1 //===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transform is designed to eliminate unreachable internal globals from the
10 // program. It uses an aggressive algorithm, searching out globals that are
11 // known to be alive. After it finds all of the globals which are needed, it
12 // deletes whatever is left over. This allows it to delete recursive chunks of
13 // the program which are unreachable.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/IPO/GlobalDCE.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/TypeMetadataUtils.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Transforms/IPO.h"
29 #include "llvm/Transforms/Utils/CtorUtils.h"
30 #include "llvm/Transforms/Utils/GlobalStatus.h"
31
32 using namespace llvm;
33
34 #define DEBUG_TYPE "globaldce"
35
36 static cl::opt<bool>
37 ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore,
38 cl::desc("Enable virtual function elimination"));
39
40 STATISTIC(NumAliases , "Number of global aliases removed");
41 STATISTIC(NumFunctions, "Number of functions removed");
42 STATISTIC(NumIFuncs, "Number of indirect functions removed");
43 STATISTIC(NumVariables, "Number of global variables removed");
44 STATISTIC(NumVFuncs, "Number of virtual functions removed");
45
46 namespace {
47 class GlobalDCELegacyPass : public ModulePass {
48 public:
49 static char ID; // Pass identification, replacement for typeid
GlobalDCELegacyPass()50 GlobalDCELegacyPass() : ModulePass(ID) {
51 initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry());
52 }
53
54 // run - Do the GlobalDCE pass on the specified module, optionally updating
55 // the specified callgraph to reflect the changes.
56 //
runOnModule(Module & M)57 bool runOnModule(Module &M) override {
58 if (skipModule(M))
59 return false;
60
61 // We need a minimally functional dummy module analysis manager. It needs
62 // to at least know about the possibility of proxying a function analysis
63 // manager.
64 FunctionAnalysisManager DummyFAM;
65 ModuleAnalysisManager DummyMAM;
66 DummyMAM.registerPass(
67 [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); });
68
69 auto PA = Impl.run(M, DummyMAM);
70 return !PA.areAllPreserved();
71 }
72
73 private:
74 GlobalDCEPass Impl;
75 };
76 }
77
78 char GlobalDCELegacyPass::ID = 0;
79 INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce",
80 "Dead Global Elimination", false, false)
81
82 // Public interface to the GlobalDCEPass.
createGlobalDCEPass()83 ModulePass *llvm::createGlobalDCEPass() {
84 return new GlobalDCELegacyPass();
85 }
86
87 /// Returns true if F is effectively empty.
isEmptyFunction(Function * F)88 static bool isEmptyFunction(Function *F) {
89 BasicBlock &Entry = F->getEntryBlock();
90 for (auto &I : Entry) {
91 if (isa<DbgInfoIntrinsic>(I))
92 continue;
93 if (auto *RI = dyn_cast<ReturnInst>(&I))
94 return !RI->getReturnValue();
95 break;
96 }
97 return false;
98 }
99
100 /// Compute the set of GlobalValue that depends from V.
101 /// The recursion stops as soon as a GlobalValue is met.
ComputeDependencies(Value * V,SmallPtrSetImpl<GlobalValue * > & Deps)102 void GlobalDCEPass::ComputeDependencies(Value *V,
103 SmallPtrSetImpl<GlobalValue *> &Deps) {
104 if (auto *I = dyn_cast<Instruction>(V)) {
105 Function *Parent = I->getParent()->getParent();
106 Deps.insert(Parent);
107 } else if (auto *GV = dyn_cast<GlobalValue>(V)) {
108 Deps.insert(GV);
109 } else if (auto *CE = dyn_cast<Constant>(V)) {
110 // Avoid walking the whole tree of a big ConstantExprs multiple times.
111 auto Where = ConstantDependenciesCache.find(CE);
112 if (Where != ConstantDependenciesCache.end()) {
113 auto const &K = Where->second;
114 Deps.insert(K.begin(), K.end());
115 } else {
116 SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
117 for (User *CEUser : CE->users())
118 ComputeDependencies(CEUser, LocalDeps);
119 Deps.insert(LocalDeps.begin(), LocalDeps.end());
120 }
121 }
122 }
123
UpdateGVDependencies(GlobalValue & GV)124 void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
125 SmallPtrSet<GlobalValue *, 8> Deps;
126 for (User *User : GV.users())
127 ComputeDependencies(User, Deps);
128 Deps.erase(&GV); // Remove self-reference.
129 for (GlobalValue *GVU : Deps) {
130 // If this is a dep from a vtable to a virtual function, and we have
131 // complete information about all virtual call sites which could call
132 // though this vtable, then skip it, because the call site information will
133 // be more precise.
134 if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
135 LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
136 << GV.getName() << "\n");
137 continue;
138 }
139 GVDependencies[GVU].insert(&GV);
140 }
141 }
142
143 /// Mark Global value as Live
MarkLive(GlobalValue & GV,SmallVectorImpl<GlobalValue * > * Updates)144 void GlobalDCEPass::MarkLive(GlobalValue &GV,
145 SmallVectorImpl<GlobalValue *> *Updates) {
146 auto const Ret = AliveGlobals.insert(&GV);
147 if (!Ret.second)
148 return;
149
150 if (Updates)
151 Updates->push_back(&GV);
152 if (Comdat *C = GV.getComdat()) {
153 for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
154 MarkLive(*CM.second, Updates); // Recursion depth is only two because only
155 // globals in the same comdat are visited.
156 }
157 }
158 }
159
ScanVTables(Module & M)160 void GlobalDCEPass::ScanVTables(Module &M) {
161 SmallVector<MDNode *, 2> Types;
162 LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");
163
164 auto *LTOPostLinkMD =
165 cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink"));
166 bool LTOPostLink =
167 LTOPostLinkMD &&
168 (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0);
169
170 for (GlobalVariable &GV : M.globals()) {
171 Types.clear();
172 GV.getMetadata(LLVMContext::MD_type, Types);
173 if (GV.isDeclaration() || Types.empty())
174 continue;
175
176 // Use the typeid metadata on the vtable to build a mapping from typeids to
177 // the list of (GV, offset) pairs which are the possible vtables for that
178 // typeid.
179 for (MDNode *Type : Types) {
180 Metadata *TypeID = Type->getOperand(1).get();
181
182 uint64_t Offset =
183 cast<ConstantInt>(
184 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
185 ->getZExtValue();
186
187 TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
188 }
189
190 // If the type corresponding to the vtable is private to this translation
191 // unit, we know that we can see all virtual functions which might use it,
192 // so VFE is safe.
193 if (auto GO = dyn_cast<GlobalObject>(&GV)) {
194 GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility();
195 if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
196 (LTOPostLink &&
197 TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
198 LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
199 VFESafeVTables.insert(&GV);
200 }
201 }
202 }
203 }
204
ScanVTableLoad(Function * Caller,Metadata * TypeId,uint64_t CallOffset)205 void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
206 uint64_t CallOffset) {
207 for (auto &VTableInfo : TypeIdMap[TypeId]) {
208 GlobalVariable *VTable = VTableInfo.first;
209 uint64_t VTableOffset = VTableInfo.second;
210
211 Constant *Ptr =
212 getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
213 *Caller->getParent());
214 if (!Ptr) {
215 LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
216 VFESafeVTables.erase(VTable);
217 return;
218 }
219
220 auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
221 if (!Callee) {
222 LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
223 VFESafeVTables.erase(VTable);
224 return;
225 }
226
227 LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
228 << Callee->getName() << "\n");
229 GVDependencies[Caller].insert(Callee);
230 }
231 }
232
ScanTypeCheckedLoadIntrinsics(Module & M)233 void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
234 LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
235 Function *TypeCheckedLoadFunc =
236 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
237
238 if (!TypeCheckedLoadFunc)
239 return;
240
241 for (auto U : TypeCheckedLoadFunc->users()) {
242 auto CI = dyn_cast<CallInst>(U);
243 if (!CI)
244 continue;
245
246 auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
247 Value *TypeIdValue = CI->getArgOperand(2);
248 auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
249
250 if (Offset) {
251 ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
252 } else {
253 // type.checked.load with a non-constant offset, so assume every entry in
254 // every matching vtable is used.
255 for (auto &VTableInfo : TypeIdMap[TypeId]) {
256 VFESafeVTables.erase(VTableInfo.first);
257 }
258 }
259 }
260 }
261
AddVirtualFunctionDependencies(Module & M)262 void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
263 if (!ClEnableVFE)
264 return;
265
266 ScanVTables(M);
267
268 if (VFESafeVTables.empty())
269 return;
270
271 ScanTypeCheckedLoadIntrinsics(M);
272
273 LLVM_DEBUG(
274 dbgs() << "VFE safe vtables:\n";
275 for (auto *VTable : VFESafeVTables)
276 dbgs() << " " << VTable->getName() << "\n";
277 );
278 }
279
run(Module & M,ModuleAnalysisManager & MAM)280 PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
281 bool Changed = false;
282
283 // The algorithm first computes the set L of global variables that are
284 // trivially live. Then it walks the initialization of these variables to
285 // compute the globals used to initialize them, which effectively builds a
286 // directed graph where nodes are global variables, and an edge from A to B
287 // means B is used to initialize A. Finally, it propagates the liveness
288 // information through the graph starting from the nodes in L. Nodes note
289 // marked as alive are discarded.
290
291 // Remove empty functions from the global ctors list.
292 Changed |= optimizeGlobalCtorsList(M, isEmptyFunction);
293
294 // Collect the set of members for each comdat.
295 for (Function &F : M)
296 if (Comdat *C = F.getComdat())
297 ComdatMembers.insert(std::make_pair(C, &F));
298 for (GlobalVariable &GV : M.globals())
299 if (Comdat *C = GV.getComdat())
300 ComdatMembers.insert(std::make_pair(C, &GV));
301 for (GlobalAlias &GA : M.aliases())
302 if (Comdat *C = GA.getComdat())
303 ComdatMembers.insert(std::make_pair(C, &GA));
304
305 // Add dependencies between virtual call sites and the virtual functions they
306 // might call, if we have that information.
307 AddVirtualFunctionDependencies(M);
308
309 // Loop over the module, adding globals which are obviously necessary.
310 for (GlobalObject &GO : M.global_objects()) {
311 Changed |= RemoveUnusedGlobalValue(GO);
312 // Functions with external linkage are needed if they have a body.
313 // Externally visible & appending globals are needed, if they have an
314 // initializer.
315 if (!GO.isDeclaration())
316 if (!GO.isDiscardableIfUnused())
317 MarkLive(GO);
318
319 UpdateGVDependencies(GO);
320 }
321
322 // Compute direct dependencies of aliases.
323 for (GlobalAlias &GA : M.aliases()) {
324 Changed |= RemoveUnusedGlobalValue(GA);
325 // Externally visible aliases are needed.
326 if (!GA.isDiscardableIfUnused())
327 MarkLive(GA);
328
329 UpdateGVDependencies(GA);
330 }
331
332 // Compute direct dependencies of ifuncs.
333 for (GlobalIFunc &GIF : M.ifuncs()) {
334 Changed |= RemoveUnusedGlobalValue(GIF);
335 // Externally visible ifuncs are needed.
336 if (!GIF.isDiscardableIfUnused())
337 MarkLive(GIF);
338
339 UpdateGVDependencies(GIF);
340 }
341
342 // Propagate liveness from collected Global Values through the computed
343 // dependencies.
344 SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
345 AliveGlobals.end()};
346 while (!NewLiveGVs.empty()) {
347 GlobalValue *LGV = NewLiveGVs.pop_back_val();
348 for (auto *GVD : GVDependencies[LGV])
349 MarkLive(*GVD, &NewLiveGVs);
350 }
351
352 // Now that all globals which are needed are in the AliveGlobals set, we loop
353 // through the program, deleting those which are not alive.
354 //
355
356 // The first pass is to drop initializers of global variables which are dead.
357 std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
358 for (GlobalVariable &GV : M.globals())
359 if (!AliveGlobals.count(&GV)) {
360 DeadGlobalVars.push_back(&GV); // Keep track of dead globals
361 if (GV.hasInitializer()) {
362 Constant *Init = GV.getInitializer();
363 GV.setInitializer(nullptr);
364 if (isSafeToDestroyConstant(Init))
365 Init->destroyConstant();
366 }
367 }
368
369 // The second pass drops the bodies of functions which are dead...
370 std::vector<Function *> DeadFunctions;
371 for (Function &F : M)
372 if (!AliveGlobals.count(&F)) {
373 DeadFunctions.push_back(&F); // Keep track of dead globals
374 if (!F.isDeclaration())
375 F.deleteBody();
376 }
377
378 // The third pass drops targets of aliases which are dead...
379 std::vector<GlobalAlias*> DeadAliases;
380 for (GlobalAlias &GA : M.aliases())
381 if (!AliveGlobals.count(&GA)) {
382 DeadAliases.push_back(&GA);
383 GA.setAliasee(nullptr);
384 }
385
386 // The fourth pass drops targets of ifuncs which are dead...
387 std::vector<GlobalIFunc*> DeadIFuncs;
388 for (GlobalIFunc &GIF : M.ifuncs())
389 if (!AliveGlobals.count(&GIF)) {
390 DeadIFuncs.push_back(&GIF);
391 GIF.setResolver(nullptr);
392 }
393
394 // Now that all interferences have been dropped, delete the actual objects
395 // themselves.
396 auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
397 RemoveUnusedGlobalValue(*GV);
398 GV->eraseFromParent();
399 Changed = true;
400 };
401
402 NumFunctions += DeadFunctions.size();
403 for (Function *F : DeadFunctions) {
404 if (!F->use_empty()) {
405 // Virtual functions might still be referenced by one or more vtables,
406 // but if we've proven them to be unused then it's safe to replace the
407 // virtual function pointers with null, allowing us to remove the
408 // function itself.
409 ++NumVFuncs;
410 F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType()));
411 }
412 EraseUnusedGlobalValue(F);
413 }
414
415 NumVariables += DeadGlobalVars.size();
416 for (GlobalVariable *GV : DeadGlobalVars)
417 EraseUnusedGlobalValue(GV);
418
419 NumAliases += DeadAliases.size();
420 for (GlobalAlias *GA : DeadAliases)
421 EraseUnusedGlobalValue(GA);
422
423 NumIFuncs += DeadIFuncs.size();
424 for (GlobalIFunc *GIF : DeadIFuncs)
425 EraseUnusedGlobalValue(GIF);
426
427 // Make sure that all memory is released
428 AliveGlobals.clear();
429 ConstantDependenciesCache.clear();
430 GVDependencies.clear();
431 ComdatMembers.clear();
432 TypeIdMap.clear();
433 VFESafeVTables.clear();
434
435 if (Changed)
436 return PreservedAnalyses::none();
437 return PreservedAnalyses::all();
438 }
439
440 // RemoveUnusedGlobalValue - Loop over all of the uses of the specified
441 // GlobalValue, looking for the constant pointer ref that may be pointing to it.
442 // If found, check to see if the constant pointer ref is safe to destroy, and if
443 // so, nuke it. This will reduce the reference count on the global value, which
444 // might make it deader.
445 //
RemoveUnusedGlobalValue(GlobalValue & GV)446 bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) {
447 if (GV.use_empty())
448 return false;
449 GV.removeDeadConstantUsers();
450 return GV.use_empty();
451 }
452