1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "delayed-inode.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "ctree.h"
15 #include "qgroup.h"
16 #include "locking.h"
17
18 #define BTRFS_DELAYED_WRITEBACK 512
19 #define BTRFS_DELAYED_BACKGROUND 128
20 #define BTRFS_DELAYED_BATCH 16
21
22 static struct kmem_cache *delayed_node_cache;
23
btrfs_delayed_inode_init(void)24 int __init btrfs_delayed_inode_init(void)
25 {
26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 sizeof(struct btrfs_delayed_node),
28 0,
29 SLAB_MEM_SPREAD,
30 NULL);
31 if (!delayed_node_cache)
32 return -ENOMEM;
33 return 0;
34 }
35
btrfs_delayed_inode_exit(void)36 void __cold btrfs_delayed_inode_exit(void)
37 {
38 kmem_cache_destroy(delayed_node_cache);
39 }
40
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)41 static inline void btrfs_init_delayed_node(
42 struct btrfs_delayed_node *delayed_node,
43 struct btrfs_root *root, u64 inode_id)
44 {
45 delayed_node->root = root;
46 delayed_node->inode_id = inode_id;
47 refcount_set(&delayed_node->refs, 0);
48 delayed_node->ins_root = RB_ROOT_CACHED;
49 delayed_node->del_root = RB_ROOT_CACHED;
50 mutex_init(&delayed_node->mutex);
51 INIT_LIST_HEAD(&delayed_node->n_list);
52 INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54
btrfs_is_continuous_delayed_item(struct btrfs_delayed_item * item1,struct btrfs_delayed_item * item2)55 static inline int btrfs_is_continuous_delayed_item(
56 struct btrfs_delayed_item *item1,
57 struct btrfs_delayed_item *item2)
58 {
59 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 item1->key.objectid == item2->key.objectid &&
61 item1->key.type == item2->key.type &&
62 item1->key.offset + 1 == item2->key.offset)
63 return 1;
64 return 0;
65 }
66
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69 {
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 spin_lock(&root->inode_lock);
81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 spin_unlock(&root->inode_lock);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the radix tree. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the radix at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the radix, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 spin_unlock(&root->inode_lock);
115 return node;
116 }
117 spin_unlock(&root->inode_lock);
118
119 return NULL;
120 }
121
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 struct btrfs_inode *btrfs_inode)
125 {
126 struct btrfs_delayed_node *node;
127 struct btrfs_root *root = btrfs_inode->root;
128 u64 ino = btrfs_ino(btrfs_inode);
129 int ret;
130
131 again:
132 node = btrfs_get_delayed_node(btrfs_inode);
133 if (node)
134 return node;
135
136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 if (!node)
138 return ERR_PTR(-ENOMEM);
139 btrfs_init_delayed_node(node, root, ino);
140
141 /* cached in the btrfs inode and can be accessed */
142 refcount_set(&node->refs, 2);
143
144 ret = radix_tree_preload(GFP_NOFS);
145 if (ret) {
146 kmem_cache_free(delayed_node_cache, node);
147 return ERR_PTR(ret);
148 }
149
150 spin_lock(&root->inode_lock);
151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 if (ret == -EEXIST) {
153 spin_unlock(&root->inode_lock);
154 kmem_cache_free(delayed_node_cache, node);
155 radix_tree_preload_end();
156 goto again;
157 }
158 btrfs_inode->delayed_node = node;
159 spin_unlock(&root->inode_lock);
160 radix_tree_preload_end();
161
162 return node;
163 }
164
165 /*
166 * Call it when holding delayed_node->mutex
167 *
168 * If mod = 1, add this node into the prepared list.
169 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 struct btrfs_delayed_node *node,
172 int mod)
173 {
174 spin_lock(&root->lock);
175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 if (!list_empty(&node->p_list))
177 list_move_tail(&node->p_list, &root->prepare_list);
178 else if (mod)
179 list_add_tail(&node->p_list, &root->prepare_list);
180 } else {
181 list_add_tail(&node->n_list, &root->node_list);
182 list_add_tail(&node->p_list, &root->prepare_list);
183 refcount_inc(&node->refs); /* inserted into list */
184 root->nodes++;
185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186 }
187 spin_unlock(&root->lock);
188 }
189
190 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 struct btrfs_delayed_node *node)
193 {
194 spin_lock(&root->lock);
195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196 root->nodes--;
197 refcount_dec(&node->refs); /* not in the list */
198 list_del_init(&node->n_list);
199 if (!list_empty(&node->p_list))
200 list_del_init(&node->p_list);
201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202 }
203 spin_unlock(&root->lock);
204 }
205
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 struct btrfs_delayed_root *delayed_root)
208 {
209 struct list_head *p;
210 struct btrfs_delayed_node *node = NULL;
211
212 spin_lock(&delayed_root->lock);
213 if (list_empty(&delayed_root->node_list))
214 goto out;
215
216 p = delayed_root->node_list.next;
217 node = list_entry(p, struct btrfs_delayed_node, n_list);
218 refcount_inc(&node->refs);
219 out:
220 spin_unlock(&delayed_root->lock);
221
222 return node;
223 }
224
btrfs_next_delayed_node(struct btrfs_delayed_node * node)225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 struct btrfs_delayed_node *node)
227 {
228 struct btrfs_delayed_root *delayed_root;
229 struct list_head *p;
230 struct btrfs_delayed_node *next = NULL;
231
232 delayed_root = node->root->fs_info->delayed_root;
233 spin_lock(&delayed_root->lock);
234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 /* not in the list */
236 if (list_empty(&delayed_root->node_list))
237 goto out;
238 p = delayed_root->node_list.next;
239 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
240 goto out;
241 else
242 p = node->n_list.next;
243
244 next = list_entry(p, struct btrfs_delayed_node, n_list);
245 refcount_inc(&next->refs);
246 out:
247 spin_unlock(&delayed_root->lock);
248
249 return next;
250 }
251
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)252 static void __btrfs_release_delayed_node(
253 struct btrfs_delayed_node *delayed_node,
254 int mod)
255 {
256 struct btrfs_delayed_root *delayed_root;
257
258 if (!delayed_node)
259 return;
260
261 delayed_root = delayed_node->root->fs_info->delayed_root;
262
263 mutex_lock(&delayed_node->mutex);
264 if (delayed_node->count)
265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266 else
267 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 mutex_unlock(&delayed_node->mutex);
269
270 if (refcount_dec_and_test(&delayed_node->refs)) {
271 struct btrfs_root *root = delayed_node->root;
272
273 spin_lock(&root->inode_lock);
274 /*
275 * Once our refcount goes to zero, nobody is allowed to bump it
276 * back up. We can delete it now.
277 */
278 ASSERT(refcount_read(&delayed_node->refs) == 0);
279 radix_tree_delete(&root->delayed_nodes_tree,
280 delayed_node->inode_id);
281 spin_unlock(&root->inode_lock);
282 kmem_cache_free(delayed_node_cache, delayed_node);
283 }
284 }
285
btrfs_release_delayed_node(struct btrfs_delayed_node * node)286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287 {
288 __btrfs_release_delayed_node(node, 0);
289 }
290
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 struct btrfs_delayed_root *delayed_root)
293 {
294 struct list_head *p;
295 struct btrfs_delayed_node *node = NULL;
296
297 spin_lock(&delayed_root->lock);
298 if (list_empty(&delayed_root->prepare_list))
299 goto out;
300
301 p = delayed_root->prepare_list.next;
302 list_del_init(p);
303 node = list_entry(p, struct btrfs_delayed_node, p_list);
304 refcount_inc(&node->refs);
305 out:
306 spin_unlock(&delayed_root->lock);
307
308 return node;
309 }
310
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)311 static inline void btrfs_release_prepared_delayed_node(
312 struct btrfs_delayed_node *node)
313 {
314 __btrfs_release_delayed_node(node, 1);
315 }
316
btrfs_alloc_delayed_item(u32 data_len)317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318 {
319 struct btrfs_delayed_item *item;
320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321 if (item) {
322 item->data_len = data_len;
323 item->ins_or_del = 0;
324 item->bytes_reserved = 0;
325 item->delayed_node = NULL;
326 refcount_set(&item->refs, 1);
327 }
328 return item;
329 }
330
331 /*
332 * __btrfs_lookup_delayed_item - look up the delayed item by key
333 * @delayed_node: pointer to the delayed node
334 * @key: the key to look up
335 * @prev: used to store the prev item if the right item isn't found
336 * @next: used to store the next item if the right item isn't found
337 *
338 * Note: if we don't find the right item, we will return the prev item and
339 * the next item.
340 */
__btrfs_lookup_delayed_item(struct rb_root * root,struct btrfs_key * key,struct btrfs_delayed_item ** prev,struct btrfs_delayed_item ** next)341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 struct rb_root *root,
343 struct btrfs_key *key,
344 struct btrfs_delayed_item **prev,
345 struct btrfs_delayed_item **next)
346 {
347 struct rb_node *node, *prev_node = NULL;
348 struct btrfs_delayed_item *delayed_item = NULL;
349 int ret = 0;
350
351 node = root->rb_node;
352
353 while (node) {
354 delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 rb_node);
356 prev_node = node;
357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358 if (ret < 0)
359 node = node->rb_right;
360 else if (ret > 0)
361 node = node->rb_left;
362 else
363 return delayed_item;
364 }
365
366 if (prev) {
367 if (!prev_node)
368 *prev = NULL;
369 else if (ret < 0)
370 *prev = delayed_item;
371 else if ((node = rb_prev(prev_node)) != NULL) {
372 *prev = rb_entry(node, struct btrfs_delayed_item,
373 rb_node);
374 } else
375 *prev = NULL;
376 }
377
378 if (next) {
379 if (!prev_node)
380 *next = NULL;
381 else if (ret > 0)
382 *next = delayed_item;
383 else if ((node = rb_next(prev_node)) != NULL) {
384 *next = rb_entry(node, struct btrfs_delayed_item,
385 rb_node);
386 } else
387 *next = NULL;
388 }
389 return NULL;
390 }
391
__btrfs_lookup_delayed_insertion_item(struct btrfs_delayed_node * delayed_node,struct btrfs_key * key)392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 struct btrfs_delayed_node *delayed_node,
394 struct btrfs_key *key)
395 {
396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397 NULL, NULL);
398 }
399
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins,int action)400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 struct btrfs_delayed_item *ins,
402 int action)
403 {
404 struct rb_node **p, *node;
405 struct rb_node *parent_node = NULL;
406 struct rb_root_cached *root;
407 struct btrfs_delayed_item *item;
408 int cmp;
409 bool leftmost = true;
410
411 if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 root = &delayed_node->ins_root;
413 else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 root = &delayed_node->del_root;
415 else
416 BUG();
417 p = &root->rb_root.rb_node;
418 node = &ins->rb_node;
419
420 while (*p) {
421 parent_node = *p;
422 item = rb_entry(parent_node, struct btrfs_delayed_item,
423 rb_node);
424
425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 if (cmp < 0) {
427 p = &(*p)->rb_right;
428 leftmost = false;
429 } else if (cmp > 0) {
430 p = &(*p)->rb_left;
431 } else {
432 return -EEXIST;
433 }
434 }
435
436 rb_link_node(node, parent_node, p);
437 rb_insert_color_cached(node, root, leftmost);
438 ins->delayed_node = delayed_node;
439 ins->ins_or_del = action;
440
441 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 action == BTRFS_DELAYED_INSERTION_ITEM &&
443 ins->key.offset >= delayed_node->index_cnt)
444 delayed_node->index_cnt = ins->key.offset + 1;
445
446 delayed_node->count++;
447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448 return 0;
449 }
450
__btrfs_add_delayed_insertion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 struct btrfs_delayed_item *item)
453 {
454 return __btrfs_add_delayed_item(node, item,
455 BTRFS_DELAYED_INSERTION_ITEM);
456 }
457
__btrfs_add_delayed_deletion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 struct btrfs_delayed_item *item)
460 {
461 return __btrfs_add_delayed_item(node, item,
462 BTRFS_DELAYED_DELETION_ITEM);
463 }
464
finish_one_item(struct btrfs_delayed_root * delayed_root)465 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466 {
467 int seq = atomic_inc_return(&delayed_root->items_seq);
468
469 /* atomic_dec_return implies a barrier */
470 if ((atomic_dec_return(&delayed_root->items) <
471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 cond_wake_up_nomb(&delayed_root->wait);
473 }
474
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476 {
477 struct rb_root_cached *root;
478 struct btrfs_delayed_root *delayed_root;
479
480 /* Not associated with any delayed_node */
481 if (!delayed_item->delayed_node)
482 return;
483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484
485 BUG_ON(!delayed_root);
486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488
489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 root = &delayed_item->delayed_node->ins_root;
491 else
492 root = &delayed_item->delayed_node->del_root;
493
494 rb_erase_cached(&delayed_item->rb_node, root);
495 delayed_item->delayed_node->count--;
496
497 finish_one_item(delayed_root);
498 }
499
btrfs_release_delayed_item(struct btrfs_delayed_item * item)500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501 {
502 if (item) {
503 __btrfs_remove_delayed_item(item);
504 if (refcount_dec_and_test(&item->refs))
505 kfree(item);
506 }
507 }
508
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 struct btrfs_delayed_node *delayed_node)
511 {
512 struct rb_node *p;
513 struct btrfs_delayed_item *item = NULL;
514
515 p = rb_first_cached(&delayed_node->ins_root);
516 if (p)
517 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518
519 return item;
520 }
521
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 struct btrfs_delayed_node *delayed_node)
524 {
525 struct rb_node *p;
526 struct btrfs_delayed_item *item = NULL;
527
528 p = rb_first_cached(&delayed_node->del_root);
529 if (p)
530 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531
532 return item;
533 }
534
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)535 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 struct btrfs_delayed_item *item)
537 {
538 struct rb_node *p;
539 struct btrfs_delayed_item *next = NULL;
540
541 p = rb_next(&item->rb_node);
542 if (p)
543 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544
545 return next;
546 }
547
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_item * item)548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct btrfs_delayed_item *item)
551 {
552 struct btrfs_block_rsv *src_rsv;
553 struct btrfs_block_rsv *dst_rsv;
554 struct btrfs_fs_info *fs_info = root->fs_info;
555 u64 num_bytes;
556 int ret;
557
558 if (!trans->bytes_reserved)
559 return 0;
560
561 src_rsv = trans->block_rsv;
562 dst_rsv = &fs_info->delayed_block_rsv;
563
564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565
566 /*
567 * Here we migrate space rsv from transaction rsv, since have already
568 * reserved space when starting a transaction. So no need to reserve
569 * qgroup space here.
570 */
571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572 if (!ret) {
573 trace_btrfs_space_reservation(fs_info, "delayed_item",
574 item->key.objectid,
575 num_bytes, 1);
576 item->bytes_reserved = num_bytes;
577 }
578
579 return ret;
580 }
581
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584 {
585 struct btrfs_block_rsv *rsv;
586 struct btrfs_fs_info *fs_info = root->fs_info;
587
588 if (!item->bytes_reserved)
589 return;
590
591 rsv = &fs_info->delayed_block_rsv;
592 /*
593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 * to release/reserve qgroup space.
595 */
596 trace_btrfs_space_reservation(fs_info, "delayed_item",
597 item->key.objectid, item->bytes_reserved,
598 0);
599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600 }
601
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_delayed_node * node)602 static int btrfs_delayed_inode_reserve_metadata(
603 struct btrfs_trans_handle *trans,
604 struct btrfs_root *root,
605 struct btrfs_inode *inode,
606 struct btrfs_delayed_node *node)
607 {
608 struct btrfs_fs_info *fs_info = root->fs_info;
609 struct btrfs_block_rsv *src_rsv;
610 struct btrfs_block_rsv *dst_rsv;
611 u64 num_bytes;
612 int ret;
613
614 src_rsv = trans->block_rsv;
615 dst_rsv = &fs_info->delayed_block_rsv;
616
617 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
618
619 /*
620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 * which doesn't reserve space for speed. This is a problem since we
622 * still need to reserve space for this update, so try to reserve the
623 * space.
624 *
625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 * we always reserve enough to update the inode item.
627 */
628 if (!src_rsv || (!trans->bytes_reserved &&
629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
630 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
631 BTRFS_QGROUP_RSV_META_PREALLOC, true);
632 if (ret < 0)
633 return ret;
634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635 BTRFS_RESERVE_NO_FLUSH);
636 /*
637 * Since we're under a transaction reserve_metadata_bytes could
638 * try to commit the transaction which will make it return
639 * EAGAIN to make us stop the transaction we have, so return
640 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 */
642 if (ret == -EAGAIN) {
643 ret = -ENOSPC;
644 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
645 }
646 if (!ret) {
647 node->bytes_reserved = num_bytes;
648 trace_btrfs_space_reservation(fs_info,
649 "delayed_inode",
650 btrfs_ino(inode),
651 num_bytes, 1);
652 } else {
653 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
654 }
655 return ret;
656 }
657
658 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
659 if (!ret) {
660 trace_btrfs_space_reservation(fs_info, "delayed_inode",
661 btrfs_ino(inode), num_bytes, 1);
662 node->bytes_reserved = num_bytes;
663 }
664
665 return ret;
666 }
667
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)668 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
669 struct btrfs_delayed_node *node,
670 bool qgroup_free)
671 {
672 struct btrfs_block_rsv *rsv;
673
674 if (!node->bytes_reserved)
675 return;
676
677 rsv = &fs_info->delayed_block_rsv;
678 trace_btrfs_space_reservation(fs_info, "delayed_inode",
679 node->inode_id, node->bytes_reserved, 0);
680 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
681 if (qgroup_free)
682 btrfs_qgroup_free_meta_prealloc(node->root,
683 node->bytes_reserved);
684 else
685 btrfs_qgroup_convert_reserved_meta(node->root,
686 node->bytes_reserved);
687 node->bytes_reserved = 0;
688 }
689
690 /*
691 * This helper will insert some continuous items into the same leaf according
692 * to the free space of the leaf.
693 */
btrfs_batch_insert_items(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)694 static int btrfs_batch_insert_items(struct btrfs_root *root,
695 struct btrfs_path *path,
696 struct btrfs_delayed_item *item)
697 {
698 struct btrfs_delayed_item *curr, *next;
699 int free_space;
700 int total_data_size = 0, total_size = 0;
701 struct extent_buffer *leaf;
702 char *data_ptr;
703 struct btrfs_key *keys;
704 u32 *data_size;
705 struct list_head head;
706 int slot;
707 int nitems;
708 int i;
709 int ret = 0;
710
711 BUG_ON(!path->nodes[0]);
712
713 leaf = path->nodes[0];
714 free_space = btrfs_leaf_free_space(leaf);
715 INIT_LIST_HEAD(&head);
716
717 next = item;
718 nitems = 0;
719
720 /*
721 * count the number of the continuous items that we can insert in batch
722 */
723 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
724 free_space) {
725 total_data_size += next->data_len;
726 total_size += next->data_len + sizeof(struct btrfs_item);
727 list_add_tail(&next->tree_list, &head);
728 nitems++;
729
730 curr = next;
731 next = __btrfs_next_delayed_item(curr);
732 if (!next)
733 break;
734
735 if (!btrfs_is_continuous_delayed_item(curr, next))
736 break;
737 }
738
739 if (!nitems) {
740 ret = 0;
741 goto out;
742 }
743
744 /*
745 * we need allocate some memory space, but it might cause the task
746 * to sleep, so we set all locked nodes in the path to blocking locks
747 * first.
748 */
749 btrfs_set_path_blocking(path);
750
751 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
752 if (!keys) {
753 ret = -ENOMEM;
754 goto out;
755 }
756
757 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
758 if (!data_size) {
759 ret = -ENOMEM;
760 goto error;
761 }
762
763 /* get keys of all the delayed items */
764 i = 0;
765 list_for_each_entry(next, &head, tree_list) {
766 keys[i] = next->key;
767 data_size[i] = next->data_len;
768 i++;
769 }
770
771 /* insert the keys of the items */
772 setup_items_for_insert(root, path, keys, data_size, nitems);
773
774 /* insert the dir index items */
775 slot = path->slots[0];
776 list_for_each_entry_safe(curr, next, &head, tree_list) {
777 data_ptr = btrfs_item_ptr(leaf, slot, char);
778 write_extent_buffer(leaf, &curr->data,
779 (unsigned long)data_ptr,
780 curr->data_len);
781 slot++;
782
783 btrfs_delayed_item_release_metadata(root, curr);
784
785 list_del(&curr->tree_list);
786 btrfs_release_delayed_item(curr);
787 }
788
789 error:
790 kfree(data_size);
791 kfree(keys);
792 out:
793 return ret;
794 }
795
796 /*
797 * This helper can just do simple insertion that needn't extend item for new
798 * data, such as directory name index insertion, inode insertion.
799 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * delayed_item)800 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
801 struct btrfs_root *root,
802 struct btrfs_path *path,
803 struct btrfs_delayed_item *delayed_item)
804 {
805 struct extent_buffer *leaf;
806 unsigned int nofs_flag;
807 char *ptr;
808 int ret;
809
810 nofs_flag = memalloc_nofs_save();
811 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
812 delayed_item->data_len);
813 memalloc_nofs_restore(nofs_flag);
814 if (ret < 0 && ret != -EEXIST)
815 return ret;
816
817 leaf = path->nodes[0];
818
819 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
820
821 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
822 delayed_item->data_len);
823 btrfs_mark_buffer_dirty(leaf);
824
825 btrfs_delayed_item_release_metadata(root, delayed_item);
826 return 0;
827 }
828
829 /*
830 * we insert an item first, then if there are some continuous items, we try
831 * to insert those items into the same leaf.
832 */
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)833 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
834 struct btrfs_path *path,
835 struct btrfs_root *root,
836 struct btrfs_delayed_node *node)
837 {
838 struct btrfs_delayed_item *curr, *prev;
839 int ret = 0;
840
841 do_again:
842 mutex_lock(&node->mutex);
843 curr = __btrfs_first_delayed_insertion_item(node);
844 if (!curr)
845 goto insert_end;
846
847 ret = btrfs_insert_delayed_item(trans, root, path, curr);
848 if (ret < 0) {
849 btrfs_release_path(path);
850 goto insert_end;
851 }
852
853 prev = curr;
854 curr = __btrfs_next_delayed_item(prev);
855 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
856 /* insert the continuous items into the same leaf */
857 path->slots[0]++;
858 btrfs_batch_insert_items(root, path, curr);
859 }
860 btrfs_release_delayed_item(prev);
861 btrfs_mark_buffer_dirty(path->nodes[0]);
862
863 btrfs_release_path(path);
864 mutex_unlock(&node->mutex);
865 goto do_again;
866
867 insert_end:
868 mutex_unlock(&node->mutex);
869 return ret;
870 }
871
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)872 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
873 struct btrfs_root *root,
874 struct btrfs_path *path,
875 struct btrfs_delayed_item *item)
876 {
877 struct btrfs_delayed_item *curr, *next;
878 struct extent_buffer *leaf;
879 struct btrfs_key key;
880 struct list_head head;
881 int nitems, i, last_item;
882 int ret = 0;
883
884 BUG_ON(!path->nodes[0]);
885
886 leaf = path->nodes[0];
887
888 i = path->slots[0];
889 last_item = btrfs_header_nritems(leaf) - 1;
890 if (i > last_item)
891 return -ENOENT; /* FIXME: Is errno suitable? */
892
893 next = item;
894 INIT_LIST_HEAD(&head);
895 btrfs_item_key_to_cpu(leaf, &key, i);
896 nitems = 0;
897 /*
898 * count the number of the dir index items that we can delete in batch
899 */
900 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
901 list_add_tail(&next->tree_list, &head);
902 nitems++;
903
904 curr = next;
905 next = __btrfs_next_delayed_item(curr);
906 if (!next)
907 break;
908
909 if (!btrfs_is_continuous_delayed_item(curr, next))
910 break;
911
912 i++;
913 if (i > last_item)
914 break;
915 btrfs_item_key_to_cpu(leaf, &key, i);
916 }
917
918 if (!nitems)
919 return 0;
920
921 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
922 if (ret)
923 goto out;
924
925 list_for_each_entry_safe(curr, next, &head, tree_list) {
926 btrfs_delayed_item_release_metadata(root, curr);
927 list_del(&curr->tree_list);
928 btrfs_release_delayed_item(curr);
929 }
930
931 out:
932 return ret;
933 }
934
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)935 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
936 struct btrfs_path *path,
937 struct btrfs_root *root,
938 struct btrfs_delayed_node *node)
939 {
940 struct btrfs_delayed_item *curr, *prev;
941 unsigned int nofs_flag;
942 int ret = 0;
943
944 do_again:
945 mutex_lock(&node->mutex);
946 curr = __btrfs_first_delayed_deletion_item(node);
947 if (!curr)
948 goto delete_fail;
949
950 nofs_flag = memalloc_nofs_save();
951 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
952 memalloc_nofs_restore(nofs_flag);
953 if (ret < 0)
954 goto delete_fail;
955 else if (ret > 0) {
956 /*
957 * can't find the item which the node points to, so this node
958 * is invalid, just drop it.
959 */
960 prev = curr;
961 curr = __btrfs_next_delayed_item(prev);
962 btrfs_release_delayed_item(prev);
963 ret = 0;
964 btrfs_release_path(path);
965 if (curr) {
966 mutex_unlock(&node->mutex);
967 goto do_again;
968 } else
969 goto delete_fail;
970 }
971
972 btrfs_batch_delete_items(trans, root, path, curr);
973 btrfs_release_path(path);
974 mutex_unlock(&node->mutex);
975 goto do_again;
976
977 delete_fail:
978 btrfs_release_path(path);
979 mutex_unlock(&node->mutex);
980 return ret;
981 }
982
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)983 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
984 {
985 struct btrfs_delayed_root *delayed_root;
986
987 if (delayed_node &&
988 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
989 BUG_ON(!delayed_node->root);
990 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
991 delayed_node->count--;
992
993 delayed_root = delayed_node->root->fs_info->delayed_root;
994 finish_one_item(delayed_root);
995 }
996 }
997
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)998 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
999 {
1000 struct btrfs_delayed_root *delayed_root;
1001
1002 ASSERT(delayed_node->root);
1003 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1004 delayed_node->count--;
1005
1006 delayed_root = delayed_node->root->fs_info->delayed_root;
1007 finish_one_item(delayed_root);
1008 }
1009
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1010 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1011 struct btrfs_root *root,
1012 struct btrfs_path *path,
1013 struct btrfs_delayed_node *node)
1014 {
1015 struct btrfs_fs_info *fs_info = root->fs_info;
1016 struct btrfs_key key;
1017 struct btrfs_inode_item *inode_item;
1018 struct extent_buffer *leaf;
1019 unsigned int nofs_flag;
1020 int mod;
1021 int ret;
1022
1023 key.objectid = node->inode_id;
1024 key.type = BTRFS_INODE_ITEM_KEY;
1025 key.offset = 0;
1026
1027 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1028 mod = -1;
1029 else
1030 mod = 1;
1031
1032 nofs_flag = memalloc_nofs_save();
1033 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1034 memalloc_nofs_restore(nofs_flag);
1035 if (ret > 0)
1036 ret = -ENOENT;
1037 if (ret < 0)
1038 goto out;
1039
1040 leaf = path->nodes[0];
1041 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1042 struct btrfs_inode_item);
1043 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1044 sizeof(struct btrfs_inode_item));
1045 btrfs_mark_buffer_dirty(leaf);
1046
1047 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1048 goto no_iref;
1049
1050 path->slots[0]++;
1051 if (path->slots[0] >= btrfs_header_nritems(leaf))
1052 goto search;
1053 again:
1054 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1055 if (key.objectid != node->inode_id)
1056 goto out;
1057
1058 if (key.type != BTRFS_INODE_REF_KEY &&
1059 key.type != BTRFS_INODE_EXTREF_KEY)
1060 goto out;
1061
1062 /*
1063 * Delayed iref deletion is for the inode who has only one link,
1064 * so there is only one iref. The case that several irefs are
1065 * in the same item doesn't exist.
1066 */
1067 btrfs_del_item(trans, root, path);
1068 out:
1069 btrfs_release_delayed_iref(node);
1070 no_iref:
1071 btrfs_release_path(path);
1072 err_out:
1073 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1074 btrfs_release_delayed_inode(node);
1075
1076 /*
1077 * If we fail to update the delayed inode we need to abort the
1078 * transaction, because we could leave the inode with the improper
1079 * counts behind.
1080 */
1081 if (ret && ret != -ENOENT)
1082 btrfs_abort_transaction(trans, ret);
1083
1084 return ret;
1085
1086 search:
1087 btrfs_release_path(path);
1088
1089 key.type = BTRFS_INODE_EXTREF_KEY;
1090 key.offset = -1;
1091
1092 nofs_flag = memalloc_nofs_save();
1093 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1094 memalloc_nofs_restore(nofs_flag);
1095 if (ret < 0)
1096 goto err_out;
1097 ASSERT(ret);
1098
1099 ret = 0;
1100 leaf = path->nodes[0];
1101 path->slots[0]--;
1102 goto again;
1103 }
1104
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1105 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root,
1107 struct btrfs_path *path,
1108 struct btrfs_delayed_node *node)
1109 {
1110 int ret;
1111
1112 mutex_lock(&node->mutex);
1113 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1114 mutex_unlock(&node->mutex);
1115 return 0;
1116 }
1117
1118 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1119 mutex_unlock(&node->mutex);
1120 return ret;
1121 }
1122
1123 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1124 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1125 struct btrfs_path *path,
1126 struct btrfs_delayed_node *node)
1127 {
1128 int ret;
1129
1130 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1131 if (ret)
1132 return ret;
1133
1134 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1135 if (ret)
1136 return ret;
1137
1138 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1139 return ret;
1140 }
1141
1142 /*
1143 * Called when committing the transaction.
1144 * Returns 0 on success.
1145 * Returns < 0 on error and returns with an aborted transaction with any
1146 * outstanding delayed items cleaned up.
1147 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1148 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1149 {
1150 struct btrfs_fs_info *fs_info = trans->fs_info;
1151 struct btrfs_delayed_root *delayed_root;
1152 struct btrfs_delayed_node *curr_node, *prev_node;
1153 struct btrfs_path *path;
1154 struct btrfs_block_rsv *block_rsv;
1155 int ret = 0;
1156 bool count = (nr > 0);
1157
1158 if (TRANS_ABORTED(trans))
1159 return -EIO;
1160
1161 path = btrfs_alloc_path();
1162 if (!path)
1163 return -ENOMEM;
1164 path->leave_spinning = 1;
1165
1166 block_rsv = trans->block_rsv;
1167 trans->block_rsv = &fs_info->delayed_block_rsv;
1168
1169 delayed_root = fs_info->delayed_root;
1170
1171 curr_node = btrfs_first_delayed_node(delayed_root);
1172 while (curr_node && (!count || (count && nr--))) {
1173 ret = __btrfs_commit_inode_delayed_items(trans, path,
1174 curr_node);
1175 if (ret) {
1176 btrfs_release_delayed_node(curr_node);
1177 curr_node = NULL;
1178 btrfs_abort_transaction(trans, ret);
1179 break;
1180 }
1181
1182 prev_node = curr_node;
1183 curr_node = btrfs_next_delayed_node(curr_node);
1184 btrfs_release_delayed_node(prev_node);
1185 }
1186
1187 if (curr_node)
1188 btrfs_release_delayed_node(curr_node);
1189 btrfs_free_path(path);
1190 trans->block_rsv = block_rsv;
1191
1192 return ret;
1193 }
1194
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1195 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1196 {
1197 return __btrfs_run_delayed_items(trans, -1);
1198 }
1199
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1200 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1201 {
1202 return __btrfs_run_delayed_items(trans, nr);
1203 }
1204
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1205 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1206 struct btrfs_inode *inode)
1207 {
1208 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1209 struct btrfs_path *path;
1210 struct btrfs_block_rsv *block_rsv;
1211 int ret;
1212
1213 if (!delayed_node)
1214 return 0;
1215
1216 mutex_lock(&delayed_node->mutex);
1217 if (!delayed_node->count) {
1218 mutex_unlock(&delayed_node->mutex);
1219 btrfs_release_delayed_node(delayed_node);
1220 return 0;
1221 }
1222 mutex_unlock(&delayed_node->mutex);
1223
1224 path = btrfs_alloc_path();
1225 if (!path) {
1226 btrfs_release_delayed_node(delayed_node);
1227 return -ENOMEM;
1228 }
1229 path->leave_spinning = 1;
1230
1231 block_rsv = trans->block_rsv;
1232 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1233
1234 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1235
1236 btrfs_release_delayed_node(delayed_node);
1237 btrfs_free_path(path);
1238 trans->block_rsv = block_rsv;
1239
1240 return ret;
1241 }
1242
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1243 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1244 {
1245 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1246 struct btrfs_trans_handle *trans;
1247 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1248 struct btrfs_path *path;
1249 struct btrfs_block_rsv *block_rsv;
1250 int ret;
1251
1252 if (!delayed_node)
1253 return 0;
1254
1255 mutex_lock(&delayed_node->mutex);
1256 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1257 mutex_unlock(&delayed_node->mutex);
1258 btrfs_release_delayed_node(delayed_node);
1259 return 0;
1260 }
1261 mutex_unlock(&delayed_node->mutex);
1262
1263 trans = btrfs_join_transaction(delayed_node->root);
1264 if (IS_ERR(trans)) {
1265 ret = PTR_ERR(trans);
1266 goto out;
1267 }
1268
1269 path = btrfs_alloc_path();
1270 if (!path) {
1271 ret = -ENOMEM;
1272 goto trans_out;
1273 }
1274 path->leave_spinning = 1;
1275
1276 block_rsv = trans->block_rsv;
1277 trans->block_rsv = &fs_info->delayed_block_rsv;
1278
1279 mutex_lock(&delayed_node->mutex);
1280 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1281 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1282 path, delayed_node);
1283 else
1284 ret = 0;
1285 mutex_unlock(&delayed_node->mutex);
1286
1287 btrfs_free_path(path);
1288 trans->block_rsv = block_rsv;
1289 trans_out:
1290 btrfs_end_transaction(trans);
1291 btrfs_btree_balance_dirty(fs_info);
1292 out:
1293 btrfs_release_delayed_node(delayed_node);
1294
1295 return ret;
1296 }
1297
btrfs_remove_delayed_node(struct btrfs_inode * inode)1298 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1299 {
1300 struct btrfs_delayed_node *delayed_node;
1301
1302 delayed_node = READ_ONCE(inode->delayed_node);
1303 if (!delayed_node)
1304 return;
1305
1306 inode->delayed_node = NULL;
1307 btrfs_release_delayed_node(delayed_node);
1308 }
1309
1310 struct btrfs_async_delayed_work {
1311 struct btrfs_delayed_root *delayed_root;
1312 int nr;
1313 struct btrfs_work work;
1314 };
1315
btrfs_async_run_delayed_root(struct btrfs_work * work)1316 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1317 {
1318 struct btrfs_async_delayed_work *async_work;
1319 struct btrfs_delayed_root *delayed_root;
1320 struct btrfs_trans_handle *trans;
1321 struct btrfs_path *path;
1322 struct btrfs_delayed_node *delayed_node = NULL;
1323 struct btrfs_root *root;
1324 struct btrfs_block_rsv *block_rsv;
1325 int total_done = 0;
1326
1327 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1328 delayed_root = async_work->delayed_root;
1329
1330 path = btrfs_alloc_path();
1331 if (!path)
1332 goto out;
1333
1334 do {
1335 if (atomic_read(&delayed_root->items) <
1336 BTRFS_DELAYED_BACKGROUND / 2)
1337 break;
1338
1339 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1340 if (!delayed_node)
1341 break;
1342
1343 path->leave_spinning = 1;
1344 root = delayed_node->root;
1345
1346 trans = btrfs_join_transaction(root);
1347 if (IS_ERR(trans)) {
1348 btrfs_release_path(path);
1349 btrfs_release_prepared_delayed_node(delayed_node);
1350 total_done++;
1351 continue;
1352 }
1353
1354 block_rsv = trans->block_rsv;
1355 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1356
1357 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1358
1359 trans->block_rsv = block_rsv;
1360 btrfs_end_transaction(trans);
1361 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1362
1363 btrfs_release_path(path);
1364 btrfs_release_prepared_delayed_node(delayed_node);
1365 total_done++;
1366
1367 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1368 || total_done < async_work->nr);
1369
1370 btrfs_free_path(path);
1371 out:
1372 wake_up(&delayed_root->wait);
1373 kfree(async_work);
1374 }
1375
1376
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1377 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1378 struct btrfs_fs_info *fs_info, int nr)
1379 {
1380 struct btrfs_async_delayed_work *async_work;
1381
1382 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1383 if (!async_work)
1384 return -ENOMEM;
1385
1386 async_work->delayed_root = delayed_root;
1387 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1388 NULL);
1389 async_work->nr = nr;
1390
1391 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1392 return 0;
1393 }
1394
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1395 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1396 {
1397 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1398 }
1399
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1400 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1401 {
1402 int val = atomic_read(&delayed_root->items_seq);
1403
1404 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1405 return 1;
1406
1407 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1408 return 1;
1409
1410 return 0;
1411 }
1412
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1413 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1414 {
1415 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1416
1417 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1418 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1419 return;
1420
1421 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1422 int seq;
1423 int ret;
1424
1425 seq = atomic_read(&delayed_root->items_seq);
1426
1427 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1428 if (ret)
1429 return;
1430
1431 wait_event_interruptible(delayed_root->wait,
1432 could_end_wait(delayed_root, seq));
1433 return;
1434 }
1435
1436 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1437 }
1438
1439 /* Will return 0 or -ENOMEM */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,struct btrfs_disk_key * disk_key,u8 type,u64 index)1440 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1441 const char *name, int name_len,
1442 struct btrfs_inode *dir,
1443 struct btrfs_disk_key *disk_key, u8 type,
1444 u64 index)
1445 {
1446 struct btrfs_delayed_node *delayed_node;
1447 struct btrfs_delayed_item *delayed_item;
1448 struct btrfs_dir_item *dir_item;
1449 int ret;
1450
1451 delayed_node = btrfs_get_or_create_delayed_node(dir);
1452 if (IS_ERR(delayed_node))
1453 return PTR_ERR(delayed_node);
1454
1455 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1456 if (!delayed_item) {
1457 ret = -ENOMEM;
1458 goto release_node;
1459 }
1460
1461 delayed_item->key.objectid = btrfs_ino(dir);
1462 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1463 delayed_item->key.offset = index;
1464
1465 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1466 dir_item->location = *disk_key;
1467 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1468 btrfs_set_stack_dir_data_len(dir_item, 0);
1469 btrfs_set_stack_dir_name_len(dir_item, name_len);
1470 btrfs_set_stack_dir_type(dir_item, type);
1471 memcpy((char *)(dir_item + 1), name, name_len);
1472
1473 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1474 /*
1475 * we have reserved enough space when we start a new transaction,
1476 * so reserving metadata failure is impossible
1477 */
1478 BUG_ON(ret);
1479
1480 mutex_lock(&delayed_node->mutex);
1481 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1482 if (unlikely(ret)) {
1483 btrfs_err(trans->fs_info,
1484 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1485 name_len, name, delayed_node->root->root_key.objectid,
1486 delayed_node->inode_id, ret);
1487 BUG();
1488 }
1489 mutex_unlock(&delayed_node->mutex);
1490
1491 release_node:
1492 btrfs_release_delayed_node(delayed_node);
1493 return ret;
1494 }
1495
btrfs_delete_delayed_insertion_item(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,struct btrfs_key * key)1496 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1497 struct btrfs_delayed_node *node,
1498 struct btrfs_key *key)
1499 {
1500 struct btrfs_delayed_item *item;
1501
1502 mutex_lock(&node->mutex);
1503 item = __btrfs_lookup_delayed_insertion_item(node, key);
1504 if (!item) {
1505 mutex_unlock(&node->mutex);
1506 return 1;
1507 }
1508
1509 btrfs_delayed_item_release_metadata(node->root, item);
1510 btrfs_release_delayed_item(item);
1511 mutex_unlock(&node->mutex);
1512 return 0;
1513 }
1514
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1515 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1516 struct btrfs_inode *dir, u64 index)
1517 {
1518 struct btrfs_delayed_node *node;
1519 struct btrfs_delayed_item *item;
1520 struct btrfs_key item_key;
1521 int ret;
1522
1523 node = btrfs_get_or_create_delayed_node(dir);
1524 if (IS_ERR(node))
1525 return PTR_ERR(node);
1526
1527 item_key.objectid = btrfs_ino(dir);
1528 item_key.type = BTRFS_DIR_INDEX_KEY;
1529 item_key.offset = index;
1530
1531 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1532 &item_key);
1533 if (!ret)
1534 goto end;
1535
1536 item = btrfs_alloc_delayed_item(0);
1537 if (!item) {
1538 ret = -ENOMEM;
1539 goto end;
1540 }
1541
1542 item->key = item_key;
1543
1544 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1545 /*
1546 * we have reserved enough space when we start a new transaction,
1547 * so reserving metadata failure is impossible.
1548 */
1549 if (ret < 0) {
1550 btrfs_err(trans->fs_info,
1551 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1552 btrfs_release_delayed_item(item);
1553 goto end;
1554 }
1555
1556 mutex_lock(&node->mutex);
1557 ret = __btrfs_add_delayed_deletion_item(node, item);
1558 if (unlikely(ret)) {
1559 btrfs_err(trans->fs_info,
1560 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1561 index, node->root->root_key.objectid,
1562 node->inode_id, ret);
1563 btrfs_delayed_item_release_metadata(dir->root, item);
1564 btrfs_release_delayed_item(item);
1565 }
1566 mutex_unlock(&node->mutex);
1567 end:
1568 btrfs_release_delayed_node(node);
1569 return ret;
1570 }
1571
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1572 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1573 {
1574 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1575
1576 if (!delayed_node)
1577 return -ENOENT;
1578
1579 /*
1580 * Since we have held i_mutex of this directory, it is impossible that
1581 * a new directory index is added into the delayed node and index_cnt
1582 * is updated now. So we needn't lock the delayed node.
1583 */
1584 if (!delayed_node->index_cnt) {
1585 btrfs_release_delayed_node(delayed_node);
1586 return -EINVAL;
1587 }
1588
1589 inode->index_cnt = delayed_node->index_cnt;
1590 btrfs_release_delayed_node(delayed_node);
1591 return 0;
1592 }
1593
btrfs_readdir_get_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1594 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1595 struct list_head *ins_list,
1596 struct list_head *del_list)
1597 {
1598 struct btrfs_delayed_node *delayed_node;
1599 struct btrfs_delayed_item *item;
1600
1601 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1602 if (!delayed_node)
1603 return false;
1604
1605 /*
1606 * We can only do one readdir with delayed items at a time because of
1607 * item->readdir_list.
1608 */
1609 inode_unlock_shared(inode);
1610 inode_lock(inode);
1611
1612 mutex_lock(&delayed_node->mutex);
1613 item = __btrfs_first_delayed_insertion_item(delayed_node);
1614 while (item) {
1615 refcount_inc(&item->refs);
1616 list_add_tail(&item->readdir_list, ins_list);
1617 item = __btrfs_next_delayed_item(item);
1618 }
1619
1620 item = __btrfs_first_delayed_deletion_item(delayed_node);
1621 while (item) {
1622 refcount_inc(&item->refs);
1623 list_add_tail(&item->readdir_list, del_list);
1624 item = __btrfs_next_delayed_item(item);
1625 }
1626 mutex_unlock(&delayed_node->mutex);
1627 /*
1628 * This delayed node is still cached in the btrfs inode, so refs
1629 * must be > 1 now, and we needn't check it is going to be freed
1630 * or not.
1631 *
1632 * Besides that, this function is used to read dir, we do not
1633 * insert/delete delayed items in this period. So we also needn't
1634 * requeue or dequeue this delayed node.
1635 */
1636 refcount_dec(&delayed_node->refs);
1637
1638 return true;
1639 }
1640
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1641 void btrfs_readdir_put_delayed_items(struct inode *inode,
1642 struct list_head *ins_list,
1643 struct list_head *del_list)
1644 {
1645 struct btrfs_delayed_item *curr, *next;
1646
1647 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1648 list_del(&curr->readdir_list);
1649 if (refcount_dec_and_test(&curr->refs))
1650 kfree(curr);
1651 }
1652
1653 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1654 list_del(&curr->readdir_list);
1655 if (refcount_dec_and_test(&curr->refs))
1656 kfree(curr);
1657 }
1658
1659 /*
1660 * The VFS is going to do up_read(), so we need to downgrade back to a
1661 * read lock.
1662 */
1663 downgrade_write(&inode->i_rwsem);
1664 }
1665
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1666 int btrfs_should_delete_dir_index(struct list_head *del_list,
1667 u64 index)
1668 {
1669 struct btrfs_delayed_item *curr;
1670 int ret = 0;
1671
1672 list_for_each_entry(curr, del_list, readdir_list) {
1673 if (curr->key.offset > index)
1674 break;
1675 if (curr->key.offset == index) {
1676 ret = 1;
1677 break;
1678 }
1679 }
1680 return ret;
1681 }
1682
1683 /*
1684 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1685 *
1686 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list)1687 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1688 struct list_head *ins_list)
1689 {
1690 struct btrfs_dir_item *di;
1691 struct btrfs_delayed_item *curr, *next;
1692 struct btrfs_key location;
1693 char *name;
1694 int name_len;
1695 int over = 0;
1696 unsigned char d_type;
1697
1698 if (list_empty(ins_list))
1699 return 0;
1700
1701 /*
1702 * Changing the data of the delayed item is impossible. So
1703 * we needn't lock them. And we have held i_mutex of the
1704 * directory, nobody can delete any directory indexes now.
1705 */
1706 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1707 list_del(&curr->readdir_list);
1708
1709 if (curr->key.offset < ctx->pos) {
1710 if (refcount_dec_and_test(&curr->refs))
1711 kfree(curr);
1712 continue;
1713 }
1714
1715 ctx->pos = curr->key.offset;
1716
1717 di = (struct btrfs_dir_item *)curr->data;
1718 name = (char *)(di + 1);
1719 name_len = btrfs_stack_dir_name_len(di);
1720
1721 d_type = fs_ftype_to_dtype(di->type);
1722 btrfs_disk_key_to_cpu(&location, &di->location);
1723
1724 over = !dir_emit(ctx, name, name_len,
1725 location.objectid, d_type);
1726
1727 if (refcount_dec_and_test(&curr->refs))
1728 kfree(curr);
1729
1730 if (over)
1731 return 1;
1732 ctx->pos++;
1733 }
1734 return 0;
1735 }
1736
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1737 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1738 struct btrfs_inode_item *inode_item,
1739 struct inode *inode)
1740 {
1741 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1742 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1743 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1744 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1745 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1746 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1747 btrfs_set_stack_inode_generation(inode_item,
1748 BTRFS_I(inode)->generation);
1749 btrfs_set_stack_inode_sequence(inode_item,
1750 inode_peek_iversion(inode));
1751 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1752 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1753 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1754 btrfs_set_stack_inode_block_group(inode_item, 0);
1755
1756 btrfs_set_stack_timespec_sec(&inode_item->atime,
1757 inode->i_atime.tv_sec);
1758 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1759 inode->i_atime.tv_nsec);
1760
1761 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1762 inode->i_mtime.tv_sec);
1763 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1764 inode->i_mtime.tv_nsec);
1765
1766 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1767 inode->i_ctime.tv_sec);
1768 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1769 inode->i_ctime.tv_nsec);
1770
1771 btrfs_set_stack_timespec_sec(&inode_item->otime,
1772 BTRFS_I(inode)->i_otime.tv_sec);
1773 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1774 BTRFS_I(inode)->i_otime.tv_nsec);
1775 }
1776
btrfs_fill_inode(struct inode * inode,u32 * rdev)1777 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1778 {
1779 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1780 struct btrfs_delayed_node *delayed_node;
1781 struct btrfs_inode_item *inode_item;
1782
1783 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1784 if (!delayed_node)
1785 return -ENOENT;
1786
1787 mutex_lock(&delayed_node->mutex);
1788 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1789 mutex_unlock(&delayed_node->mutex);
1790 btrfs_release_delayed_node(delayed_node);
1791 return -ENOENT;
1792 }
1793
1794 inode_item = &delayed_node->inode_item;
1795
1796 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1797 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1798 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1799 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1800 round_up(i_size_read(inode), fs_info->sectorsize));
1801 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1802 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1803 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1804 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1805 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1806
1807 inode_set_iversion_queried(inode,
1808 btrfs_stack_inode_sequence(inode_item));
1809 inode->i_rdev = 0;
1810 *rdev = btrfs_stack_inode_rdev(inode_item);
1811 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1812
1813 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1814 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1815
1816 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1817 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1818
1819 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1820 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1821
1822 BTRFS_I(inode)->i_otime.tv_sec =
1823 btrfs_stack_timespec_sec(&inode_item->otime);
1824 BTRFS_I(inode)->i_otime.tv_nsec =
1825 btrfs_stack_timespec_nsec(&inode_item->otime);
1826
1827 inode->i_generation = BTRFS_I(inode)->generation;
1828 BTRFS_I(inode)->index_cnt = (u64)-1;
1829
1830 mutex_unlock(&delayed_node->mutex);
1831 btrfs_release_delayed_node(delayed_node);
1832 return 0;
1833 }
1834
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1835 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1836 struct btrfs_root *root, struct inode *inode)
1837 {
1838 struct btrfs_delayed_node *delayed_node;
1839 int ret = 0;
1840
1841 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1842 if (IS_ERR(delayed_node))
1843 return PTR_ERR(delayed_node);
1844
1845 mutex_lock(&delayed_node->mutex);
1846 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1847 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1848 goto release_node;
1849 }
1850
1851 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1852 delayed_node);
1853 if (ret)
1854 goto release_node;
1855
1856 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1857 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1858 delayed_node->count++;
1859 atomic_inc(&root->fs_info->delayed_root->items);
1860 release_node:
1861 mutex_unlock(&delayed_node->mutex);
1862 btrfs_release_delayed_node(delayed_node);
1863 return ret;
1864 }
1865
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1866 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1867 {
1868 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1869 struct btrfs_delayed_node *delayed_node;
1870
1871 /*
1872 * we don't do delayed inode updates during log recovery because it
1873 * leads to enospc problems. This means we also can't do
1874 * delayed inode refs
1875 */
1876 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1877 return -EAGAIN;
1878
1879 delayed_node = btrfs_get_or_create_delayed_node(inode);
1880 if (IS_ERR(delayed_node))
1881 return PTR_ERR(delayed_node);
1882
1883 /*
1884 * We don't reserve space for inode ref deletion is because:
1885 * - We ONLY do async inode ref deletion for the inode who has only
1886 * one link(i_nlink == 1), it means there is only one inode ref.
1887 * And in most case, the inode ref and the inode item are in the
1888 * same leaf, and we will deal with them at the same time.
1889 * Since we are sure we will reserve the space for the inode item,
1890 * it is unnecessary to reserve space for inode ref deletion.
1891 * - If the inode ref and the inode item are not in the same leaf,
1892 * We also needn't worry about enospc problem, because we reserve
1893 * much more space for the inode update than it needs.
1894 * - At the worst, we can steal some space from the global reservation.
1895 * It is very rare.
1896 */
1897 mutex_lock(&delayed_node->mutex);
1898 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1899 goto release_node;
1900
1901 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1902 delayed_node->count++;
1903 atomic_inc(&fs_info->delayed_root->items);
1904 release_node:
1905 mutex_unlock(&delayed_node->mutex);
1906 btrfs_release_delayed_node(delayed_node);
1907 return 0;
1908 }
1909
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1910 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1911 {
1912 struct btrfs_root *root = delayed_node->root;
1913 struct btrfs_fs_info *fs_info = root->fs_info;
1914 struct btrfs_delayed_item *curr_item, *prev_item;
1915
1916 mutex_lock(&delayed_node->mutex);
1917 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1918 while (curr_item) {
1919 btrfs_delayed_item_release_metadata(root, curr_item);
1920 prev_item = curr_item;
1921 curr_item = __btrfs_next_delayed_item(prev_item);
1922 btrfs_release_delayed_item(prev_item);
1923 }
1924
1925 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1926 while (curr_item) {
1927 btrfs_delayed_item_release_metadata(root, curr_item);
1928 prev_item = curr_item;
1929 curr_item = __btrfs_next_delayed_item(prev_item);
1930 btrfs_release_delayed_item(prev_item);
1931 }
1932
1933 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1934 btrfs_release_delayed_iref(delayed_node);
1935
1936 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1937 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1938 btrfs_release_delayed_inode(delayed_node);
1939 }
1940 mutex_unlock(&delayed_node->mutex);
1941 }
1942
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)1943 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1944 {
1945 struct btrfs_delayed_node *delayed_node;
1946
1947 delayed_node = btrfs_get_delayed_node(inode);
1948 if (!delayed_node)
1949 return;
1950
1951 __btrfs_kill_delayed_node(delayed_node);
1952 btrfs_release_delayed_node(delayed_node);
1953 }
1954
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)1955 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1956 {
1957 u64 inode_id = 0;
1958 struct btrfs_delayed_node *delayed_nodes[8];
1959 int i, n;
1960
1961 while (1) {
1962 spin_lock(&root->inode_lock);
1963 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1964 (void **)delayed_nodes, inode_id,
1965 ARRAY_SIZE(delayed_nodes));
1966 if (!n) {
1967 spin_unlock(&root->inode_lock);
1968 break;
1969 }
1970
1971 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1972 for (i = 0; i < n; i++) {
1973 /*
1974 * Don't increase refs in case the node is dead and
1975 * about to be removed from the tree in the loop below
1976 */
1977 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1978 delayed_nodes[i] = NULL;
1979 }
1980 spin_unlock(&root->inode_lock);
1981
1982 for (i = 0; i < n; i++) {
1983 if (!delayed_nodes[i])
1984 continue;
1985 __btrfs_kill_delayed_node(delayed_nodes[i]);
1986 btrfs_release_delayed_node(delayed_nodes[i]);
1987 }
1988 }
1989 }
1990
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)1991 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1992 {
1993 struct btrfs_delayed_node *curr_node, *prev_node;
1994
1995 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1996 while (curr_node) {
1997 __btrfs_kill_delayed_node(curr_node);
1998
1999 prev_node = curr_node;
2000 curr_node = btrfs_next_delayed_node(curr_node);
2001 btrfs_release_delayed_node(prev_node);
2002 }
2003 }
2004
2005