1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopSimplify.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/SizeOpts.h"
62 #include "llvm/Transforms/Utils/UnrollLoop.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <limits>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70
71 using namespace llvm;
72
73 #define DEBUG_TYPE "loop-unroll"
74
75 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
76 "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
77 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
78 " the current top-most loop. This is somtimes preferred to reduce"
79 " compile time."));
80
81 static cl::opt<unsigned>
82 UnrollThreshold("unroll-threshold", cl::Hidden,
83 cl::desc("The cost threshold for loop unrolling"));
84
85 static cl::opt<unsigned> UnrollPartialThreshold(
86 "unroll-partial-threshold", cl::Hidden,
87 cl::desc("The cost threshold for partial loop unrolling"));
88
89 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
90 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
91 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
92 "to the threshold when aggressively unrolling a loop due to the "
93 "dynamic cost savings. If completely unrolling a loop will reduce "
94 "the total runtime from X to Y, we boost the loop unroll "
95 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
96 "X/Y). This limit avoids excessive code bloat."));
97
98 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
99 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
100 cl::desc("Don't allow loop unrolling to simulate more than this number of"
101 "iterations when checking full unroll profitability"));
102
103 static cl::opt<unsigned> UnrollCount(
104 "unroll-count", cl::Hidden,
105 cl::desc("Use this unroll count for all loops including those with "
106 "unroll_count pragma values, for testing purposes"));
107
108 static cl::opt<unsigned> UnrollMaxCount(
109 "unroll-max-count", cl::Hidden,
110 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
111 "testing purposes"));
112
113 static cl::opt<unsigned> UnrollFullMaxCount(
114 "unroll-full-max-count", cl::Hidden,
115 cl::desc(
116 "Set the max unroll count for full unrolling, for testing purposes"));
117
118 static cl::opt<unsigned> UnrollPeelCount(
119 "unroll-peel-count", cl::Hidden,
120 cl::desc("Set the unroll peeling count, for testing purposes"));
121
122 static cl::opt<bool>
123 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
124 cl::desc("Allows loops to be partially unrolled until "
125 "-unroll-threshold loop size is reached."));
126
127 static cl::opt<bool> UnrollAllowRemainder(
128 "unroll-allow-remainder", cl::Hidden,
129 cl::desc("Allow generation of a loop remainder (extra iterations) "
130 "when unrolling a loop."));
131
132 static cl::opt<bool>
133 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
134 cl::desc("Unroll loops with run-time trip counts"));
135
136 static cl::opt<unsigned> UnrollMaxUpperBound(
137 "unroll-max-upperbound", cl::init(8), cl::Hidden,
138 cl::desc(
139 "The max of trip count upper bound that is considered in unrolling"));
140
141 static cl::opt<unsigned> PragmaUnrollThreshold(
142 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
143 cl::desc("Unrolled size limit for loops with an unroll(full) or "
144 "unroll_count pragma."));
145
146 static cl::opt<unsigned> FlatLoopTripCountThreshold(
147 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
148 cl::desc("If the runtime tripcount for the loop is lower than the "
149 "threshold, the loop is considered as flat and will be less "
150 "aggressively unrolled."));
151
152 static cl::opt<bool>
153 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
154 cl::desc("Allows loops to be peeled when the dynamic "
155 "trip count is known to be low."));
156
157 static cl::opt<bool> UnrollUnrollRemainder(
158 "unroll-remainder", cl::Hidden,
159 cl::desc("Allow the loop remainder to be unrolled."));
160
161 // This option isn't ever intended to be enabled, it serves to allow
162 // experiments to check the assumptions about when this kind of revisit is
163 // necessary.
164 static cl::opt<bool> UnrollRevisitChildLoops(
165 "unroll-revisit-child-loops", cl::Hidden,
166 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
167 "This shouldn't typically be needed as child loops (or their "
168 "clones) were already visited."));
169
170 /// A magic value for use with the Threshold parameter to indicate
171 /// that the loop unroll should be performed regardless of how much
172 /// code expansion would result.
173 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
174
175 /// Gather the various unrolling parameters based on the defaults, compiler
176 /// flags, TTI overrides and user specified parameters.
gatherUnrollingPreferences(Loop * L,ScalarEvolution & SE,const TargetTransformInfo & TTI,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,int OptLevel,Optional<unsigned> UserThreshold,Optional<unsigned> UserCount,Optional<bool> UserAllowPartial,Optional<bool> UserRuntime,Optional<bool> UserUpperBound,Optional<bool> UserAllowPeeling,Optional<bool> UserAllowProfileBasedPeeling,Optional<unsigned> UserFullUnrollMaxCount)177 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
178 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
179 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
180 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
181 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
182 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling,
183 Optional<bool> UserAllowProfileBasedPeeling,
184 Optional<unsigned> UserFullUnrollMaxCount) {
185 TargetTransformInfo::UnrollingPreferences UP;
186
187 // Set up the defaults
188 UP.Threshold = OptLevel > 2 ? 300 : 150;
189 UP.MaxPercentThresholdBoost = 400;
190 UP.OptSizeThreshold = 0;
191 UP.PartialThreshold = 150;
192 UP.PartialOptSizeThreshold = 0;
193 UP.Count = 0;
194 UP.PeelCount = 0;
195 UP.DefaultUnrollRuntimeCount = 8;
196 UP.MaxCount = std::numeric_limits<unsigned>::max();
197 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
198 UP.BEInsns = 2;
199 UP.Partial = false;
200 UP.Runtime = false;
201 UP.AllowRemainder = true;
202 UP.UnrollRemainder = false;
203 UP.AllowExpensiveTripCount = false;
204 UP.Force = false;
205 UP.UpperBound = false;
206 UP.AllowPeeling = true;
207 UP.UnrollAndJam = false;
208 UP.PeelProfiledIterations = true;
209 UP.UnrollAndJamInnerLoopThreshold = 60;
210
211 // Override with any target specific settings
212 TTI.getUnrollingPreferences(L, SE, UP);
213
214 // Apply size attributes
215 bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
216 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
217 PGSOQueryType::IRPass);
218 if (OptForSize) {
219 UP.Threshold = UP.OptSizeThreshold;
220 UP.PartialThreshold = UP.PartialOptSizeThreshold;
221 UP.MaxPercentThresholdBoost = 100;
222 }
223
224 // Apply any user values specified by cl::opt
225 if (UnrollThreshold.getNumOccurrences() > 0)
226 UP.Threshold = UnrollThreshold;
227 if (UnrollPartialThreshold.getNumOccurrences() > 0)
228 UP.PartialThreshold = UnrollPartialThreshold;
229 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
230 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
231 if (UnrollMaxCount.getNumOccurrences() > 0)
232 UP.MaxCount = UnrollMaxCount;
233 if (UnrollFullMaxCount.getNumOccurrences() > 0)
234 UP.FullUnrollMaxCount = UnrollFullMaxCount;
235 if (UnrollPeelCount.getNumOccurrences() > 0)
236 UP.PeelCount = UnrollPeelCount;
237 if (UnrollAllowPartial.getNumOccurrences() > 0)
238 UP.Partial = UnrollAllowPartial;
239 if (UnrollAllowRemainder.getNumOccurrences() > 0)
240 UP.AllowRemainder = UnrollAllowRemainder;
241 if (UnrollRuntime.getNumOccurrences() > 0)
242 UP.Runtime = UnrollRuntime;
243 if (UnrollMaxUpperBound == 0)
244 UP.UpperBound = false;
245 if (UnrollAllowPeeling.getNumOccurrences() > 0)
246 UP.AllowPeeling = UnrollAllowPeeling;
247 if (UnrollUnrollRemainder.getNumOccurrences() > 0)
248 UP.UnrollRemainder = UnrollUnrollRemainder;
249
250 // Apply user values provided by argument
251 if (UserThreshold.hasValue()) {
252 UP.Threshold = *UserThreshold;
253 UP.PartialThreshold = *UserThreshold;
254 }
255 if (UserCount.hasValue())
256 UP.Count = *UserCount;
257 if (UserAllowPartial.hasValue())
258 UP.Partial = *UserAllowPartial;
259 if (UserRuntime.hasValue())
260 UP.Runtime = *UserRuntime;
261 if (UserUpperBound.hasValue())
262 UP.UpperBound = *UserUpperBound;
263 if (UserAllowPeeling.hasValue())
264 UP.AllowPeeling = *UserAllowPeeling;
265 if (UserAllowProfileBasedPeeling.hasValue())
266 UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
267 if (UserFullUnrollMaxCount.hasValue())
268 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
269
270 return UP;
271 }
272
273 namespace {
274
275 /// A struct to densely store the state of an instruction after unrolling at
276 /// each iteration.
277 ///
278 /// This is designed to work like a tuple of <Instruction *, int> for the
279 /// purposes of hashing and lookup, but to be able to associate two boolean
280 /// states with each key.
281 struct UnrolledInstState {
282 Instruction *I;
283 int Iteration : 30;
284 unsigned IsFree : 1;
285 unsigned IsCounted : 1;
286 };
287
288 /// Hashing and equality testing for a set of the instruction states.
289 struct UnrolledInstStateKeyInfo {
290 using PtrInfo = DenseMapInfo<Instruction *>;
291 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
292
getEmptyKey__anon5bc94c2a0111::UnrolledInstStateKeyInfo293 static inline UnrolledInstState getEmptyKey() {
294 return {PtrInfo::getEmptyKey(), 0, 0, 0};
295 }
296
getTombstoneKey__anon5bc94c2a0111::UnrolledInstStateKeyInfo297 static inline UnrolledInstState getTombstoneKey() {
298 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
299 }
300
getHashValue__anon5bc94c2a0111::UnrolledInstStateKeyInfo301 static inline unsigned getHashValue(const UnrolledInstState &S) {
302 return PairInfo::getHashValue({S.I, S.Iteration});
303 }
304
isEqual__anon5bc94c2a0111::UnrolledInstStateKeyInfo305 static inline bool isEqual(const UnrolledInstState &LHS,
306 const UnrolledInstState &RHS) {
307 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
308 }
309 };
310
311 struct EstimatedUnrollCost {
312 /// The estimated cost after unrolling.
313 unsigned UnrolledCost;
314
315 /// The estimated dynamic cost of executing the instructions in the
316 /// rolled form.
317 unsigned RolledDynamicCost;
318 };
319
320 } // end anonymous namespace
321
322 /// Figure out if the loop is worth full unrolling.
323 ///
324 /// Complete loop unrolling can make some loads constant, and we need to know
325 /// if that would expose any further optimization opportunities. This routine
326 /// estimates this optimization. It computes cost of unrolled loop
327 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
328 /// dynamic cost we mean that we won't count costs of blocks that are known not
329 /// to be executed (i.e. if we have a branch in the loop and we know that at the
330 /// given iteration its condition would be resolved to true, we won't add up the
331 /// cost of the 'false'-block).
332 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
333 /// the analysis failed (no benefits expected from the unrolling, or the loop is
334 /// too big to analyze), the returned value is None.
analyzeLoopUnrollCost(const Loop * L,unsigned TripCount,DominatorTree & DT,ScalarEvolution & SE,const SmallPtrSetImpl<const Value * > & EphValues,const TargetTransformInfo & TTI,unsigned MaxUnrolledLoopSize)335 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
336 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
337 const SmallPtrSetImpl<const Value *> &EphValues,
338 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
339 // We want to be able to scale offsets by the trip count and add more offsets
340 // to them without checking for overflows, and we already don't want to
341 // analyze *massive* trip counts, so we force the max to be reasonably small.
342 assert(UnrollMaxIterationsCountToAnalyze <
343 (unsigned)(std::numeric_limits<int>::max() / 2) &&
344 "The unroll iterations max is too large!");
345
346 // Only analyze inner loops. We can't properly estimate cost of nested loops
347 // and we won't visit inner loops again anyway.
348 if (!L->empty())
349 return None;
350
351 // Don't simulate loops with a big or unknown tripcount
352 if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
353 TripCount > UnrollMaxIterationsCountToAnalyze)
354 return None;
355
356 SmallSetVector<BasicBlock *, 16> BBWorklist;
357 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
358 DenseMap<Value *, Constant *> SimplifiedValues;
359 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
360
361 // The estimated cost of the unrolled form of the loop. We try to estimate
362 // this by simplifying as much as we can while computing the estimate.
363 unsigned UnrolledCost = 0;
364
365 // We also track the estimated dynamic (that is, actually executed) cost in
366 // the rolled form. This helps identify cases when the savings from unrolling
367 // aren't just exposing dead control flows, but actual reduced dynamic
368 // instructions due to the simplifications which we expect to occur after
369 // unrolling.
370 unsigned RolledDynamicCost = 0;
371
372 // We track the simplification of each instruction in each iteration. We use
373 // this to recursively merge costs into the unrolled cost on-demand so that
374 // we don't count the cost of any dead code. This is essentially a map from
375 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
376 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
377
378 // A small worklist used to accumulate cost of instructions from each
379 // observable and reached root in the loop.
380 SmallVector<Instruction *, 16> CostWorklist;
381
382 // PHI-used worklist used between iterations while accumulating cost.
383 SmallVector<Instruction *, 4> PHIUsedList;
384
385 // Helper function to accumulate cost for instructions in the loop.
386 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
387 assert(Iteration >= 0 && "Cannot have a negative iteration!");
388 assert(CostWorklist.empty() && "Must start with an empty cost list");
389 assert(PHIUsedList.empty() && "Must start with an empty phi used list");
390 CostWorklist.push_back(&RootI);
391 for (;; --Iteration) {
392 do {
393 Instruction *I = CostWorklist.pop_back_val();
394
395 // InstCostMap only uses I and Iteration as a key, the other two values
396 // don't matter here.
397 auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
398 if (CostIter == InstCostMap.end())
399 // If an input to a PHI node comes from a dead path through the loop
400 // we may have no cost data for it here. What that actually means is
401 // that it is free.
402 continue;
403 auto &Cost = *CostIter;
404 if (Cost.IsCounted)
405 // Already counted this instruction.
406 continue;
407
408 // Mark that we are counting the cost of this instruction now.
409 Cost.IsCounted = true;
410
411 // If this is a PHI node in the loop header, just add it to the PHI set.
412 if (auto *PhiI = dyn_cast<PHINode>(I))
413 if (PhiI->getParent() == L->getHeader()) {
414 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
415 "inherently simplify during unrolling.");
416 if (Iteration == 0)
417 continue;
418
419 // Push the incoming value from the backedge into the PHI used list
420 // if it is an in-loop instruction. We'll use this to populate the
421 // cost worklist for the next iteration (as we count backwards).
422 if (auto *OpI = dyn_cast<Instruction>(
423 PhiI->getIncomingValueForBlock(L->getLoopLatch())))
424 if (L->contains(OpI))
425 PHIUsedList.push_back(OpI);
426 continue;
427 }
428
429 // First accumulate the cost of this instruction.
430 if (!Cost.IsFree) {
431 UnrolledCost += TTI.getUserCost(I);
432 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
433 << Iteration << "): ");
434 LLVM_DEBUG(I->dump());
435 }
436
437 // We must count the cost of every operand which is not free,
438 // recursively. If we reach a loop PHI node, simply add it to the set
439 // to be considered on the next iteration (backwards!).
440 for (Value *Op : I->operands()) {
441 // Check whether this operand is free due to being a constant or
442 // outside the loop.
443 auto *OpI = dyn_cast<Instruction>(Op);
444 if (!OpI || !L->contains(OpI))
445 continue;
446
447 // Otherwise accumulate its cost.
448 CostWorklist.push_back(OpI);
449 }
450 } while (!CostWorklist.empty());
451
452 if (PHIUsedList.empty())
453 // We've exhausted the search.
454 break;
455
456 assert(Iteration > 0 &&
457 "Cannot track PHI-used values past the first iteration!");
458 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
459 PHIUsedList.clear();
460 }
461 };
462
463 // Ensure that we don't violate the loop structure invariants relied on by
464 // this analysis.
465 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
466 assert(L->isLCSSAForm(DT) &&
467 "Must have loops in LCSSA form to track live-out values.");
468
469 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
470
471 // Simulate execution of each iteration of the loop counting instructions,
472 // which would be simplified.
473 // Since the same load will take different values on different iterations,
474 // we literally have to go through all loop's iterations.
475 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
476 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
477
478 // Prepare for the iteration by collecting any simplified entry or backedge
479 // inputs.
480 for (Instruction &I : *L->getHeader()) {
481 auto *PHI = dyn_cast<PHINode>(&I);
482 if (!PHI)
483 break;
484
485 // The loop header PHI nodes must have exactly two input: one from the
486 // loop preheader and one from the loop latch.
487 assert(
488 PHI->getNumIncomingValues() == 2 &&
489 "Must have an incoming value only for the preheader and the latch.");
490
491 Value *V = PHI->getIncomingValueForBlock(
492 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
493 Constant *C = dyn_cast<Constant>(V);
494 if (Iteration != 0 && !C)
495 C = SimplifiedValues.lookup(V);
496 if (C)
497 SimplifiedInputValues.push_back({PHI, C});
498 }
499
500 // Now clear and re-populate the map for the next iteration.
501 SimplifiedValues.clear();
502 while (!SimplifiedInputValues.empty())
503 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
504
505 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
506
507 BBWorklist.clear();
508 BBWorklist.insert(L->getHeader());
509 // Note that we *must not* cache the size, this loop grows the worklist.
510 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
511 BasicBlock *BB = BBWorklist[Idx];
512
513 // Visit all instructions in the given basic block and try to simplify
514 // it. We don't change the actual IR, just count optimization
515 // opportunities.
516 for (Instruction &I : *BB) {
517 // These won't get into the final code - don't even try calculating the
518 // cost for them.
519 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
520 continue;
521
522 // Track this instruction's expected baseline cost when executing the
523 // rolled loop form.
524 RolledDynamicCost += TTI.getUserCost(&I);
525
526 // Visit the instruction to analyze its loop cost after unrolling,
527 // and if the visitor returns true, mark the instruction as free after
528 // unrolling and continue.
529 bool IsFree = Analyzer.visit(I);
530 bool Inserted = InstCostMap.insert({&I, (int)Iteration,
531 (unsigned)IsFree,
532 /*IsCounted*/ false}).second;
533 (void)Inserted;
534 assert(Inserted && "Cannot have a state for an unvisited instruction!");
535
536 if (IsFree)
537 continue;
538
539 // Can't properly model a cost of a call.
540 // FIXME: With a proper cost model we should be able to do it.
541 if (auto *CI = dyn_cast<CallInst>(&I)) {
542 const Function *Callee = CI->getCalledFunction();
543 if (!Callee || TTI.isLoweredToCall(Callee)) {
544 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
545 return None;
546 }
547 }
548
549 // If the instruction might have a side-effect recursively account for
550 // the cost of it and all the instructions leading up to it.
551 if (I.mayHaveSideEffects())
552 AddCostRecursively(I, Iteration);
553
554 // If unrolled body turns out to be too big, bail out.
555 if (UnrolledCost > MaxUnrolledLoopSize) {
556 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
557 << " UnrolledCost: " << UnrolledCost
558 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
559 << "\n");
560 return None;
561 }
562 }
563
564 Instruction *TI = BB->getTerminator();
565
566 // Add in the live successors by first checking whether we have terminator
567 // that may be simplified based on the values simplified by this call.
568 BasicBlock *KnownSucc = nullptr;
569 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
570 if (BI->isConditional()) {
571 if (Constant *SimpleCond =
572 SimplifiedValues.lookup(BI->getCondition())) {
573 // Just take the first successor if condition is undef
574 if (isa<UndefValue>(SimpleCond))
575 KnownSucc = BI->getSuccessor(0);
576 else if (ConstantInt *SimpleCondVal =
577 dyn_cast<ConstantInt>(SimpleCond))
578 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
579 }
580 }
581 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
582 if (Constant *SimpleCond =
583 SimplifiedValues.lookup(SI->getCondition())) {
584 // Just take the first successor if condition is undef
585 if (isa<UndefValue>(SimpleCond))
586 KnownSucc = SI->getSuccessor(0);
587 else if (ConstantInt *SimpleCondVal =
588 dyn_cast<ConstantInt>(SimpleCond))
589 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
590 }
591 }
592 if (KnownSucc) {
593 if (L->contains(KnownSucc))
594 BBWorklist.insert(KnownSucc);
595 else
596 ExitWorklist.insert({BB, KnownSucc});
597 continue;
598 }
599
600 // Add BB's successors to the worklist.
601 for (BasicBlock *Succ : successors(BB))
602 if (L->contains(Succ))
603 BBWorklist.insert(Succ);
604 else
605 ExitWorklist.insert({BB, Succ});
606 AddCostRecursively(*TI, Iteration);
607 }
608
609 // If we found no optimization opportunities on the first iteration, we
610 // won't find them on later ones too.
611 if (UnrolledCost == RolledDynamicCost) {
612 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
613 << " UnrolledCost: " << UnrolledCost << "\n");
614 return None;
615 }
616 }
617
618 while (!ExitWorklist.empty()) {
619 BasicBlock *ExitingBB, *ExitBB;
620 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
621
622 for (Instruction &I : *ExitBB) {
623 auto *PN = dyn_cast<PHINode>(&I);
624 if (!PN)
625 break;
626
627 Value *Op = PN->getIncomingValueForBlock(ExitingBB);
628 if (auto *OpI = dyn_cast<Instruction>(Op))
629 if (L->contains(OpI))
630 AddCostRecursively(*OpI, TripCount - 1);
631 }
632 }
633
634 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
635 << "UnrolledCost: " << UnrolledCost << ", "
636 << "RolledDynamicCost: " << RolledDynamicCost << "\n");
637 return {{UnrolledCost, RolledDynamicCost}};
638 }
639
640 /// ApproximateLoopSize - Approximate the size of the loop.
ApproximateLoopSize(const Loop * L,unsigned & NumCalls,bool & NotDuplicatable,bool & Convergent,const TargetTransformInfo & TTI,const SmallPtrSetImpl<const Value * > & EphValues,unsigned BEInsns)641 unsigned llvm::ApproximateLoopSize(
642 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
643 const TargetTransformInfo &TTI,
644 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
645 CodeMetrics Metrics;
646 for (BasicBlock *BB : L->blocks())
647 Metrics.analyzeBasicBlock(BB, TTI, EphValues);
648 NumCalls = Metrics.NumInlineCandidates;
649 NotDuplicatable = Metrics.notDuplicatable;
650 Convergent = Metrics.convergent;
651
652 unsigned LoopSize = Metrics.NumInsts;
653
654 // Don't allow an estimate of size zero. This would allows unrolling of loops
655 // with huge iteration counts, which is a compile time problem even if it's
656 // not a problem for code quality. Also, the code using this size may assume
657 // that each loop has at least three instructions (likely a conditional
658 // branch, a comparison feeding that branch, and some kind of loop increment
659 // feeding that comparison instruction).
660 LoopSize = std::max(LoopSize, BEInsns + 1);
661
662 return LoopSize;
663 }
664
665 // Returns the loop hint metadata node with the given name (for example,
666 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
667 // returned.
GetUnrollMetadataForLoop(const Loop * L,StringRef Name)668 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
669 if (MDNode *LoopID = L->getLoopID())
670 return GetUnrollMetadata(LoopID, Name);
671 return nullptr;
672 }
673
674 // Returns true if the loop has an unroll(full) pragma.
HasUnrollFullPragma(const Loop * L)675 static bool HasUnrollFullPragma(const Loop *L) {
676 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
677 }
678
679 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
680 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
HasUnrollEnablePragma(const Loop * L)681 static bool HasUnrollEnablePragma(const Loop *L) {
682 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
683 }
684
685 // Returns true if the loop has an runtime unroll(disable) pragma.
HasRuntimeUnrollDisablePragma(const Loop * L)686 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
687 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
688 }
689
690 // If loop has an unroll_count pragma return the (necessarily
691 // positive) value from the pragma. Otherwise return 0.
UnrollCountPragmaValue(const Loop * L)692 static unsigned UnrollCountPragmaValue(const Loop *L) {
693 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
694 if (MD) {
695 assert(MD->getNumOperands() == 2 &&
696 "Unroll count hint metadata should have two operands.");
697 unsigned Count =
698 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
699 assert(Count >= 1 && "Unroll count must be positive.");
700 return Count;
701 }
702 return 0;
703 }
704
705 // Computes the boosting factor for complete unrolling.
706 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
707 // be beneficial to fully unroll the loop even if unrolledcost is large. We
708 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
709 // the unroll threshold.
getFullUnrollBoostingFactor(const EstimatedUnrollCost & Cost,unsigned MaxPercentThresholdBoost)710 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
711 unsigned MaxPercentThresholdBoost) {
712 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
713 return 100;
714 else if (Cost.UnrolledCost != 0)
715 // The boosting factor is RolledDynamicCost / UnrolledCost
716 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
717 MaxPercentThresholdBoost);
718 else
719 return MaxPercentThresholdBoost;
720 }
721
722 // Returns loop size estimation for unrolled loop.
getUnrolledLoopSize(unsigned LoopSize,TargetTransformInfo::UnrollingPreferences & UP)723 static uint64_t getUnrolledLoopSize(
724 unsigned LoopSize,
725 TargetTransformInfo::UnrollingPreferences &UP) {
726 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
727 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
728 }
729
730 // Returns true if unroll count was set explicitly.
731 // Calculates unroll count and writes it to UP.Count.
732 // Unless IgnoreUser is true, will also use metadata and command-line options
733 // that are specific to to the LoopUnroll pass (which, for instance, are
734 // irrelevant for the LoopUnrollAndJam pass).
735 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
736 // many LoopUnroll-specific options. The shared functionality should be
737 // refactored into it own function.
computeUnrollCount(Loop * L,const TargetTransformInfo & TTI,DominatorTree & DT,LoopInfo * LI,ScalarEvolution & SE,const SmallPtrSetImpl<const Value * > & EphValues,OptimizationRemarkEmitter * ORE,unsigned & TripCount,unsigned MaxTripCount,bool MaxOrZero,unsigned & TripMultiple,unsigned LoopSize,TargetTransformInfo::UnrollingPreferences & UP,bool & UseUpperBound)738 bool llvm::computeUnrollCount(
739 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
740 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
741 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
742 bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize,
743 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
744
745 // Check for explicit Count.
746 // 1st priority is unroll count set by "unroll-count" option.
747 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
748 if (UserUnrollCount) {
749 UP.Count = UnrollCount;
750 UP.AllowExpensiveTripCount = true;
751 UP.Force = true;
752 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
753 return true;
754 }
755
756 // 2nd priority is unroll count set by pragma.
757 unsigned PragmaCount = UnrollCountPragmaValue(L);
758 if (PragmaCount > 0) {
759 UP.Count = PragmaCount;
760 UP.Runtime = true;
761 UP.AllowExpensiveTripCount = true;
762 UP.Force = true;
763 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
764 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
765 return true;
766 }
767 bool PragmaFullUnroll = HasUnrollFullPragma(L);
768 if (PragmaFullUnroll && TripCount != 0) {
769 UP.Count = TripCount;
770 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
771 return false;
772 }
773
774 bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
775 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
776 PragmaEnableUnroll || UserUnrollCount;
777
778 if (ExplicitUnroll && TripCount != 0) {
779 // If the loop has an unrolling pragma, we want to be more aggressive with
780 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
781 // value which is larger than the default limits.
782 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
783 UP.PartialThreshold =
784 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
785 }
786
787 // 3rd priority is full unroll count.
788 // Full unroll makes sense only when TripCount or its upper bound could be
789 // statically calculated.
790 // Also we need to check if we exceed FullUnrollMaxCount.
791 // If using the upper bound to unroll, TripMultiple should be set to 1 because
792 // we do not know when loop may exit.
793
794 // We can unroll by the upper bound amount if it's generally allowed or if
795 // we know that the loop is executed either the upper bound or zero times.
796 // (MaxOrZero unrolling keeps only the first loop test, so the number of
797 // loop tests remains the same compared to the non-unrolled version, whereas
798 // the generic upper bound unrolling keeps all but the last loop test so the
799 // number of loop tests goes up which may end up being worse on targets with
800 // constrained branch predictor resources so is controlled by an option.)
801 // In addition we only unroll small upper bounds.
802 unsigned FullUnrollMaxTripCount = MaxTripCount;
803 if (!(UP.UpperBound || MaxOrZero) ||
804 FullUnrollMaxTripCount > UnrollMaxUpperBound)
805 FullUnrollMaxTripCount = 0;
806
807 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
808 // compute the former when the latter is zero.
809 unsigned ExactTripCount = TripCount;
810 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
811 "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
812
813 unsigned FullUnrollTripCount =
814 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
815 UP.Count = FullUnrollTripCount;
816 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
817 // When computing the unrolled size, note that BEInsns are not replicated
818 // like the rest of the loop body.
819 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
820 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
821 TripCount = FullUnrollTripCount;
822 TripMultiple = UP.UpperBound ? 1 : TripMultiple;
823 return ExplicitUnroll;
824 } else {
825 // The loop isn't that small, but we still can fully unroll it if that
826 // helps to remove a significant number of instructions.
827 // To check that, run additional analysis on the loop.
828 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
829 L, FullUnrollTripCount, DT, SE, EphValues, TTI,
830 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
831 unsigned Boost =
832 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
833 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
834 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
835 TripCount = FullUnrollTripCount;
836 TripMultiple = UP.UpperBound ? 1 : TripMultiple;
837 return ExplicitUnroll;
838 }
839 }
840 }
841 }
842
843 // 4th priority is loop peeling.
844 computePeelCount(L, LoopSize, UP, TripCount, SE);
845 if (UP.PeelCount) {
846 UP.Runtime = false;
847 UP.Count = 1;
848 return ExplicitUnroll;
849 }
850
851 // 5th priority is partial unrolling.
852 // Try partial unroll only when TripCount could be statically calculated.
853 if (TripCount) {
854 UP.Partial |= ExplicitUnroll;
855 if (!UP.Partial) {
856 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
857 << "-unroll-allow-partial not given\n");
858 UP.Count = 0;
859 return false;
860 }
861 if (UP.Count == 0)
862 UP.Count = TripCount;
863 if (UP.PartialThreshold != NoThreshold) {
864 // Reduce unroll count to be modulo of TripCount for partial unrolling.
865 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
866 UP.Count =
867 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
868 (LoopSize - UP.BEInsns);
869 if (UP.Count > UP.MaxCount)
870 UP.Count = UP.MaxCount;
871 while (UP.Count != 0 && TripCount % UP.Count != 0)
872 UP.Count--;
873 if (UP.AllowRemainder && UP.Count <= 1) {
874 // If there is no Count that is modulo of TripCount, set Count to
875 // largest power-of-two factor that satisfies the threshold limit.
876 // As we'll create fixup loop, do the type of unrolling only if
877 // remainder loop is allowed.
878 UP.Count = UP.DefaultUnrollRuntimeCount;
879 while (UP.Count != 0 &&
880 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
881 UP.Count >>= 1;
882 }
883 if (UP.Count < 2) {
884 if (PragmaEnableUnroll)
885 ORE->emit([&]() {
886 return OptimizationRemarkMissed(DEBUG_TYPE,
887 "UnrollAsDirectedTooLarge",
888 L->getStartLoc(), L->getHeader())
889 << "Unable to unroll loop as directed by unroll(enable) "
890 "pragma "
891 "because unrolled size is too large.";
892 });
893 UP.Count = 0;
894 }
895 } else {
896 UP.Count = TripCount;
897 }
898 if (UP.Count > UP.MaxCount)
899 UP.Count = UP.MaxCount;
900 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
901 UP.Count != TripCount)
902 ORE->emit([&]() {
903 return OptimizationRemarkMissed(DEBUG_TYPE,
904 "FullUnrollAsDirectedTooLarge",
905 L->getStartLoc(), L->getHeader())
906 << "Unable to fully unroll loop as directed by unroll pragma "
907 "because "
908 "unrolled size is too large.";
909 });
910 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count
911 << "\n");
912 return ExplicitUnroll;
913 }
914 assert(TripCount == 0 &&
915 "All cases when TripCount is constant should be covered here.");
916 if (PragmaFullUnroll)
917 ORE->emit([&]() {
918 return OptimizationRemarkMissed(
919 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
920 L->getStartLoc(), L->getHeader())
921 << "Unable to fully unroll loop as directed by unroll(full) "
922 "pragma "
923 "because loop has a runtime trip count.";
924 });
925
926 // 6th priority is runtime unrolling.
927 // Don't unroll a runtime trip count loop when it is disabled.
928 if (HasRuntimeUnrollDisablePragma(L)) {
929 UP.Count = 0;
930 return false;
931 }
932
933 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
934 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
935 UP.Count = 0;
936 return false;
937 }
938
939 // Check if the runtime trip count is too small when profile is available.
940 if (L->getHeader()->getParent()->hasProfileData()) {
941 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
942 if (*ProfileTripCount < FlatLoopTripCountThreshold)
943 return false;
944 else
945 UP.AllowExpensiveTripCount = true;
946 }
947 }
948
949 // Reduce count based on the type of unrolling and the threshold values.
950 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
951 if (!UP.Runtime) {
952 LLVM_DEBUG(
953 dbgs() << " will not try to unroll loop with runtime trip count "
954 << "-unroll-runtime not given\n");
955 UP.Count = 0;
956 return false;
957 }
958 if (UP.Count == 0)
959 UP.Count = UP.DefaultUnrollRuntimeCount;
960
961 // Reduce unroll count to be the largest power-of-two factor of
962 // the original count which satisfies the threshold limit.
963 while (UP.Count != 0 &&
964 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
965 UP.Count >>= 1;
966
967 #ifndef NDEBUG
968 unsigned OrigCount = UP.Count;
969 #endif
970
971 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
972 while (UP.Count != 0 && TripMultiple % UP.Count != 0)
973 UP.Count >>= 1;
974 LLVM_DEBUG(
975 dbgs() << "Remainder loop is restricted (that could architecture "
976 "specific or because the loop contains a convergent "
977 "instruction), so unroll count must divide the trip "
978 "multiple, "
979 << TripMultiple << ". Reducing unroll count from " << OrigCount
980 << " to " << UP.Count << ".\n");
981
982 using namespace ore;
983
984 if (PragmaCount > 0 && !UP.AllowRemainder)
985 ORE->emit([&]() {
986 return OptimizationRemarkMissed(DEBUG_TYPE,
987 "DifferentUnrollCountFromDirected",
988 L->getStartLoc(), L->getHeader())
989 << "Unable to unroll loop the number of times directed by "
990 "unroll_count pragma because remainder loop is restricted "
991 "(that could architecture specific or because the loop "
992 "contains a convergent instruction) and so must have an "
993 "unroll "
994 "count that divides the loop trip multiple of "
995 << NV("TripMultiple", TripMultiple) << ". Unrolling instead "
996 << NV("UnrollCount", UP.Count) << " time(s).";
997 });
998 }
999
1000 if (UP.Count > UP.MaxCount)
1001 UP.Count = UP.MaxCount;
1002
1003 if (MaxTripCount && UP.Count > MaxTripCount)
1004 UP.Count = MaxTripCount;
1005
1006 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count
1007 << "\n");
1008 if (UP.Count < 2)
1009 UP.Count = 0;
1010 return ExplicitUnroll;
1011 }
1012
tryToUnrollLoop(Loop * L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution & SE,const TargetTransformInfo & TTI,AssumptionCache & AC,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,bool PreserveLCSSA,int OptLevel,bool OnlyWhenForced,bool ForgetAllSCEV,Optional<unsigned> ProvidedCount,Optional<unsigned> ProvidedThreshold,Optional<bool> ProvidedAllowPartial,Optional<bool> ProvidedRuntime,Optional<bool> ProvidedUpperBound,Optional<bool> ProvidedAllowPeeling,Optional<bool> ProvidedAllowProfileBasedPeeling,Optional<unsigned> ProvidedFullUnrollMaxCount)1013 static LoopUnrollResult tryToUnrollLoop(
1014 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1015 const TargetTransformInfo &TTI, AssumptionCache &AC,
1016 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1017 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1018 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1019 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1020 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1021 Optional<bool> ProvidedAllowPeeling,
1022 Optional<bool> ProvidedAllowProfileBasedPeeling,
1023 Optional<unsigned> ProvidedFullUnrollMaxCount) {
1024 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1025 << L->getHeader()->getParent()->getName() << "] Loop %"
1026 << L->getHeader()->getName() << "\n");
1027 TransformationMode TM = hasUnrollTransformation(L);
1028 if (TM & TM_Disable)
1029 return LoopUnrollResult::Unmodified;
1030 if (!L->isLoopSimplifyForm()) {
1031 LLVM_DEBUG(
1032 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1033 return LoopUnrollResult::Unmodified;
1034 }
1035
1036 // When automtatic unrolling is disabled, do not unroll unless overridden for
1037 // this loop.
1038 if (OnlyWhenForced && !(TM & TM_Enable))
1039 return LoopUnrollResult::Unmodified;
1040
1041 bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1042 unsigned NumInlineCandidates;
1043 bool NotDuplicatable;
1044 bool Convergent;
1045 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1046 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1047 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1048 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1049 ProvidedFullUnrollMaxCount);
1050
1051 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1052 // as threshold later on.
1053 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1054 !OptForSize)
1055 return LoopUnrollResult::Unmodified;
1056
1057 SmallPtrSet<const Value *, 32> EphValues;
1058 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1059
1060 unsigned LoopSize =
1061 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1062 TTI, EphValues, UP.BEInsns);
1063 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
1064 if (NotDuplicatable) {
1065 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
1066 << " instructions.\n");
1067 return LoopUnrollResult::Unmodified;
1068 }
1069
1070 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1071 // later), to (fully) unroll loops, if it does not increase code size.
1072 if (OptForSize)
1073 UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1074
1075 if (NumInlineCandidates != 0) {
1076 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1077 return LoopUnrollResult::Unmodified;
1078 }
1079
1080 // Find trip count and trip multiple if count is not available
1081 unsigned TripCount = 0;
1082 unsigned TripMultiple = 1;
1083 // If there are multiple exiting blocks but one of them is the latch, use the
1084 // latch for the trip count estimation. Otherwise insist on a single exiting
1085 // block for the trip count estimation.
1086 BasicBlock *ExitingBlock = L->getLoopLatch();
1087 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1088 ExitingBlock = L->getExitingBlock();
1089 if (ExitingBlock) {
1090 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1091 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1092 }
1093
1094 // If the loop contains a convergent operation, the prelude we'd add
1095 // to do the first few instructions before we hit the unrolled loop
1096 // is unsafe -- it adds a control-flow dependency to the convergent
1097 // operation. Therefore restrict remainder loop (try unrollig without).
1098 //
1099 // TODO: This is quite conservative. In practice, convergent_op()
1100 // is likely to be called unconditionally in the loop. In this
1101 // case, the program would be ill-formed (on most architectures)
1102 // unless n were the same on all threads in a thread group.
1103 // Assuming n is the same on all threads, any kind of unrolling is
1104 // safe. But currently llvm's notion of convergence isn't powerful
1105 // enough to express this.
1106 if (Convergent)
1107 UP.AllowRemainder = false;
1108
1109 // Try to find the trip count upper bound if we cannot find the exact trip
1110 // count.
1111 unsigned MaxTripCount = 0;
1112 bool MaxOrZero = false;
1113 if (!TripCount) {
1114 MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1115 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1116 }
1117
1118 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1119 // fully unroll the loop.
1120 bool UseUpperBound = false;
1121 bool IsCountSetExplicitly = computeUnrollCount(
1122 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1123 TripMultiple, LoopSize, UP, UseUpperBound);
1124 if (!UP.Count)
1125 return LoopUnrollResult::Unmodified;
1126 // Unroll factor (Count) must be less or equal to TripCount.
1127 if (TripCount && UP.Count > TripCount)
1128 UP.Count = TripCount;
1129
1130 // Save loop properties before it is transformed.
1131 MDNode *OrigLoopID = L->getLoopID();
1132
1133 // Unroll the loop.
1134 Loop *RemainderLoop = nullptr;
1135 LoopUnrollResult UnrollResult = UnrollLoop(
1136 L,
1137 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1138 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1139 ForgetAllSCEV},
1140 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop);
1141 if (UnrollResult == LoopUnrollResult::Unmodified)
1142 return LoopUnrollResult::Unmodified;
1143
1144 if (RemainderLoop) {
1145 Optional<MDNode *> RemainderLoopID =
1146 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1147 LLVMLoopUnrollFollowupRemainder});
1148 if (RemainderLoopID.hasValue())
1149 RemainderLoop->setLoopID(RemainderLoopID.getValue());
1150 }
1151
1152 if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1153 Optional<MDNode *> NewLoopID =
1154 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1155 LLVMLoopUnrollFollowupUnrolled});
1156 if (NewLoopID.hasValue()) {
1157 L->setLoopID(NewLoopID.getValue());
1158
1159 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1160 // explicitly.
1161 return UnrollResult;
1162 }
1163 }
1164
1165 // If loop has an unroll count pragma or unrolled by explicitly set count
1166 // mark loop as unrolled to prevent unrolling beyond that requested.
1167 // If the loop was peeled, we already "used up" the profile information
1168 // we had, so we don't want to unroll or peel again.
1169 if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1170 (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount)))
1171 L->setLoopAlreadyUnrolled();
1172
1173 return UnrollResult;
1174 }
1175
1176 namespace {
1177
1178 class LoopUnroll : public LoopPass {
1179 public:
1180 static char ID; // Pass ID, replacement for typeid
1181
1182 int OptLevel;
1183
1184 /// If false, use a cost model to determine whether unrolling of a loop is
1185 /// profitable. If true, only loops that explicitly request unrolling via
1186 /// metadata are considered. All other loops are skipped.
1187 bool OnlyWhenForced;
1188
1189 /// If false, when SCEV is invalidated, only forget everything in the
1190 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1191 /// Otherwise, forgetAllLoops and rebuild when needed next.
1192 bool ForgetAllSCEV;
1193
1194 Optional<unsigned> ProvidedCount;
1195 Optional<unsigned> ProvidedThreshold;
1196 Optional<bool> ProvidedAllowPartial;
1197 Optional<bool> ProvidedRuntime;
1198 Optional<bool> ProvidedUpperBound;
1199 Optional<bool> ProvidedAllowPeeling;
1200 Optional<bool> ProvidedAllowProfileBasedPeeling;
1201 Optional<unsigned> ProvidedFullUnrollMaxCount;
1202
LoopUnroll(int OptLevel=2,bool OnlyWhenForced=false,bool ForgetAllSCEV=false,Optional<unsigned> Threshold=None,Optional<unsigned> Count=None,Optional<bool> AllowPartial=None,Optional<bool> Runtime=None,Optional<bool> UpperBound=None,Optional<bool> AllowPeeling=None,Optional<bool> AllowProfileBasedPeeling=None,Optional<unsigned> ProvidedFullUnrollMaxCount=None)1203 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1204 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1205 Optional<unsigned> Count = None,
1206 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1207 Optional<bool> UpperBound = None,
1208 Optional<bool> AllowPeeling = None,
1209 Optional<bool> AllowProfileBasedPeeling = None,
1210 Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1211 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1212 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1213 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1214 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1215 ProvidedAllowPeeling(AllowPeeling),
1216 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1217 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1218 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1219 }
1220
runOnLoop(Loop * L,LPPassManager & LPM)1221 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1222 if (skipLoop(L))
1223 return false;
1224
1225 Function &F = *L->getHeader()->getParent();
1226
1227 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1228 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1229 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1230 const TargetTransformInfo &TTI =
1231 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1232 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1233 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1234 // pass. Function analyses need to be preserved across loop transformations
1235 // but ORE cannot be preserved (see comment before the pass definition).
1236 OptimizationRemarkEmitter ORE(&F);
1237 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1238
1239 LoopUnrollResult Result = tryToUnrollLoop(
1240 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1241 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1242 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1243 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1244 ProvidedFullUnrollMaxCount);
1245
1246 if (Result == LoopUnrollResult::FullyUnrolled)
1247 LPM.markLoopAsDeleted(*L);
1248
1249 return Result != LoopUnrollResult::Unmodified;
1250 }
1251
1252 /// This transformation requires natural loop information & requires that
1253 /// loop preheaders be inserted into the CFG...
getAnalysisUsage(AnalysisUsage & AU) const1254 void getAnalysisUsage(AnalysisUsage &AU) const override {
1255 AU.addRequired<AssumptionCacheTracker>();
1256 AU.addRequired<TargetTransformInfoWrapperPass>();
1257 // FIXME: Loop passes are required to preserve domtree, and for now we just
1258 // recreate dom info if anything gets unrolled.
1259 getLoopAnalysisUsage(AU);
1260 }
1261 };
1262
1263 } // end anonymous namespace
1264
1265 char LoopUnroll::ID = 0;
1266
1267 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1268 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1269 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1270 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1271 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1272
1273 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1274 bool ForgetAllSCEV, int Threshold, int Count,
1275 int AllowPartial, int Runtime, int UpperBound,
1276 int AllowPeeling) {
1277 // TODO: It would make more sense for this function to take the optionals
1278 // directly, but that's dangerous since it would silently break out of tree
1279 // callers.
1280 return new LoopUnroll(
1281 OptLevel, OnlyWhenForced, ForgetAllSCEV,
1282 Threshold == -1 ? None : Optional<unsigned>(Threshold),
1283 Count == -1 ? None : Optional<unsigned>(Count),
1284 AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1285 Runtime == -1 ? None : Optional<bool>(Runtime),
1286 UpperBound == -1 ? None : Optional<bool>(UpperBound),
1287 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1288 }
1289
createSimpleLoopUnrollPass(int OptLevel,bool OnlyWhenForced,bool ForgetAllSCEV)1290 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1291 bool ForgetAllSCEV) {
1292 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1293 0, 0, 0, 0);
1294 }
1295
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & Updater)1296 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1297 LoopStandardAnalysisResults &AR,
1298 LPMUpdater &Updater) {
1299 const auto &FAM =
1300 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1301 Function *F = L.getHeader()->getParent();
1302
1303 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1304 // FIXME: This should probably be optional rather than required.
1305 if (!ORE)
1306 report_fatal_error(
1307 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1308 "cached at a higher level");
1309
1310 // Keep track of the previous loop structure so we can identify new loops
1311 // created by unrolling.
1312 Loop *ParentL = L.getParentLoop();
1313 SmallPtrSet<Loop *, 4> OldLoops;
1314 if (ParentL)
1315 OldLoops.insert(ParentL->begin(), ParentL->end());
1316 else
1317 OldLoops.insert(AR.LI.begin(), AR.LI.end());
1318
1319 std::string LoopName = L.getName();
1320
1321 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1322 /*BFI*/ nullptr, /*PSI*/ nullptr,
1323 /*PreserveLCSSA*/ true, OptLevel,
1324 OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1325 /*Threshold*/ None, /*AllowPartial*/ false,
1326 /*Runtime*/ false, /*UpperBound*/ false,
1327 /*AllowPeeling*/ false,
1328 /*AllowProfileBasedPeeling*/ false,
1329 /*FullUnrollMaxCount*/ None) !=
1330 LoopUnrollResult::Unmodified;
1331 if (!Changed)
1332 return PreservedAnalyses::all();
1333
1334 // The parent must not be damaged by unrolling!
1335 #ifndef NDEBUG
1336 if (ParentL)
1337 ParentL->verifyLoop();
1338 #endif
1339
1340 // Unrolling can do several things to introduce new loops into a loop nest:
1341 // - Full unrolling clones child loops within the current loop but then
1342 // removes the current loop making all of the children appear to be new
1343 // sibling loops.
1344 //
1345 // When a new loop appears as a sibling loop after fully unrolling,
1346 // its nesting structure has fundamentally changed and we want to revisit
1347 // it to reflect that.
1348 //
1349 // When unrolling has removed the current loop, we need to tell the
1350 // infrastructure that it is gone.
1351 //
1352 // Finally, we support a debugging/testing mode where we revisit child loops
1353 // as well. These are not expected to require further optimizations as either
1354 // they or the loop they were cloned from have been directly visited already.
1355 // But the debugging mode allows us to check this assumption.
1356 bool IsCurrentLoopValid = false;
1357 SmallVector<Loop *, 4> SibLoops;
1358 if (ParentL)
1359 SibLoops.append(ParentL->begin(), ParentL->end());
1360 else
1361 SibLoops.append(AR.LI.begin(), AR.LI.end());
1362 erase_if(SibLoops, [&](Loop *SibLoop) {
1363 if (SibLoop == &L) {
1364 IsCurrentLoopValid = true;
1365 return true;
1366 }
1367
1368 // Otherwise erase the loop from the list if it was in the old loops.
1369 return OldLoops.count(SibLoop) != 0;
1370 });
1371 Updater.addSiblingLoops(SibLoops);
1372
1373 if (!IsCurrentLoopValid) {
1374 Updater.markLoopAsDeleted(L, LoopName);
1375 } else {
1376 // We can only walk child loops if the current loop remained valid.
1377 if (UnrollRevisitChildLoops) {
1378 // Walk *all* of the child loops.
1379 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1380 Updater.addChildLoops(ChildLoops);
1381 }
1382 }
1383
1384 return getLoopPassPreservedAnalyses();
1385 }
1386
1387 template <typename RangeT>
appendLoopsToWorklist(RangeT && Loops)1388 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1389 SmallVector<Loop *, 8> Worklist;
1390 // We use an internal worklist to build up the preorder traversal without
1391 // recursion.
1392 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1393
1394 for (Loop *RootL : Loops) {
1395 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1396 assert(PreOrderWorklist.empty() &&
1397 "Must start with an empty preorder walk worklist.");
1398 PreOrderWorklist.push_back(RootL);
1399 do {
1400 Loop *L = PreOrderWorklist.pop_back_val();
1401 PreOrderWorklist.append(L->begin(), L->end());
1402 PreOrderLoops.push_back(L);
1403 } while (!PreOrderWorklist.empty());
1404
1405 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1406 PreOrderLoops.clear();
1407 }
1408 return Worklist;
1409 }
1410
run(Function & F,FunctionAnalysisManager & AM)1411 PreservedAnalyses LoopUnrollPass::run(Function &F,
1412 FunctionAnalysisManager &AM) {
1413 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1414 auto &LI = AM.getResult<LoopAnalysis>(F);
1415 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1416 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1417 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1418 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1419
1420 LoopAnalysisManager *LAM = nullptr;
1421 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1422 LAM = &LAMProxy->getManager();
1423
1424 const ModuleAnalysisManager &MAM =
1425 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1426 ProfileSummaryInfo *PSI =
1427 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1428 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1429 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1430
1431 bool Changed = false;
1432
1433 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1434 // Since simplification may add new inner loops, it has to run before the
1435 // legality and profitability checks. This means running the loop unroller
1436 // will simplify all loops, regardless of whether anything end up being
1437 // unrolled.
1438 for (auto &L : LI) {
1439 Changed |=
1440 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1441 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1442 }
1443
1444 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1445
1446 while (!Worklist.empty()) {
1447 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1448 // from back to front so that we work forward across the CFG, which
1449 // for unrolling is only needed to get optimization remarks emitted in
1450 // a forward order.
1451 Loop &L = *Worklist.pop_back_val();
1452 #ifndef NDEBUG
1453 Loop *ParentL = L.getParentLoop();
1454 #endif
1455
1456 // Check if the profile summary indicates that the profiled application
1457 // has a huge working set size, in which case we disable peeling to avoid
1458 // bloating it further.
1459 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1460 if (PSI && PSI->hasHugeWorkingSetSize())
1461 LocalAllowPeeling = false;
1462 std::string LoopName = L.getName();
1463 // The API here is quite complex to call and we allow to select some
1464 // flavors of unrolling during construction time (by setting UnrollOpts).
1465 LoopUnrollResult Result = tryToUnrollLoop(
1466 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1467 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1468 UnrollOpts.ForgetSCEV, /*Count*/ None,
1469 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1470 UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1471 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1472 Changed |= Result != LoopUnrollResult::Unmodified;
1473
1474 // The parent must not be damaged by unrolling!
1475 #ifndef NDEBUG
1476 if (Result != LoopUnrollResult::Unmodified && ParentL)
1477 ParentL->verifyLoop();
1478 #endif
1479
1480 // Clear any cached analysis results for L if we removed it completely.
1481 if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1482 LAM->clear(L, LoopName);
1483 }
1484
1485 if (!Changed)
1486 return PreservedAnalyses::all();
1487
1488 return getLoopPassPreservedAnalyses();
1489 }
1490