• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
20 
21 struct extent_inode_elem {
22 	u64 inum;
23 	u64 offset;
24 	struct extent_inode_elem *next;
25 };
26 
check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)27 static int check_extent_in_eb(const struct btrfs_key *key,
28 			      const struct extent_buffer *eb,
29 			      const struct btrfs_file_extent_item *fi,
30 			      u64 extent_item_pos,
31 			      struct extent_inode_elem **eie,
32 			      bool ignore_offset)
33 {
34 	u64 offset = 0;
35 	struct extent_inode_elem *e;
36 
37 	if (!ignore_offset &&
38 	    !btrfs_file_extent_compression(eb, fi) &&
39 	    !btrfs_file_extent_encryption(eb, fi) &&
40 	    !btrfs_file_extent_other_encoding(eb, fi)) {
41 		u64 data_offset;
42 		u64 data_len;
43 
44 		data_offset = btrfs_file_extent_offset(eb, fi);
45 		data_len = btrfs_file_extent_num_bytes(eb, fi);
46 
47 		if (extent_item_pos < data_offset ||
48 		    extent_item_pos >= data_offset + data_len)
49 			return 1;
50 		offset = extent_item_pos - data_offset;
51 	}
52 
53 	e = kmalloc(sizeof(*e), GFP_NOFS);
54 	if (!e)
55 		return -ENOMEM;
56 
57 	e->next = *eie;
58 	e->inum = key->objectid;
59 	e->offset = key->offset + offset;
60 	*eie = e;
61 
62 	return 0;
63 }
64 
free_inode_elem_list(struct extent_inode_elem * eie)65 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 {
67 	struct extent_inode_elem *eie_next;
68 
69 	for (; eie; eie = eie_next) {
70 		eie_next = eie->next;
71 		kfree(eie);
72 	}
73 }
74 
find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)75 static int find_extent_in_eb(const struct extent_buffer *eb,
76 			     u64 wanted_disk_byte, u64 extent_item_pos,
77 			     struct extent_inode_elem **eie,
78 			     bool ignore_offset)
79 {
80 	u64 disk_byte;
81 	struct btrfs_key key;
82 	struct btrfs_file_extent_item *fi;
83 	int slot;
84 	int nritems;
85 	int extent_type;
86 	int ret;
87 
88 	/*
89 	 * from the shared data ref, we only have the leaf but we need
90 	 * the key. thus, we must look into all items and see that we
91 	 * find one (some) with a reference to our extent item.
92 	 */
93 	nritems = btrfs_header_nritems(eb);
94 	for (slot = 0; slot < nritems; ++slot) {
95 		btrfs_item_key_to_cpu(eb, &key, slot);
96 		if (key.type != BTRFS_EXTENT_DATA_KEY)
97 			continue;
98 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99 		extent_type = btrfs_file_extent_type(eb, fi);
100 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101 			continue;
102 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104 		if (disk_byte != wanted_disk_byte)
105 			continue;
106 
107 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108 		if (ret < 0)
109 			return ret;
110 	}
111 
112 	return 0;
113 }
114 
115 struct preftree {
116 	struct rb_root_cached root;
117 	unsigned int count;
118 };
119 
120 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
121 
122 struct preftrees {
123 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125 	struct preftree indirect_missing_keys;
126 };
127 
128 /*
129  * Checks for a shared extent during backref search.
130  *
131  * The share_count tracks prelim_refs (direct and indirect) having a
132  * ref->count >0:
133  *  - incremented when a ref->count transitions to >0
134  *  - decremented when a ref->count transitions to <1
135  */
136 struct share_check {
137 	u64 root_objectid;
138 	u64 inum;
139 	int share_count;
140 };
141 
extent_is_shared(struct share_check * sc)142 static inline int extent_is_shared(struct share_check *sc)
143 {
144 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145 }
146 
147 static struct kmem_cache *btrfs_prelim_ref_cache;
148 
btrfs_prelim_ref_init(void)149 int __init btrfs_prelim_ref_init(void)
150 {
151 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152 					sizeof(struct prelim_ref),
153 					0,
154 					SLAB_MEM_SPREAD,
155 					NULL);
156 	if (!btrfs_prelim_ref_cache)
157 		return -ENOMEM;
158 	return 0;
159 }
160 
btrfs_prelim_ref_exit(void)161 void __cold btrfs_prelim_ref_exit(void)
162 {
163 	kmem_cache_destroy(btrfs_prelim_ref_cache);
164 }
165 
free_pref(struct prelim_ref * ref)166 static void free_pref(struct prelim_ref *ref)
167 {
168 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
169 }
170 
171 /*
172  * Return 0 when both refs are for the same block (and can be merged).
173  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174  * indicates a 'higher' block.
175  */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)176 static int prelim_ref_compare(struct prelim_ref *ref1,
177 			      struct prelim_ref *ref2)
178 {
179 	if (ref1->level < ref2->level)
180 		return -1;
181 	if (ref1->level > ref2->level)
182 		return 1;
183 	if (ref1->root_id < ref2->root_id)
184 		return -1;
185 	if (ref1->root_id > ref2->root_id)
186 		return 1;
187 	if (ref1->key_for_search.type < ref2->key_for_search.type)
188 		return -1;
189 	if (ref1->key_for_search.type > ref2->key_for_search.type)
190 		return 1;
191 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 		return -1;
193 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 		return 1;
195 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 		return -1;
197 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 		return 1;
199 	if (ref1->parent < ref2->parent)
200 		return -1;
201 	if (ref1->parent > ref2->parent)
202 		return 1;
203 
204 	return 0;
205 }
206 
update_share_count(struct share_check * sc,int oldcount,int newcount)207 static void update_share_count(struct share_check *sc, int oldcount,
208 			       int newcount)
209 {
210 	if ((!sc) || (oldcount == 0 && newcount < 1))
211 		return;
212 
213 	if (oldcount > 0 && newcount < 1)
214 		sc->share_count--;
215 	else if (oldcount < 1 && newcount > 0)
216 		sc->share_count++;
217 }
218 
219 /*
220  * Add @newref to the @root rbtree, merging identical refs.
221  *
222  * Callers should assume that newref has been freed after calling.
223  */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225 			      struct preftree *preftree,
226 			      struct prelim_ref *newref,
227 			      struct share_check *sc)
228 {
229 	struct rb_root_cached *root;
230 	struct rb_node **p;
231 	struct rb_node *parent = NULL;
232 	struct prelim_ref *ref;
233 	int result;
234 	bool leftmost = true;
235 
236 	root = &preftree->root;
237 	p = &root->rb_root.rb_node;
238 
239 	while (*p) {
240 		parent = *p;
241 		ref = rb_entry(parent, struct prelim_ref, rbnode);
242 		result = prelim_ref_compare(ref, newref);
243 		if (result < 0) {
244 			p = &(*p)->rb_left;
245 		} else if (result > 0) {
246 			p = &(*p)->rb_right;
247 			leftmost = false;
248 		} else {
249 			/* Identical refs, merge them and free @newref */
250 			struct extent_inode_elem *eie = ref->inode_list;
251 
252 			while (eie && eie->next)
253 				eie = eie->next;
254 
255 			if (!eie)
256 				ref->inode_list = newref->inode_list;
257 			else
258 				eie->next = newref->inode_list;
259 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260 						     preftree->count);
261 			/*
262 			 * A delayed ref can have newref->count < 0.
263 			 * The ref->count is updated to follow any
264 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265 			 */
266 			update_share_count(sc, ref->count,
267 					   ref->count + newref->count);
268 			ref->count += newref->count;
269 			free_pref(newref);
270 			return;
271 		}
272 	}
273 
274 	update_share_count(sc, 0, newref->count);
275 	preftree->count++;
276 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277 	rb_link_node(&newref->rbnode, parent, p);
278 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
279 }
280 
281 /*
282  * Release the entire tree.  We don't care about internal consistency so
283  * just free everything and then reset the tree root.
284  */
prelim_release(struct preftree * preftree)285 static void prelim_release(struct preftree *preftree)
286 {
287 	struct prelim_ref *ref, *next_ref;
288 
289 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
290 					     &preftree->root.rb_root, rbnode)
291 		free_pref(ref);
292 
293 	preftree->root = RB_ROOT_CACHED;
294 	preftree->count = 0;
295 }
296 
297 /*
298  * the rules for all callers of this function are:
299  * - obtaining the parent is the goal
300  * - if you add a key, you must know that it is a correct key
301  * - if you cannot add the parent or a correct key, then we will look into the
302  *   block later to set a correct key
303  *
304  * delayed refs
305  * ============
306  *        backref type | shared | indirect | shared | indirect
307  * information         |   tree |     tree |   data |     data
308  * --------------------+--------+----------+--------+----------
309  *      parent logical |    y   |     -    |    -   |     -
310  *      key to resolve |    -   |     y    |    y   |     y
311  *  tree block logical |    -   |     -    |    -   |     -
312  *  root for resolving |    y   |     y    |    y   |     y
313  *
314  * - column 1:       we've the parent -> done
315  * - column 2, 3, 4: we use the key to find the parent
316  *
317  * on disk refs (inline or keyed)
318  * ==============================
319  *        backref type | shared | indirect | shared | indirect
320  * information         |   tree |     tree |   data |     data
321  * --------------------+--------+----------+--------+----------
322  *      parent logical |    y   |     -    |    y   |     -
323  *      key to resolve |    -   |     -    |    -   |     y
324  *  tree block logical |    y   |     y    |    y   |     y
325  *  root for resolving |    -   |     y    |    y   |     y
326  *
327  * - column 1, 3: we've the parent -> done
328  * - column 2:    we take the first key from the block to find the parent
329  *                (see add_missing_keys)
330  * - column 4:    we use the key to find the parent
331  *
332  * additional information that's available but not required to find the parent
333  * block might help in merging entries to gain some speed.
334  */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)335 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
336 			  struct preftree *preftree, u64 root_id,
337 			  const struct btrfs_key *key, int level, u64 parent,
338 			  u64 wanted_disk_byte, int count,
339 			  struct share_check *sc, gfp_t gfp_mask)
340 {
341 	struct prelim_ref *ref;
342 
343 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
344 		return 0;
345 
346 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347 	if (!ref)
348 		return -ENOMEM;
349 
350 	ref->root_id = root_id;
351 	if (key)
352 		ref->key_for_search = *key;
353 	else
354 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
355 
356 	ref->inode_list = NULL;
357 	ref->level = level;
358 	ref->count = count;
359 	ref->parent = parent;
360 	ref->wanted_disk_byte = wanted_disk_byte;
361 	prelim_ref_insert(fs_info, preftree, ref, sc);
362 	return extent_is_shared(sc);
363 }
364 
365 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)366 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
367 			  struct preftrees *preftrees, int level, u64 parent,
368 			  u64 wanted_disk_byte, int count,
369 			  struct share_check *sc, gfp_t gfp_mask)
370 {
371 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
372 			      parent, wanted_disk_byte, count, sc, gfp_mask);
373 }
374 
375 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)376 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
377 			    struct preftrees *preftrees, u64 root_id,
378 			    const struct btrfs_key *key, int level,
379 			    u64 wanted_disk_byte, int count,
380 			    struct share_check *sc, gfp_t gfp_mask)
381 {
382 	struct preftree *tree = &preftrees->indirect;
383 
384 	if (!key)
385 		tree = &preftrees->indirect_missing_keys;
386 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
387 			      wanted_disk_byte, count, sc, gfp_mask);
388 }
389 
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)390 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
391 {
392 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
393 	struct rb_node *parent = NULL;
394 	struct prelim_ref *ref = NULL;
395 	struct prelim_ref target = {};
396 	int result;
397 
398 	target.parent = bytenr;
399 
400 	while (*p) {
401 		parent = *p;
402 		ref = rb_entry(parent, struct prelim_ref, rbnode);
403 		result = prelim_ref_compare(ref, &target);
404 
405 		if (result < 0)
406 			p = &(*p)->rb_left;
407 		else if (result > 0)
408 			p = &(*p)->rb_right;
409 		else
410 			return 1;
411 	}
412 	return 0;
413 }
414 
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,bool ignore_offset)415 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
416 			   struct ulist *parents,
417 			   struct preftrees *preftrees, struct prelim_ref *ref,
418 			   int level, u64 time_seq, const u64 *extent_item_pos,
419 			   bool ignore_offset)
420 {
421 	int ret = 0;
422 	int slot;
423 	struct extent_buffer *eb;
424 	struct btrfs_key key;
425 	struct btrfs_key *key_for_search = &ref->key_for_search;
426 	struct btrfs_file_extent_item *fi;
427 	struct extent_inode_elem *eie = NULL, *old = NULL;
428 	u64 disk_byte;
429 	u64 wanted_disk_byte = ref->wanted_disk_byte;
430 	u64 count = 0;
431 	u64 data_offset;
432 
433 	if (level != 0) {
434 		eb = path->nodes[level];
435 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
436 		if (ret < 0)
437 			return ret;
438 		return 0;
439 	}
440 
441 	/*
442 	 * 1. We normally enter this function with the path already pointing to
443 	 *    the first item to check. But sometimes, we may enter it with
444 	 *    slot == nritems.
445 	 * 2. We are searching for normal backref but bytenr of this leaf
446 	 *    matches shared data backref
447 	 * 3. The leaf owner is not equal to the root we are searching
448 	 *
449 	 * For these cases, go to the next leaf before we continue.
450 	 */
451 	eb = path->nodes[0];
452 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
453 	    is_shared_data_backref(preftrees, eb->start) ||
454 	    ref->root_id != btrfs_header_owner(eb)) {
455 		if (time_seq == SEQ_LAST)
456 			ret = btrfs_next_leaf(root, path);
457 		else
458 			ret = btrfs_next_old_leaf(root, path, time_seq);
459 	}
460 
461 	while (!ret && count < ref->count) {
462 		eb = path->nodes[0];
463 		slot = path->slots[0];
464 
465 		btrfs_item_key_to_cpu(eb, &key, slot);
466 
467 		if (key.objectid != key_for_search->objectid ||
468 		    key.type != BTRFS_EXTENT_DATA_KEY)
469 			break;
470 
471 		/*
472 		 * We are searching for normal backref but bytenr of this leaf
473 		 * matches shared data backref, OR
474 		 * the leaf owner is not equal to the root we are searching for
475 		 */
476 		if (slot == 0 &&
477 		    (is_shared_data_backref(preftrees, eb->start) ||
478 		     ref->root_id != btrfs_header_owner(eb))) {
479 			if (time_seq == SEQ_LAST)
480 				ret = btrfs_next_leaf(root, path);
481 			else
482 				ret = btrfs_next_old_leaf(root, path, time_seq);
483 			continue;
484 		}
485 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
486 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
487 		data_offset = btrfs_file_extent_offset(eb, fi);
488 
489 		if (disk_byte == wanted_disk_byte) {
490 			eie = NULL;
491 			old = NULL;
492 			if (ref->key_for_search.offset == key.offset - data_offset)
493 				count++;
494 			else
495 				goto next;
496 			if (extent_item_pos) {
497 				ret = check_extent_in_eb(&key, eb, fi,
498 						*extent_item_pos,
499 						&eie, ignore_offset);
500 				if (ret < 0)
501 					break;
502 			}
503 			if (ret > 0)
504 				goto next;
505 			ret = ulist_add_merge_ptr(parents, eb->start,
506 						  eie, (void **)&old, GFP_NOFS);
507 			if (ret < 0)
508 				break;
509 			if (!ret && extent_item_pos) {
510 				while (old->next)
511 					old = old->next;
512 				old->next = eie;
513 			}
514 			eie = NULL;
515 		}
516 next:
517 		if (time_seq == SEQ_LAST)
518 			ret = btrfs_next_item(root, path);
519 		else
520 			ret = btrfs_next_old_item(root, path, time_seq);
521 	}
522 
523 	if (ret > 0)
524 		ret = 0;
525 	else if (ret < 0)
526 		free_inode_elem_list(eie);
527 	return ret;
528 }
529 
530 /*
531  * resolve an indirect backref in the form (root_id, key, level)
532  * to a logical address
533  */
resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,bool ignore_offset)534 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
535 				struct btrfs_path *path, u64 time_seq,
536 				struct preftrees *preftrees,
537 				struct prelim_ref *ref, struct ulist *parents,
538 				const u64 *extent_item_pos, bool ignore_offset)
539 {
540 	struct btrfs_root *root;
541 	struct extent_buffer *eb;
542 	int ret = 0;
543 	int root_level;
544 	int level = ref->level;
545 	struct btrfs_key search_key = ref->key_for_search;
546 
547 	/*
548 	 * If we're search_commit_root we could possibly be holding locks on
549 	 * other tree nodes.  This happens when qgroups does backref walks when
550 	 * adding new delayed refs.  To deal with this we need to look in cache
551 	 * for the root, and if we don't find it then we need to search the
552 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
553 	 * here.
554 	 */
555 	if (path->search_commit_root)
556 		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
557 	else
558 		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
559 	if (IS_ERR(root)) {
560 		ret = PTR_ERR(root);
561 		goto out_free;
562 	}
563 
564 	if (!path->search_commit_root &&
565 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
566 		ret = -ENOENT;
567 		goto out;
568 	}
569 
570 	if (btrfs_is_testing(fs_info)) {
571 		ret = -ENOENT;
572 		goto out;
573 	}
574 
575 	if (path->search_commit_root)
576 		root_level = btrfs_header_level(root->commit_root);
577 	else if (time_seq == SEQ_LAST)
578 		root_level = btrfs_header_level(root->node);
579 	else
580 		root_level = btrfs_old_root_level(root, time_seq);
581 
582 	if (root_level + 1 == level)
583 		goto out;
584 
585 	/*
586 	 * We can often find data backrefs with an offset that is too large
587 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
588 	 * subtracting a file's offset with the data offset of its
589 	 * corresponding extent data item. This can happen for example in the
590 	 * clone ioctl.
591 	 *
592 	 * So if we detect such case we set the search key's offset to zero to
593 	 * make sure we will find the matching file extent item at
594 	 * add_all_parents(), otherwise we will miss it because the offset
595 	 * taken form the backref is much larger then the offset of the file
596 	 * extent item. This can make us scan a very large number of file
597 	 * extent items, but at least it will not make us miss any.
598 	 *
599 	 * This is an ugly workaround for a behaviour that should have never
600 	 * existed, but it does and a fix for the clone ioctl would touch a lot
601 	 * of places, cause backwards incompatibility and would not fix the
602 	 * problem for extents cloned with older kernels.
603 	 */
604 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
605 	    search_key.offset >= LLONG_MAX)
606 		search_key.offset = 0;
607 	path->lowest_level = level;
608 	if (time_seq == SEQ_LAST)
609 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
610 	else
611 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
612 
613 	btrfs_debug(fs_info,
614 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
615 		 ref->root_id, level, ref->count, ret,
616 		 ref->key_for_search.objectid, ref->key_for_search.type,
617 		 ref->key_for_search.offset);
618 	if (ret < 0)
619 		goto out;
620 
621 	eb = path->nodes[level];
622 	while (!eb) {
623 		if (WARN_ON(!level)) {
624 			ret = 1;
625 			goto out;
626 		}
627 		level--;
628 		eb = path->nodes[level];
629 	}
630 
631 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
632 			      time_seq, extent_item_pos, ignore_offset);
633 out:
634 	btrfs_put_root(root);
635 out_free:
636 	path->lowest_level = 0;
637 	btrfs_release_path(path);
638 	return ret;
639 }
640 
641 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)642 unode_aux_to_inode_list(struct ulist_node *node)
643 {
644 	if (!node)
645 		return NULL;
646 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
647 }
648 
649 /*
650  * We maintain three separate rbtrees: one for direct refs, one for
651  * indirect refs which have a key, and one for indirect refs which do not
652  * have a key. Each tree does merge on insertion.
653  *
654  * Once all of the references are located, we iterate over the tree of
655  * indirect refs with missing keys. An appropriate key is located and
656  * the ref is moved onto the tree for indirect refs. After all missing
657  * keys are thus located, we iterate over the indirect ref tree, resolve
658  * each reference, and then insert the resolved reference onto the
659  * direct tree (merging there too).
660  *
661  * New backrefs (i.e., for parent nodes) are added to the appropriate
662  * rbtree as they are encountered. The new backrefs are subsequently
663  * resolved as above.
664  */
resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)665 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
666 				 struct btrfs_path *path, u64 time_seq,
667 				 struct preftrees *preftrees,
668 				 const u64 *extent_item_pos,
669 				 struct share_check *sc, bool ignore_offset)
670 {
671 	int err;
672 	int ret = 0;
673 	struct ulist *parents;
674 	struct ulist_node *node;
675 	struct ulist_iterator uiter;
676 	struct rb_node *rnode;
677 
678 	parents = ulist_alloc(GFP_NOFS);
679 	if (!parents)
680 		return -ENOMEM;
681 
682 	/*
683 	 * We could trade memory usage for performance here by iterating
684 	 * the tree, allocating new refs for each insertion, and then
685 	 * freeing the entire indirect tree when we're done.  In some test
686 	 * cases, the tree can grow quite large (~200k objects).
687 	 */
688 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
689 		struct prelim_ref *ref;
690 
691 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
692 		if (WARN(ref->parent,
693 			 "BUG: direct ref found in indirect tree")) {
694 			ret = -EINVAL;
695 			goto out;
696 		}
697 
698 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
699 		preftrees->indirect.count--;
700 
701 		if (ref->count == 0) {
702 			free_pref(ref);
703 			continue;
704 		}
705 
706 		if (sc && sc->root_objectid &&
707 		    ref->root_id != sc->root_objectid) {
708 			free_pref(ref);
709 			ret = BACKREF_FOUND_SHARED;
710 			goto out;
711 		}
712 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
713 					   ref, parents, extent_item_pos,
714 					   ignore_offset);
715 		/*
716 		 * we can only tolerate ENOENT,otherwise,we should catch error
717 		 * and return directly.
718 		 */
719 		if (err == -ENOENT) {
720 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
721 					  NULL);
722 			continue;
723 		} else if (err) {
724 			free_pref(ref);
725 			ret = err;
726 			goto out;
727 		}
728 
729 		/* we put the first parent into the ref at hand */
730 		ULIST_ITER_INIT(&uiter);
731 		node = ulist_next(parents, &uiter);
732 		ref->parent = node ? node->val : 0;
733 		ref->inode_list = unode_aux_to_inode_list(node);
734 
735 		/* Add a prelim_ref(s) for any other parent(s). */
736 		while ((node = ulist_next(parents, &uiter))) {
737 			struct prelim_ref *new_ref;
738 
739 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
740 						   GFP_NOFS);
741 			if (!new_ref) {
742 				free_pref(ref);
743 				ret = -ENOMEM;
744 				goto out;
745 			}
746 			memcpy(new_ref, ref, sizeof(*ref));
747 			new_ref->parent = node->val;
748 			new_ref->inode_list = unode_aux_to_inode_list(node);
749 			prelim_ref_insert(fs_info, &preftrees->direct,
750 					  new_ref, NULL);
751 		}
752 
753 		/*
754 		 * Now it's a direct ref, put it in the direct tree. We must
755 		 * do this last because the ref could be merged/freed here.
756 		 */
757 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
758 
759 		ulist_reinit(parents);
760 		cond_resched();
761 	}
762 out:
763 	ulist_free(parents);
764 	return ret;
765 }
766 
767 /*
768  * read tree blocks and add keys where required.
769  */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)770 static int add_missing_keys(struct btrfs_fs_info *fs_info,
771 			    struct preftrees *preftrees, bool lock)
772 {
773 	struct prelim_ref *ref;
774 	struct extent_buffer *eb;
775 	struct preftree *tree = &preftrees->indirect_missing_keys;
776 	struct rb_node *node;
777 
778 	while ((node = rb_first_cached(&tree->root))) {
779 		ref = rb_entry(node, struct prelim_ref, rbnode);
780 		rb_erase_cached(node, &tree->root);
781 
782 		BUG_ON(ref->parent);	/* should not be a direct ref */
783 		BUG_ON(ref->key_for_search.type);
784 		BUG_ON(!ref->wanted_disk_byte);
785 
786 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
787 				     ref->level - 1, NULL);
788 		if (IS_ERR(eb)) {
789 			free_pref(ref);
790 			return PTR_ERR(eb);
791 		} else if (!extent_buffer_uptodate(eb)) {
792 			free_pref(ref);
793 			free_extent_buffer(eb);
794 			return -EIO;
795 		}
796 		if (lock)
797 			btrfs_tree_read_lock(eb);
798 		if (btrfs_header_level(eb) == 0)
799 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
800 		else
801 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
802 		if (lock)
803 			btrfs_tree_read_unlock(eb);
804 		free_extent_buffer(eb);
805 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
806 		cond_resched();
807 	}
808 	return 0;
809 }
810 
811 /*
812  * add all currently queued delayed refs from this head whose seq nr is
813  * smaller or equal that seq to the list
814  */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)815 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
816 			    struct btrfs_delayed_ref_head *head, u64 seq,
817 			    struct preftrees *preftrees, struct share_check *sc)
818 {
819 	struct btrfs_delayed_ref_node *node;
820 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
821 	struct btrfs_key key;
822 	struct btrfs_key tmp_op_key;
823 	struct rb_node *n;
824 	int count;
825 	int ret = 0;
826 
827 	if (extent_op && extent_op->update_key)
828 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
829 
830 	spin_lock(&head->lock);
831 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
832 		node = rb_entry(n, struct btrfs_delayed_ref_node,
833 				ref_node);
834 		if (node->seq > seq)
835 			continue;
836 
837 		switch (node->action) {
838 		case BTRFS_ADD_DELAYED_EXTENT:
839 		case BTRFS_UPDATE_DELAYED_HEAD:
840 			WARN_ON(1);
841 			continue;
842 		case BTRFS_ADD_DELAYED_REF:
843 			count = node->ref_mod;
844 			break;
845 		case BTRFS_DROP_DELAYED_REF:
846 			count = node->ref_mod * -1;
847 			break;
848 		default:
849 			BUG();
850 		}
851 		switch (node->type) {
852 		case BTRFS_TREE_BLOCK_REF_KEY: {
853 			/* NORMAL INDIRECT METADATA backref */
854 			struct btrfs_delayed_tree_ref *ref;
855 
856 			ref = btrfs_delayed_node_to_tree_ref(node);
857 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
858 					       &tmp_op_key, ref->level + 1,
859 					       node->bytenr, count, sc,
860 					       GFP_ATOMIC);
861 			break;
862 		}
863 		case BTRFS_SHARED_BLOCK_REF_KEY: {
864 			/* SHARED DIRECT METADATA backref */
865 			struct btrfs_delayed_tree_ref *ref;
866 
867 			ref = btrfs_delayed_node_to_tree_ref(node);
868 
869 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
870 					     ref->parent, node->bytenr, count,
871 					     sc, GFP_ATOMIC);
872 			break;
873 		}
874 		case BTRFS_EXTENT_DATA_REF_KEY: {
875 			/* NORMAL INDIRECT DATA backref */
876 			struct btrfs_delayed_data_ref *ref;
877 			ref = btrfs_delayed_node_to_data_ref(node);
878 
879 			key.objectid = ref->objectid;
880 			key.type = BTRFS_EXTENT_DATA_KEY;
881 			key.offset = ref->offset;
882 
883 			/*
884 			 * Found a inum that doesn't match our known inum, we
885 			 * know it's shared.
886 			 */
887 			if (sc && sc->inum && ref->objectid != sc->inum) {
888 				ret = BACKREF_FOUND_SHARED;
889 				goto out;
890 			}
891 
892 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
893 					       &key, 0, node->bytenr, count, sc,
894 					       GFP_ATOMIC);
895 			break;
896 		}
897 		case BTRFS_SHARED_DATA_REF_KEY: {
898 			/* SHARED DIRECT FULL backref */
899 			struct btrfs_delayed_data_ref *ref;
900 
901 			ref = btrfs_delayed_node_to_data_ref(node);
902 
903 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
904 					     node->bytenr, count, sc,
905 					     GFP_ATOMIC);
906 			break;
907 		}
908 		default:
909 			WARN_ON(1);
910 		}
911 		/*
912 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
913 		 * refs have been checked.
914 		 */
915 		if (ret && (ret != BACKREF_FOUND_SHARED))
916 			break;
917 	}
918 	if (!ret)
919 		ret = extent_is_shared(sc);
920 out:
921 	spin_unlock(&head->lock);
922 	return ret;
923 }
924 
925 /*
926  * add all inline backrefs for bytenr to the list
927  *
928  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
929  */
add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,struct share_check * sc)930 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
931 			   struct btrfs_path *path, u64 bytenr,
932 			   int *info_level, struct preftrees *preftrees,
933 			   struct share_check *sc)
934 {
935 	int ret = 0;
936 	int slot;
937 	struct extent_buffer *leaf;
938 	struct btrfs_key key;
939 	struct btrfs_key found_key;
940 	unsigned long ptr;
941 	unsigned long end;
942 	struct btrfs_extent_item *ei;
943 	u64 flags;
944 	u64 item_size;
945 
946 	/*
947 	 * enumerate all inline refs
948 	 */
949 	leaf = path->nodes[0];
950 	slot = path->slots[0];
951 
952 	item_size = btrfs_item_size_nr(leaf, slot);
953 	BUG_ON(item_size < sizeof(*ei));
954 
955 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
956 	flags = btrfs_extent_flags(leaf, ei);
957 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
958 
959 	ptr = (unsigned long)(ei + 1);
960 	end = (unsigned long)ei + item_size;
961 
962 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
963 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
964 		struct btrfs_tree_block_info *info;
965 
966 		info = (struct btrfs_tree_block_info *)ptr;
967 		*info_level = btrfs_tree_block_level(leaf, info);
968 		ptr += sizeof(struct btrfs_tree_block_info);
969 		BUG_ON(ptr > end);
970 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
971 		*info_level = found_key.offset;
972 	} else {
973 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
974 	}
975 
976 	while (ptr < end) {
977 		struct btrfs_extent_inline_ref *iref;
978 		u64 offset;
979 		int type;
980 
981 		iref = (struct btrfs_extent_inline_ref *)ptr;
982 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
983 							BTRFS_REF_TYPE_ANY);
984 		if (type == BTRFS_REF_TYPE_INVALID)
985 			return -EUCLEAN;
986 
987 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
988 
989 		switch (type) {
990 		case BTRFS_SHARED_BLOCK_REF_KEY:
991 			ret = add_direct_ref(fs_info, preftrees,
992 					     *info_level + 1, offset,
993 					     bytenr, 1, NULL, GFP_NOFS);
994 			break;
995 		case BTRFS_SHARED_DATA_REF_KEY: {
996 			struct btrfs_shared_data_ref *sdref;
997 			int count;
998 
999 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1000 			count = btrfs_shared_data_ref_count(leaf, sdref);
1001 
1002 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1003 					     bytenr, count, sc, GFP_NOFS);
1004 			break;
1005 		}
1006 		case BTRFS_TREE_BLOCK_REF_KEY:
1007 			ret = add_indirect_ref(fs_info, preftrees, offset,
1008 					       NULL, *info_level + 1,
1009 					       bytenr, 1, NULL, GFP_NOFS);
1010 			break;
1011 		case BTRFS_EXTENT_DATA_REF_KEY: {
1012 			struct btrfs_extent_data_ref *dref;
1013 			int count;
1014 			u64 root;
1015 
1016 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1017 			count = btrfs_extent_data_ref_count(leaf, dref);
1018 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1019 								      dref);
1020 			key.type = BTRFS_EXTENT_DATA_KEY;
1021 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1022 
1023 			if (sc && sc->inum && key.objectid != sc->inum) {
1024 				ret = BACKREF_FOUND_SHARED;
1025 				break;
1026 			}
1027 
1028 			root = btrfs_extent_data_ref_root(leaf, dref);
1029 
1030 			ret = add_indirect_ref(fs_info, preftrees, root,
1031 					       &key, 0, bytenr, count,
1032 					       sc, GFP_NOFS);
1033 			break;
1034 		}
1035 		default:
1036 			WARN_ON(1);
1037 		}
1038 		if (ret)
1039 			return ret;
1040 		ptr += btrfs_extent_inline_ref_size(type);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 /*
1047  * add all non-inline backrefs for bytenr to the list
1048  *
1049  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1050  */
add_keyed_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1051 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1052 			  struct btrfs_path *path, u64 bytenr,
1053 			  int info_level, struct preftrees *preftrees,
1054 			  struct share_check *sc)
1055 {
1056 	struct btrfs_root *extent_root = fs_info->extent_root;
1057 	int ret;
1058 	int slot;
1059 	struct extent_buffer *leaf;
1060 	struct btrfs_key key;
1061 
1062 	while (1) {
1063 		ret = btrfs_next_item(extent_root, path);
1064 		if (ret < 0)
1065 			break;
1066 		if (ret) {
1067 			ret = 0;
1068 			break;
1069 		}
1070 
1071 		slot = path->slots[0];
1072 		leaf = path->nodes[0];
1073 		btrfs_item_key_to_cpu(leaf, &key, slot);
1074 
1075 		if (key.objectid != bytenr)
1076 			break;
1077 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1078 			continue;
1079 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1080 			break;
1081 
1082 		switch (key.type) {
1083 		case BTRFS_SHARED_BLOCK_REF_KEY:
1084 			/* SHARED DIRECT METADATA backref */
1085 			ret = add_direct_ref(fs_info, preftrees,
1086 					     info_level + 1, key.offset,
1087 					     bytenr, 1, NULL, GFP_NOFS);
1088 			break;
1089 		case BTRFS_SHARED_DATA_REF_KEY: {
1090 			/* SHARED DIRECT FULL backref */
1091 			struct btrfs_shared_data_ref *sdref;
1092 			int count;
1093 
1094 			sdref = btrfs_item_ptr(leaf, slot,
1095 					      struct btrfs_shared_data_ref);
1096 			count = btrfs_shared_data_ref_count(leaf, sdref);
1097 			ret = add_direct_ref(fs_info, preftrees, 0,
1098 					     key.offset, bytenr, count,
1099 					     sc, GFP_NOFS);
1100 			break;
1101 		}
1102 		case BTRFS_TREE_BLOCK_REF_KEY:
1103 			/* NORMAL INDIRECT METADATA backref */
1104 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1105 					       NULL, info_level + 1, bytenr,
1106 					       1, NULL, GFP_NOFS);
1107 			break;
1108 		case BTRFS_EXTENT_DATA_REF_KEY: {
1109 			/* NORMAL INDIRECT DATA backref */
1110 			struct btrfs_extent_data_ref *dref;
1111 			int count;
1112 			u64 root;
1113 
1114 			dref = btrfs_item_ptr(leaf, slot,
1115 					      struct btrfs_extent_data_ref);
1116 			count = btrfs_extent_data_ref_count(leaf, dref);
1117 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1118 								      dref);
1119 			key.type = BTRFS_EXTENT_DATA_KEY;
1120 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1121 
1122 			if (sc && sc->inum && key.objectid != sc->inum) {
1123 				ret = BACKREF_FOUND_SHARED;
1124 				break;
1125 			}
1126 
1127 			root = btrfs_extent_data_ref_root(leaf, dref);
1128 			ret = add_indirect_ref(fs_info, preftrees, root,
1129 					       &key, 0, bytenr, count,
1130 					       sc, GFP_NOFS);
1131 			break;
1132 		}
1133 		default:
1134 			WARN_ON(1);
1135 		}
1136 		if (ret)
1137 			return ret;
1138 
1139 	}
1140 
1141 	return ret;
1142 }
1143 
1144 /*
1145  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1146  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1147  * indirect refs to their parent bytenr.
1148  * When roots are found, they're added to the roots list
1149  *
1150  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1151  * much like trans == NULL case, the difference only lies in it will not
1152  * commit root.
1153  * The special case is for qgroup to search roots in commit_transaction().
1154  *
1155  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1156  * shared extent is detected.
1157  *
1158  * Otherwise this returns 0 for success and <0 for an error.
1159  *
1160  * If ignore_offset is set to false, only extent refs whose offsets match
1161  * extent_item_pos are returned.  If true, every extent ref is returned
1162  * and extent_item_pos is ignored.
1163  *
1164  * FIXME some caching might speed things up
1165  */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1166 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1167 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1168 			     u64 time_seq, struct ulist *refs,
1169 			     struct ulist *roots, const u64 *extent_item_pos,
1170 			     struct share_check *sc, bool ignore_offset)
1171 {
1172 	struct btrfs_key key;
1173 	struct btrfs_path *path;
1174 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1175 	struct btrfs_delayed_ref_head *head;
1176 	int info_level = 0;
1177 	int ret;
1178 	struct prelim_ref *ref;
1179 	struct rb_node *node;
1180 	struct extent_inode_elem *eie = NULL;
1181 	struct preftrees preftrees = {
1182 		.direct = PREFTREE_INIT,
1183 		.indirect = PREFTREE_INIT,
1184 		.indirect_missing_keys = PREFTREE_INIT
1185 	};
1186 
1187 	key.objectid = bytenr;
1188 	key.offset = (u64)-1;
1189 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1190 		key.type = BTRFS_METADATA_ITEM_KEY;
1191 	else
1192 		key.type = BTRFS_EXTENT_ITEM_KEY;
1193 
1194 	path = btrfs_alloc_path();
1195 	if (!path)
1196 		return -ENOMEM;
1197 	if (!trans) {
1198 		path->search_commit_root = 1;
1199 		path->skip_locking = 1;
1200 	}
1201 
1202 	if (time_seq == SEQ_LAST)
1203 		path->skip_locking = 1;
1204 
1205 	/*
1206 	 * grab both a lock on the path and a lock on the delayed ref head.
1207 	 * We need both to get a consistent picture of how the refs look
1208 	 * at a specified point in time
1209 	 */
1210 again:
1211 	head = NULL;
1212 
1213 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1214 	if (ret < 0)
1215 		goto out;
1216 	if (ret == 0) {
1217 		/* This shouldn't happen, indicates a bug or fs corruption. */
1218 		ASSERT(ret != 0);
1219 		ret = -EUCLEAN;
1220 		goto out;
1221 	}
1222 
1223 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1224 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1225 	    time_seq != SEQ_LAST) {
1226 #else
1227 	if (trans && time_seq != SEQ_LAST) {
1228 #endif
1229 		/*
1230 		 * look if there are updates for this ref queued and lock the
1231 		 * head
1232 		 */
1233 		delayed_refs = &trans->transaction->delayed_refs;
1234 		spin_lock(&delayed_refs->lock);
1235 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1236 		if (head) {
1237 			if (!mutex_trylock(&head->mutex)) {
1238 				refcount_inc(&head->refs);
1239 				spin_unlock(&delayed_refs->lock);
1240 
1241 				btrfs_release_path(path);
1242 
1243 				/*
1244 				 * Mutex was contended, block until it's
1245 				 * released and try again
1246 				 */
1247 				mutex_lock(&head->mutex);
1248 				mutex_unlock(&head->mutex);
1249 				btrfs_put_delayed_ref_head(head);
1250 				goto again;
1251 			}
1252 			spin_unlock(&delayed_refs->lock);
1253 			ret = add_delayed_refs(fs_info, head, time_seq,
1254 					       &preftrees, sc);
1255 			mutex_unlock(&head->mutex);
1256 			if (ret)
1257 				goto out;
1258 		} else {
1259 			spin_unlock(&delayed_refs->lock);
1260 		}
1261 	}
1262 
1263 	if (path->slots[0]) {
1264 		struct extent_buffer *leaf;
1265 		int slot;
1266 
1267 		path->slots[0]--;
1268 		leaf = path->nodes[0];
1269 		slot = path->slots[0];
1270 		btrfs_item_key_to_cpu(leaf, &key, slot);
1271 		if (key.objectid == bytenr &&
1272 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1273 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1274 			ret = add_inline_refs(fs_info, path, bytenr,
1275 					      &info_level, &preftrees, sc);
1276 			if (ret)
1277 				goto out;
1278 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1279 					     &preftrees, sc);
1280 			if (ret)
1281 				goto out;
1282 		}
1283 	}
1284 
1285 	btrfs_release_path(path);
1286 
1287 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1288 	if (ret)
1289 		goto out;
1290 
1291 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1292 
1293 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1294 				    extent_item_pos, sc, ignore_offset);
1295 	if (ret)
1296 		goto out;
1297 
1298 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1299 
1300 	/*
1301 	 * This walks the tree of merged and resolved refs. Tree blocks are
1302 	 * read in as needed. Unique entries are added to the ulist, and
1303 	 * the list of found roots is updated.
1304 	 *
1305 	 * We release the entire tree in one go before returning.
1306 	 */
1307 	node = rb_first_cached(&preftrees.direct.root);
1308 	while (node) {
1309 		ref = rb_entry(node, struct prelim_ref, rbnode);
1310 		node = rb_next(&ref->rbnode);
1311 		/*
1312 		 * ref->count < 0 can happen here if there are delayed
1313 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1314 		 * prelim_ref_insert() relies on this when merging
1315 		 * identical refs to keep the overall count correct.
1316 		 * prelim_ref_insert() will merge only those refs
1317 		 * which compare identically.  Any refs having
1318 		 * e.g. different offsets would not be merged,
1319 		 * and would retain their original ref->count < 0.
1320 		 */
1321 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1322 			if (sc && sc->root_objectid &&
1323 			    ref->root_id != sc->root_objectid) {
1324 				ret = BACKREF_FOUND_SHARED;
1325 				goto out;
1326 			}
1327 
1328 			/* no parent == root of tree */
1329 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1330 			if (ret < 0)
1331 				goto out;
1332 		}
1333 		if (ref->count && ref->parent) {
1334 			if (extent_item_pos && !ref->inode_list &&
1335 			    ref->level == 0) {
1336 				struct extent_buffer *eb;
1337 
1338 				eb = read_tree_block(fs_info, ref->parent, 0,
1339 						     ref->level, NULL);
1340 				if (IS_ERR(eb)) {
1341 					ret = PTR_ERR(eb);
1342 					goto out;
1343 				} else if (!extent_buffer_uptodate(eb)) {
1344 					free_extent_buffer(eb);
1345 					ret = -EIO;
1346 					goto out;
1347 				}
1348 
1349 				if (!path->skip_locking) {
1350 					btrfs_tree_read_lock(eb);
1351 					btrfs_set_lock_blocking_read(eb);
1352 				}
1353 				ret = find_extent_in_eb(eb, bytenr,
1354 							*extent_item_pos, &eie, ignore_offset);
1355 				if (!path->skip_locking)
1356 					btrfs_tree_read_unlock_blocking(eb);
1357 				free_extent_buffer(eb);
1358 				if (ret < 0)
1359 					goto out;
1360 				ref->inode_list = eie;
1361 			}
1362 			ret = ulist_add_merge_ptr(refs, ref->parent,
1363 						  ref->inode_list,
1364 						  (void **)&eie, GFP_NOFS);
1365 			if (ret < 0)
1366 				goto out;
1367 			if (!ret && extent_item_pos) {
1368 				/*
1369 				 * We've recorded that parent, so we must extend
1370 				 * its inode list here.
1371 				 *
1372 				 * However if there was corruption we may not
1373 				 * have found an eie, return an error in this
1374 				 * case.
1375 				 */
1376 				ASSERT(eie);
1377 				if (!eie) {
1378 					ret = -EUCLEAN;
1379 					goto out;
1380 				}
1381 				while (eie->next)
1382 					eie = eie->next;
1383 				eie->next = ref->inode_list;
1384 			}
1385 			eie = NULL;
1386 		}
1387 		cond_resched();
1388 	}
1389 
1390 out:
1391 	btrfs_free_path(path);
1392 
1393 	prelim_release(&preftrees.direct);
1394 	prelim_release(&preftrees.indirect);
1395 	prelim_release(&preftrees.indirect_missing_keys);
1396 
1397 	if (ret < 0)
1398 		free_inode_elem_list(eie);
1399 	return ret;
1400 }
1401 
1402 static void free_leaf_list(struct ulist *blocks)
1403 {
1404 	struct ulist_node *node = NULL;
1405 	struct extent_inode_elem *eie;
1406 	struct ulist_iterator uiter;
1407 
1408 	ULIST_ITER_INIT(&uiter);
1409 	while ((node = ulist_next(blocks, &uiter))) {
1410 		if (!node->aux)
1411 			continue;
1412 		eie = unode_aux_to_inode_list(node);
1413 		free_inode_elem_list(eie);
1414 		node->aux = 0;
1415 	}
1416 
1417 	ulist_free(blocks);
1418 }
1419 
1420 /*
1421  * Finds all leafs with a reference to the specified combination of bytenr and
1422  * offset. key_list_head will point to a list of corresponding keys (caller must
1423  * free each list element). The leafs will be stored in the leafs ulist, which
1424  * must be freed with ulist_free.
1425  *
1426  * returns 0 on success, <0 on error
1427  */
1428 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1429 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1430 			 u64 time_seq, struct ulist **leafs,
1431 			 const u64 *extent_item_pos, bool ignore_offset)
1432 {
1433 	int ret;
1434 
1435 	*leafs = ulist_alloc(GFP_NOFS);
1436 	if (!*leafs)
1437 		return -ENOMEM;
1438 
1439 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1440 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1441 	if (ret < 0 && ret != -ENOENT) {
1442 		free_leaf_list(*leafs);
1443 		return ret;
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 /*
1450  * walk all backrefs for a given extent to find all roots that reference this
1451  * extent. Walking a backref means finding all extents that reference this
1452  * extent and in turn walk the backrefs of those, too. Naturally this is a
1453  * recursive process, but here it is implemented in an iterative fashion: We
1454  * find all referencing extents for the extent in question and put them on a
1455  * list. In turn, we find all referencing extents for those, further appending
1456  * to the list. The way we iterate the list allows adding more elements after
1457  * the current while iterating. The process stops when we reach the end of the
1458  * list. Found roots are added to the roots list.
1459  *
1460  * returns 0 on success, < 0 on error.
1461  */
1462 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1463 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1464 				     u64 time_seq, struct ulist **roots,
1465 				     bool ignore_offset)
1466 {
1467 	struct ulist *tmp;
1468 	struct ulist_node *node = NULL;
1469 	struct ulist_iterator uiter;
1470 	int ret;
1471 
1472 	tmp = ulist_alloc(GFP_NOFS);
1473 	if (!tmp)
1474 		return -ENOMEM;
1475 	*roots = ulist_alloc(GFP_NOFS);
1476 	if (!*roots) {
1477 		ulist_free(tmp);
1478 		return -ENOMEM;
1479 	}
1480 
1481 	ULIST_ITER_INIT(&uiter);
1482 	while (1) {
1483 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1484 					tmp, *roots, NULL, NULL, ignore_offset);
1485 		if (ret < 0 && ret != -ENOENT) {
1486 			ulist_free(tmp);
1487 			ulist_free(*roots);
1488 			*roots = NULL;
1489 			return ret;
1490 		}
1491 		node = ulist_next(tmp, &uiter);
1492 		if (!node)
1493 			break;
1494 		bytenr = node->val;
1495 		cond_resched();
1496 	}
1497 
1498 	ulist_free(tmp);
1499 	return 0;
1500 }
1501 
1502 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1503 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1504 			 u64 time_seq, struct ulist **roots,
1505 			 bool ignore_offset)
1506 {
1507 	int ret;
1508 
1509 	if (!trans)
1510 		down_read(&fs_info->commit_root_sem);
1511 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1512 					time_seq, roots, ignore_offset);
1513 	if (!trans)
1514 		up_read(&fs_info->commit_root_sem);
1515 	return ret;
1516 }
1517 
1518 /**
1519  * btrfs_check_shared - tell us whether an extent is shared
1520  *
1521  * btrfs_check_shared uses the backref walking code but will short
1522  * circuit as soon as it finds a root or inode that doesn't match the
1523  * one passed in. This provides a significant performance benefit for
1524  * callers (such as fiemap) which want to know whether the extent is
1525  * shared but do not need a ref count.
1526  *
1527  * This attempts to attach to the running transaction in order to account for
1528  * delayed refs, but continues on even when no running transaction exists.
1529  *
1530  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1531  */
1532 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1533 		struct ulist *roots, struct ulist *tmp)
1534 {
1535 	struct btrfs_fs_info *fs_info = root->fs_info;
1536 	struct btrfs_trans_handle *trans;
1537 	struct ulist_iterator uiter;
1538 	struct ulist_node *node;
1539 	struct seq_list elem = SEQ_LIST_INIT(elem);
1540 	int ret = 0;
1541 	struct share_check shared = {
1542 		.root_objectid = root->root_key.objectid,
1543 		.inum = inum,
1544 		.share_count = 0,
1545 	};
1546 
1547 	ulist_init(roots);
1548 	ulist_init(tmp);
1549 
1550 	trans = btrfs_join_transaction_nostart(root);
1551 	if (IS_ERR(trans)) {
1552 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1553 			ret = PTR_ERR(trans);
1554 			goto out;
1555 		}
1556 		trans = NULL;
1557 		down_read(&fs_info->commit_root_sem);
1558 	} else {
1559 		btrfs_get_tree_mod_seq(fs_info, &elem);
1560 	}
1561 
1562 	ULIST_ITER_INIT(&uiter);
1563 	while (1) {
1564 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1565 					roots, NULL, &shared, false);
1566 		if (ret == BACKREF_FOUND_SHARED) {
1567 			/* this is the only condition under which we return 1 */
1568 			ret = 1;
1569 			break;
1570 		}
1571 		if (ret < 0 && ret != -ENOENT)
1572 			break;
1573 		ret = 0;
1574 		node = ulist_next(tmp, &uiter);
1575 		if (!node)
1576 			break;
1577 		bytenr = node->val;
1578 		shared.share_count = 0;
1579 		cond_resched();
1580 	}
1581 
1582 	if (trans) {
1583 		btrfs_put_tree_mod_seq(fs_info, &elem);
1584 		btrfs_end_transaction(trans);
1585 	} else {
1586 		up_read(&fs_info->commit_root_sem);
1587 	}
1588 out:
1589 	ulist_release(roots);
1590 	ulist_release(tmp);
1591 	return ret;
1592 }
1593 
1594 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1595 			  u64 start_off, struct btrfs_path *path,
1596 			  struct btrfs_inode_extref **ret_extref,
1597 			  u64 *found_off)
1598 {
1599 	int ret, slot;
1600 	struct btrfs_key key;
1601 	struct btrfs_key found_key;
1602 	struct btrfs_inode_extref *extref;
1603 	const struct extent_buffer *leaf;
1604 	unsigned long ptr;
1605 
1606 	key.objectid = inode_objectid;
1607 	key.type = BTRFS_INODE_EXTREF_KEY;
1608 	key.offset = start_off;
1609 
1610 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1611 	if (ret < 0)
1612 		return ret;
1613 
1614 	while (1) {
1615 		leaf = path->nodes[0];
1616 		slot = path->slots[0];
1617 		if (slot >= btrfs_header_nritems(leaf)) {
1618 			/*
1619 			 * If the item at offset is not found,
1620 			 * btrfs_search_slot will point us to the slot
1621 			 * where it should be inserted. In our case
1622 			 * that will be the slot directly before the
1623 			 * next INODE_REF_KEY_V2 item. In the case
1624 			 * that we're pointing to the last slot in a
1625 			 * leaf, we must move one leaf over.
1626 			 */
1627 			ret = btrfs_next_leaf(root, path);
1628 			if (ret) {
1629 				if (ret >= 1)
1630 					ret = -ENOENT;
1631 				break;
1632 			}
1633 			continue;
1634 		}
1635 
1636 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1637 
1638 		/*
1639 		 * Check that we're still looking at an extended ref key for
1640 		 * this particular objectid. If we have different
1641 		 * objectid or type then there are no more to be found
1642 		 * in the tree and we can exit.
1643 		 */
1644 		ret = -ENOENT;
1645 		if (found_key.objectid != inode_objectid)
1646 			break;
1647 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1648 			break;
1649 
1650 		ret = 0;
1651 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1652 		extref = (struct btrfs_inode_extref *)ptr;
1653 		*ret_extref = extref;
1654 		if (found_off)
1655 			*found_off = found_key.offset;
1656 		break;
1657 	}
1658 
1659 	return ret;
1660 }
1661 
1662 /*
1663  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1664  * Elements of the path are separated by '/' and the path is guaranteed to be
1665  * 0-terminated. the path is only given within the current file system.
1666  * Therefore, it never starts with a '/'. the caller is responsible to provide
1667  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1668  * the start point of the resulting string is returned. this pointer is within
1669  * dest, normally.
1670  * in case the path buffer would overflow, the pointer is decremented further
1671  * as if output was written to the buffer, though no more output is actually
1672  * generated. that way, the caller can determine how much space would be
1673  * required for the path to fit into the buffer. in that case, the returned
1674  * value will be smaller than dest. callers must check this!
1675  */
1676 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1677 			u32 name_len, unsigned long name_off,
1678 			struct extent_buffer *eb_in, u64 parent,
1679 			char *dest, u32 size)
1680 {
1681 	int slot;
1682 	u64 next_inum;
1683 	int ret;
1684 	s64 bytes_left = ((s64)size) - 1;
1685 	struct extent_buffer *eb = eb_in;
1686 	struct btrfs_key found_key;
1687 	int leave_spinning = path->leave_spinning;
1688 	struct btrfs_inode_ref *iref;
1689 
1690 	if (bytes_left >= 0)
1691 		dest[bytes_left] = '\0';
1692 
1693 	path->leave_spinning = 1;
1694 	while (1) {
1695 		bytes_left -= name_len;
1696 		if (bytes_left >= 0)
1697 			read_extent_buffer(eb, dest + bytes_left,
1698 					   name_off, name_len);
1699 		if (eb != eb_in) {
1700 			if (!path->skip_locking)
1701 				btrfs_tree_read_unlock_blocking(eb);
1702 			free_extent_buffer(eb);
1703 		}
1704 		ret = btrfs_find_item(fs_root, path, parent, 0,
1705 				BTRFS_INODE_REF_KEY, &found_key);
1706 		if (ret > 0)
1707 			ret = -ENOENT;
1708 		if (ret)
1709 			break;
1710 
1711 		next_inum = found_key.offset;
1712 
1713 		/* regular exit ahead */
1714 		if (parent == next_inum)
1715 			break;
1716 
1717 		slot = path->slots[0];
1718 		eb = path->nodes[0];
1719 		/* make sure we can use eb after releasing the path */
1720 		if (eb != eb_in) {
1721 			if (!path->skip_locking)
1722 				btrfs_set_lock_blocking_read(eb);
1723 			path->nodes[0] = NULL;
1724 			path->locks[0] = 0;
1725 		}
1726 		btrfs_release_path(path);
1727 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1728 
1729 		name_len = btrfs_inode_ref_name_len(eb, iref);
1730 		name_off = (unsigned long)(iref + 1);
1731 
1732 		parent = next_inum;
1733 		--bytes_left;
1734 		if (bytes_left >= 0)
1735 			dest[bytes_left] = '/';
1736 	}
1737 
1738 	btrfs_release_path(path);
1739 	path->leave_spinning = leave_spinning;
1740 
1741 	if (ret)
1742 		return ERR_PTR(ret);
1743 
1744 	return dest + bytes_left;
1745 }
1746 
1747 /*
1748  * this makes the path point to (logical EXTENT_ITEM *)
1749  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1750  * tree blocks and <0 on error.
1751  */
1752 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1753 			struct btrfs_path *path, struct btrfs_key *found_key,
1754 			u64 *flags_ret)
1755 {
1756 	int ret;
1757 	u64 flags;
1758 	u64 size = 0;
1759 	u32 item_size;
1760 	const struct extent_buffer *eb;
1761 	struct btrfs_extent_item *ei;
1762 	struct btrfs_key key;
1763 
1764 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1765 		key.type = BTRFS_METADATA_ITEM_KEY;
1766 	else
1767 		key.type = BTRFS_EXTENT_ITEM_KEY;
1768 	key.objectid = logical;
1769 	key.offset = (u64)-1;
1770 
1771 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1772 	if (ret < 0)
1773 		return ret;
1774 
1775 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1776 	if (ret) {
1777 		if (ret > 0)
1778 			ret = -ENOENT;
1779 		return ret;
1780 	}
1781 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1782 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1783 		size = fs_info->nodesize;
1784 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1785 		size = found_key->offset;
1786 
1787 	if (found_key->objectid > logical ||
1788 	    found_key->objectid + size <= logical) {
1789 		btrfs_debug(fs_info,
1790 			"logical %llu is not within any extent", logical);
1791 		return -ENOENT;
1792 	}
1793 
1794 	eb = path->nodes[0];
1795 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1796 	BUG_ON(item_size < sizeof(*ei));
1797 
1798 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1799 	flags = btrfs_extent_flags(eb, ei);
1800 
1801 	btrfs_debug(fs_info,
1802 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1803 		 logical, logical - found_key->objectid, found_key->objectid,
1804 		 found_key->offset, flags, item_size);
1805 
1806 	WARN_ON(!flags_ret);
1807 	if (flags_ret) {
1808 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1809 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1810 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1811 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1812 		else
1813 			BUG();
1814 		return 0;
1815 	}
1816 
1817 	return -EIO;
1818 }
1819 
1820 /*
1821  * helper function to iterate extent inline refs. ptr must point to a 0 value
1822  * for the first call and may be modified. it is used to track state.
1823  * if more refs exist, 0 is returned and the next call to
1824  * get_extent_inline_ref must pass the modified ptr parameter to get the
1825  * next ref. after the last ref was processed, 1 is returned.
1826  * returns <0 on error
1827  */
1828 static int get_extent_inline_ref(unsigned long *ptr,
1829 				 const struct extent_buffer *eb,
1830 				 const struct btrfs_key *key,
1831 				 const struct btrfs_extent_item *ei,
1832 				 u32 item_size,
1833 				 struct btrfs_extent_inline_ref **out_eiref,
1834 				 int *out_type)
1835 {
1836 	unsigned long end;
1837 	u64 flags;
1838 	struct btrfs_tree_block_info *info;
1839 
1840 	if (!*ptr) {
1841 		/* first call */
1842 		flags = btrfs_extent_flags(eb, ei);
1843 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1844 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1845 				/* a skinny metadata extent */
1846 				*out_eiref =
1847 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1848 			} else {
1849 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1850 				info = (struct btrfs_tree_block_info *)(ei + 1);
1851 				*out_eiref =
1852 				   (struct btrfs_extent_inline_ref *)(info + 1);
1853 			}
1854 		} else {
1855 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1856 		}
1857 		*ptr = (unsigned long)*out_eiref;
1858 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1859 			return -ENOENT;
1860 	}
1861 
1862 	end = (unsigned long)ei + item_size;
1863 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1864 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1865 						     BTRFS_REF_TYPE_ANY);
1866 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1867 		return -EUCLEAN;
1868 
1869 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1870 	WARN_ON(*ptr > end);
1871 	if (*ptr == end)
1872 		return 1; /* last */
1873 
1874 	return 0;
1875 }
1876 
1877 /*
1878  * reads the tree block backref for an extent. tree level and root are returned
1879  * through out_level and out_root. ptr must point to a 0 value for the first
1880  * call and may be modified (see get_extent_inline_ref comment).
1881  * returns 0 if data was provided, 1 if there was no more data to provide or
1882  * <0 on error.
1883  */
1884 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1885 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1886 			    u32 item_size, u64 *out_root, u8 *out_level)
1887 {
1888 	int ret;
1889 	int type;
1890 	struct btrfs_extent_inline_ref *eiref;
1891 
1892 	if (*ptr == (unsigned long)-1)
1893 		return 1;
1894 
1895 	while (1) {
1896 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1897 					      &eiref, &type);
1898 		if (ret < 0)
1899 			return ret;
1900 
1901 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1902 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1903 			break;
1904 
1905 		if (ret == 1)
1906 			return 1;
1907 	}
1908 
1909 	/* we can treat both ref types equally here */
1910 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1911 
1912 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1913 		struct btrfs_tree_block_info *info;
1914 
1915 		info = (struct btrfs_tree_block_info *)(ei + 1);
1916 		*out_level = btrfs_tree_block_level(eb, info);
1917 	} else {
1918 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1919 		*out_level = (u8)key->offset;
1920 	}
1921 
1922 	if (ret == 1)
1923 		*ptr = (unsigned long)-1;
1924 
1925 	return 0;
1926 }
1927 
1928 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1929 			     struct extent_inode_elem *inode_list,
1930 			     u64 root, u64 extent_item_objectid,
1931 			     iterate_extent_inodes_t *iterate, void *ctx)
1932 {
1933 	struct extent_inode_elem *eie;
1934 	int ret = 0;
1935 
1936 	for (eie = inode_list; eie; eie = eie->next) {
1937 		btrfs_debug(fs_info,
1938 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1939 			    extent_item_objectid, eie->inum,
1940 			    eie->offset, root);
1941 		ret = iterate(eie->inum, eie->offset, root, ctx);
1942 		if (ret) {
1943 			btrfs_debug(fs_info,
1944 				    "stopping iteration for %llu due to ret=%d",
1945 				    extent_item_objectid, ret);
1946 			break;
1947 		}
1948 	}
1949 
1950 	return ret;
1951 }
1952 
1953 /*
1954  * calls iterate() for every inode that references the extent identified by
1955  * the given parameters.
1956  * when the iterator function returns a non-zero value, iteration stops.
1957  */
1958 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1959 				u64 extent_item_objectid, u64 extent_item_pos,
1960 				int search_commit_root,
1961 				iterate_extent_inodes_t *iterate, void *ctx,
1962 				bool ignore_offset)
1963 {
1964 	int ret;
1965 	struct btrfs_trans_handle *trans = NULL;
1966 	struct ulist *refs = NULL;
1967 	struct ulist *roots = NULL;
1968 	struct ulist_node *ref_node = NULL;
1969 	struct ulist_node *root_node = NULL;
1970 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1971 	struct ulist_iterator ref_uiter;
1972 	struct ulist_iterator root_uiter;
1973 
1974 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1975 			extent_item_objectid);
1976 
1977 	if (!search_commit_root) {
1978 		trans = btrfs_attach_transaction(fs_info->extent_root);
1979 		if (IS_ERR(trans)) {
1980 			if (PTR_ERR(trans) != -ENOENT &&
1981 			    PTR_ERR(trans) != -EROFS)
1982 				return PTR_ERR(trans);
1983 			trans = NULL;
1984 		}
1985 	}
1986 
1987 	if (trans)
1988 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1989 	else
1990 		down_read(&fs_info->commit_root_sem);
1991 
1992 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1993 				   tree_mod_seq_elem.seq, &refs,
1994 				   &extent_item_pos, ignore_offset);
1995 	if (ret)
1996 		goto out;
1997 
1998 	ULIST_ITER_INIT(&ref_uiter);
1999 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2000 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2001 						tree_mod_seq_elem.seq, &roots,
2002 						ignore_offset);
2003 		if (ret)
2004 			break;
2005 		ULIST_ITER_INIT(&root_uiter);
2006 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2007 			btrfs_debug(fs_info,
2008 				    "root %llu references leaf %llu, data list %#llx",
2009 				    root_node->val, ref_node->val,
2010 				    ref_node->aux);
2011 			ret = iterate_leaf_refs(fs_info,
2012 						(struct extent_inode_elem *)
2013 						(uintptr_t)ref_node->aux,
2014 						root_node->val,
2015 						extent_item_objectid,
2016 						iterate, ctx);
2017 		}
2018 		ulist_free(roots);
2019 	}
2020 
2021 	free_leaf_list(refs);
2022 out:
2023 	if (trans) {
2024 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2025 		btrfs_end_transaction(trans);
2026 	} else {
2027 		up_read(&fs_info->commit_root_sem);
2028 	}
2029 
2030 	return ret;
2031 }
2032 
2033 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2034 				struct btrfs_path *path,
2035 				iterate_extent_inodes_t *iterate, void *ctx,
2036 				bool ignore_offset)
2037 {
2038 	int ret;
2039 	u64 extent_item_pos;
2040 	u64 flags = 0;
2041 	struct btrfs_key found_key;
2042 	int search_commit_root = path->search_commit_root;
2043 
2044 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2045 	btrfs_release_path(path);
2046 	if (ret < 0)
2047 		return ret;
2048 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2049 		return -EINVAL;
2050 
2051 	extent_item_pos = logical - found_key.objectid;
2052 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2053 					extent_item_pos, search_commit_root,
2054 					iterate, ctx, ignore_offset);
2055 
2056 	return ret;
2057 }
2058 
2059 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2060 			      struct extent_buffer *eb, void *ctx);
2061 
2062 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2063 			      struct btrfs_path *path,
2064 			      iterate_irefs_t *iterate, void *ctx)
2065 {
2066 	int ret = 0;
2067 	int slot;
2068 	u32 cur;
2069 	u32 len;
2070 	u32 name_len;
2071 	u64 parent = 0;
2072 	int found = 0;
2073 	struct extent_buffer *eb;
2074 	struct btrfs_item *item;
2075 	struct btrfs_inode_ref *iref;
2076 	struct btrfs_key found_key;
2077 
2078 	while (!ret) {
2079 		ret = btrfs_find_item(fs_root, path, inum,
2080 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2081 				&found_key);
2082 
2083 		if (ret < 0)
2084 			break;
2085 		if (ret) {
2086 			ret = found ? 0 : -ENOENT;
2087 			break;
2088 		}
2089 		++found;
2090 
2091 		parent = found_key.offset;
2092 		slot = path->slots[0];
2093 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2094 		if (!eb) {
2095 			ret = -ENOMEM;
2096 			break;
2097 		}
2098 		btrfs_release_path(path);
2099 
2100 		item = btrfs_item_nr(slot);
2101 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2102 
2103 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2104 			name_len = btrfs_inode_ref_name_len(eb, iref);
2105 			/* path must be released before calling iterate()! */
2106 			btrfs_debug(fs_root->fs_info,
2107 				"following ref at offset %u for inode %llu in tree %llu",
2108 				cur, found_key.objectid,
2109 				fs_root->root_key.objectid);
2110 			ret = iterate(parent, name_len,
2111 				      (unsigned long)(iref + 1), eb, ctx);
2112 			if (ret)
2113 				break;
2114 			len = sizeof(*iref) + name_len;
2115 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2116 		}
2117 		free_extent_buffer(eb);
2118 	}
2119 
2120 	btrfs_release_path(path);
2121 
2122 	return ret;
2123 }
2124 
2125 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2126 				 struct btrfs_path *path,
2127 				 iterate_irefs_t *iterate, void *ctx)
2128 {
2129 	int ret;
2130 	int slot;
2131 	u64 offset = 0;
2132 	u64 parent;
2133 	int found = 0;
2134 	struct extent_buffer *eb;
2135 	struct btrfs_inode_extref *extref;
2136 	u32 item_size;
2137 	u32 cur_offset;
2138 	unsigned long ptr;
2139 
2140 	while (1) {
2141 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2142 					    &offset);
2143 		if (ret < 0)
2144 			break;
2145 		if (ret) {
2146 			ret = found ? 0 : -ENOENT;
2147 			break;
2148 		}
2149 		++found;
2150 
2151 		slot = path->slots[0];
2152 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2153 		if (!eb) {
2154 			ret = -ENOMEM;
2155 			break;
2156 		}
2157 		btrfs_release_path(path);
2158 
2159 		item_size = btrfs_item_size_nr(eb, slot);
2160 		ptr = btrfs_item_ptr_offset(eb, slot);
2161 		cur_offset = 0;
2162 
2163 		while (cur_offset < item_size) {
2164 			u32 name_len;
2165 
2166 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2167 			parent = btrfs_inode_extref_parent(eb, extref);
2168 			name_len = btrfs_inode_extref_name_len(eb, extref);
2169 			ret = iterate(parent, name_len,
2170 				      (unsigned long)&extref->name, eb, ctx);
2171 			if (ret)
2172 				break;
2173 
2174 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2175 			cur_offset += sizeof(*extref);
2176 		}
2177 		free_extent_buffer(eb);
2178 
2179 		offset++;
2180 	}
2181 
2182 	btrfs_release_path(path);
2183 
2184 	return ret;
2185 }
2186 
2187 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2188 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2189 			 void *ctx)
2190 {
2191 	int ret;
2192 	int found_refs = 0;
2193 
2194 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2195 	if (!ret)
2196 		++found_refs;
2197 	else if (ret != -ENOENT)
2198 		return ret;
2199 
2200 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2201 	if (ret == -ENOENT && found_refs)
2202 		return 0;
2203 
2204 	return ret;
2205 }
2206 
2207 /*
2208  * returns 0 if the path could be dumped (probably truncated)
2209  * returns <0 in case of an error
2210  */
2211 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2212 			 struct extent_buffer *eb, void *ctx)
2213 {
2214 	struct inode_fs_paths *ipath = ctx;
2215 	char *fspath;
2216 	char *fspath_min;
2217 	int i = ipath->fspath->elem_cnt;
2218 	const int s_ptr = sizeof(char *);
2219 	u32 bytes_left;
2220 
2221 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2222 					ipath->fspath->bytes_left - s_ptr : 0;
2223 
2224 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2225 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2226 				   name_off, eb, inum, fspath_min, bytes_left);
2227 	if (IS_ERR(fspath))
2228 		return PTR_ERR(fspath);
2229 
2230 	if (fspath > fspath_min) {
2231 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2232 		++ipath->fspath->elem_cnt;
2233 		ipath->fspath->bytes_left = fspath - fspath_min;
2234 	} else {
2235 		++ipath->fspath->elem_missed;
2236 		ipath->fspath->bytes_missing += fspath_min - fspath;
2237 		ipath->fspath->bytes_left = 0;
2238 	}
2239 
2240 	return 0;
2241 }
2242 
2243 /*
2244  * this dumps all file system paths to the inode into the ipath struct, provided
2245  * is has been created large enough. each path is zero-terminated and accessed
2246  * from ipath->fspath->val[i].
2247  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2248  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2249  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2250  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2251  * have been needed to return all paths.
2252  */
2253 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2254 {
2255 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2256 			     inode_to_path, ipath);
2257 }
2258 
2259 struct btrfs_data_container *init_data_container(u32 total_bytes)
2260 {
2261 	struct btrfs_data_container *data;
2262 	size_t alloc_bytes;
2263 
2264 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2265 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2266 	if (!data)
2267 		return ERR_PTR(-ENOMEM);
2268 
2269 	if (total_bytes >= sizeof(*data)) {
2270 		data->bytes_left = total_bytes - sizeof(*data);
2271 		data->bytes_missing = 0;
2272 	} else {
2273 		data->bytes_missing = sizeof(*data) - total_bytes;
2274 		data->bytes_left = 0;
2275 	}
2276 
2277 	data->elem_cnt = 0;
2278 	data->elem_missed = 0;
2279 
2280 	return data;
2281 }
2282 
2283 /*
2284  * allocates space to return multiple file system paths for an inode.
2285  * total_bytes to allocate are passed, note that space usable for actual path
2286  * information will be total_bytes - sizeof(struct inode_fs_paths).
2287  * the returned pointer must be freed with free_ipath() in the end.
2288  */
2289 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2290 					struct btrfs_path *path)
2291 {
2292 	struct inode_fs_paths *ifp;
2293 	struct btrfs_data_container *fspath;
2294 
2295 	fspath = init_data_container(total_bytes);
2296 	if (IS_ERR(fspath))
2297 		return ERR_CAST(fspath);
2298 
2299 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2300 	if (!ifp) {
2301 		kvfree(fspath);
2302 		return ERR_PTR(-ENOMEM);
2303 	}
2304 
2305 	ifp->btrfs_path = path;
2306 	ifp->fspath = fspath;
2307 	ifp->fs_root = fs_root;
2308 
2309 	return ifp;
2310 }
2311 
2312 void free_ipath(struct inode_fs_paths *ipath)
2313 {
2314 	if (!ipath)
2315 		return;
2316 	kvfree(ipath->fspath);
2317 	kfree(ipath);
2318 }
2319 
2320 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2321 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2322 {
2323 	struct btrfs_backref_iter *ret;
2324 
2325 	ret = kzalloc(sizeof(*ret), gfp_flag);
2326 	if (!ret)
2327 		return NULL;
2328 
2329 	ret->path = btrfs_alloc_path();
2330 	if (!ret->path) {
2331 		kfree(ret);
2332 		return NULL;
2333 	}
2334 
2335 	/* Current backref iterator only supports iteration in commit root */
2336 	ret->path->search_commit_root = 1;
2337 	ret->path->skip_locking = 1;
2338 	ret->fs_info = fs_info;
2339 
2340 	return ret;
2341 }
2342 
2343 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2344 {
2345 	struct btrfs_fs_info *fs_info = iter->fs_info;
2346 	struct btrfs_path *path = iter->path;
2347 	struct btrfs_extent_item *ei;
2348 	struct btrfs_key key;
2349 	int ret;
2350 
2351 	key.objectid = bytenr;
2352 	key.type = BTRFS_METADATA_ITEM_KEY;
2353 	key.offset = (u64)-1;
2354 	iter->bytenr = bytenr;
2355 
2356 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2357 	if (ret < 0)
2358 		return ret;
2359 	if (ret == 0) {
2360 		ret = -EUCLEAN;
2361 		goto release;
2362 	}
2363 	if (path->slots[0] == 0) {
2364 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2365 		ret = -EUCLEAN;
2366 		goto release;
2367 	}
2368 	path->slots[0]--;
2369 
2370 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2371 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2372 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2373 		ret = -ENOENT;
2374 		goto release;
2375 	}
2376 	memcpy(&iter->cur_key, &key, sizeof(key));
2377 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2378 						    path->slots[0]);
2379 	iter->end_ptr = (u32)(iter->item_ptr +
2380 			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2381 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2382 			    struct btrfs_extent_item);
2383 
2384 	/*
2385 	 * Only support iteration on tree backref yet.
2386 	 *
2387 	 * This is an extra precaution for non skinny-metadata, where
2388 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2389 	 * extent flags to determine if it's a tree block.
2390 	 */
2391 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2392 		ret = -ENOTSUPP;
2393 		goto release;
2394 	}
2395 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2396 
2397 	/* If there is no inline backref, go search for keyed backref */
2398 	if (iter->cur_ptr >= iter->end_ptr) {
2399 		ret = btrfs_next_item(fs_info->extent_root, path);
2400 
2401 		/* No inline nor keyed ref */
2402 		if (ret > 0) {
2403 			ret = -ENOENT;
2404 			goto release;
2405 		}
2406 		if (ret < 0)
2407 			goto release;
2408 
2409 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2410 				path->slots[0]);
2411 		if (iter->cur_key.objectid != bytenr ||
2412 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2413 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2414 			ret = -ENOENT;
2415 			goto release;
2416 		}
2417 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2418 							   path->slots[0]);
2419 		iter->item_ptr = iter->cur_ptr;
2420 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2421 				      path->nodes[0], path->slots[0]));
2422 	}
2423 
2424 	return 0;
2425 release:
2426 	btrfs_backref_iter_release(iter);
2427 	return ret;
2428 }
2429 
2430 /*
2431  * Go to the next backref item of current bytenr, can be either inlined or
2432  * keyed.
2433  *
2434  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2435  *
2436  * Return 0 if we get next backref without problem.
2437  * Return >0 if there is no extra backref for this bytenr.
2438  * Return <0 if there is something wrong happened.
2439  */
2440 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2441 {
2442 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2443 	struct btrfs_path *path = iter->path;
2444 	struct btrfs_extent_inline_ref *iref;
2445 	int ret;
2446 	u32 size;
2447 
2448 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2449 		/* We're still inside the inline refs */
2450 		ASSERT(iter->cur_ptr < iter->end_ptr);
2451 
2452 		if (btrfs_backref_has_tree_block_info(iter)) {
2453 			/* First tree block info */
2454 			size = sizeof(struct btrfs_tree_block_info);
2455 		} else {
2456 			/* Use inline ref type to determine the size */
2457 			int type;
2458 
2459 			iref = (struct btrfs_extent_inline_ref *)
2460 				((unsigned long)iter->cur_ptr);
2461 			type = btrfs_extent_inline_ref_type(eb, iref);
2462 
2463 			size = btrfs_extent_inline_ref_size(type);
2464 		}
2465 		iter->cur_ptr += size;
2466 		if (iter->cur_ptr < iter->end_ptr)
2467 			return 0;
2468 
2469 		/* All inline items iterated, fall through */
2470 	}
2471 
2472 	/* We're at keyed items, there is no inline item, go to the next one */
2473 	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2474 	if (ret)
2475 		return ret;
2476 
2477 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2478 	if (iter->cur_key.objectid != iter->bytenr ||
2479 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2480 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2481 		return 1;
2482 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2483 					path->slots[0]);
2484 	iter->cur_ptr = iter->item_ptr;
2485 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2486 						path->slots[0]);
2487 	return 0;
2488 }
2489 
2490 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2491 			      struct btrfs_backref_cache *cache, int is_reloc)
2492 {
2493 	int i;
2494 
2495 	cache->rb_root = RB_ROOT;
2496 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2497 		INIT_LIST_HEAD(&cache->pending[i]);
2498 	INIT_LIST_HEAD(&cache->changed);
2499 	INIT_LIST_HEAD(&cache->detached);
2500 	INIT_LIST_HEAD(&cache->leaves);
2501 	INIT_LIST_HEAD(&cache->pending_edge);
2502 	INIT_LIST_HEAD(&cache->useless_node);
2503 	cache->fs_info = fs_info;
2504 	cache->is_reloc = is_reloc;
2505 }
2506 
2507 struct btrfs_backref_node *btrfs_backref_alloc_node(
2508 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2509 {
2510 	struct btrfs_backref_node *node;
2511 
2512 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2513 	node = kzalloc(sizeof(*node), GFP_NOFS);
2514 	if (!node)
2515 		return node;
2516 
2517 	INIT_LIST_HEAD(&node->list);
2518 	INIT_LIST_HEAD(&node->upper);
2519 	INIT_LIST_HEAD(&node->lower);
2520 	RB_CLEAR_NODE(&node->rb_node);
2521 	cache->nr_nodes++;
2522 	node->level = level;
2523 	node->bytenr = bytenr;
2524 
2525 	return node;
2526 }
2527 
2528 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2529 		struct btrfs_backref_cache *cache)
2530 {
2531 	struct btrfs_backref_edge *edge;
2532 
2533 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2534 	if (edge)
2535 		cache->nr_edges++;
2536 	return edge;
2537 }
2538 
2539 /*
2540  * Drop the backref node from cache, also cleaning up all its
2541  * upper edges and any uncached nodes in the path.
2542  *
2543  * This cleanup happens bottom up, thus the node should either
2544  * be the lowest node in the cache or a detached node.
2545  */
2546 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2547 				struct btrfs_backref_node *node)
2548 {
2549 	struct btrfs_backref_node *upper;
2550 	struct btrfs_backref_edge *edge;
2551 
2552 	if (!node)
2553 		return;
2554 
2555 	BUG_ON(!node->lowest && !node->detached);
2556 	while (!list_empty(&node->upper)) {
2557 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2558 				  list[LOWER]);
2559 		upper = edge->node[UPPER];
2560 		list_del(&edge->list[LOWER]);
2561 		list_del(&edge->list[UPPER]);
2562 		btrfs_backref_free_edge(cache, edge);
2563 
2564 		/*
2565 		 * Add the node to leaf node list if no other child block
2566 		 * cached.
2567 		 */
2568 		if (list_empty(&upper->lower)) {
2569 			list_add_tail(&upper->lower, &cache->leaves);
2570 			upper->lowest = 1;
2571 		}
2572 	}
2573 
2574 	btrfs_backref_drop_node(cache, node);
2575 }
2576 
2577 /*
2578  * Release all nodes/edges from current cache
2579  */
2580 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2581 {
2582 	struct btrfs_backref_node *node;
2583 	int i;
2584 
2585 	while (!list_empty(&cache->detached)) {
2586 		node = list_entry(cache->detached.next,
2587 				  struct btrfs_backref_node, list);
2588 		btrfs_backref_cleanup_node(cache, node);
2589 	}
2590 
2591 	while (!list_empty(&cache->leaves)) {
2592 		node = list_entry(cache->leaves.next,
2593 				  struct btrfs_backref_node, lower);
2594 		btrfs_backref_cleanup_node(cache, node);
2595 	}
2596 
2597 	cache->last_trans = 0;
2598 
2599 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2600 		ASSERT(list_empty(&cache->pending[i]));
2601 	ASSERT(list_empty(&cache->pending_edge));
2602 	ASSERT(list_empty(&cache->useless_node));
2603 	ASSERT(list_empty(&cache->changed));
2604 	ASSERT(list_empty(&cache->detached));
2605 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2606 	ASSERT(!cache->nr_nodes);
2607 	ASSERT(!cache->nr_edges);
2608 }
2609 
2610 /*
2611  * Handle direct tree backref
2612  *
2613  * Direct tree backref means, the backref item shows its parent bytenr
2614  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2615  *
2616  * @ref_key:	The converted backref key.
2617  *		For keyed backref, it's the item key.
2618  *		For inlined backref, objectid is the bytenr,
2619  *		type is btrfs_inline_ref_type, offset is
2620  *		btrfs_inline_ref_offset.
2621  */
2622 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2623 				      struct btrfs_key *ref_key,
2624 				      struct btrfs_backref_node *cur)
2625 {
2626 	struct btrfs_backref_edge *edge;
2627 	struct btrfs_backref_node *upper;
2628 	struct rb_node *rb_node;
2629 
2630 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2631 
2632 	/* Only reloc root uses backref pointing to itself */
2633 	if (ref_key->objectid == ref_key->offset) {
2634 		struct btrfs_root *root;
2635 
2636 		cur->is_reloc_root = 1;
2637 		/* Only reloc backref cache cares about a specific root */
2638 		if (cache->is_reloc) {
2639 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2640 			if (!root)
2641 				return -ENOENT;
2642 			cur->root = root;
2643 		} else {
2644 			/*
2645 			 * For generic purpose backref cache, reloc root node
2646 			 * is useless.
2647 			 */
2648 			list_add(&cur->list, &cache->useless_node);
2649 		}
2650 		return 0;
2651 	}
2652 
2653 	edge = btrfs_backref_alloc_edge(cache);
2654 	if (!edge)
2655 		return -ENOMEM;
2656 
2657 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2658 	if (!rb_node) {
2659 		/* Parent node not yet cached */
2660 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2661 					   cur->level + 1);
2662 		if (!upper) {
2663 			btrfs_backref_free_edge(cache, edge);
2664 			return -ENOMEM;
2665 		}
2666 
2667 		/*
2668 		 *  Backrefs for the upper level block isn't cached, add the
2669 		 *  block to pending list
2670 		 */
2671 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2672 	} else {
2673 		/* Parent node already cached */
2674 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2675 		ASSERT(upper->checked);
2676 		INIT_LIST_HEAD(&edge->list[UPPER]);
2677 	}
2678 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2679 	return 0;
2680 }
2681 
2682 /*
2683  * Handle indirect tree backref
2684  *
2685  * Indirect tree backref means, we only know which tree the node belongs to.
2686  * We still need to do a tree search to find out the parents. This is for
2687  * TREE_BLOCK_REF backref (keyed or inlined).
2688  *
2689  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2690  * @tree_key:	The first key of this tree block.
2691  * @path:	A clean (released) path, to avoid allocating path everytime
2692  *		the function get called.
2693  */
2694 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2695 					struct btrfs_path *path,
2696 					struct btrfs_key *ref_key,
2697 					struct btrfs_key *tree_key,
2698 					struct btrfs_backref_node *cur)
2699 {
2700 	struct btrfs_fs_info *fs_info = cache->fs_info;
2701 	struct btrfs_backref_node *upper;
2702 	struct btrfs_backref_node *lower;
2703 	struct btrfs_backref_edge *edge;
2704 	struct extent_buffer *eb;
2705 	struct btrfs_root *root;
2706 	struct rb_node *rb_node;
2707 	int level;
2708 	bool need_check = true;
2709 	int ret;
2710 
2711 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2712 	if (IS_ERR(root))
2713 		return PTR_ERR(root);
2714 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2715 		cur->cowonly = 1;
2716 
2717 	if (btrfs_root_level(&root->root_item) == cur->level) {
2718 		/* Tree root */
2719 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2720 		/*
2721 		 * For reloc backref cache, we may ignore reloc root.  But for
2722 		 * general purpose backref cache, we can't rely on
2723 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2724 		 * current running relocation and lead to missing root.
2725 		 *
2726 		 * For general purpose backref cache, reloc root detection is
2727 		 * completely relying on direct backref (key->offset is parent
2728 		 * bytenr), thus only do such check for reloc cache.
2729 		 */
2730 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2731 			btrfs_put_root(root);
2732 			list_add(&cur->list, &cache->useless_node);
2733 		} else {
2734 			cur->root = root;
2735 		}
2736 		return 0;
2737 	}
2738 
2739 	level = cur->level + 1;
2740 
2741 	/* Search the tree to find parent blocks referring to the block */
2742 	path->search_commit_root = 1;
2743 	path->skip_locking = 1;
2744 	path->lowest_level = level;
2745 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2746 	path->lowest_level = 0;
2747 	if (ret < 0) {
2748 		btrfs_put_root(root);
2749 		return ret;
2750 	}
2751 	if (ret > 0 && path->slots[level] > 0)
2752 		path->slots[level]--;
2753 
2754 	eb = path->nodes[level];
2755 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2756 		btrfs_err(fs_info,
2757 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2758 			  cur->bytenr, level - 1, root->root_key.objectid,
2759 			  tree_key->objectid, tree_key->type, tree_key->offset);
2760 		btrfs_put_root(root);
2761 		ret = -ENOENT;
2762 		goto out;
2763 	}
2764 	lower = cur;
2765 
2766 	/* Add all nodes and edges in the path */
2767 	for (; level < BTRFS_MAX_LEVEL; level++) {
2768 		if (!path->nodes[level]) {
2769 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2770 			       lower->bytenr);
2771 			/* Same as previous should_ignore_reloc_root() call */
2772 			if (btrfs_should_ignore_reloc_root(root) &&
2773 			    cache->is_reloc) {
2774 				btrfs_put_root(root);
2775 				list_add(&lower->list, &cache->useless_node);
2776 			} else {
2777 				lower->root = root;
2778 			}
2779 			break;
2780 		}
2781 
2782 		edge = btrfs_backref_alloc_edge(cache);
2783 		if (!edge) {
2784 			btrfs_put_root(root);
2785 			ret = -ENOMEM;
2786 			goto out;
2787 		}
2788 
2789 		eb = path->nodes[level];
2790 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2791 		if (!rb_node) {
2792 			upper = btrfs_backref_alloc_node(cache, eb->start,
2793 							 lower->level + 1);
2794 			if (!upper) {
2795 				btrfs_put_root(root);
2796 				btrfs_backref_free_edge(cache, edge);
2797 				ret = -ENOMEM;
2798 				goto out;
2799 			}
2800 			upper->owner = btrfs_header_owner(eb);
2801 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2802 				upper->cowonly = 1;
2803 
2804 			/*
2805 			 * If we know the block isn't shared we can avoid
2806 			 * checking its backrefs.
2807 			 */
2808 			if (btrfs_block_can_be_shared(root, eb))
2809 				upper->checked = 0;
2810 			else
2811 				upper->checked = 1;
2812 
2813 			/*
2814 			 * Add the block to pending list if we need to check its
2815 			 * backrefs, we only do this once while walking up a
2816 			 * tree as we will catch anything else later on.
2817 			 */
2818 			if (!upper->checked && need_check) {
2819 				need_check = false;
2820 				list_add_tail(&edge->list[UPPER],
2821 					      &cache->pending_edge);
2822 			} else {
2823 				if (upper->checked)
2824 					need_check = true;
2825 				INIT_LIST_HEAD(&edge->list[UPPER]);
2826 			}
2827 		} else {
2828 			upper = rb_entry(rb_node, struct btrfs_backref_node,
2829 					 rb_node);
2830 			ASSERT(upper->checked);
2831 			INIT_LIST_HEAD(&edge->list[UPPER]);
2832 			if (!upper->owner)
2833 				upper->owner = btrfs_header_owner(eb);
2834 		}
2835 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2836 
2837 		if (rb_node) {
2838 			btrfs_put_root(root);
2839 			break;
2840 		}
2841 		lower = upper;
2842 		upper = NULL;
2843 	}
2844 out:
2845 	btrfs_release_path(path);
2846 	return ret;
2847 }
2848 
2849 /*
2850  * Add backref node @cur into @cache.
2851  *
2852  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2853  *	 links aren't yet bi-directional. Needs to finish such links.
2854  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2855  *
2856  * @path:	Released path for indirect tree backref lookup
2857  * @iter:	Released backref iter for extent tree search
2858  * @node_key:	The first key of the tree block
2859  */
2860 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2861 				struct btrfs_path *path,
2862 				struct btrfs_backref_iter *iter,
2863 				struct btrfs_key *node_key,
2864 				struct btrfs_backref_node *cur)
2865 {
2866 	struct btrfs_fs_info *fs_info = cache->fs_info;
2867 	struct btrfs_backref_edge *edge;
2868 	struct btrfs_backref_node *exist;
2869 	int ret;
2870 
2871 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2872 	if (ret < 0)
2873 		return ret;
2874 	/*
2875 	 * We skip the first btrfs_tree_block_info, as we don't use the key
2876 	 * stored in it, but fetch it from the tree block
2877 	 */
2878 	if (btrfs_backref_has_tree_block_info(iter)) {
2879 		ret = btrfs_backref_iter_next(iter);
2880 		if (ret < 0)
2881 			goto out;
2882 		/* No extra backref? This means the tree block is corrupted */
2883 		if (ret > 0) {
2884 			ret = -EUCLEAN;
2885 			goto out;
2886 		}
2887 	}
2888 	WARN_ON(cur->checked);
2889 	if (!list_empty(&cur->upper)) {
2890 		/*
2891 		 * The backref was added previously when processing backref of
2892 		 * type BTRFS_TREE_BLOCK_REF_KEY
2893 		 */
2894 		ASSERT(list_is_singular(&cur->upper));
2895 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2896 				  list[LOWER]);
2897 		ASSERT(list_empty(&edge->list[UPPER]));
2898 		exist = edge->node[UPPER];
2899 		/*
2900 		 * Add the upper level block to pending list if we need check
2901 		 * its backrefs
2902 		 */
2903 		if (!exist->checked)
2904 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2905 	} else {
2906 		exist = NULL;
2907 	}
2908 
2909 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2910 		struct extent_buffer *eb;
2911 		struct btrfs_key key;
2912 		int type;
2913 
2914 		cond_resched();
2915 		eb = btrfs_backref_get_eb(iter);
2916 
2917 		key.objectid = iter->bytenr;
2918 		if (btrfs_backref_iter_is_inline_ref(iter)) {
2919 			struct btrfs_extent_inline_ref *iref;
2920 
2921 			/* Update key for inline backref */
2922 			iref = (struct btrfs_extent_inline_ref *)
2923 				((unsigned long)iter->cur_ptr);
2924 			type = btrfs_get_extent_inline_ref_type(eb, iref,
2925 							BTRFS_REF_TYPE_BLOCK);
2926 			if (type == BTRFS_REF_TYPE_INVALID) {
2927 				ret = -EUCLEAN;
2928 				goto out;
2929 			}
2930 			key.type = type;
2931 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2932 		} else {
2933 			key.type = iter->cur_key.type;
2934 			key.offset = iter->cur_key.offset;
2935 		}
2936 
2937 		/*
2938 		 * Parent node found and matches current inline ref, no need to
2939 		 * rebuild this node for this inline ref
2940 		 */
2941 		if (exist &&
2942 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2943 		      exist->owner == key.offset) ||
2944 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2945 		      exist->bytenr == key.offset))) {
2946 			exist = NULL;
2947 			continue;
2948 		}
2949 
2950 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2951 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2952 			ret = handle_direct_tree_backref(cache, &key, cur);
2953 			if (ret < 0)
2954 				goto out;
2955 			continue;
2956 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2957 			ret = -EINVAL;
2958 			btrfs_print_v0_err(fs_info);
2959 			btrfs_handle_fs_error(fs_info, ret, NULL);
2960 			goto out;
2961 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2962 			continue;
2963 		}
2964 
2965 		/*
2966 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2967 		 * means the root objectid. We need to search the tree to get
2968 		 * its parent bytenr.
2969 		 */
2970 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2971 						   cur);
2972 		if (ret < 0)
2973 			goto out;
2974 	}
2975 	ret = 0;
2976 	cur->checked = 1;
2977 	WARN_ON(exist);
2978 out:
2979 	btrfs_backref_iter_release(iter);
2980 	return ret;
2981 }
2982 
2983 /*
2984  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2985  */
2986 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2987 				     struct btrfs_backref_node *start)
2988 {
2989 	struct list_head *useless_node = &cache->useless_node;
2990 	struct btrfs_backref_edge *edge;
2991 	struct rb_node *rb_node;
2992 	LIST_HEAD(pending_edge);
2993 
2994 	ASSERT(start->checked);
2995 
2996 	/* Insert this node to cache if it's not COW-only */
2997 	if (!start->cowonly) {
2998 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2999 					   &start->rb_node);
3000 		if (rb_node)
3001 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3002 					    -EEXIST);
3003 		list_add_tail(&start->lower, &cache->leaves);
3004 	}
3005 
3006 	/*
3007 	 * Use breadth first search to iterate all related edges.
3008 	 *
3009 	 * The starting points are all the edges of this node
3010 	 */
3011 	list_for_each_entry(edge, &start->upper, list[LOWER])
3012 		list_add_tail(&edge->list[UPPER], &pending_edge);
3013 
3014 	while (!list_empty(&pending_edge)) {
3015 		struct btrfs_backref_node *upper;
3016 		struct btrfs_backref_node *lower;
3017 
3018 		edge = list_first_entry(&pending_edge,
3019 				struct btrfs_backref_edge, list[UPPER]);
3020 		list_del_init(&edge->list[UPPER]);
3021 		upper = edge->node[UPPER];
3022 		lower = edge->node[LOWER];
3023 
3024 		/* Parent is detached, no need to keep any edges */
3025 		if (upper->detached) {
3026 			list_del(&edge->list[LOWER]);
3027 			btrfs_backref_free_edge(cache, edge);
3028 
3029 			/* Lower node is orphan, queue for cleanup */
3030 			if (list_empty(&lower->upper))
3031 				list_add(&lower->list, useless_node);
3032 			continue;
3033 		}
3034 
3035 		/*
3036 		 * All new nodes added in current build_backref_tree() haven't
3037 		 * been linked to the cache rb tree.
3038 		 * So if we have upper->rb_node populated, this means a cache
3039 		 * hit. We only need to link the edge, as @upper and all its
3040 		 * parents have already been linked.
3041 		 */
3042 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3043 			if (upper->lowest) {
3044 				list_del_init(&upper->lower);
3045 				upper->lowest = 0;
3046 			}
3047 
3048 			list_add_tail(&edge->list[UPPER], &upper->lower);
3049 			continue;
3050 		}
3051 
3052 		/* Sanity check, we shouldn't have any unchecked nodes */
3053 		if (!upper->checked) {
3054 			ASSERT(0);
3055 			return -EUCLEAN;
3056 		}
3057 
3058 		/* Sanity check, COW-only node has non-COW-only parent */
3059 		if (start->cowonly != upper->cowonly) {
3060 			ASSERT(0);
3061 			return -EUCLEAN;
3062 		}
3063 
3064 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3065 		if (!upper->cowonly) {
3066 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3067 						   &upper->rb_node);
3068 			if (rb_node) {
3069 				btrfs_backref_panic(cache->fs_info,
3070 						upper->bytenr, -EEXIST);
3071 				return -EUCLEAN;
3072 			}
3073 		}
3074 
3075 		list_add_tail(&edge->list[UPPER], &upper->lower);
3076 
3077 		/*
3078 		 * Also queue all the parent edges of this uncached node
3079 		 * to finish the upper linkage
3080 		 */
3081 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3082 			list_add_tail(&edge->list[UPPER], &pending_edge);
3083 	}
3084 	return 0;
3085 }
3086 
3087 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3088 				 struct btrfs_backref_node *node)
3089 {
3090 	struct btrfs_backref_node *lower;
3091 	struct btrfs_backref_node *upper;
3092 	struct btrfs_backref_edge *edge;
3093 
3094 	while (!list_empty(&cache->useless_node)) {
3095 		lower = list_first_entry(&cache->useless_node,
3096 				   struct btrfs_backref_node, list);
3097 		list_del_init(&lower->list);
3098 	}
3099 	while (!list_empty(&cache->pending_edge)) {
3100 		edge = list_first_entry(&cache->pending_edge,
3101 				struct btrfs_backref_edge, list[UPPER]);
3102 		list_del(&edge->list[UPPER]);
3103 		list_del(&edge->list[LOWER]);
3104 		lower = edge->node[LOWER];
3105 		upper = edge->node[UPPER];
3106 		btrfs_backref_free_edge(cache, edge);
3107 
3108 		/*
3109 		 * Lower is no longer linked to any upper backref nodes and
3110 		 * isn't in the cache, we can free it ourselves.
3111 		 */
3112 		if (list_empty(&lower->upper) &&
3113 		    RB_EMPTY_NODE(&lower->rb_node))
3114 			list_add(&lower->list, &cache->useless_node);
3115 
3116 		if (!RB_EMPTY_NODE(&upper->rb_node))
3117 			continue;
3118 
3119 		/* Add this guy's upper edges to the list to process */
3120 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3121 			list_add_tail(&edge->list[UPPER],
3122 				      &cache->pending_edge);
3123 		if (list_empty(&upper->upper))
3124 			list_add(&upper->list, &cache->useless_node);
3125 	}
3126 
3127 	while (!list_empty(&cache->useless_node)) {
3128 		lower = list_first_entry(&cache->useless_node,
3129 				   struct btrfs_backref_node, list);
3130 		list_del_init(&lower->list);
3131 		if (lower == node)
3132 			node = NULL;
3133 		btrfs_backref_drop_node(cache, lower);
3134 	}
3135 
3136 	btrfs_backref_cleanup_node(cache, node);
3137 	ASSERT(list_empty(&cache->useless_node) &&
3138 	       list_empty(&cache->pending_edge));
3139 }
3140