1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file describes an abstract interface used to get information about a 10 // target machines register file. This information is used for a variety of 11 // purposed, especially register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H 16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/IR/CallingConv.h" 24 #include "llvm/MC/LaneBitmask.h" 25 #include "llvm/MC/MCRegisterInfo.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MachineValueType.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Printable.h" 30 #include <cassert> 31 #include <cstdint> 32 #include <functional> 33 34 namespace llvm { 35 36 class BitVector; 37 class LiveRegMatrix; 38 class MachineFunction; 39 class MachineInstr; 40 class RegScavenger; 41 class VirtRegMap; 42 class LiveIntervals; 43 44 class TargetRegisterClass { 45 public: 46 using iterator = const MCPhysReg *; 47 using const_iterator = const MCPhysReg *; 48 using sc_iterator = const TargetRegisterClass* const *; 49 50 // Instance variables filled by tablegen, do not use! 51 const MCRegisterClass *MC; 52 const uint32_t *SubClassMask; 53 const uint16_t *SuperRegIndices; 54 const LaneBitmask LaneMask; 55 /// Classes with a higher priority value are assigned first by register 56 /// allocators using a greedy heuristic. The value is in the range [0,63]. 57 const uint8_t AllocationPriority; 58 /// Whether the class supports two (or more) disjunct subregister indices. 59 const bool HasDisjunctSubRegs; 60 /// Whether a combination of subregisters can cover every register in the 61 /// class. See also the CoveredBySubRegs description in Target.td. 62 const bool CoveredBySubRegs; 63 const sc_iterator SuperClasses; 64 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); 65 66 /// Return the register class ID number. getID()67 unsigned getID() const { return MC->getID(); } 68 69 /// begin/end - Return all of the registers in this class. 70 /// begin()71 iterator begin() const { return MC->begin(); } end()72 iterator end() const { return MC->end(); } 73 74 /// Return the number of registers in this class. getNumRegs()75 unsigned getNumRegs() const { return MC->getNumRegs(); } 76 77 iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator> getRegisters()78 getRegisters() const { 79 return make_range(MC->begin(), MC->end()); 80 } 81 82 /// Return the specified register in the class. getRegister(unsigned i)83 unsigned getRegister(unsigned i) const { 84 return MC->getRegister(i); 85 } 86 87 /// Return true if the specified register is included in this register class. 88 /// This does not include virtual registers. contains(unsigned Reg)89 bool contains(unsigned Reg) const { 90 /// FIXME: Historically this function has returned false when given vregs 91 /// but it should probably only receive physical registers 92 if (!Register::isPhysicalRegister(Reg)) 93 return false; 94 return MC->contains(Reg); 95 } 96 97 /// Return true if both registers are in this class. contains(unsigned Reg1,unsigned Reg2)98 bool contains(unsigned Reg1, unsigned Reg2) const { 99 /// FIXME: Historically this function has returned false when given a vregs 100 /// but it should probably only receive physical registers 101 if (!Register::isPhysicalRegister(Reg1) || 102 !Register::isPhysicalRegister(Reg2)) 103 return false; 104 return MC->contains(Reg1, Reg2); 105 } 106 107 /// Return the cost of copying a value between two registers in this class. 108 /// A negative number means the register class is very expensive 109 /// to copy e.g. status flag register classes. getCopyCost()110 int getCopyCost() const { return MC->getCopyCost(); } 111 112 /// Return true if this register class may be used to create virtual 113 /// registers. isAllocatable()114 bool isAllocatable() const { return MC->isAllocatable(); } 115 116 /// Return true if the specified TargetRegisterClass 117 /// is a proper sub-class of this TargetRegisterClass. hasSubClass(const TargetRegisterClass * RC)118 bool hasSubClass(const TargetRegisterClass *RC) const { 119 return RC != this && hasSubClassEq(RC); 120 } 121 122 /// Returns true if RC is a sub-class of or equal to this class. hasSubClassEq(const TargetRegisterClass * RC)123 bool hasSubClassEq(const TargetRegisterClass *RC) const { 124 unsigned ID = RC->getID(); 125 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 126 } 127 128 /// Return true if the specified TargetRegisterClass is a 129 /// proper super-class of this TargetRegisterClass. hasSuperClass(const TargetRegisterClass * RC)130 bool hasSuperClass(const TargetRegisterClass *RC) const { 131 return RC->hasSubClass(this); 132 } 133 134 /// Returns true if RC is a super-class of or equal to this class. hasSuperClassEq(const TargetRegisterClass * RC)135 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 136 return RC->hasSubClassEq(this); 137 } 138 139 /// Returns a bit vector of subclasses, including this one. 140 /// The vector is indexed by class IDs. 141 /// 142 /// To use it, consider the returned array as a chunk of memory that 143 /// contains an array of bits of size NumRegClasses. Each 32-bit chunk 144 /// contains a bitset of the ID of the subclasses in big-endian style. 145 146 /// I.e., the representation of the memory from left to right at the 147 /// bit level looks like: 148 /// [31 30 ... 1 0] [ 63 62 ... 33 32] ... 149 /// [ XXX NumRegClasses NumRegClasses - 1 ... ] 150 /// Where the number represents the class ID and XXX bits that 151 /// should be ignored. 152 /// 153 /// See the implementation of hasSubClassEq for an example of how it 154 /// can be used. getSubClassMask()155 const uint32_t *getSubClassMask() const { 156 return SubClassMask; 157 } 158 159 /// Returns a 0-terminated list of sub-register indices that project some 160 /// super-register class into this register class. The list has an entry for 161 /// each Idx such that: 162 /// 163 /// There exists SuperRC where: 164 /// For all Reg in SuperRC: 165 /// this->contains(Reg:Idx) getSuperRegIndices()166 const uint16_t *getSuperRegIndices() const { 167 return SuperRegIndices; 168 } 169 170 /// Returns a NULL-terminated list of super-classes. The 171 /// classes are ordered by ID which is also a topological ordering from large 172 /// to small classes. The list does NOT include the current class. getSuperClasses()173 sc_iterator getSuperClasses() const { 174 return SuperClasses; 175 } 176 177 /// Return true if this TargetRegisterClass is a subset 178 /// class of at least one other TargetRegisterClass. isASubClass()179 bool isASubClass() const { 180 return SuperClasses[0] != nullptr; 181 } 182 183 /// Returns the preferred order for allocating registers from this register 184 /// class in MF. The raw order comes directly from the .td file and may 185 /// include reserved registers that are not allocatable. 186 /// Register allocators should also make sure to allocate 187 /// callee-saved registers only after all the volatiles are used. The 188 /// RegisterClassInfo class provides filtered allocation orders with 189 /// callee-saved registers moved to the end. 190 /// 191 /// The MachineFunction argument can be used to tune the allocatable 192 /// registers based on the characteristics of the function, subtarget, or 193 /// other criteria. 194 /// 195 /// By default, this method returns all registers in the class. getRawAllocationOrder(const MachineFunction & MF)196 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { 197 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs()); 198 } 199 200 /// Returns the combination of all lane masks of register in this class. 201 /// The lane masks of the registers are the combination of all lane masks 202 /// of their subregisters. Returns 1 if there are no subregisters. getLaneMask()203 LaneBitmask getLaneMask() const { 204 return LaneMask; 205 } 206 }; 207 208 /// Extra information, not in MCRegisterDesc, about registers. 209 /// These are used by codegen, not by MC. 210 struct TargetRegisterInfoDesc { 211 unsigned CostPerUse; // Extra cost of instructions using register. 212 bool inAllocatableClass; // Register belongs to an allocatable regclass. 213 }; 214 215 /// Each TargetRegisterClass has a per register weight, and weight 216 /// limit which must be less than the limits of its pressure sets. 217 struct RegClassWeight { 218 unsigned RegWeight; 219 unsigned WeightLimit; 220 }; 221 222 /// TargetRegisterInfo base class - We assume that the target defines a static 223 /// array of TargetRegisterDesc objects that represent all of the machine 224 /// registers that the target has. As such, we simply have to track a pointer 225 /// to this array so that we can turn register number into a register 226 /// descriptor. 227 /// 228 class TargetRegisterInfo : public MCRegisterInfo { 229 public: 230 using regclass_iterator = const TargetRegisterClass * const *; 231 using vt_iterator = const MVT::SimpleValueType *; 232 struct RegClassInfo { 233 unsigned RegSize, SpillSize, SpillAlignment; 234 vt_iterator VTList; 235 }; 236 private: 237 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 238 const char *const *SubRegIndexNames; // Names of subreg indexes. 239 // Pointer to array of lane masks, one per sub-reg index. 240 const LaneBitmask *SubRegIndexLaneMasks; 241 242 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 243 LaneBitmask CoveringLanes; 244 const RegClassInfo *const RCInfos; 245 unsigned HwMode; 246 247 protected: 248 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 249 regclass_iterator RCB, 250 regclass_iterator RCE, 251 const char *const *SRINames, 252 const LaneBitmask *SRILaneMasks, 253 LaneBitmask CoveringLanes, 254 const RegClassInfo *const RCIs, 255 unsigned Mode = 0); 256 virtual ~TargetRegisterInfo(); 257 258 public: 259 // Register numbers can represent physical registers, virtual registers, and 260 // sometimes stack slots. The unsigned values are divided into these ranges: 261 // 262 // 0 Not a register, can be used as a sentinel. 263 // [1;2^30) Physical registers assigned by TableGen. 264 // [2^30;2^31) Stack slots. (Rarely used.) 265 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 266 // 267 // Further sentinels can be allocated from the small negative integers. 268 // DenseMapInfo<unsigned> uses -1u and -2u. 269 270 /// Return the size in bits of a register from class RC. getRegSizeInBits(const TargetRegisterClass & RC)271 unsigned getRegSizeInBits(const TargetRegisterClass &RC) const { 272 return getRegClassInfo(RC).RegSize; 273 } 274 275 /// Return the size in bytes of the stack slot allocated to hold a spilled 276 /// copy of a register from class RC. getSpillSize(const TargetRegisterClass & RC)277 unsigned getSpillSize(const TargetRegisterClass &RC) const { 278 return getRegClassInfo(RC).SpillSize / 8; 279 } 280 281 /// Return the minimum required alignment in bytes for a spill slot for 282 /// a register of this class. getSpillAlignment(const TargetRegisterClass & RC)283 unsigned getSpillAlignment(const TargetRegisterClass &RC) const { 284 return getRegClassInfo(RC).SpillAlignment / 8; 285 } 286 287 /// Return true if the given TargetRegisterClass has the ValueType T. isTypeLegalForClass(const TargetRegisterClass & RC,MVT T)288 bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const { 289 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) 290 if (MVT(*I) == T) 291 return true; 292 return false; 293 } 294 295 /// Loop over all of the value types that can be represented by values 296 /// in the given register class. legalclasstypes_begin(const TargetRegisterClass & RC)297 vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const { 298 return getRegClassInfo(RC).VTList; 299 } 300 legalclasstypes_end(const TargetRegisterClass & RC)301 vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const { 302 vt_iterator I = legalclasstypes_begin(RC); 303 while (*I != MVT::Other) 304 ++I; 305 return I; 306 } 307 308 /// Returns the Register Class of a physical register of the given type, 309 /// picking the most sub register class of the right type that contains this 310 /// physreg. 311 const TargetRegisterClass * 312 getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const; 313 314 /// Return the maximal subclass of the given register class that is 315 /// allocatable or NULL. 316 const TargetRegisterClass * 317 getAllocatableClass(const TargetRegisterClass *RC) const; 318 319 /// Returns a bitset indexed by register number indicating if a register is 320 /// allocatable or not. If a register class is specified, returns the subset 321 /// for the class. 322 BitVector getAllocatableSet(const MachineFunction &MF, 323 const TargetRegisterClass *RC = nullptr) const; 324 325 /// Return the additional cost of using this register instead 326 /// of other registers in its class. getCostPerUse(unsigned RegNo)327 unsigned getCostPerUse(unsigned RegNo) const { 328 return InfoDesc[RegNo].CostPerUse; 329 } 330 331 /// Return true if the register is in the allocation of any register class. isInAllocatableClass(unsigned RegNo)332 bool isInAllocatableClass(unsigned RegNo) const { 333 return InfoDesc[RegNo].inAllocatableClass; 334 } 335 336 /// Return the human-readable symbolic target-specific 337 /// name for the specified SubRegIndex. getSubRegIndexName(unsigned SubIdx)338 const char *getSubRegIndexName(unsigned SubIdx) const { 339 assert(SubIdx && SubIdx < getNumSubRegIndices() && 340 "This is not a subregister index"); 341 return SubRegIndexNames[SubIdx-1]; 342 } 343 344 /// Return a bitmask representing the parts of a register that are covered by 345 /// SubIdx \see LaneBitmask. 346 /// 347 /// SubIdx == 0 is allowed, it has the lane mask ~0u. getSubRegIndexLaneMask(unsigned SubIdx)348 LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const { 349 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); 350 return SubRegIndexLaneMasks[SubIdx]; 351 } 352 353 /// The lane masks returned by getSubRegIndexLaneMask() above can only be 354 /// used to determine if sub-registers overlap - they can't be used to 355 /// determine if a set of sub-registers completely cover another 356 /// sub-register. 357 /// 358 /// The X86 general purpose registers have two lanes corresponding to the 359 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have 360 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the 361 /// sub_32bit sub-register. 362 /// 363 /// On the other hand, the ARM NEON lanes fully cover their registers: The 364 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes. 365 /// This is related to the CoveredBySubRegs property on register definitions. 366 /// 367 /// This function returns a bit mask of lanes that completely cover their 368 /// sub-registers. More precisely, given: 369 /// 370 /// Covering = getCoveringLanes(); 371 /// MaskA = getSubRegIndexLaneMask(SubA); 372 /// MaskB = getSubRegIndexLaneMask(SubB); 373 /// 374 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by 375 /// SubB. getCoveringLanes()376 LaneBitmask getCoveringLanes() const { return CoveringLanes; } 377 378 /// Returns true if the two registers are equal or alias each other. 379 /// The registers may be virtual registers. regsOverlap(Register regA,Register regB)380 bool regsOverlap(Register regA, Register regB) const { 381 if (regA == regB) return true; 382 if (regA.isVirtual() || regB.isVirtual()) 383 return false; 384 385 // Regunits are numerically ordered. Find a common unit. 386 MCRegUnitIterator RUA(regA, this); 387 MCRegUnitIterator RUB(regB, this); 388 do { 389 if (*RUA == *RUB) return true; 390 if (*RUA < *RUB) ++RUA; 391 else ++RUB; 392 } while (RUA.isValid() && RUB.isValid()); 393 return false; 394 } 395 396 /// Returns true if Reg contains RegUnit. hasRegUnit(unsigned Reg,unsigned RegUnit)397 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const { 398 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) 399 if (*Units == RegUnit) 400 return true; 401 return false; 402 } 403 404 /// Returns the original SrcReg unless it is the target of a copy-like 405 /// operation, in which case we chain backwards through all such operations 406 /// to the ultimate source register. If a physical register is encountered, 407 /// we stop the search. 408 virtual unsigned lookThruCopyLike(unsigned SrcReg, 409 const MachineRegisterInfo *MRI) const; 410 411 /// Return a null-terminated list of all of the callee-saved registers on 412 /// this target. The register should be in the order of desired callee-save 413 /// stack frame offset. The first register is closest to the incoming stack 414 /// pointer if stack grows down, and vice versa. 415 /// Notice: This function does not take into account disabled CSRs. 416 /// In most cases you will want to use instead the function 417 /// getCalleeSavedRegs that is implemented in MachineRegisterInfo. 418 virtual const MCPhysReg* 419 getCalleeSavedRegs(const MachineFunction *MF) const = 0; 420 421 /// Return a mask of call-preserved registers for the given calling convention 422 /// on the current function. The mask should include all call-preserved 423 /// aliases. This is used by the register allocator to determine which 424 /// registers can be live across a call. 425 /// 426 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 427 /// A set bit indicates that all bits of the corresponding register are 428 /// preserved across the function call. The bit mask is expected to be 429 /// sub-register complete, i.e. if A is preserved, so are all its 430 /// sub-registers. 431 /// 432 /// Bits are numbered from the LSB, so the bit for physical register Reg can 433 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 434 /// 435 /// A NULL pointer means that no register mask will be used, and call 436 /// instructions should use implicit-def operands to indicate call clobbered 437 /// registers. 438 /// getCallPreservedMask(const MachineFunction & MF,CallingConv::ID)439 virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF, 440 CallingConv::ID) const { 441 // The default mask clobbers everything. All targets should override. 442 return nullptr; 443 } 444 445 /// Return a register mask that clobbers everything. getNoPreservedMask()446 virtual const uint32_t *getNoPreservedMask() const { 447 llvm_unreachable("target does not provide no preserved mask"); 448 } 449 450 /// Return a list of all of the registers which are clobbered "inside" a call 451 /// to the given function. For example, these might be needed for PLT 452 /// sequences of long-branch veneers. 453 virtual ArrayRef<MCPhysReg> getIntraCallClobberedRegs(const MachineFunction * MF)454 getIntraCallClobberedRegs(const MachineFunction *MF) const { 455 return {}; 456 } 457 458 /// Return true if all bits that are set in mask \p mask0 are also set in 459 /// \p mask1. 460 bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const; 461 462 /// Return all the call-preserved register masks defined for this target. 463 virtual ArrayRef<const uint32_t *> getRegMasks() const = 0; 464 virtual ArrayRef<const char *> getRegMaskNames() const = 0; 465 466 /// Returns a bitset indexed by physical register number indicating if a 467 /// register is a special register that has particular uses and should be 468 /// considered unavailable at all times, e.g. stack pointer, return address. 469 /// A reserved register: 470 /// - is not allocatable 471 /// - is considered always live 472 /// - is ignored by liveness tracking 473 /// It is often necessary to reserve the super registers of a reserved 474 /// register as well, to avoid them getting allocated indirectly. You may use 475 /// markSuperRegs() and checkAllSuperRegsMarked() in this case. 476 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 477 478 /// Returns false if we can't guarantee that Physreg, specified as an IR asm 479 /// clobber constraint, will be preserved across the statement. isAsmClobberable(const MachineFunction & MF,unsigned PhysReg)480 virtual bool isAsmClobberable(const MachineFunction &MF, 481 unsigned PhysReg) const { 482 return true; 483 } 484 485 /// Returns true if PhysReg is unallocatable and constant throughout the 486 /// function. Used by MachineRegisterInfo::isConstantPhysReg(). isConstantPhysReg(unsigned PhysReg)487 virtual bool isConstantPhysReg(unsigned PhysReg) const { return false; } 488 489 /// Returns true if the register class is considered divergent. isDivergentRegClass(const TargetRegisterClass * RC)490 virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const { 491 return false; 492 } 493 494 /// Physical registers that may be modified within a function but are 495 /// guaranteed to be restored before any uses. This is useful for targets that 496 /// have call sequences where a GOT register may be updated by the caller 497 /// prior to a call and is guaranteed to be restored (also by the caller) 498 /// after the call. isCallerPreservedPhysReg(unsigned PhysReg,const MachineFunction & MF)499 virtual bool isCallerPreservedPhysReg(unsigned PhysReg, 500 const MachineFunction &MF) const { 501 return false; 502 } 503 504 /// This is a wrapper around getCallPreservedMask(). 505 /// Return true if the register is preserved after the call. 506 virtual bool isCalleeSavedPhysReg(unsigned PhysReg, 507 const MachineFunction &MF) const; 508 509 /// Prior to adding the live-out mask to a stackmap or patchpoint 510 /// instruction, provide the target the opportunity to adjust it (mainly to 511 /// remove pseudo-registers that should be ignored). adjustStackMapLiveOutMask(uint32_t * Mask)512 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {} 513 514 /// Return a super-register of the specified register 515 /// Reg so its sub-register of index SubIdx is Reg. getMatchingSuperReg(unsigned Reg,unsigned SubIdx,const TargetRegisterClass * RC)516 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, 517 const TargetRegisterClass *RC) const { 518 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 519 } 520 521 /// Return a subclass of the specified register 522 /// class A so that each register in it has a sub-register of the 523 /// specified sub-register index which is in the specified register class B. 524 /// 525 /// TableGen will synthesize missing A sub-classes. 526 virtual const TargetRegisterClass * 527 getMatchingSuperRegClass(const TargetRegisterClass *A, 528 const TargetRegisterClass *B, unsigned Idx) const; 529 530 // For a copy-like instruction that defines a register of class DefRC with 531 // subreg index DefSubReg, reading from another source with class SrcRC and 532 // subregister SrcSubReg return true if this is a preferable copy 533 // instruction or an earlier use should be used. 534 virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, 535 unsigned DefSubReg, 536 const TargetRegisterClass *SrcRC, 537 unsigned SrcSubReg) const; 538 539 /// Returns the largest legal sub-class of RC that 540 /// supports the sub-register index Idx. 541 /// If no such sub-class exists, return NULL. 542 /// If all registers in RC already have an Idx sub-register, return RC. 543 /// 544 /// TableGen generates a version of this function that is good enough in most 545 /// cases. Targets can override if they have constraints that TableGen 546 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 547 /// supported by the full GR32 register class in 64-bit mode, but only by the 548 /// GR32_ABCD regiister class in 32-bit mode. 549 /// 550 /// TableGen will synthesize missing RC sub-classes. 551 virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)552 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 553 assert(Idx == 0 && "Target has no sub-registers"); 554 return RC; 555 } 556 557 /// Return the subregister index you get from composing 558 /// two subregister indices. 559 /// 560 /// The special null sub-register index composes as the identity. 561 /// 562 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 563 /// returns c. Note that composeSubRegIndices does not tell you about illegal 564 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 565 /// b, composeSubRegIndices doesn't tell you. 566 /// 567 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 568 /// ssub_0:S0 - ssub_3:S3 subregs. 569 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. composeSubRegIndices(unsigned a,unsigned b)570 unsigned composeSubRegIndices(unsigned a, unsigned b) const { 571 if (!a) return b; 572 if (!b) return a; 573 return composeSubRegIndicesImpl(a, b); 574 } 575 576 /// Transforms a LaneMask computed for one subregister to the lanemask that 577 /// would have been computed when composing the subsubregisters with IdxA 578 /// first. @sa composeSubRegIndices() composeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask Mask)579 LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA, 580 LaneBitmask Mask) const { 581 if (!IdxA) 582 return Mask; 583 return composeSubRegIndexLaneMaskImpl(IdxA, Mask); 584 } 585 586 /// Transform a lanemask given for a virtual register to the corresponding 587 /// lanemask before using subregister with index \p IdxA. 588 /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a 589 /// valie lane mask (no invalid bits set) the following holds: 590 /// X0 = composeSubRegIndexLaneMask(Idx, Mask) 591 /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0) 592 /// => X1 == Mask reverseComposeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask LaneMask)593 LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA, 594 LaneBitmask LaneMask) const { 595 if (!IdxA) 596 return LaneMask; 597 return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask); 598 } 599 600 /// Debugging helper: dump register in human readable form to dbgs() stream. 601 static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0, 602 const TargetRegisterInfo* TRI = nullptr); 603 604 protected: 605 /// Overridden by TableGen in targets that have sub-registers. composeSubRegIndicesImpl(unsigned,unsigned)606 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { 607 llvm_unreachable("Target has no sub-registers"); 608 } 609 610 /// Overridden by TableGen in targets that have sub-registers. 611 virtual LaneBitmask composeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)612 composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const { 613 llvm_unreachable("Target has no sub-registers"); 614 } 615 reverseComposeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)616 virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned, 617 LaneBitmask) const { 618 llvm_unreachable("Target has no sub-registers"); 619 } 620 621 public: 622 /// Find a common super-register class if it exists. 623 /// 624 /// Find a register class, SuperRC and two sub-register indices, PreA and 625 /// PreB, such that: 626 /// 627 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 628 /// 629 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 630 /// 631 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 632 /// 633 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 634 /// requirements, and there is no register class with a smaller spill size 635 /// that satisfies the requirements. 636 /// 637 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 638 /// 639 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 640 /// that case, the returned register class will be a sub-class of the 641 /// corresponding argument register class. 642 /// 643 /// The function returns NULL if no register class can be found. 644 const TargetRegisterClass* 645 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 646 const TargetRegisterClass *RCB, unsigned SubB, 647 unsigned &PreA, unsigned &PreB) const; 648 649 //===--------------------------------------------------------------------===// 650 // Register Class Information 651 // 652 protected: getRegClassInfo(const TargetRegisterClass & RC)653 const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const { 654 return RCInfos[getNumRegClasses() * HwMode + RC.getID()]; 655 } 656 657 public: 658 /// Register class iterators regclass_begin()659 regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_end()660 regclass_iterator regclass_end() const { return RegClassEnd; } regclasses()661 iterator_range<regclass_iterator> regclasses() const { 662 return make_range(regclass_begin(), regclass_end()); 663 } 664 getNumRegClasses()665 unsigned getNumRegClasses() const { 666 return (unsigned)(regclass_end()-regclass_begin()); 667 } 668 669 /// Returns the register class associated with the enumeration value. 670 /// See class MCOperandInfo. getRegClass(unsigned i)671 const TargetRegisterClass *getRegClass(unsigned i) const { 672 assert(i < getNumRegClasses() && "Register Class ID out of range"); 673 return RegClassBegin[i]; 674 } 675 676 /// Returns the name of the register class. getRegClassName(const TargetRegisterClass * Class)677 const char *getRegClassName(const TargetRegisterClass *Class) const { 678 return MCRegisterInfo::getRegClassName(Class->MC); 679 } 680 681 /// Find the largest common subclass of A and B. 682 /// Return NULL if there is no common subclass. 683 const TargetRegisterClass * 684 getCommonSubClass(const TargetRegisterClass *A, 685 const TargetRegisterClass *B) const; 686 687 /// Returns a TargetRegisterClass used for pointer values. 688 /// If a target supports multiple different pointer register classes, 689 /// kind specifies which one is indicated. 690 virtual const TargetRegisterClass * 691 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 692 llvm_unreachable("Target didn't implement getPointerRegClass!"); 693 } 694 695 /// Returns a legal register class to copy a register in the specified class 696 /// to or from. If it is possible to copy the register directly without using 697 /// a cross register class copy, return the specified RC. Returns NULL if it 698 /// is not possible to copy between two registers of the specified class. 699 virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass * RC)700 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 701 return RC; 702 } 703 704 /// Returns the largest super class of RC that is legal to use in the current 705 /// sub-target and has the same spill size. 706 /// The returned register class can be used to create virtual registers which 707 /// means that all its registers can be copied and spilled. 708 virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction &)709 getLargestLegalSuperClass(const TargetRegisterClass *RC, 710 const MachineFunction &) const { 711 /// The default implementation is very conservative and doesn't allow the 712 /// register allocator to inflate register classes. 713 return RC; 714 } 715 716 /// Return the register pressure "high water mark" for the specific register 717 /// class. The scheduler is in high register pressure mode (for the specific 718 /// register class) if it goes over the limit. 719 /// 720 /// Note: this is the old register pressure model that relies on a manually 721 /// specified representative register class per value type. getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)722 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 723 MachineFunction &MF) const { 724 return 0; 725 } 726 727 /// Return a heuristic for the machine scheduler to compare the profitability 728 /// of increasing one register pressure set versus another. The scheduler 729 /// will prefer increasing the register pressure of the set which returns 730 /// the largest value for this function. getRegPressureSetScore(const MachineFunction & MF,unsigned PSetID)731 virtual unsigned getRegPressureSetScore(const MachineFunction &MF, 732 unsigned PSetID) const { 733 return PSetID; 734 } 735 736 /// Get the weight in units of pressure for this register class. 737 virtual const RegClassWeight &getRegClassWeight( 738 const TargetRegisterClass *RC) const = 0; 739 740 /// Returns size in bits of a phys/virtual/generic register. 741 unsigned getRegSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI) const; 742 743 /// Get the weight in units of pressure for this register unit. 744 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; 745 746 /// Get the number of dimensions of register pressure. 747 virtual unsigned getNumRegPressureSets() const = 0; 748 749 /// Get the name of this register unit pressure set. 750 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 751 752 /// Get the register unit pressure limit for this dimension. 753 /// This limit must be adjusted dynamically for reserved registers. 754 virtual unsigned getRegPressureSetLimit(const MachineFunction &MF, 755 unsigned Idx) const = 0; 756 757 /// Get the dimensions of register pressure impacted by this register class. 758 /// Returns a -1 terminated array of pressure set IDs. 759 virtual const int *getRegClassPressureSets( 760 const TargetRegisterClass *RC) const = 0; 761 762 /// Get the dimensions of register pressure impacted by this register unit. 763 /// Returns a -1 terminated array of pressure set IDs. 764 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; 765 766 /// Get a list of 'hint' registers that the register allocator should try 767 /// first when allocating a physical register for the virtual register 768 /// VirtReg. These registers are effectively moved to the front of the 769 /// allocation order. If true is returned, regalloc will try to only use 770 /// hints to the greatest extent possible even if it means spilling. 771 /// 772 /// The Order argument is the allocation order for VirtReg's register class 773 /// as returned from RegisterClassInfo::getOrder(). The hint registers must 774 /// come from Order, and they must not be reserved. 775 /// 776 /// The default implementation of this function will only add target 777 /// independent register allocation hints. Targets that override this 778 /// function should typically call this default implementation as well and 779 /// expect to see generic copy hints added. 780 virtual bool getRegAllocationHints(unsigned VirtReg, 781 ArrayRef<MCPhysReg> Order, 782 SmallVectorImpl<MCPhysReg> &Hints, 783 const MachineFunction &MF, 784 const VirtRegMap *VRM = nullptr, 785 const LiveRegMatrix *Matrix = nullptr) 786 const; 787 788 /// A callback to allow target a chance to update register allocation hints 789 /// when a register is "changed" (e.g. coalesced) to another register. 790 /// e.g. On ARM, some virtual registers should target register pairs, 791 /// if one of pair is coalesced to another register, the allocation hint of 792 /// the other half of the pair should be changed to point to the new register. updateRegAllocHint(unsigned Reg,unsigned NewReg,MachineFunction & MF)793 virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg, 794 MachineFunction &MF) const { 795 // Do nothing. 796 } 797 798 /// Allow the target to reverse allocation order of local live ranges. This 799 /// will generally allocate shorter local live ranges first. For targets with 800 /// many registers, this could reduce regalloc compile time by a large 801 /// factor. It is disabled by default for three reasons: 802 /// (1) Top-down allocation is simpler and easier to debug for targets that 803 /// don't benefit from reversing the order. 804 /// (2) Bottom-up allocation could result in poor evicition decisions on some 805 /// targets affecting the performance of compiled code. 806 /// (3) Bottom-up allocation is no longer guaranteed to optimally color. reverseLocalAssignment()807 virtual bool reverseLocalAssignment() const { return false; } 808 809 /// Allow the target to override the cost of using a callee-saved register for 810 /// the first time. Default value of 0 means we will use a callee-saved 811 /// register if it is available. getCSRFirstUseCost()812 virtual unsigned getCSRFirstUseCost() const { return 0; } 813 814 /// Returns true if the target requires (and can make use of) the register 815 /// scavenger. requiresRegisterScavenging(const MachineFunction & MF)816 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 817 return false; 818 } 819 820 /// Returns true if the target wants to use frame pointer based accesses to 821 /// spill to the scavenger emergency spill slot. useFPForScavengingIndex(const MachineFunction & MF)822 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 823 return true; 824 } 825 826 /// Returns true if the target requires post PEI scavenging of registers for 827 /// materializing frame index constants. requiresFrameIndexScavenging(const MachineFunction & MF)828 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 829 return false; 830 } 831 832 /// Returns true if the target requires using the RegScavenger directly for 833 /// frame elimination despite using requiresFrameIndexScavenging. requiresFrameIndexReplacementScavenging(const MachineFunction & MF)834 virtual bool requiresFrameIndexReplacementScavenging( 835 const MachineFunction &MF) const { 836 return false; 837 } 838 839 /// Returns true if the target wants the LocalStackAllocation pass to be run 840 /// and virtual base registers used for more efficient stack access. requiresVirtualBaseRegisters(const MachineFunction & MF)841 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 842 return false; 843 } 844 845 /// Return true if target has reserved a spill slot in the stack frame of 846 /// the given function for the specified register. e.g. On x86, if the frame 847 /// register is required, the first fixed stack object is reserved as its 848 /// spill slot. This tells PEI not to create a new stack frame 849 /// object for the given register. It should be called only after 850 /// determineCalleeSaves(). hasReservedSpillSlot(const MachineFunction & MF,unsigned Reg,int & FrameIdx)851 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, 852 int &FrameIdx) const { 853 return false; 854 } 855 856 /// Returns true if the live-ins should be tracked after register allocation. trackLivenessAfterRegAlloc(const MachineFunction & MF)857 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 858 return false; 859 } 860 861 /// True if the stack can be realigned for the target. 862 virtual bool canRealignStack(const MachineFunction &MF) const; 863 864 /// True if storage within the function requires the stack pointer to be 865 /// aligned more than the normal calling convention calls for. 866 /// This cannot be overriden by the target, but canRealignStack can be 867 /// overridden. 868 bool needsStackRealignment(const MachineFunction &MF) const; 869 870 /// Get the offset from the referenced frame index in the instruction, 871 /// if there is one. getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)872 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 873 int Idx) const { 874 return 0; 875 } 876 877 /// Returns true if the instruction's frame index reference would be better 878 /// served by a base register other than FP or SP. 879 /// Used by LocalStackFrameAllocation to determine which frame index 880 /// references it should create new base registers for. needsFrameBaseReg(MachineInstr * MI,int64_t Offset)881 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 882 return false; 883 } 884 885 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx 886 /// before insertion point I. materializeFrameBaseRegister(MachineBasicBlock * MBB,unsigned BaseReg,int FrameIdx,int64_t Offset)887 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, 888 unsigned BaseReg, int FrameIdx, 889 int64_t Offset) const { 890 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 891 "target"); 892 } 893 894 /// Resolve a frame index operand of an instruction 895 /// to reference the indicated base register plus offset instead. resolveFrameIndex(MachineInstr & MI,unsigned BaseReg,int64_t Offset)896 virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg, 897 int64_t Offset) const { 898 llvm_unreachable("resolveFrameIndex does not exist on this target"); 899 } 900 901 /// Determine whether a given base register plus offset immediate is 902 /// encodable to resolve a frame index. isFrameOffsetLegal(const MachineInstr * MI,unsigned BaseReg,int64_t Offset)903 virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg, 904 int64_t Offset) const { 905 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 906 } 907 908 /// Spill the register so it can be used by the register scavenger. 909 /// Return true if the register was spilled, false otherwise. 910 /// If this function does not spill the register, the scavenger 911 /// will instead spill it to the emergency spill slot. saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,unsigned Reg)912 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 913 MachineBasicBlock::iterator I, 914 MachineBasicBlock::iterator &UseMI, 915 const TargetRegisterClass *RC, 916 unsigned Reg) const { 917 return false; 918 } 919 920 /// This method must be overriden to eliminate abstract frame indices from 921 /// instructions which may use them. The instruction referenced by the 922 /// iterator contains an MO_FrameIndex operand which must be eliminated by 923 /// this method. This method may modify or replace the specified instruction, 924 /// as long as it keeps the iterator pointing at the finished product. 925 /// SPAdj is the SP adjustment due to call frame setup instruction. 926 /// FIOperandNum is the FI operand number. 927 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, 928 int SPAdj, unsigned FIOperandNum, 929 RegScavenger *RS = nullptr) const = 0; 930 931 /// Return the assembly name for \p Reg. getRegAsmName(unsigned Reg)932 virtual StringRef getRegAsmName(unsigned Reg) const { 933 // FIXME: We are assuming that the assembly name is equal to the TableGen 934 // name converted to lower case 935 // 936 // The TableGen name is the name of the definition for this register in the 937 // target's tablegen files. For example, the TableGen name of 938 // def EAX : Register <...>; is "EAX" 939 return StringRef(getName(Reg)); 940 } 941 942 //===--------------------------------------------------------------------===// 943 /// Subtarget Hooks 944 945 /// SrcRC and DstRC will be morphed into NewRC if this returns true. shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC,LiveIntervals & LIS)946 virtual bool shouldCoalesce(MachineInstr *MI, 947 const TargetRegisterClass *SrcRC, 948 unsigned SubReg, 949 const TargetRegisterClass *DstRC, 950 unsigned DstSubReg, 951 const TargetRegisterClass *NewRC, 952 LiveIntervals &LIS) const 953 { return true; } 954 955 //===--------------------------------------------------------------------===// 956 /// Debug information queries. 957 958 /// getFrameRegister - This method should return the register used as a base 959 /// for values allocated in the current stack frame. 960 virtual Register getFrameRegister(const MachineFunction &MF) const = 0; 961 962 /// Mark a register and all its aliases as reserved in the given set. 963 void markSuperRegs(BitVector &RegisterSet, unsigned Reg) const; 964 965 /// Returns true if for every register in the set all super registers are part 966 /// of the set as well. 967 bool checkAllSuperRegsMarked(const BitVector &RegisterSet, 968 ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const; 969 970 virtual const TargetRegisterClass * getConstrainedRegClassForOperand(const MachineOperand & MO,const MachineRegisterInfo & MRI)971 getConstrainedRegClassForOperand(const MachineOperand &MO, 972 const MachineRegisterInfo &MRI) const { 973 return nullptr; 974 } 975 976 /// Returns the physical register number of sub-register "Index" 977 /// for physical register RegNo. Return zero if the sub-register does not 978 /// exist. getSubReg(MCRegister Reg,unsigned Idx)979 inline Register getSubReg(MCRegister Reg, unsigned Idx) const { 980 return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx); 981 } 982 }; 983 984 //===----------------------------------------------------------------------===// 985 // SuperRegClassIterator 986 //===----------------------------------------------------------------------===// 987 // 988 // Iterate over the possible super-registers for a given register class. The 989 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 990 // possible classes of super-registers. 991 // 992 // Each bit mask will have at least one set bit, and each set bit in Mask 993 // corresponds to a SuperRC such that: 994 // 995 // For all Reg in SuperRC: Reg:Idx is in RC. 996 // 997 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 998 // also satisfies the above requirement, assuming Reg:0 == Reg. 999 // 1000 class SuperRegClassIterator { 1001 const unsigned RCMaskWords; 1002 unsigned SubReg = 0; 1003 const uint16_t *Idx; 1004 const uint32_t *Mask; 1005 1006 public: 1007 /// Create a SuperRegClassIterator that visits all the super-register classes 1008 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 1009 SuperRegClassIterator(const TargetRegisterClass *RC, 1010 const TargetRegisterInfo *TRI, 1011 bool IncludeSelf = false) 1012 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 1013 Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) { 1014 if (!IncludeSelf) 1015 ++*this; 1016 } 1017 1018 /// Returns true if this iterator is still pointing at a valid entry. isValid()1019 bool isValid() const { return Idx; } 1020 1021 /// Returns the current sub-register index. getSubReg()1022 unsigned getSubReg() const { return SubReg; } 1023 1024 /// Returns the bit mask of register classes that getSubReg() projects into 1025 /// RC. 1026 /// See TargetRegisterClass::getSubClassMask() for how to use it. getMask()1027 const uint32_t *getMask() const { return Mask; } 1028 1029 /// Advance iterator to the next entry. 1030 void operator++() { 1031 assert(isValid() && "Cannot move iterator past end."); 1032 Mask += RCMaskWords; 1033 SubReg = *Idx++; 1034 if (!SubReg) 1035 Idx = nullptr; 1036 } 1037 }; 1038 1039 //===----------------------------------------------------------------------===// 1040 // BitMaskClassIterator 1041 //===----------------------------------------------------------------------===// 1042 /// This class encapuslates the logic to iterate over bitmask returned by 1043 /// the various RegClass related APIs. 1044 /// E.g., this class can be used to iterate over the subclasses provided by 1045 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask. 1046 class BitMaskClassIterator { 1047 /// Total number of register classes. 1048 const unsigned NumRegClasses; 1049 /// Base index of CurrentChunk. 1050 /// In other words, the number of bit we read to get at the 1051 /// beginning of that chunck. 1052 unsigned Base = 0; 1053 /// Adjust base index of CurrentChunk. 1054 /// Base index + how many bit we read within CurrentChunk. 1055 unsigned Idx = 0; 1056 /// Current register class ID. 1057 unsigned ID = 0; 1058 /// Mask we are iterating over. 1059 const uint32_t *Mask; 1060 /// Current chunk of the Mask we are traversing. 1061 uint32_t CurrentChunk; 1062 1063 /// Move ID to the next set bit. moveToNextID()1064 void moveToNextID() { 1065 // If the current chunk of memory is empty, move to the next one, 1066 // while making sure we do not go pass the number of register 1067 // classes. 1068 while (!CurrentChunk) { 1069 // Move to the next chunk. 1070 Base += 32; 1071 if (Base >= NumRegClasses) { 1072 ID = NumRegClasses; 1073 return; 1074 } 1075 CurrentChunk = *++Mask; 1076 Idx = Base; 1077 } 1078 // Otherwise look for the first bit set from the right 1079 // (representation of the class ID is big endian). 1080 // See getSubClassMask for more details on the representation. 1081 unsigned Offset = countTrailingZeros(CurrentChunk); 1082 // Add the Offset to the adjusted base number of this chunk: Idx. 1083 // This is the ID of the register class. 1084 ID = Idx + Offset; 1085 1086 // Consume the zeros, if any, and the bit we just read 1087 // so that we are at the right spot for the next call. 1088 // Do not do Offset + 1 because Offset may be 31 and 32 1089 // will be UB for the shift, though in that case we could 1090 // have make the chunk being equal to 0, but that would 1091 // have introduced a if statement. 1092 moveNBits(Offset); 1093 moveNBits(1); 1094 } 1095 1096 /// Move \p NumBits Bits forward in CurrentChunk. moveNBits(unsigned NumBits)1097 void moveNBits(unsigned NumBits) { 1098 assert(NumBits < 32 && "Undefined behavior spotted!"); 1099 // Consume the bit we read for the next call. 1100 CurrentChunk >>= NumBits; 1101 // Adjust the base for the chunk. 1102 Idx += NumBits; 1103 } 1104 1105 public: 1106 /// Create a BitMaskClassIterator that visits all the register classes 1107 /// represented by \p Mask. 1108 /// 1109 /// \pre \p Mask != nullptr BitMaskClassIterator(const uint32_t * Mask,const TargetRegisterInfo & TRI)1110 BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI) 1111 : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) { 1112 // Move to the first ID. 1113 moveToNextID(); 1114 } 1115 1116 /// Returns true if this iterator is still pointing at a valid entry. isValid()1117 bool isValid() const { return getID() != NumRegClasses; } 1118 1119 /// Returns the current register class ID. getID()1120 unsigned getID() const { return ID; } 1121 1122 /// Advance iterator to the next entry. 1123 void operator++() { 1124 assert(isValid() && "Cannot move iterator past end."); 1125 moveToNextID(); 1126 } 1127 }; 1128 1129 // This is useful when building IndexedMaps keyed on virtual registers 1130 struct VirtReg2IndexFunctor { 1131 using argument_type = unsigned; operatorVirtReg2IndexFunctor1132 unsigned operator()(unsigned Reg) const { 1133 return Register::virtReg2Index(Reg); 1134 } 1135 }; 1136 1137 /// Prints virtual and physical registers with or without a TRI instance. 1138 /// 1139 /// The format is: 1140 /// %noreg - NoRegister 1141 /// %5 - a virtual register. 1142 /// %5:sub_8bit - a virtual register with sub-register index (with TRI). 1143 /// %eax - a physical register 1144 /// %physreg17 - a physical register when no TRI instance given. 1145 /// 1146 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n'; 1147 Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr, 1148 unsigned SubIdx = 0, 1149 const MachineRegisterInfo *MRI = nullptr); 1150 1151 /// Create Printable object to print register units on a \ref raw_ostream. 1152 /// 1153 /// Register units are named after their root registers: 1154 /// 1155 /// al - Single root. 1156 /// fp0~st7 - Dual roots. 1157 /// 1158 /// Usage: OS << printRegUnit(Unit, TRI) << '\n'; 1159 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI); 1160 1161 /// Create Printable object to print virtual registers and physical 1162 /// registers on a \ref raw_ostream. 1163 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI); 1164 1165 /// Create Printable object to print register classes or register banks 1166 /// on a \ref raw_ostream. 1167 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo, 1168 const TargetRegisterInfo *TRI); 1169 1170 } // end namespace llvm 1171 1172 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H 1173