1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/InstVisitor.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Transforms/IPO.h"
27 using namespace llvm;
28
29 #define DEBUG_TYPE "called-value-propagation"
30
31 /// The maximum number of functions to track per lattice value. Once the number
32 /// of functions a call site can possibly target exceeds this threshold, it's
33 /// lattice value becomes overdefined. The number of possible lattice values is
34 /// bounded by Ch(F, M), where F is the number of functions in the module and M
35 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
36 /// likely can't do anything useful for call sites with a large number of
37 /// possible targets, anyway.
38 static cl::opt<unsigned> MaxFunctionsPerValue(
39 "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
40 cl::desc("The maximum number of functions to track per lattice value"));
41
42 namespace {
43 /// To enable interprocedural analysis, we assign LLVM values to the following
44 /// groups. The register group represents SSA registers, the return group
45 /// represents the return values of functions, and the memory group represents
46 /// in-memory values. An LLVM Value can technically be in more than one group.
47 /// It's necessary to distinguish these groups so we can, for example, track a
48 /// global variable separately from the value stored at its location.
49 enum class IPOGrouping { Register, Return, Memory };
50
51 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
52 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
53
54 /// The lattice value type used by our custom lattice function. It holds the
55 /// lattice state, and a set of functions.
56 class CVPLatticeVal {
57 public:
58 /// The states of the lattice values. Only the FunctionSet state is
59 /// interesting. It indicates the set of functions to which an LLVM value may
60 /// refer.
61 enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
62
63 /// Comparator for sorting the functions set. We want to keep the order
64 /// deterministic for testing, etc.
65 struct Compare {
operator ()__anonb0cc96550111::CVPLatticeVal::Compare66 bool operator()(const Function *LHS, const Function *RHS) const {
67 return LHS->getName() < RHS->getName();
68 }
69 };
70
CVPLatticeVal()71 CVPLatticeVal() : LatticeState(Undefined) {}
CVPLatticeVal(CVPLatticeStateTy LatticeState)72 CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
CVPLatticeVal(std::vector<Function * > && Functions)73 CVPLatticeVal(std::vector<Function *> &&Functions)
74 : LatticeState(FunctionSet), Functions(std::move(Functions)) {
75 assert(std::is_sorted(this->Functions.begin(), this->Functions.end(),
76 Compare()));
77 }
78
79 /// Get a reference to the functions held by this lattice value. The number
80 /// of functions will be zero for states other than FunctionSet.
getFunctions() const81 const std::vector<Function *> &getFunctions() const {
82 return Functions;
83 }
84
85 /// Returns true if the lattice value is in the FunctionSet state.
isFunctionSet() const86 bool isFunctionSet() const { return LatticeState == FunctionSet; }
87
operator ==(const CVPLatticeVal & RHS) const88 bool operator==(const CVPLatticeVal &RHS) const {
89 return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
90 }
91
operator !=(const CVPLatticeVal & RHS) const92 bool operator!=(const CVPLatticeVal &RHS) const {
93 return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
94 }
95
96 private:
97 /// Holds the state this lattice value is in.
98 CVPLatticeStateTy LatticeState;
99
100 /// Holds functions indicating the possible targets of call sites. This set
101 /// is empty for lattice values in the undefined, overdefined, and untracked
102 /// states. The maximum size of the set is controlled by
103 /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
104 /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
105 /// small and efficiently copyable.
106 // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
107 std::vector<Function *> Functions;
108 };
109
110 /// The custom lattice function used by the generic sparse propagation solver.
111 /// It handles merging lattice values and computing new lattice values for
112 /// constants, arguments, values returned from trackable functions, and values
113 /// located in trackable global variables. It also computes the lattice values
114 /// that change as a result of executing instructions.
115 class CVPLatticeFunc
116 : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
117 public:
CVPLatticeFunc()118 CVPLatticeFunc()
119 : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
120 CVPLatticeVal(CVPLatticeVal::Overdefined),
121 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
122
123 /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
ComputeLatticeVal(CVPLatticeKey Key)124 CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
125 switch (Key.getInt()) {
126 case IPOGrouping::Register:
127 if (isa<Instruction>(Key.getPointer())) {
128 return getUndefVal();
129 } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
130 if (canTrackArgumentsInterprocedurally(A->getParent()))
131 return getUndefVal();
132 } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
133 return computeConstant(C);
134 }
135 return getOverdefinedVal();
136 case IPOGrouping::Memory:
137 case IPOGrouping::Return:
138 if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
139 if (canTrackGlobalVariableInterprocedurally(GV))
140 return computeConstant(GV->getInitializer());
141 } else if (auto *F = cast<Function>(Key.getPointer()))
142 if (canTrackReturnsInterprocedurally(F))
143 return getUndefVal();
144 }
145 return getOverdefinedVal();
146 }
147
148 /// Merge the two given lattice values. The interesting cases are merging two
149 /// FunctionSet values and a FunctionSet value with an Undefined value. For
150 /// these cases, we simply union the function sets. If the size of the union
151 /// is greater than the maximum functions we track, the merged value is
152 /// overdefined.
MergeValues(CVPLatticeVal X,CVPLatticeVal Y)153 CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
154 if (X == getOverdefinedVal() || Y == getOverdefinedVal())
155 return getOverdefinedVal();
156 if (X == getUndefVal() && Y == getUndefVal())
157 return getUndefVal();
158 std::vector<Function *> Union;
159 std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
160 Y.getFunctions().begin(), Y.getFunctions().end(),
161 std::back_inserter(Union), CVPLatticeVal::Compare{});
162 if (Union.size() > MaxFunctionsPerValue)
163 return getOverdefinedVal();
164 return CVPLatticeVal(std::move(Union));
165 }
166
167 /// Compute the lattice values that change as a result of executing the given
168 /// instruction. The changed values are stored in \p ChangedValues. We handle
169 /// just a few kinds of instructions since we're only propagating values that
170 /// can be called.
ComputeInstructionState(Instruction & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)171 void ComputeInstructionState(
172 Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
173 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
174 switch (I.getOpcode()) {
175 case Instruction::Call:
176 return visitCallSite(cast<CallInst>(&I), ChangedValues, SS);
177 case Instruction::Invoke:
178 return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS);
179 case Instruction::Load:
180 return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
181 case Instruction::Ret:
182 return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
183 case Instruction::Select:
184 return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
185 case Instruction::Store:
186 return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
187 default:
188 return visitInst(I, ChangedValues, SS);
189 }
190 }
191
192 /// Print the given CVPLatticeVal to the specified stream.
PrintLatticeVal(CVPLatticeVal LV,raw_ostream & OS)193 void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
194 if (LV == getUndefVal())
195 OS << "Undefined ";
196 else if (LV == getOverdefinedVal())
197 OS << "Overdefined";
198 else if (LV == getUntrackedVal())
199 OS << "Untracked ";
200 else
201 OS << "FunctionSet";
202 }
203
204 /// Print the given CVPLatticeKey to the specified stream.
PrintLatticeKey(CVPLatticeKey Key,raw_ostream & OS)205 void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
206 if (Key.getInt() == IPOGrouping::Register)
207 OS << "<reg> ";
208 else if (Key.getInt() == IPOGrouping::Memory)
209 OS << "<mem> ";
210 else if (Key.getInt() == IPOGrouping::Return)
211 OS << "<ret> ";
212 if (isa<Function>(Key.getPointer()))
213 OS << Key.getPointer()->getName();
214 else
215 OS << *Key.getPointer();
216 }
217
218 /// We collect a set of indirect calls when visiting call sites. This method
219 /// returns a reference to that set.
getIndirectCalls()220 SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; }
221
222 private:
223 /// Holds the indirect calls we encounter during the analysis. We will attach
224 /// metadata to these calls after the analysis indicating the functions the
225 /// calls can possibly target.
226 SmallPtrSet<Instruction *, 32> IndirectCalls;
227
228 /// Compute a new lattice value for the given constant. The constant, after
229 /// stripping any pointer casts, should be a Function. We ignore null
230 /// pointers as an optimization, since calling these values is undefined
231 /// behavior.
computeConstant(Constant * C)232 CVPLatticeVal computeConstant(Constant *C) {
233 if (isa<ConstantPointerNull>(C))
234 return CVPLatticeVal(CVPLatticeVal::FunctionSet);
235 if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
236 return CVPLatticeVal({F});
237 return getOverdefinedVal();
238 }
239
240 /// Handle return instructions. The function's return state is the merge of
241 /// the returned value state and the function's return state.
visitReturn(ReturnInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)242 void visitReturn(ReturnInst &I,
243 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
244 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
245 Function *F = I.getParent()->getParent();
246 if (F->getReturnType()->isVoidTy())
247 return;
248 auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
249 auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
250 ChangedValues[RetF] =
251 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
252 }
253
254 /// Handle call sites. The state of a called function's formal arguments is
255 /// the merge of the argument state with the call sites corresponding actual
256 /// argument state. The call site state is the merge of the call site state
257 /// with the returned value state of the called function.
visitCallSite(CallSite CS,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)258 void visitCallSite(CallSite CS,
259 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
260 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
261 Function *F = CS.getCalledFunction();
262 Instruction *I = CS.getInstruction();
263 auto RegI = CVPLatticeKey(I, IPOGrouping::Register);
264
265 // If this is an indirect call, save it so we can quickly revisit it when
266 // attaching metadata.
267 if (!F)
268 IndirectCalls.insert(I);
269
270 // If we can't track the function's return values, there's nothing to do.
271 if (!F || !canTrackReturnsInterprocedurally(F)) {
272 // Void return, No need to create and update CVPLattice state as no one
273 // can use it.
274 if (I->getType()->isVoidTy())
275 return;
276 ChangedValues[RegI] = getOverdefinedVal();
277 return;
278 }
279
280 // Inform the solver that the called function is executable, and perform
281 // the merges for the arguments and return value.
282 SS.MarkBlockExecutable(&F->front());
283 auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
284 for (Argument &A : F->args()) {
285 auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
286 auto RegActual =
287 CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register);
288 ChangedValues[RegFormal] =
289 MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
290 }
291
292 // Void return, No need to create and update CVPLattice state as no one can
293 // use it.
294 if (I->getType()->isVoidTy())
295 return;
296
297 ChangedValues[RegI] =
298 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
299 }
300
301 /// Handle select instructions. The select instruction state is the merge the
302 /// true and false value states.
visitSelect(SelectInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)303 void visitSelect(SelectInst &I,
304 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
305 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
306 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
307 auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
308 auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
309 ChangedValues[RegI] =
310 MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
311 }
312
313 /// Handle load instructions. If the pointer operand of the load is a global
314 /// variable, we attempt to track the value. The loaded value state is the
315 /// merge of the loaded value state with the global variable state.
visitLoad(LoadInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)316 void visitLoad(LoadInst &I,
317 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
318 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
319 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
320 if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
321 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
322 ChangedValues[RegI] =
323 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
324 } else {
325 ChangedValues[RegI] = getOverdefinedVal();
326 }
327 }
328
329 /// Handle store instructions. If the pointer operand of the store is a
330 /// global variable, we attempt to track the value. The global variable state
331 /// is the merge of the stored value state with the global variable state.
visitStore(StoreInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)332 void visitStore(StoreInst &I,
333 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
334 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
335 auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
336 if (!GV)
337 return;
338 auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
339 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
340 ChangedValues[MemGV] =
341 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
342 }
343
344 /// Handle all other instructions. All other instructions are marked
345 /// overdefined.
visitInst(Instruction & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)346 void visitInst(Instruction &I,
347 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
348 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
349 // Simply bail if this instruction has no user.
350 if (I.use_empty())
351 return;
352 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
353 ChangedValues[RegI] = getOverdefinedVal();
354 }
355 };
356 } // namespace
357
358 namespace llvm {
359 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
360 /// must translate between LatticeKeys and LLVM Values when adding Values to
361 /// its work list and inspecting the state of control-flow related values.
362 template <> struct LatticeKeyInfo<CVPLatticeKey> {
getValueFromLatticeKeyllvm::LatticeKeyInfo363 static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
364 return Key.getPointer();
365 }
getLatticeKeyFromValuellvm::LatticeKeyInfo366 static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
367 return CVPLatticeKey(V, IPOGrouping::Register);
368 }
369 };
370 } // namespace llvm
371
runCVP(Module & M)372 static bool runCVP(Module &M) {
373 // Our custom lattice function and generic sparse propagation solver.
374 CVPLatticeFunc Lattice;
375 SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
376
377 // For each function in the module, if we can't track its arguments, let the
378 // generic solver assume it is executable.
379 for (Function &F : M)
380 if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
381 Solver.MarkBlockExecutable(&F.front());
382
383 // Solver our custom lattice. In doing so, we will also build a set of
384 // indirect call sites.
385 Solver.Solve();
386
387 // Attach metadata to the indirect call sites that were collected indicating
388 // the set of functions they can possibly target.
389 bool Changed = false;
390 MDBuilder MDB(M.getContext());
391 for (Instruction *C : Lattice.getIndirectCalls()) {
392 CallSite CS(C);
393 auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register);
394 CVPLatticeVal LV = Solver.getExistingValueState(RegI);
395 if (!LV.isFunctionSet() || LV.getFunctions().empty())
396 continue;
397 MDNode *Callees = MDB.createCallees(LV.getFunctions());
398 C->setMetadata(LLVMContext::MD_callees, Callees);
399 Changed = true;
400 }
401
402 return Changed;
403 }
404
run(Module & M,ModuleAnalysisManager &)405 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
406 ModuleAnalysisManager &) {
407 runCVP(M);
408 return PreservedAnalyses::all();
409 }
410
411 namespace {
412 class CalledValuePropagationLegacyPass : public ModulePass {
413 public:
414 static char ID;
415
getAnalysisUsage(AnalysisUsage & AU) const416 void getAnalysisUsage(AnalysisUsage &AU) const override {
417 AU.setPreservesAll();
418 }
419
CalledValuePropagationLegacyPass()420 CalledValuePropagationLegacyPass() : ModulePass(ID) {
421 initializeCalledValuePropagationLegacyPassPass(
422 *PassRegistry::getPassRegistry());
423 }
424
runOnModule(Module & M)425 bool runOnModule(Module &M) override {
426 if (skipModule(M))
427 return false;
428 return runCVP(M);
429 }
430 };
431 } // namespace
432
433 char CalledValuePropagationLegacyPass::ID = 0;
434 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
435 "Called Value Propagation", false, false)
436
createCalledValuePropagationPass()437 ModulePass *llvm::createCalledValuePropagationPass() {
438 return new CalledValuePropagationLegacyPass();
439 }
440