8999 if (old_dentry->d_parent != new_dentry->d_parent) {
9000 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9001 BTRFS_I(old_inode), 1);
9002 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9003 BTRFS_I(new_inode), 1);
9004 }
9005
9006 /* src is a subvolume */
9007 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9008 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9009 } else { /* src is an inode */
9010 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9011 BTRFS_I(old_dentry->d_inode),
9012 old_dentry->d_name.name,
9013 old_dentry->d_name.len);
9014 if (!ret)
9015 ret = btrfs_update_inode(trans, root, old_inode);
9016 }
9017 if (ret) {
9018 btrfs_abort_transaction(trans, ret);
9019 goto out_fail;
9020 }
9021
9022 /* dest is a subvolume */
9023 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9024 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9025 } else { /* dest is an inode */
9026 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9027 BTRFS_I(new_dentry->d_inode),
9028 new_dentry->d_name.name,
9029 new_dentry->d_name.len);
9030 if (!ret)
9031 ret = btrfs_update_inode(trans, dest, new_inode);
9032 }
9033 if (ret) {
9034 btrfs_abort_transaction(trans, ret);
9035 goto out_fail;
9036 }
9037
9038 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9039 new_dentry->d_name.name,
9040 new_dentry->d_name.len, 0, old_idx);
9041 if (ret) {
9042 btrfs_abort_transaction(trans, ret);
9043 goto out_fail;
9044 }
9045
9046 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9047 old_dentry->d_name.name,
9048 old_dentry->d_name.len, 0, new_idx);
9049 if (ret) {
9050 btrfs_abort_transaction(trans, ret);
9051 goto out_fail;
9052 }
9053
9054 if (old_inode->i_nlink == 1)
9055 BTRFS_I(old_inode)->dir_index = old_idx;
9056 if (new_inode->i_nlink == 1)
9057 BTRFS_I(new_inode)->dir_index = new_idx;
9058
9059 if (root_log_pinned) {
9060 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9061 new_dentry->d_parent);
9062 btrfs_end_log_trans(root);
9063 root_log_pinned = false;
9064 }
9065 if (dest_log_pinned) {
9066 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9067 old_dentry->d_parent);
9068 btrfs_end_log_trans(dest);
9069 dest_log_pinned = false;
9070 }
9071 out_fail:
9072 /*
9073 * If we have pinned a log and an error happened, we unpin tasks
9074 * trying to sync the log and force them to fallback to a transaction
9075 * commit if the log currently contains any of the inodes involved in
9076 * this rename operation (to ensure we do not persist a log with an
9077 * inconsistent state for any of these inodes or leading to any
9078 * inconsistencies when replayed). If the transaction was aborted, the
9079 * abortion reason is propagated to userspace when attempting to commit
9080 * the transaction. If the log does not contain any of these inodes, we
9081 * allow the tasks to sync it.
9082 */
9083 if (ret && (root_log_pinned || dest_log_pinned)) {
9084 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9085 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9086 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9087 (new_inode &&
9088 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9089 btrfs_set_log_full_commit(trans);
9090
9091 if (root_log_pinned) {
9092 btrfs_end_log_trans(root);
9093 root_log_pinned = false;
9094 }
9095 if (dest_log_pinned) {
9096 btrfs_end_log_trans(dest);
9097 dest_log_pinned = false;
9098 }
9099 }
9100 ret2 = btrfs_end_transaction(trans);
9101 ret = ret ? ret : ret2;
9102 out_notrans:
9103 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9104 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9105 up_read(&fs_info->subvol_sem);
9106
9107 return ret;
9108 }
9109
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9110 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9111 struct btrfs_root *root,
9112 struct inode *dir,
9113 struct dentry *dentry)
9114 {
9115 int ret;
9116 struct inode *inode;
9117 u64 objectid;
9118 u64 index;
9119
9120 ret = btrfs_find_free_ino(root, &objectid);
9121 if (ret)
9122 return ret;
9123
9124 inode = btrfs_new_inode(trans, root, dir,
9125 dentry->d_name.name,
9126 dentry->d_name.len,
9127 btrfs_ino(BTRFS_I(dir)),
9128 objectid,
9129 S_IFCHR | WHITEOUT_MODE,
9130 &index);
9131
9132 if (IS_ERR(inode)) {
9133 ret = PTR_ERR(inode);
9134 return ret;
9135 }
9136
9137 inode->i_op = &btrfs_special_inode_operations;
9138 init_special_inode(inode, inode->i_mode,
9139 WHITEOUT_DEV);
9140
9141 ret = btrfs_init_inode_security(trans, inode, dir,
9142 &dentry->d_name);
9143 if (ret)
9144 goto out;
9145
9146 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9147 BTRFS_I(inode), 0, index);
9148 if (ret)
9149 goto out;
9150
9151 ret = btrfs_update_inode(trans, root, inode);
9152 out:
9153 unlock_new_inode(inode);
9154 if (ret)
9155 inode_dec_link_count(inode);
9156 iput(inode);
9157
9158 return ret;
9159 }
9160
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9161 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9162 struct inode *new_dir, struct dentry *new_dentry,
9163 unsigned int flags)
9164 {
9165 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9166 struct btrfs_trans_handle *trans;
9167 unsigned int trans_num_items;
9168 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9169 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9170 struct inode *new_inode = d_inode(new_dentry);
9171 struct inode *old_inode = d_inode(old_dentry);
9172 u64 index = 0;
9173 int ret;
9174 int ret2;
9175 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9176 bool log_pinned = false;
9177
9178 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9179 return -EPERM;
9180
9181 /* we only allow rename subvolume link between subvolumes */
9182 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9183 return -EXDEV;
9184
9185 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9186 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9187 return -ENOTEMPTY;
9188
9189 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9190 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9191 return -ENOTEMPTY;
9192
9193
9194 /* check for collisions, even if the name isn't there */
9195 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9196 new_dentry->d_name.name,
9197 new_dentry->d_name.len);
9198
9199 if (ret) {
9200 if (ret == -EEXIST) {
9201 /* we shouldn't get
9202 * eexist without a new_inode */
9203 if (WARN_ON(!new_inode)) {
9204 return ret;
9205 }
9206 } else {
9207 /* maybe -EOVERFLOW */
9208 return ret;
9209 }
9210 }
9211 ret = 0;
9212
9213 /*
9214 * we're using rename to replace one file with another. Start IO on it
9215 * now so we don't add too much work to the end of the transaction
9216 */
9217 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9218 filemap_flush(old_inode->i_mapping);
9219
9220 /* close the racy window with snapshot create/destroy ioctl */
9221 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9222 down_read(&fs_info->subvol_sem);
9223 /*
9224 * We want to reserve the absolute worst case amount of items. So if
9225 * both inodes are subvols and we need to unlink them then that would
9226 * require 4 item modifications, but if they are both normal inodes it
9227 * would require 5 item modifications, so we'll assume they are normal
9228 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9229 * should cover the worst case number of items we'll modify.
9230 * If our rename has the whiteout flag, we need more 5 units for the
9231 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9232 * when selinux is enabled).
9233 */
9234 trans_num_items = 11;
9235 if (flags & RENAME_WHITEOUT)
9236 trans_num_items += 5;
9237 trans = btrfs_start_transaction(root, trans_num_items);
9238 if (IS_ERR(trans)) {
9239 ret = PTR_ERR(trans);
9240 goto out_notrans;
9241 }
9242
9243 if (dest != root)
9244 btrfs_record_root_in_trans(trans, dest);
9245
9246 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9247 if (ret)
9248 goto out_fail;
9249
9250 BTRFS_I(old_inode)->dir_index = 0ULL;
9251 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9252 /* force full log commit if subvolume involved. */
9253 btrfs_set_log_full_commit(trans);
9254 } else {
9255 btrfs_pin_log_trans(root);
9256 log_pinned = true;
9257 ret = btrfs_insert_inode_ref(trans, dest,
9258 new_dentry->d_name.name,
9259 new_dentry->d_name.len,
9260 old_ino,
9261 btrfs_ino(BTRFS_I(new_dir)), index);
9262 if (ret)
9263 goto out_fail;
9264 }
9265
9266 inode_inc_iversion(old_dir);
9267 inode_inc_iversion(new_dir);
9268 inode_inc_iversion(old_inode);
9269 old_dir->i_ctime = old_dir->i_mtime =
9270 new_dir->i_ctime = new_dir->i_mtime =
9271 old_inode->i_ctime = current_time(old_dir);
9272
9273 if (old_dentry->d_parent != new_dentry->d_parent)
9274 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9275 BTRFS_I(old_inode), 1);
9276
9277 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9278 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9279 } else {
9280 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9281 BTRFS_I(d_inode(old_dentry)),
9282 old_dentry->d_name.name,
9283 old_dentry->d_name.len);
9284 if (!ret)
9285 ret = btrfs_update_inode(trans, root, old_inode);
9286 }
9287 if (ret) {
9288 btrfs_abort_transaction(trans, ret);
9289 goto out_fail;
9290 }
9291
9292 if (new_inode) {
9293 inode_inc_iversion(new_inode);
9294 new_inode->i_ctime = current_time(new_inode);
9295 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9296 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9297 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9298 BUG_ON(new_inode->i_nlink == 0);
9299 } else {
9300 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9301 BTRFS_I(d_inode(new_dentry)),
9302 new_dentry->d_name.name,
9303 new_dentry->d_name.len);
9304 }
9305 if (!ret && new_inode->i_nlink == 0)
9306 ret = btrfs_orphan_add(trans,
9307 BTRFS_I(d_inode(new_dentry)));
9308 if (ret) {
9309 btrfs_abort_transaction(trans, ret);
9310 goto out_fail;
9311 }
9312 }
9313
9314 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9315 new_dentry->d_name.name,
9316 new_dentry->d_name.len, 0, index);
9317 if (ret) {
9318 btrfs_abort_transaction(trans, ret);
9319 goto out_fail;
9320 }
9321
9322 if (old_inode->i_nlink == 1)
9323 BTRFS_I(old_inode)->dir_index = index;
9324
9325 if (log_pinned) {
9326 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9327 new_dentry->d_parent);
9328 btrfs_end_log_trans(root);
9329 log_pinned = false;
9330 }
9331
9332 if (flags & RENAME_WHITEOUT) {
9333 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9334 old_dentry);
9335
9336 if (ret) {
9337 btrfs_abort_transaction(trans, ret);
9338 goto out_fail;
9339 }
9340 }
9341 out_fail:
9342 /*
9343 * If we have pinned the log and an error happened, we unpin tasks
9344 * trying to sync the log and force them to fallback to a transaction
9345 * commit if the log currently contains any of the inodes involved in
9346 * this rename operation (to ensure we do not persist a log with an
9347 * inconsistent state for any of these inodes or leading to any
9348 * inconsistencies when replayed). If the transaction was aborted, the
9349 * abortion reason is propagated to userspace when attempting to commit
9350 * the transaction. If the log does not contain any of these inodes, we
9351 * allow the tasks to sync it.
9352 */
9353 if (ret && log_pinned) {
9354 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9355 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9356 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9357 (new_inode &&
9358 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9359 btrfs_set_log_full_commit(trans);
9360
9361 btrfs_end_log_trans(root);
9362 log_pinned = false;
9363 }
9364 ret2 = btrfs_end_transaction(trans);
9365 ret = ret ? ret : ret2;
9366 out_notrans:
9367 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9368 up_read(&fs_info->subvol_sem);
9369
9370 return ret;
9371 }
9372
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9373 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9374 struct inode *new_dir, struct dentry *new_dentry,
9375 unsigned int flags)
9376 {
9377 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9378 return -EINVAL;
9379
9380 if (flags & RENAME_EXCHANGE)
9381 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9382 new_dentry);
9383
9384 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9385 }
9386
9387 struct btrfs_delalloc_work {
9388 struct inode *inode;
9389 struct completion completion;
9390 struct list_head list;
9391 struct btrfs_work work;
9392 };
9393
btrfs_run_delalloc_work(struct btrfs_work * work)9394 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9395 {
9396 struct btrfs_delalloc_work *delalloc_work;
9397 struct inode *inode;
9398
9399 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9400 work);
9401 inode = delalloc_work->inode;
9402 filemap_flush(inode->i_mapping);
9403 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9404 &BTRFS_I(inode)->runtime_flags))
9405 filemap_flush(inode->i_mapping);
9406
9407 iput(inode);
9408 complete(&delalloc_work->completion);
9409 }
9410
btrfs_alloc_delalloc_work(struct inode * inode)9411 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9412 {
9413 struct btrfs_delalloc_work *work;
9414
9415 work = kmalloc(sizeof(*work), GFP_NOFS);
9416 if (!work)
9417 return NULL;
9418
9419 init_completion(&work->completion);
9420 INIT_LIST_HEAD(&work->list);
9421 work->inode = inode;
9422 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9423
9424 return work;
9425 }
9426
9427 /*
9428 * some fairly slow code that needs optimization. This walks the list
9429 * of all the inodes with pending delalloc and forces them to disk.
9430 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)9431 static int start_delalloc_inodes(struct btrfs_root *root,
9432 struct writeback_control *wbc, bool snapshot,
9433 bool in_reclaim_context)
9434 {
9435 struct btrfs_inode *binode;
9436 struct inode *inode;
9437 struct btrfs_delalloc_work *work, *next;
9438 struct list_head works;
9439 struct list_head splice;
9440 int ret = 0;
9441 bool full_flush = wbc->nr_to_write == LONG_MAX;
9442
9443 INIT_LIST_HEAD(&works);
9444 INIT_LIST_HEAD(&splice);
9445
9446 mutex_lock(&root->delalloc_mutex);
9447 spin_lock(&root->delalloc_lock);
9448 list_splice_init(&root->delalloc_inodes, &splice);
9449 while (!list_empty(&splice)) {
9450 binode = list_entry(splice.next, struct btrfs_inode,
9451 delalloc_inodes);
9452
9453 list_move_tail(&binode->delalloc_inodes,
9454 &root->delalloc_inodes);
9455
9456 if (in_reclaim_context &&
9457 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9458 continue;
9459
9460 inode = igrab(&binode->vfs_inode);
9461 if (!inode) {
9462 cond_resched_lock(&root->delalloc_lock);
9463 continue;
9464 }
9465 spin_unlock(&root->delalloc_lock);
9466
9467 if (snapshot)
9468 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9469 &binode->runtime_flags);
9470 if (full_flush) {
9471 work = btrfs_alloc_delalloc_work(inode);
9472 if (!work) {
9473 iput(inode);
9474 ret = -ENOMEM;
9475 goto out;
9476 }
9477 list_add_tail(&work->list, &works);
9478 btrfs_queue_work(root->fs_info->flush_workers,
9479 &work->work);
9480 } else {
9481 ret = sync_inode(inode, wbc);
9482 if (!ret &&
9483 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9484 &BTRFS_I(inode)->runtime_flags))
9485 ret = sync_inode(inode, wbc);
9486 btrfs_add_delayed_iput(inode);
9487 if (ret || wbc->nr_to_write <= 0)
9488 goto out;
9489 }
9490 cond_resched();
9491 spin_lock(&root->delalloc_lock);
9492 }
9493 spin_unlock(&root->delalloc_lock);
9494
9495 out:
9496 list_for_each_entry_safe(work, next, &works, list) {
9497 list_del_init(&work->list);
9498 wait_for_completion(&work->completion);
9499 kfree(work);
9500 }
9501
9502 if (!list_empty(&splice)) {
9503 spin_lock(&root->delalloc_lock);
9504 list_splice_tail(&splice, &root->delalloc_inodes);
9505 spin_unlock(&root->delalloc_lock);
9506 }
9507 mutex_unlock(&root->delalloc_mutex);
9508 return ret;
9509 }
9510
btrfs_start_delalloc_snapshot(struct btrfs_root * root)9511 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9512 {
9513 struct writeback_control wbc = {
9514 .nr_to_write = LONG_MAX,
9515 .sync_mode = WB_SYNC_NONE,
9516 .range_start = 0,
9517 .range_end = LLONG_MAX,
9518 };
9519 struct btrfs_fs_info *fs_info = root->fs_info;
9520
9521 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9522 return -EROFS;
9523
9524 return start_delalloc_inodes(root, &wbc, true, false);
9525 }
9526
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,u64 nr,bool in_reclaim_context)9527 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr,
9528 bool in_reclaim_context)
9529 {
9530 struct writeback_control wbc = {
9531 .nr_to_write = (nr == U64_MAX) ? LONG_MAX : (unsigned long)nr,
9532 .sync_mode = WB_SYNC_NONE,
9533 .range_start = 0,
9534 .range_end = LLONG_MAX,
9535 };
9536 struct btrfs_root *root;
9537 struct list_head splice;
9538 int ret;
9539
9540 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9541 return -EROFS;
9542
9543 INIT_LIST_HEAD(&splice);
9544
9545 mutex_lock(&fs_info->delalloc_root_mutex);
9546 spin_lock(&fs_info->delalloc_root_lock);
9547 list_splice_init(&fs_info->delalloc_roots, &splice);
9548 while (!list_empty(&splice) && nr) {
9549 /*
9550 * Reset nr_to_write here so we know that we're doing a full
9551 * flush.
9552 */
9553 if (nr == U64_MAX)
9554 wbc.nr_to_write = LONG_MAX;
9555
9556 root = list_first_entry(&splice, struct btrfs_root,
9557 delalloc_root);
9558 root = btrfs_grab_root(root);
9559 BUG_ON(!root);
9560 list_move_tail(&root->delalloc_root,
9561 &fs_info->delalloc_roots);
9562 spin_unlock(&fs_info->delalloc_root_lock);
9563
9564 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9565 btrfs_put_root(root);
9566 if (ret < 0 || wbc.nr_to_write <= 0)
9567 goto out;
9568 spin_lock(&fs_info->delalloc_root_lock);
9569 }
9570 spin_unlock(&fs_info->delalloc_root_lock);
9571
9572 ret = 0;
9573 out:
9574 if (!list_empty(&splice)) {
9575 spin_lock(&fs_info->delalloc_root_lock);
9576 list_splice_tail(&splice, &fs_info->delalloc_roots);
9577 spin_unlock(&fs_info->delalloc_root_lock);
9578 }
9579 mutex_unlock(&fs_info->delalloc_root_mutex);
9580 return ret;
9581 }
9582
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)9583 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9584 const char *symname)
9585 {
9586 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9587 struct btrfs_trans_handle *trans;
9588 struct btrfs_root *root = BTRFS_I(dir)->root;
9589 struct btrfs_path *path;
9590 struct btrfs_key key;
9591 struct inode *inode = NULL;
9592 int err;
9593 u64 objectid;
9594 u64 index = 0;
9595 int name_len;
9596 int datasize;
9597 unsigned long ptr;
9598 struct btrfs_file_extent_item *ei;
9599 struct extent_buffer *leaf;
9600
9601 name_len = strlen(symname);
9602 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9603 return -ENAMETOOLONG;
9604
9605 /*
9606 * 2 items for inode item and ref
9607 * 2 items for dir items
9608 * 1 item for updating parent inode item
9609 * 1 item for the inline extent item
9610 * 1 item for xattr if selinux is on
9611 */
9612 trans = btrfs_start_transaction(root, 7);
9613 if (IS_ERR(trans))
9614 return PTR_ERR(trans);
9615
9616 err = btrfs_find_free_ino(root, &objectid);
9617 if (err)
9618 goto out_unlock;
9619
9620 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9621 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9622 objectid, S_IFLNK|S_IRWXUGO, &index);
9623 if (IS_ERR(inode)) {
9624 err = PTR_ERR(inode);
9625 inode = NULL;
9626 goto out_unlock;
9627 }
9628
9629 /*
9630 * If the active LSM wants to access the inode during
9631 * d_instantiate it needs these. Smack checks to see
9632 * if the filesystem supports xattrs by looking at the
9633 * ops vector.
9634 */
9635 inode->i_fop = &btrfs_file_operations;
9636 inode->i_op = &btrfs_file_inode_operations;
9637 inode->i_mapping->a_ops = &btrfs_aops;
9638
9639 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9640 if (err)
9641 goto out_unlock;
9642
9643 path = btrfs_alloc_path();
9644 if (!path) {
9645 err = -ENOMEM;
9646 goto out_unlock;
9647 }
9648 key.objectid = btrfs_ino(BTRFS_I(inode));
9649 key.offset = 0;
9650 key.type = BTRFS_EXTENT_DATA_KEY;
9651 datasize = btrfs_file_extent_calc_inline_size(name_len);
9652 err = btrfs_insert_empty_item(trans, root, path, &key,
9653 datasize);
9654 if (err) {
9655 btrfs_free_path(path);
9656 goto out_unlock;
9657 }
9658 leaf = path->nodes[0];
9659 ei = btrfs_item_ptr(leaf, path->slots[0],
9660 struct btrfs_file_extent_item);
9661 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9662 btrfs_set_file_extent_type(leaf, ei,
9663 BTRFS_FILE_EXTENT_INLINE);
9664 btrfs_set_file_extent_encryption(leaf, ei, 0);
9665 btrfs_set_file_extent_compression(leaf, ei, 0);
9666 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9667 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9668
9669 ptr = btrfs_file_extent_inline_start(ei);
9670 write_extent_buffer(leaf, symname, ptr, name_len);
9671 btrfs_mark_buffer_dirty(leaf);
9672 btrfs_free_path(path);
9673
9674 inode->i_op = &btrfs_symlink_inode_operations;
9675 inode_nohighmem(inode);
9676 inode_set_bytes(inode, name_len);
9677 btrfs_i_size_write(BTRFS_I(inode), name_len);
9678 err = btrfs_update_inode(trans, root, inode);
9679 /*
9680 * Last step, add directory indexes for our symlink inode. This is the
9681 * last step to avoid extra cleanup of these indexes if an error happens
9682 * elsewhere above.
9683 */
9684 if (!err)
9685 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9686 BTRFS_I(inode), 0, index);
9687 if (err)
9688 goto out_unlock;
9689
9690 d_instantiate_new(dentry, inode);
9691
9692 out_unlock:
9693 btrfs_end_transaction(trans);
9694 if (err && inode) {
9695 inode_dec_link_count(inode);
9696 discard_new_inode(inode);
9697 }
9698 btrfs_btree_balance_dirty(fs_info);
9699 return err;
9700 }
9701
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct inode * inode,struct btrfs_key * ins,u64 file_offset)9702 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9703 struct btrfs_trans_handle *trans_in,
9704 struct inode *inode, struct btrfs_key *ins,
9705 u64 file_offset)
9706 {
9707 struct btrfs_file_extent_item stack_fi;
9708 struct btrfs_replace_extent_info extent_info;
9709 struct btrfs_trans_handle *trans = trans_in;
9710 struct btrfs_path *path;
9711 u64 start = ins->objectid;
9712 u64 len = ins->offset;
9713 int ret;
9714
9715 memset(&stack_fi, 0, sizeof(stack_fi));
9716
9717 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9718 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9719 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9720 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9721 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9722 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9723 /* Encryption and other encoding is reserved and all 0 */
9724
9725 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9726 if (ret < 0)
9727 return ERR_PTR(ret);
9728
9729 if (trans) {
9730 ret = insert_reserved_file_extent(trans, BTRFS_I(inode),
9731 file_offset, &stack_fi, ret);
9732 if (ret)
9733 return ERR_PTR(ret);
9734 return trans;
9735 }
9736
9737 extent_info.disk_offset = start;
9738 extent_info.disk_len = len;
9739 extent_info.data_offset = 0;
9740 extent_info.data_len = len;
9741 extent_info.file_offset = file_offset;
9742 extent_info.extent_buf = (char *)&stack_fi;
9743 extent_info.is_new_extent = true;
9744 extent_info.qgroup_reserved = ret;
9745 extent_info.insertions = 0;
9746
9747 path = btrfs_alloc_path();
9748 if (!path)
9749 return ERR_PTR(-ENOMEM);
9750
9751 ret = btrfs_replace_file_extents(inode, path, file_offset,
9752 file_offset + len - 1, &extent_info,
9753 &trans);
9754 btrfs_free_path(path);
9755 if (ret)
9756 return ERR_PTR(ret);
9757
9758 return trans;
9759 }
9760
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9761 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9762 u64 start, u64 num_bytes, u64 min_size,
9763 loff_t actual_len, u64 *alloc_hint,
9764 struct btrfs_trans_handle *trans)
9765 {
9766 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9768 struct extent_map *em;
9769 struct btrfs_root *root = BTRFS_I(inode)->root;
9770 struct btrfs_key ins;
9771 u64 cur_offset = start;
9772 u64 clear_offset = start;
9773 u64 i_size;
9774 u64 cur_bytes;
9775 u64 last_alloc = (u64)-1;
9776 int ret = 0;
9777 bool own_trans = true;
9778 u64 end = start + num_bytes - 1;
9779
9780 if (trans)
9781 own_trans = false;
9782 while (num_bytes > 0) {
9783 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9784 cur_bytes = max(cur_bytes, min_size);
9785 /*
9786 * If we are severely fragmented we could end up with really
9787 * small allocations, so if the allocator is returning small
9788 * chunks lets make its job easier by only searching for those
9789 * sized chunks.
9790 */
9791 cur_bytes = min(cur_bytes, last_alloc);
9792 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9793 min_size, 0, *alloc_hint, &ins, 1, 0);
9794 if (ret)
9795 break;
9796
9797 /*
9798 * We've reserved this space, and thus converted it from
9799 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9800 * from here on out we will only need to clear our reservation
9801 * for the remaining unreserved area, so advance our
9802 * clear_offset by our extent size.
9803 */
9804 clear_offset += ins.offset;
9805
9806 last_alloc = ins.offset;
9807 trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9808 /*
9809 * Now that we inserted the prealloc extent we can finally
9810 * decrement the number of reservations in the block group.
9811 * If we did it before, we could race with relocation and have
9812 * relocation miss the reserved extent, making it fail later.
9813 */
9814 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9815 if (IS_ERR(trans)) {
9816 ret = PTR_ERR(trans);
9817 btrfs_free_reserved_extent(fs_info, ins.objectid,
9818 ins.offset, 0);
9819 break;
9820 }
9821
9822 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9823 cur_offset + ins.offset -1, 0);
9824
9825 em = alloc_extent_map();
9826 if (!em) {
9827 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9828 &BTRFS_I(inode)->runtime_flags);
9829 goto next;
9830 }
9831
9832 em->start = cur_offset;
9833 em->orig_start = cur_offset;
9834 em->len = ins.offset;
9835 em->block_start = ins.objectid;
9836 em->block_len = ins.offset;
9837 em->orig_block_len = ins.offset;
9838 em->ram_bytes = ins.offset;
9839 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9840 em->generation = trans->transid;
9841
9842 while (1) {
9843 write_lock(&em_tree->lock);
9844 ret = add_extent_mapping(em_tree, em, 1);
9845 write_unlock(&em_tree->lock);
9846 if (ret != -EEXIST)
9847 break;
9848 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9849 cur_offset + ins.offset - 1,
9850 0);
9851 }
9852 free_extent_map(em);
9853 next:
9854 num_bytes -= ins.offset;
9855 cur_offset += ins.offset;
9856 *alloc_hint = ins.objectid + ins.offset;
9857
9858 inode_inc_iversion(inode);
9859 inode->i_ctime = current_time(inode);
9860 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9861 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9862 (actual_len > inode->i_size) &&
9863 (cur_offset > inode->i_size)) {
9864 if (cur_offset > actual_len)
9865 i_size = actual_len;
9866 else
9867 i_size = cur_offset;
9868 i_size_write(inode, i_size);
9869 btrfs_inode_safe_disk_i_size_write(inode, 0);
9870 }
9871
9872 ret = btrfs_update_inode(trans, root, inode);
9873
9874 if (ret) {
9875 btrfs_abort_transaction(trans, ret);
9876 if (own_trans)
9877 btrfs_end_transaction(trans);
9878 break;
9879 }
9880
9881 if (own_trans) {
9882 btrfs_end_transaction(trans);
9883 trans = NULL;
9884 }
9885 }
9886 if (clear_offset < end)
9887 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9888 end - clear_offset + 1);
9889 return ret;
9890 }
9891
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9892 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9893 u64 start, u64 num_bytes, u64 min_size,
9894 loff_t actual_len, u64 *alloc_hint)
9895 {
9896 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9897 min_size, actual_len, alloc_hint,
9898 NULL);
9899 }
9900
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9901 int btrfs_prealloc_file_range_trans(struct inode *inode,
9902 struct btrfs_trans_handle *trans, int mode,
9903 u64 start, u64 num_bytes, u64 min_size,
9904 loff_t actual_len, u64 *alloc_hint)
9905 {
9906 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9907 min_size, actual_len, alloc_hint, trans);
9908 }
9909
btrfs_set_page_dirty(struct page * page)9910 static int btrfs_set_page_dirty(struct page *page)
9911 {
9912 return __set_page_dirty_nobuffers(page);
9913 }
9914
btrfs_permission(struct inode * inode,int mask)9915 static int btrfs_permission(struct inode *inode, int mask)
9916 {
9917 struct btrfs_root *root = BTRFS_I(inode)->root;
9918 umode_t mode = inode->i_mode;
9919
9920 if (mask & MAY_WRITE &&
9921 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9922 if (btrfs_root_readonly(root))
9923 return -EROFS;
9924 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9925 return -EACCES;
9926 }
9927 return generic_permission(inode, mask);
9928 }
9929
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)9930 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9931 {
9932 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9933 struct btrfs_trans_handle *trans;
9934 struct btrfs_root *root = BTRFS_I(dir)->root;
9935 struct inode *inode = NULL;
9936 u64 objectid;
9937 u64 index;
9938 int ret = 0;
9939
9940 /*
9941 * 5 units required for adding orphan entry
9942 */
9943 trans = btrfs_start_transaction(root, 5);
9944 if (IS_ERR(trans))
9945 return PTR_ERR(trans);
9946
9947 ret = btrfs_find_free_ino(root, &objectid);
9948 if (ret)
9949 goto out;
9950
9951 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9952 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
9953 if (IS_ERR(inode)) {
9954 ret = PTR_ERR(inode);
9955 inode = NULL;
9956 goto out;
9957 }
9958
9959 inode->i_fop = &btrfs_file_operations;
9960 inode->i_op = &btrfs_file_inode_operations;
9961
9962 inode->i_mapping->a_ops = &btrfs_aops;
9963
9964 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9965 if (ret)
9966 goto out;
9967
9968 ret = btrfs_update_inode(trans, root, inode);
9969 if (ret)
9970 goto out;
9971 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
9972 if (ret)
9973 goto out;
9974
9975 /*
9976 * We set number of links to 0 in btrfs_new_inode(), and here we set
9977 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9978 * through:
9979 *
9980 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9981 */
9982 set_nlink(inode, 1);
9983 d_tmpfile(dentry, inode);
9984 unlock_new_inode(inode);
9985 mark_inode_dirty(inode);
9986 out:
9987 btrfs_end_transaction(trans);
9988 if (ret && inode)
9989 discard_new_inode(inode);
9990 btrfs_btree_balance_dirty(fs_info);
9991 return ret;
9992 }
9993
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)9994 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
9995 {
9996 struct inode *inode = tree->private_data;
9997 unsigned long index = start >> PAGE_SHIFT;
9998 unsigned long end_index = end >> PAGE_SHIFT;
9999 struct page *page;
10000
10001 while (index <= end_index) {
10002 page = find_get_page(inode->i_mapping, index);
10003 ASSERT(page); /* Pages should be in the extent_io_tree */
10004 set_page_writeback(page);
10005 put_page(page);
10006 index++;
10007 }
10008 }
10009
10010 #ifdef CONFIG_SWAP
10011 /*
10012 * Add an entry indicating a block group or device which is pinned by a
10013 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10014 * negative errno on failure.
10015 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10016 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10017 bool is_block_group)
10018 {
10019 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10020 struct btrfs_swapfile_pin *sp, *entry;
10021 struct rb_node **p;
10022 struct rb_node *parent = NULL;
10023
10024 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10025 if (!sp)
10026 return -ENOMEM;
10027 sp->ptr = ptr;
10028 sp->inode = inode;
10029 sp->is_block_group = is_block_group;
10030 sp->bg_extent_count = 1;
10031
10032 spin_lock(&fs_info->swapfile_pins_lock);
10033 p = &fs_info->swapfile_pins.rb_node;
10034 while (*p) {
10035 parent = *p;
10036 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10037 if (sp->ptr < entry->ptr ||
10038 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10039 p = &(*p)->rb_left;
10040 } else if (sp->ptr > entry->ptr ||
10041 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10042 p = &(*p)->rb_right;
10043 } else {
10044 if (is_block_group)
10045 entry->bg_extent_count++;
10046 spin_unlock(&fs_info->swapfile_pins_lock);
10047 kfree(sp);
10048 return 1;
10049 }
10050 }
10051 rb_link_node(&sp->node, parent, p);
10052 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10053 spin_unlock(&fs_info->swapfile_pins_lock);
10054 return 0;
10055 }
10056
10057 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10058 static void btrfs_free_swapfile_pins(struct inode *inode)
10059 {
10060 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10061 struct btrfs_swapfile_pin *sp;
10062 struct rb_node *node, *next;
10063
10064 spin_lock(&fs_info->swapfile_pins_lock);
10065 node = rb_first(&fs_info->swapfile_pins);
10066 while (node) {
10067 next = rb_next(node);
10068 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10069 if (sp->inode == inode) {
10070 rb_erase(&sp->node, &fs_info->swapfile_pins);
10071 if (sp->is_block_group) {
10072 btrfs_dec_block_group_swap_extents(sp->ptr,
10073 sp->bg_extent_count);
10074 btrfs_put_block_group(sp->ptr);
10075 }
10076 kfree(sp);
10077 }
10078 node = next;
10079 }
10080 spin_unlock(&fs_info->swapfile_pins_lock);
10081 }
10082
10083 struct btrfs_swap_info {
10084 u64 start;
10085 u64 block_start;
10086 u64 block_len;
10087 u64 lowest_ppage;
10088 u64 highest_ppage;
10089 unsigned long nr_pages;
10090 int nr_extents;
10091 };
10092
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10093 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10094 struct btrfs_swap_info *bsi)
10095 {
10096 unsigned long nr_pages;
10097 unsigned long max_pages;
10098 u64 first_ppage, first_ppage_reported, next_ppage;
10099 int ret;
10100
10101 /*
10102 * Our swapfile may have had its size extended after the swap header was
10103 * written. In that case activating the swapfile should not go beyond
10104 * the max size set in the swap header.
10105 */
10106 if (bsi->nr_pages >= sis->max)
10107 return 0;
10108
10109 max_pages = sis->max - bsi->nr_pages;
10110 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10111 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10112 PAGE_SIZE) >> PAGE_SHIFT;
10113
10114 if (first_ppage >= next_ppage)
10115 return 0;
10116 nr_pages = next_ppage - first_ppage;
10117 nr_pages = min(nr_pages, max_pages);
10118
10119 first_ppage_reported = first_ppage;
10120 if (bsi->start == 0)
10121 first_ppage_reported++;
10122 if (bsi->lowest_ppage > first_ppage_reported)
10123 bsi->lowest_ppage = first_ppage_reported;
10124 if (bsi->highest_ppage < (next_ppage - 1))
10125 bsi->highest_ppage = next_ppage - 1;
10126
10127 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10128 if (ret < 0)
10129 return ret;
10130 bsi->nr_extents += ret;
10131 bsi->nr_pages += nr_pages;
10132 return 0;
10133 }
10134
btrfs_swap_deactivate(struct file * file)10135 static void btrfs_swap_deactivate(struct file *file)
10136 {
10137 struct inode *inode = file_inode(file);
10138
10139 btrfs_free_swapfile_pins(inode);
10140 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10141 }
10142
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10143 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10144 sector_t *span)
10145 {
10146 struct inode *inode = file_inode(file);
10147 struct btrfs_root *root = BTRFS_I(inode)->root;
10148 struct btrfs_fs_info *fs_info = root->fs_info;
10149 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10150 struct extent_state *cached_state = NULL;
10151 struct extent_map *em = NULL;
10152 struct btrfs_device *device = NULL;
10153 struct btrfs_swap_info bsi = {
10154 .lowest_ppage = (sector_t)-1ULL,
10155 };
10156 int ret = 0;
10157 u64 isize;
10158 u64 start;
10159
10160 /*
10161 * If the swap file was just created, make sure delalloc is done. If the
10162 * file changes again after this, the user is doing something stupid and
10163 * we don't really care.
10164 */
10165 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10166 if (ret)
10167 return ret;
10168
10169 /*
10170 * The inode is locked, so these flags won't change after we check them.
10171 */
10172 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10173 btrfs_warn(fs_info, "swapfile must not be compressed");
10174 return -EINVAL;
10175 }
10176 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10177 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10178 return -EINVAL;
10179 }
10180 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10181 btrfs_warn(fs_info, "swapfile must not be checksummed");
10182 return -EINVAL;
10183 }
10184
10185 /*
10186 * Balance or device remove/replace/resize can move stuff around from
10187 * under us. The exclop protection makes sure they aren't running/won't
10188 * run concurrently while we are mapping the swap extents, and
10189 * fs_info->swapfile_pins prevents them from running while the swap
10190 * file is active and moving the extents. Note that this also prevents
10191 * a concurrent device add which isn't actually necessary, but it's not
10192 * really worth the trouble to allow it.
10193 */
10194 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10195 btrfs_warn(fs_info,
10196 "cannot activate swapfile while exclusive operation is running");
10197 return -EBUSY;
10198 }
10199
10200 /*
10201 * Prevent snapshot creation while we are activating the swap file.
10202 * We do not want to race with snapshot creation. If snapshot creation
10203 * already started before we bumped nr_swapfiles from 0 to 1 and
10204 * completes before the first write into the swap file after it is
10205 * activated, than that write would fallback to COW.
10206 */
10207 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10208 btrfs_exclop_finish(fs_info);
10209 btrfs_warn(fs_info,
10210 "cannot activate swapfile because snapshot creation is in progress");
10211 return -EINVAL;
10212 }
10213 /*
10214 * Snapshots can create extents which require COW even if NODATACOW is
10215 * set. We use this counter to prevent snapshots. We must increment it
10216 * before walking the extents because we don't want a concurrent
10217 * snapshot to run after we've already checked the extents.
10218 */
10219 atomic_inc(&root->nr_swapfiles);
10220
10221 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10222
10223 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10224 start = 0;
10225 while (start < isize) {
10226 u64 logical_block_start, physical_block_start;
10227 struct btrfs_block_group *bg;
10228 u64 len = isize - start;
10229
10230 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10231 if (IS_ERR(em)) {
10232 ret = PTR_ERR(em);
10233 goto out;
10234 }
10235
10236 if (em->block_start == EXTENT_MAP_HOLE) {
10237 btrfs_warn(fs_info, "swapfile must not have holes");
10238 ret = -EINVAL;
10239 goto out;
10240 }
10241 if (em->block_start == EXTENT_MAP_INLINE) {
10242 /*
10243 * It's unlikely we'll ever actually find ourselves
10244 * here, as a file small enough to fit inline won't be
10245 * big enough to store more than the swap header, but in
10246 * case something changes in the future, let's catch it
10247 * here rather than later.
10248 */
10249 btrfs_warn(fs_info, "swapfile must not be inline");
10250 ret = -EINVAL;
10251 goto out;
10252 }
10253 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10254 btrfs_warn(fs_info, "swapfile must not be compressed");
10255 ret = -EINVAL;
10256 goto out;
10257 }
10258
10259 logical_block_start = em->block_start + (start - em->start);
10260 len = min(len, em->len - (start - em->start));
10261 free_extent_map(em);
10262 em = NULL;
10263
10264 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10265 if (ret < 0) {
10266 goto out;
10267 } else if (ret) {
10268 ret = 0;
10269 } else {
10270 btrfs_warn(fs_info,
10271 "swapfile must not be copy-on-write");
10272 ret = -EINVAL;
10273 goto out;
10274 }
10275
10276 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10277 if (IS_ERR(em)) {
10278 ret = PTR_ERR(em);
10279 goto out;
10280 }
10281
10282 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10283 btrfs_warn(fs_info,
10284 "swapfile must have single data profile");
10285 ret = -EINVAL;
10286 goto out;
10287 }
10288
10289 if (device == NULL) {
10290 device = em->map_lookup->stripes[0].dev;
10291 ret = btrfs_add_swapfile_pin(inode, device, false);
10292 if (ret == 1)
10293 ret = 0;
10294 else if (ret)
10295 goto out;
10296 } else if (device != em->map_lookup->stripes[0].dev) {
10297 btrfs_warn(fs_info, "swapfile must be on one device");
10298 ret = -EINVAL;
10299 goto out;
10300 }
10301
10302 physical_block_start = (em->map_lookup->stripes[0].physical +
10303 (logical_block_start - em->start));
10304 len = min(len, em->len - (logical_block_start - em->start));
10305 free_extent_map(em);
10306 em = NULL;
10307
10308 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10309 if (!bg) {
10310 btrfs_warn(fs_info,
10311 "could not find block group containing swapfile");
10312 ret = -EINVAL;
10313 goto out;
10314 }
10315
10316 if (!btrfs_inc_block_group_swap_extents(bg)) {
10317 btrfs_warn(fs_info,
10318 "block group for swapfile at %llu is read-only%s",
10319 bg->start,
10320 atomic_read(&fs_info->scrubs_running) ?
10321 " (scrub running)" : "");
10322 btrfs_put_block_group(bg);
10323 ret = -EINVAL;
10324 goto out;
10325 }
10326
10327 ret = btrfs_add_swapfile_pin(inode, bg, true);
10328 if (ret) {
10329 btrfs_put_block_group(bg);
10330 if (ret == 1)
10331 ret = 0;
10332 else
10333 goto out;
10334 }
10335
10336 if (bsi.block_len &&
10337 bsi.block_start + bsi.block_len == physical_block_start) {
10338 bsi.block_len += len;
10339 } else {
10340 if (bsi.block_len) {
10341 ret = btrfs_add_swap_extent(sis, &bsi);
10342 if (ret)
10343 goto out;
10344 }
10345 bsi.start = start;
10346 bsi.block_start = physical_block_start;
10347 bsi.block_len = len;
10348 }
10349
10350 start += len;
10351 }
10352
10353 if (bsi.block_len)
10354 ret = btrfs_add_swap_extent(sis, &bsi);
10355
10356 out:
10357 if (!IS_ERR_OR_NULL(em))
10358 free_extent_map(em);
10359
10360 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10361
10362 if (ret)
10363 btrfs_swap_deactivate(file);
10364
10365 btrfs_drew_write_unlock(&root->snapshot_lock);
10366
10367 btrfs_exclop_finish(fs_info);
10368
10369 if (ret)
10370 return ret;
10371
10372 if (device)
10373 sis->bdev = device->bdev;
10374 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10375 sis->max = bsi.nr_pages;
10376 sis->pages = bsi.nr_pages - 1;
10377 sis->highest_bit = bsi.nr_pages - 1;
10378 return bsi.nr_extents;
10379 }
10380 #else
btrfs_swap_deactivate(struct file * file)10381 static void btrfs_swap_deactivate(struct file *file)
10382 {
10383 }
10384
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10385 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10386 sector_t *span)
10387 {
10388 return -EOPNOTSUPP;
10389 }
10390 #endif
10391
10392 static const struct inode_operations btrfs_dir_inode_operations = {
10393 .getattr = btrfs_getattr,
10394 .lookup = btrfs_lookup,
10395 .create = btrfs_create,
10396 .unlink = btrfs_unlink,
10397 .link = btrfs_link,
10398 .mkdir = btrfs_mkdir,
10399 .rmdir = btrfs_rmdir,
10400 .rename = btrfs_rename2,
10401 .symlink = btrfs_symlink,
10402 .setattr = btrfs_setattr,
10403 .mknod = btrfs_mknod,
10404 .listxattr = btrfs_listxattr,
10405 .permission = btrfs_permission,
10406 .get_acl = btrfs_get_acl,
10407 .set_acl = btrfs_set_acl,
10408 .update_time = btrfs_update_time,
10409 .tmpfile = btrfs_tmpfile,
10410 };
10411
10412 static const struct file_operations btrfs_dir_file_operations = {
10413 .llseek = generic_file_llseek,
10414 .read = generic_read_dir,
10415 .iterate_shared = btrfs_real_readdir,
10416 .open = btrfs_opendir,
10417 .unlocked_ioctl = btrfs_ioctl,
10418 #ifdef CONFIG_COMPAT
10419 .compat_ioctl = btrfs_compat_ioctl,
10420 #endif
10421 .release = btrfs_release_file,
10422 .fsync = btrfs_sync_file,
10423 };
10424
10425 /*
10426 * btrfs doesn't support the bmap operation because swapfiles
10427 * use bmap to make a mapping of extents in the file. They assume
10428 * these extents won't change over the life of the file and they
10429 * use the bmap result to do IO directly to the drive.
10430 *
10431 * the btrfs bmap call would return logical addresses that aren't
10432 * suitable for IO and they also will change frequently as COW
10433 * operations happen. So, swapfile + btrfs == corruption.
10434 *
10435 * For now we're avoiding this by dropping bmap.
10436 */
10437 static const struct address_space_operations btrfs_aops = {
10438 .readpage = btrfs_readpage,
10439 .writepage = btrfs_writepage,
10440 .writepages = btrfs_writepages,
10441 .readahead = btrfs_readahead,
10442 .direct_IO = noop_direct_IO,
10443 .invalidatepage = btrfs_invalidatepage,
10444 .releasepage = btrfs_releasepage,
10445 #ifdef CONFIG_MIGRATION
10446 .migratepage = btrfs_migratepage,
10447 #endif
10448 .set_page_dirty = btrfs_set_page_dirty,
10449 .error_remove_page = generic_error_remove_page,
10450 .swap_activate = btrfs_swap_activate,
10451 .swap_deactivate = btrfs_swap_deactivate,
10452 };
10453
10454 static const struct inode_operations btrfs_file_inode_operations = {
10455 .getattr = btrfs_getattr,
10456 .setattr = btrfs_setattr,
10457 .listxattr = btrfs_listxattr,
10458 .permission = btrfs_permission,
10459 .fiemap = btrfs_fiemap,
10460 .get_acl = btrfs_get_acl,
10461 .set_acl = btrfs_set_acl,
10462 .update_time = btrfs_update_time,
10463 };
10464 static const struct inode_operations btrfs_special_inode_operations = {
10465 .getattr = btrfs_getattr,
10466 .setattr = btrfs_setattr,
10467 .permission = btrfs_permission,
10468 .listxattr = btrfs_listxattr,
10469 .get_acl = btrfs_get_acl,
10470 .set_acl = btrfs_set_acl,
10471 .update_time = btrfs_update_time,
10472 };
10473 static const struct inode_operations btrfs_symlink_inode_operations = {
10474 .get_link = page_get_link,
10475 .getattr = btrfs_getattr,
10476 .setattr = btrfs_setattr,
10477 .permission = btrfs_permission,
10478 .listxattr = btrfs_listxattr,
10479 .update_time = btrfs_update_time,
10480 };
10481
10482 const struct dentry_operations btrfs_dentry_operations = {
10483 .d_delete = btrfs_dentry_delete,
10484 };
10485