1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Float2Int pass, which aims to demote floating
10 // point operations to work on integers, where that is losslessly possible.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/InitializePasses.h"
15 #include "llvm/Support/CommandLine.h"
16 #define DEBUG_TYPE "float2int"
17
18 #include "llvm/Transforms/Scalar/Float2Int.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/InstIterator.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Scalar.h"
33 #include <deque>
34 #include <functional> // For std::function
35 using namespace llvm;
36
37 // The algorithm is simple. Start at instructions that convert from the
38 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
39 // graph, using an equivalence datastructure to unify graphs that interfere.
40 //
41 // Mappable instructions are those with an integer corrollary that, given
42 // integer domain inputs, produce an integer output; fadd, for example.
43 //
44 // If a non-mappable instruction is seen, this entire def-use graph is marked
45 // as non-transformable. If we see an instruction that converts from the
46 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
47
48 /// The largest integer type worth dealing with.
49 static cl::opt<unsigned>
50 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
51 cl::desc("Max integer bitwidth to consider in float2int"
52 "(default=64)"));
53
54 namespace {
55 struct Float2IntLegacyPass : public FunctionPass {
56 static char ID; // Pass identification, replacement for typeid
Float2IntLegacyPass__anon199ff5100111::Float2IntLegacyPass57 Float2IntLegacyPass() : FunctionPass(ID) {
58 initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
59 }
60
runOnFunction__anon199ff5100111::Float2IntLegacyPass61 bool runOnFunction(Function &F) override {
62 if (skipFunction(F))
63 return false;
64
65 const DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
66 return Impl.runImpl(F, DT);
67 }
68
getAnalysisUsage__anon199ff5100111::Float2IntLegacyPass69 void getAnalysisUsage(AnalysisUsage &AU) const override {
70 AU.setPreservesCFG();
71 AU.addRequired<DominatorTreeWrapperPass>();
72 AU.addPreserved<GlobalsAAWrapperPass>();
73 }
74
75 private:
76 Float2IntPass Impl;
77 };
78 }
79
80 char Float2IntLegacyPass::ID = 0;
81 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
82
83 // Given a FCmp predicate, return a matching ICmp predicate if one
84 // exists, otherwise return BAD_ICMP_PREDICATE.
mapFCmpPred(CmpInst::Predicate P)85 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
86 switch (P) {
87 case CmpInst::FCMP_OEQ:
88 case CmpInst::FCMP_UEQ:
89 return CmpInst::ICMP_EQ;
90 case CmpInst::FCMP_OGT:
91 case CmpInst::FCMP_UGT:
92 return CmpInst::ICMP_SGT;
93 case CmpInst::FCMP_OGE:
94 case CmpInst::FCMP_UGE:
95 return CmpInst::ICMP_SGE;
96 case CmpInst::FCMP_OLT:
97 case CmpInst::FCMP_ULT:
98 return CmpInst::ICMP_SLT;
99 case CmpInst::FCMP_OLE:
100 case CmpInst::FCMP_ULE:
101 return CmpInst::ICMP_SLE;
102 case CmpInst::FCMP_ONE:
103 case CmpInst::FCMP_UNE:
104 return CmpInst::ICMP_NE;
105 default:
106 return CmpInst::BAD_ICMP_PREDICATE;
107 }
108 }
109
110 // Given a floating point binary operator, return the matching
111 // integer version.
mapBinOpcode(unsigned Opcode)112 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
113 switch (Opcode) {
114 default: llvm_unreachable("Unhandled opcode!");
115 case Instruction::FAdd: return Instruction::Add;
116 case Instruction::FSub: return Instruction::Sub;
117 case Instruction::FMul: return Instruction::Mul;
118 }
119 }
120
121 // Find the roots - instructions that convert from the FP domain to
122 // integer domain.
findRoots(Function & F,const DominatorTree & DT,SmallPtrSet<Instruction *,8> & Roots)123 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT,
124 SmallPtrSet<Instruction*,8> &Roots) {
125 for (BasicBlock &BB : F) {
126 // Unreachable code can take on strange forms that we are not prepared to
127 // handle. For example, an instruction may have itself as an operand.
128 if (!DT.isReachableFromEntry(&BB))
129 continue;
130
131 for (Instruction &I : BB) {
132 if (isa<VectorType>(I.getType()))
133 continue;
134 switch (I.getOpcode()) {
135 default: break;
136 case Instruction::FPToUI:
137 case Instruction::FPToSI:
138 Roots.insert(&I);
139 break;
140 case Instruction::FCmp:
141 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
142 CmpInst::BAD_ICMP_PREDICATE)
143 Roots.insert(&I);
144 break;
145 }
146 }
147 }
148 }
149
150 // Helper - mark I as having been traversed, having range R.
seen(Instruction * I,ConstantRange R)151 void Float2IntPass::seen(Instruction *I, ConstantRange R) {
152 LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
153 auto IT = SeenInsts.find(I);
154 if (IT != SeenInsts.end())
155 IT->second = std::move(R);
156 else
157 SeenInsts.insert(std::make_pair(I, std::move(R)));
158 }
159
160 // Helper - get a range representing a poison value.
badRange()161 ConstantRange Float2IntPass::badRange() {
162 return ConstantRange::getFull(MaxIntegerBW + 1);
163 }
unknownRange()164 ConstantRange Float2IntPass::unknownRange() {
165 return ConstantRange::getEmpty(MaxIntegerBW + 1);
166 }
validateRange(ConstantRange R)167 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
168 if (R.getBitWidth() > MaxIntegerBW + 1)
169 return badRange();
170 return R;
171 }
172
173 // The most obvious way to structure the search is a depth-first, eager
174 // search from each root. However, that require direct recursion and so
175 // can only handle small instruction sequences. Instead, we split the search
176 // up into two phases:
177 // - walkBackwards: A breadth-first walk of the use-def graph starting from
178 // the roots. Populate "SeenInsts" with interesting
179 // instructions and poison values if they're obvious and
180 // cheap to compute. Calculate the equivalance set structure
181 // while we're here too.
182 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit
183 // defs before their uses. Calculate the real range info.
184
185 // Breadth-first walk of the use-def graph; determine the set of nodes
186 // we care about and eagerly determine if some of them are poisonous.
walkBackwards(const SmallPtrSetImpl<Instruction * > & Roots)187 void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
188 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
189 while (!Worklist.empty()) {
190 Instruction *I = Worklist.back();
191 Worklist.pop_back();
192
193 if (SeenInsts.find(I) != SeenInsts.end())
194 // Seen already.
195 continue;
196
197 switch (I->getOpcode()) {
198 // FIXME: Handle select and phi nodes.
199 default:
200 // Path terminated uncleanly.
201 seen(I, badRange());
202 break;
203
204 case Instruction::UIToFP:
205 case Instruction::SIToFP: {
206 // Path terminated cleanly - use the type of the integer input to seed
207 // the analysis.
208 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
209 auto Input = ConstantRange::getFull(BW);
210 auto CastOp = (Instruction::CastOps)I->getOpcode();
211 seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
212 continue;
213 }
214
215 case Instruction::FNeg:
216 case Instruction::FAdd:
217 case Instruction::FSub:
218 case Instruction::FMul:
219 case Instruction::FPToUI:
220 case Instruction::FPToSI:
221 case Instruction::FCmp:
222 seen(I, unknownRange());
223 break;
224 }
225
226 for (Value *O : I->operands()) {
227 if (Instruction *OI = dyn_cast<Instruction>(O)) {
228 // Unify def-use chains if they interfere.
229 ECs.unionSets(I, OI);
230 if (SeenInsts.find(I)->second != badRange())
231 Worklist.push_back(OI);
232 } else if (!isa<ConstantFP>(O)) {
233 // Not an instruction or ConstantFP? we can't do anything.
234 seen(I, badRange());
235 }
236 }
237 }
238 }
239
240 // Walk forwards down the list of seen instructions, so we visit defs before
241 // uses.
walkForwards()242 void Float2IntPass::walkForwards() {
243 for (auto &It : reverse(SeenInsts)) {
244 if (It.second != unknownRange())
245 continue;
246
247 Instruction *I = It.first;
248 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
249 switch (I->getOpcode()) {
250 // FIXME: Handle select and phi nodes.
251 default:
252 case Instruction::UIToFP:
253 case Instruction::SIToFP:
254 llvm_unreachable("Should have been handled in walkForwards!");
255
256 case Instruction::FNeg:
257 Op = [](ArrayRef<ConstantRange> Ops) {
258 assert(Ops.size() == 1 && "FNeg is a unary operator!");
259 unsigned Size = Ops[0].getBitWidth();
260 auto Zero = ConstantRange(APInt::getNullValue(Size));
261 return Zero.sub(Ops[0]);
262 };
263 break;
264
265 case Instruction::FAdd:
266 case Instruction::FSub:
267 case Instruction::FMul:
268 Op = [I](ArrayRef<ConstantRange> Ops) {
269 assert(Ops.size() == 2 && "its a binary operator!");
270 auto BinOp = (Instruction::BinaryOps) I->getOpcode();
271 return Ops[0].binaryOp(BinOp, Ops[1]);
272 };
273 break;
274
275 //
276 // Root-only instructions - we'll only see these if they're the
277 // first node in a walk.
278 //
279 case Instruction::FPToUI:
280 case Instruction::FPToSI:
281 Op = [I](ArrayRef<ConstantRange> Ops) {
282 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
283 // Note: We're ignoring the casts output size here as that's what the
284 // caller expects.
285 auto CastOp = (Instruction::CastOps)I->getOpcode();
286 return Ops[0].castOp(CastOp, MaxIntegerBW+1);
287 };
288 break;
289
290 case Instruction::FCmp:
291 Op = [](ArrayRef<ConstantRange> Ops) {
292 assert(Ops.size() == 2 && "FCmp is a binary operator!");
293 return Ops[0].unionWith(Ops[1]);
294 };
295 break;
296 }
297
298 bool Abort = false;
299 SmallVector<ConstantRange,4> OpRanges;
300 for (Value *O : I->operands()) {
301 if (Instruction *OI = dyn_cast<Instruction>(O)) {
302 assert(SeenInsts.find(OI) != SeenInsts.end() &&
303 "def not seen before use!");
304 OpRanges.push_back(SeenInsts.find(OI)->second);
305 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
306 // Work out if the floating point number can be losslessly represented
307 // as an integer.
308 // APFloat::convertToInteger(&Exact) purports to do what we want, but
309 // the exactness can be too precise. For example, negative zero can
310 // never be exactly converted to an integer.
311 //
312 // Instead, we ask APFloat to round itself to an integral value - this
313 // preserves sign-of-zero - then compare the result with the original.
314 //
315 const APFloat &F = CF->getValueAPF();
316
317 // First, weed out obviously incorrect values. Non-finite numbers
318 // can't be represented and neither can negative zero, unless
319 // we're in fast math mode.
320 if (!F.isFinite() ||
321 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
322 !I->hasNoSignedZeros())) {
323 seen(I, badRange());
324 Abort = true;
325 break;
326 }
327
328 APFloat NewF = F;
329 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
330 if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
331 seen(I, badRange());
332 Abort = true;
333 break;
334 }
335 // OK, it's representable. Now get it.
336 APSInt Int(MaxIntegerBW+1, false);
337 bool Exact;
338 CF->getValueAPF().convertToInteger(Int,
339 APFloat::rmNearestTiesToEven,
340 &Exact);
341 OpRanges.push_back(ConstantRange(Int));
342 } else {
343 llvm_unreachable("Should have already marked this as badRange!");
344 }
345 }
346
347 // Reduce the operands' ranges to a single range and return.
348 if (!Abort)
349 seen(I, Op(OpRanges));
350 }
351 }
352
353 // If there is a valid transform to be done, do it.
validateAndTransform()354 bool Float2IntPass::validateAndTransform() {
355 bool MadeChange = false;
356
357 // Iterate over every disjoint partition of the def-use graph.
358 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
359 ConstantRange R(MaxIntegerBW + 1, false);
360 bool Fail = false;
361 Type *ConvertedToTy = nullptr;
362
363 // For every member of the partition, union all the ranges together.
364 for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
365 MI != ME; ++MI) {
366 Instruction *I = *MI;
367 auto SeenI = SeenInsts.find(I);
368 if (SeenI == SeenInsts.end())
369 continue;
370
371 R = R.unionWith(SeenI->second);
372 // We need to ensure I has no users that have not been seen.
373 // If it does, transformation would be illegal.
374 //
375 // Don't count the roots, as they terminate the graphs.
376 if (Roots.count(I) == 0) {
377 // Set the type of the conversion while we're here.
378 if (!ConvertedToTy)
379 ConvertedToTy = I->getType();
380 for (User *U : I->users()) {
381 Instruction *UI = dyn_cast<Instruction>(U);
382 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
383 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
384 Fail = true;
385 break;
386 }
387 }
388 }
389 if (Fail)
390 break;
391 }
392
393 // If the set was empty, or we failed, or the range is poisonous,
394 // bail out.
395 if (ECs.member_begin(It) == ECs.member_end() || Fail ||
396 R.isFullSet() || R.isSignWrappedSet())
397 continue;
398 assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
399
400 // The number of bits required is the maximum of the upper and
401 // lower limits, plus one so it can be signed.
402 unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
403 R.getUpper().getMinSignedBits()) + 1;
404 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
405
406 // If we've run off the realms of the exactly representable integers,
407 // the floating point result will differ from an integer approximation.
408
409 // Do we need more bits than are in the mantissa of the type we converted
410 // to? semanticsPrecision returns the number of mantissa bits plus one
411 // for the sign bit.
412 unsigned MaxRepresentableBits
413 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
414 if (MinBW > MaxRepresentableBits) {
415 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
416 continue;
417 }
418 if (MinBW > 64) {
419 LLVM_DEBUG(
420 dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
421 continue;
422 }
423
424 // OK, R is known to be representable. Now pick a type for it.
425 // FIXME: Pick the smallest legal type that will fit.
426 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
427
428 for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
429 MI != ME; ++MI)
430 convert(*MI, Ty);
431 MadeChange = true;
432 }
433
434 return MadeChange;
435 }
436
convert(Instruction * I,Type * ToTy)437 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
438 if (ConvertedInsts.find(I) != ConvertedInsts.end())
439 // Already converted this instruction.
440 return ConvertedInsts[I];
441
442 SmallVector<Value*,4> NewOperands;
443 for (Value *V : I->operands()) {
444 // Don't recurse if we're an instruction that terminates the path.
445 if (I->getOpcode() == Instruction::UIToFP ||
446 I->getOpcode() == Instruction::SIToFP) {
447 NewOperands.push_back(V);
448 } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
449 NewOperands.push_back(convert(VI, ToTy));
450 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
451 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
452 bool Exact;
453 CF->getValueAPF().convertToInteger(Val,
454 APFloat::rmNearestTiesToEven,
455 &Exact);
456 NewOperands.push_back(ConstantInt::get(ToTy, Val));
457 } else {
458 llvm_unreachable("Unhandled operand type?");
459 }
460 }
461
462 // Now create a new instruction.
463 IRBuilder<> IRB(I);
464 Value *NewV = nullptr;
465 switch (I->getOpcode()) {
466 default: llvm_unreachable("Unhandled instruction!");
467
468 case Instruction::FPToUI:
469 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
470 break;
471
472 case Instruction::FPToSI:
473 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
474 break;
475
476 case Instruction::FCmp: {
477 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
478 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
479 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
480 break;
481 }
482
483 case Instruction::UIToFP:
484 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
485 break;
486
487 case Instruction::SIToFP:
488 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
489 break;
490
491 case Instruction::FNeg:
492 NewV = IRB.CreateNeg(NewOperands[0], I->getName());
493 break;
494
495 case Instruction::FAdd:
496 case Instruction::FSub:
497 case Instruction::FMul:
498 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
499 NewOperands[0], NewOperands[1],
500 I->getName());
501 break;
502 }
503
504 // If we're a root instruction, RAUW.
505 if (Roots.count(I))
506 I->replaceAllUsesWith(NewV);
507
508 ConvertedInsts[I] = NewV;
509 return NewV;
510 }
511
512 // Perform dead code elimination on the instructions we just modified.
cleanup()513 void Float2IntPass::cleanup() {
514 for (auto &I : reverse(ConvertedInsts))
515 I.first->eraseFromParent();
516 }
517
runImpl(Function & F,const DominatorTree & DT)518 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) {
519 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
520 // Clear out all state.
521 ECs = EquivalenceClasses<Instruction*>();
522 SeenInsts.clear();
523 ConvertedInsts.clear();
524 Roots.clear();
525
526 Ctx = &F.getParent()->getContext();
527
528 findRoots(F, DT, Roots);
529
530 walkBackwards(Roots);
531 walkForwards();
532
533 bool Modified = validateAndTransform();
534 if (Modified)
535 cleanup();
536 return Modified;
537 }
538
539 namespace llvm {
createFloat2IntPass()540 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
541
run(Function & F,FunctionAnalysisManager & AM)542 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) {
543 const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
544 if (!runImpl(F, DT))
545 return PreservedAnalyses::all();
546
547 PreservedAnalyses PA;
548 PA.preserveSet<CFGAnalyses>();
549 PA.preserve<GlobalsAA>();
550 return PA;
551 }
552 } // End namespace llvm
553