1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 // that contains all vtables with !type metadata that participate in the link.
37 // The pass computes a resolution for each virtual call and stores it in the
38 // type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 // modules. The pass applies the resolutions previously computed during the
41 // import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 // contains a summary of all vtables with !type metadata that participate in
46 // the link. It computes a resolution for each virtual call and stores it in
47 // the type identifier summary. Only single implementation devirtualization
48 // is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/AliasAnalysis.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/IR/CallSite.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/ModuleSummaryIndexYAML.h"
83 #include "llvm/InitializePasses.h"
84 #include "llvm/Pass.h"
85 #include "llvm/PassRegistry.h"
86 #include "llvm/PassSupport.h"
87 #include "llvm/Support/Casting.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/Error.h"
90 #include "llvm/Support/FileSystem.h"
91 #include "llvm/Support/MathExtras.h"
92 #include "llvm/Transforms/IPO.h"
93 #include "llvm/Transforms/IPO/FunctionAttrs.h"
94 #include "llvm/Transforms/Utils/Evaluator.h"
95 #include <algorithm>
96 #include <cstddef>
97 #include <map>
98 #include <set>
99 #include <string>
100
101 using namespace llvm;
102 using namespace wholeprogramdevirt;
103
104 #define DEBUG_TYPE "wholeprogramdevirt"
105
106 static cl::opt<PassSummaryAction> ClSummaryAction(
107 "wholeprogramdevirt-summary-action",
108 cl::desc("What to do with the summary when running this pass"),
109 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
110 clEnumValN(PassSummaryAction::Import, "import",
111 "Import typeid resolutions from summary and globals"),
112 clEnumValN(PassSummaryAction::Export, "export",
113 "Export typeid resolutions to summary and globals")),
114 cl::Hidden);
115
116 static cl::opt<std::string> ClReadSummary(
117 "wholeprogramdevirt-read-summary",
118 cl::desc("Read summary from given YAML file before running pass"),
119 cl::Hidden);
120
121 static cl::opt<std::string> ClWriteSummary(
122 "wholeprogramdevirt-write-summary",
123 cl::desc("Write summary to given YAML file after running pass"),
124 cl::Hidden);
125
126 static cl::opt<unsigned>
127 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
128 cl::init(10), cl::ZeroOrMore,
129 cl::desc("Maximum number of call targets per "
130 "call site to enable branch funnels"));
131
132 static cl::opt<bool>
133 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
134 cl::init(false), cl::ZeroOrMore,
135 cl::desc("Print index-based devirtualization messages"));
136
137 // Find the minimum offset that we may store a value of size Size bits at. If
138 // IsAfter is set, look for an offset before the object, otherwise look for an
139 // offset after the object.
140 uint64_t
findLowestOffset(ArrayRef<VirtualCallTarget> Targets,bool IsAfter,uint64_t Size)141 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
142 bool IsAfter, uint64_t Size) {
143 // Find a minimum offset taking into account only vtable sizes.
144 uint64_t MinByte = 0;
145 for (const VirtualCallTarget &Target : Targets) {
146 if (IsAfter)
147 MinByte = std::max(MinByte, Target.minAfterBytes());
148 else
149 MinByte = std::max(MinByte, Target.minBeforeBytes());
150 }
151
152 // Build a vector of arrays of bytes covering, for each target, a slice of the
153 // used region (see AccumBitVector::BytesUsed in
154 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
155 // this aligns the used regions to start at MinByte.
156 //
157 // In this example, A, B and C are vtables, # is a byte already allocated for
158 // a virtual function pointer, AAAA... (etc.) are the used regions for the
159 // vtables and Offset(X) is the value computed for the Offset variable below
160 // for X.
161 //
162 // Offset(A)
163 // | |
164 // |MinByte
165 // A: ################AAAAAAAA|AAAAAAAA
166 // B: ########BBBBBBBBBBBBBBBB|BBBB
167 // C: ########################|CCCCCCCCCCCCCCCC
168 // | Offset(B) |
169 //
170 // This code produces the slices of A, B and C that appear after the divider
171 // at MinByte.
172 std::vector<ArrayRef<uint8_t>> Used;
173 for (const VirtualCallTarget &Target : Targets) {
174 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
175 : Target.TM->Bits->Before.BytesUsed;
176 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
177 : MinByte - Target.minBeforeBytes();
178
179 // Disregard used regions that are smaller than Offset. These are
180 // effectively all-free regions that do not need to be checked.
181 if (VTUsed.size() > Offset)
182 Used.push_back(VTUsed.slice(Offset));
183 }
184
185 if (Size == 1) {
186 // Find a free bit in each member of Used.
187 for (unsigned I = 0;; ++I) {
188 uint8_t BitsUsed = 0;
189 for (auto &&B : Used)
190 if (I < B.size())
191 BitsUsed |= B[I];
192 if (BitsUsed != 0xff)
193 return (MinByte + I) * 8 +
194 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
195 }
196 } else {
197 // Find a free (Size/8) byte region in each member of Used.
198 // FIXME: see if alignment helps.
199 for (unsigned I = 0;; ++I) {
200 for (auto &&B : Used) {
201 unsigned Byte = 0;
202 while ((I + Byte) < B.size() && Byte < (Size / 8)) {
203 if (B[I + Byte])
204 goto NextI;
205 ++Byte;
206 }
207 }
208 return (MinByte + I) * 8;
209 NextI:;
210 }
211 }
212 }
213
setBeforeReturnValues(MutableArrayRef<VirtualCallTarget> Targets,uint64_t AllocBefore,unsigned BitWidth,int64_t & OffsetByte,uint64_t & OffsetBit)214 void wholeprogramdevirt::setBeforeReturnValues(
215 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
216 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
217 if (BitWidth == 1)
218 OffsetByte = -(AllocBefore / 8 + 1);
219 else
220 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
221 OffsetBit = AllocBefore % 8;
222
223 for (VirtualCallTarget &Target : Targets) {
224 if (BitWidth == 1)
225 Target.setBeforeBit(AllocBefore);
226 else
227 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
228 }
229 }
230
setAfterReturnValues(MutableArrayRef<VirtualCallTarget> Targets,uint64_t AllocAfter,unsigned BitWidth,int64_t & OffsetByte,uint64_t & OffsetBit)231 void wholeprogramdevirt::setAfterReturnValues(
232 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
233 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
234 if (BitWidth == 1)
235 OffsetByte = AllocAfter / 8;
236 else
237 OffsetByte = (AllocAfter + 7) / 8;
238 OffsetBit = AllocAfter % 8;
239
240 for (VirtualCallTarget &Target : Targets) {
241 if (BitWidth == 1)
242 Target.setAfterBit(AllocAfter);
243 else
244 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
245 }
246 }
247
VirtualCallTarget(Function * Fn,const TypeMemberInfo * TM)248 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
249 : Fn(Fn), TM(TM),
250 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
251
252 namespace {
253
254 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
255 // tables, and the ByteOffset is the offset in bytes from the address point to
256 // the virtual function pointer.
257 struct VTableSlot {
258 Metadata *TypeID;
259 uint64_t ByteOffset;
260 };
261
262 } // end anonymous namespace
263
264 namespace llvm {
265
266 template <> struct DenseMapInfo<VTableSlot> {
getEmptyKeyllvm::DenseMapInfo267 static VTableSlot getEmptyKey() {
268 return {DenseMapInfo<Metadata *>::getEmptyKey(),
269 DenseMapInfo<uint64_t>::getEmptyKey()};
270 }
getTombstoneKeyllvm::DenseMapInfo271 static VTableSlot getTombstoneKey() {
272 return {DenseMapInfo<Metadata *>::getTombstoneKey(),
273 DenseMapInfo<uint64_t>::getTombstoneKey()};
274 }
getHashValuellvm::DenseMapInfo275 static unsigned getHashValue(const VTableSlot &I) {
276 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
277 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
278 }
isEqualllvm::DenseMapInfo279 static bool isEqual(const VTableSlot &LHS,
280 const VTableSlot &RHS) {
281 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
282 }
283 };
284
285 template <> struct DenseMapInfo<VTableSlotSummary> {
getEmptyKeyllvm::DenseMapInfo286 static VTableSlotSummary getEmptyKey() {
287 return {DenseMapInfo<StringRef>::getEmptyKey(),
288 DenseMapInfo<uint64_t>::getEmptyKey()};
289 }
getTombstoneKeyllvm::DenseMapInfo290 static VTableSlotSummary getTombstoneKey() {
291 return {DenseMapInfo<StringRef>::getTombstoneKey(),
292 DenseMapInfo<uint64_t>::getTombstoneKey()};
293 }
getHashValuellvm::DenseMapInfo294 static unsigned getHashValue(const VTableSlotSummary &I) {
295 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
296 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
297 }
isEqualllvm::DenseMapInfo298 static bool isEqual(const VTableSlotSummary &LHS,
299 const VTableSlotSummary &RHS) {
300 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
301 }
302 };
303
304 } // end namespace llvm
305
306 namespace {
307
308 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
309 // the indirect virtual call.
310 struct VirtualCallSite {
311 Value *VTable;
312 CallSite CS;
313
314 // If non-null, this field points to the associated unsafe use count stored in
315 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
316 // of that field for details.
317 unsigned *NumUnsafeUses;
318
319 void
emitRemark__anon96dadd540211::VirtualCallSite320 emitRemark(const StringRef OptName, const StringRef TargetName,
321 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
322 Function *F = CS.getCaller();
323 DebugLoc DLoc = CS->getDebugLoc();
324 BasicBlock *Block = CS.getParent();
325
326 using namespace ore;
327 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
328 << NV("Optimization", OptName)
329 << ": devirtualized a call to "
330 << NV("FunctionName", TargetName));
331 }
332
replaceAndErase__anon96dadd540211::VirtualCallSite333 void replaceAndErase(
334 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
335 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
336 Value *New) {
337 if (RemarksEnabled)
338 emitRemark(OptName, TargetName, OREGetter);
339 CS->replaceAllUsesWith(New);
340 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
341 BranchInst::Create(II->getNormalDest(), CS.getInstruction());
342 II->getUnwindDest()->removePredecessor(II->getParent());
343 }
344 CS->eraseFromParent();
345 // This use is no longer unsafe.
346 if (NumUnsafeUses)
347 --*NumUnsafeUses;
348 }
349 };
350
351 // Call site information collected for a specific VTableSlot and possibly a list
352 // of constant integer arguments. The grouping by arguments is handled by the
353 // VTableSlotInfo class.
354 struct CallSiteInfo {
355 /// The set of call sites for this slot. Used during regular LTO and the
356 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
357 /// call sites that appear in the merged module itself); in each of these
358 /// cases we are directly operating on the call sites at the IR level.
359 std::vector<VirtualCallSite> CallSites;
360
361 /// Whether all call sites represented by this CallSiteInfo, including those
362 /// in summaries, have been devirtualized. This starts off as true because a
363 /// default constructed CallSiteInfo represents no call sites.
364 bool AllCallSitesDevirted = true;
365
366 // These fields are used during the export phase of ThinLTO and reflect
367 // information collected from function summaries.
368
369 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
370 /// this slot.
371 bool SummaryHasTypeTestAssumeUsers = false;
372
373 /// CFI-specific: a vector containing the list of function summaries that use
374 /// the llvm.type.checked.load intrinsic and therefore will require
375 /// resolutions for llvm.type.test in order to implement CFI checks if
376 /// devirtualization was unsuccessful. If devirtualization was successful, the
377 /// pass will clear this vector by calling markDevirt(). If at the end of the
378 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
379 /// to each of the function summaries in the vector.
380 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
381 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
382
isExported__anon96dadd540211::CallSiteInfo383 bool isExported() const {
384 return SummaryHasTypeTestAssumeUsers ||
385 !SummaryTypeCheckedLoadUsers.empty();
386 }
387
addSummaryTypeCheckedLoadUser__anon96dadd540211::CallSiteInfo388 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
389 SummaryTypeCheckedLoadUsers.push_back(FS);
390 AllCallSitesDevirted = false;
391 }
392
addSummaryTypeTestAssumeUser__anon96dadd540211::CallSiteInfo393 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
394 SummaryTypeTestAssumeUsers.push_back(FS);
395 SummaryHasTypeTestAssumeUsers = true;
396 AllCallSitesDevirted = false;
397 }
398
markDevirt__anon96dadd540211::CallSiteInfo399 void markDevirt() {
400 AllCallSitesDevirted = true;
401
402 // As explained in the comment for SummaryTypeCheckedLoadUsers.
403 SummaryTypeCheckedLoadUsers.clear();
404 }
405 };
406
407 // Call site information collected for a specific VTableSlot.
408 struct VTableSlotInfo {
409 // The set of call sites which do not have all constant integer arguments
410 // (excluding "this").
411 CallSiteInfo CSInfo;
412
413 // The set of call sites with all constant integer arguments (excluding
414 // "this"), grouped by argument list.
415 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
416
417 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
418
419 private:
420 CallSiteInfo &findCallSiteInfo(CallSite CS);
421 };
422
findCallSiteInfo(CallSite CS)423 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
424 std::vector<uint64_t> Args;
425 auto *CI = dyn_cast<IntegerType>(CS.getType());
426 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
427 return CSInfo;
428 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
429 auto *CI = dyn_cast<ConstantInt>(Arg);
430 if (!CI || CI->getBitWidth() > 64)
431 return CSInfo;
432 Args.push_back(CI->getZExtValue());
433 }
434 return ConstCSInfo[Args];
435 }
436
addCallSite(Value * VTable,CallSite CS,unsigned * NumUnsafeUses)437 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
438 unsigned *NumUnsafeUses) {
439 auto &CSI = findCallSiteInfo(CS);
440 CSI.AllCallSitesDevirted = false;
441 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
442 }
443
444 struct DevirtModule {
445 Module &M;
446 function_ref<AAResults &(Function &)> AARGetter;
447 function_ref<DominatorTree &(Function &)> LookupDomTree;
448
449 ModuleSummaryIndex *ExportSummary;
450 const ModuleSummaryIndex *ImportSummary;
451
452 IntegerType *Int8Ty;
453 PointerType *Int8PtrTy;
454 IntegerType *Int32Ty;
455 IntegerType *Int64Ty;
456 IntegerType *IntPtrTy;
457
458 bool RemarksEnabled;
459 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
460
461 MapVector<VTableSlot, VTableSlotInfo> CallSlots;
462
463 // This map keeps track of the number of "unsafe" uses of a loaded function
464 // pointer. The key is the associated llvm.type.test intrinsic call generated
465 // by this pass. An unsafe use is one that calls the loaded function pointer
466 // directly. Every time we eliminate an unsafe use (for example, by
467 // devirtualizing it or by applying virtual constant propagation), we
468 // decrement the value stored in this map. If a value reaches zero, we can
469 // eliminate the type check by RAUWing the associated llvm.type.test call with
470 // true.
471 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
472
DevirtModule__anon96dadd540211::DevirtModule473 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
474 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
475 function_ref<DominatorTree &(Function &)> LookupDomTree,
476 ModuleSummaryIndex *ExportSummary,
477 const ModuleSummaryIndex *ImportSummary)
478 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
479 ExportSummary(ExportSummary), ImportSummary(ImportSummary),
480 Int8Ty(Type::getInt8Ty(M.getContext())),
481 Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
482 Int32Ty(Type::getInt32Ty(M.getContext())),
483 Int64Ty(Type::getInt64Ty(M.getContext())),
484 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
485 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
486 assert(!(ExportSummary && ImportSummary));
487 }
488
489 bool areRemarksEnabled();
490
491 void scanTypeTestUsers(Function *TypeTestFunc);
492 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
493
494 void buildTypeIdentifierMap(
495 std::vector<VTableBits> &Bits,
496 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
497 bool
498 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
499 const std::set<TypeMemberInfo> &TypeMemberInfos,
500 uint64_t ByteOffset);
501
502 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
503 bool &IsExported);
504 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
505 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
506 VTableSlotInfo &SlotInfo,
507 WholeProgramDevirtResolution *Res);
508
509 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
510 bool &IsExported);
511 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
512 VTableSlotInfo &SlotInfo,
513 WholeProgramDevirtResolution *Res, VTableSlot Slot);
514
515 bool tryEvaluateFunctionsWithArgs(
516 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
517 ArrayRef<uint64_t> Args);
518
519 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
520 uint64_t TheRetVal);
521 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
522 CallSiteInfo &CSInfo,
523 WholeProgramDevirtResolution::ByArg *Res);
524
525 // Returns the global symbol name that is used to export information about the
526 // given vtable slot and list of arguments.
527 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
528 StringRef Name);
529
530 bool shouldExportConstantsAsAbsoluteSymbols();
531
532 // This function is called during the export phase to create a symbol
533 // definition containing information about the given vtable slot and list of
534 // arguments.
535 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
536 Constant *C);
537 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
538 uint32_t Const, uint32_t &Storage);
539
540 // This function is called during the import phase to create a reference to
541 // the symbol definition created during the export phase.
542 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
543 StringRef Name);
544 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
545 StringRef Name, IntegerType *IntTy,
546 uint32_t Storage);
547
548 Constant *getMemberAddr(const TypeMemberInfo *M);
549
550 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
551 Constant *UniqueMemberAddr);
552 bool tryUniqueRetValOpt(unsigned BitWidth,
553 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
554 CallSiteInfo &CSInfo,
555 WholeProgramDevirtResolution::ByArg *Res,
556 VTableSlot Slot, ArrayRef<uint64_t> Args);
557
558 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
559 Constant *Byte, Constant *Bit);
560 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
561 VTableSlotInfo &SlotInfo,
562 WholeProgramDevirtResolution *Res, VTableSlot Slot);
563
564 void rebuildGlobal(VTableBits &B);
565
566 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
567 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
568
569 // If we were able to eliminate all unsafe uses for a type checked load,
570 // eliminate the associated type tests by replacing them with true.
571 void removeRedundantTypeTests();
572
573 bool run();
574
575 // Lower the module using the action and summary passed as command line
576 // arguments. For testing purposes only.
577 static bool
578 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
579 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
580 function_ref<DominatorTree &(Function &)> LookupDomTree);
581 };
582
583 struct DevirtIndex {
584 ModuleSummaryIndex &ExportSummary;
585 // The set in which to record GUIDs exported from their module by
586 // devirtualization, used by client to ensure they are not internalized.
587 std::set<GlobalValue::GUID> &ExportedGUIDs;
588 // A map in which to record the information necessary to locate the WPD
589 // resolution for local targets in case they are exported by cross module
590 // importing.
591 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
592
593 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
594
DevirtIndex__anon96dadd540211::DevirtIndex595 DevirtIndex(
596 ModuleSummaryIndex &ExportSummary,
597 std::set<GlobalValue::GUID> &ExportedGUIDs,
598 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
599 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
600 LocalWPDTargetsMap(LocalWPDTargetsMap) {}
601
602 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
603 const TypeIdCompatibleVtableInfo TIdInfo,
604 uint64_t ByteOffset);
605
606 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
607 VTableSlotSummary &SlotSummary,
608 VTableSlotInfo &SlotInfo,
609 WholeProgramDevirtResolution *Res,
610 std::set<ValueInfo> &DevirtTargets);
611
612 void run();
613 };
614
615 struct WholeProgramDevirt : public ModulePass {
616 static char ID;
617
618 bool UseCommandLine = false;
619
620 ModuleSummaryIndex *ExportSummary = nullptr;
621 const ModuleSummaryIndex *ImportSummary = nullptr;
622
WholeProgramDevirt__anon96dadd540211::WholeProgramDevirt623 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
624 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
625 }
626
WholeProgramDevirt__anon96dadd540211::WholeProgramDevirt627 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
628 const ModuleSummaryIndex *ImportSummary)
629 : ModulePass(ID), ExportSummary(ExportSummary),
630 ImportSummary(ImportSummary) {
631 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
632 }
633
runOnModule__anon96dadd540211::WholeProgramDevirt634 bool runOnModule(Module &M) override {
635 if (skipModule(M))
636 return false;
637
638 // In the new pass manager, we can request the optimization
639 // remark emitter pass on a per-function-basis, which the
640 // OREGetter will do for us.
641 // In the old pass manager, this is harder, so we just build
642 // an optimization remark emitter on the fly, when we need it.
643 std::unique_ptr<OptimizationRemarkEmitter> ORE;
644 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
645 ORE = std::make_unique<OptimizationRemarkEmitter>(F);
646 return *ORE;
647 };
648
649 auto LookupDomTree = [this](Function &F) -> DominatorTree & {
650 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
651 };
652
653 if (UseCommandLine)
654 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
655 LookupDomTree);
656
657 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
658 ExportSummary, ImportSummary)
659 .run();
660 }
661
getAnalysisUsage__anon96dadd540211::WholeProgramDevirt662 void getAnalysisUsage(AnalysisUsage &AU) const override {
663 AU.addRequired<AssumptionCacheTracker>();
664 AU.addRequired<TargetLibraryInfoWrapperPass>();
665 AU.addRequired<DominatorTreeWrapperPass>();
666 }
667 };
668
669 } // end anonymous namespace
670
671 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
672 "Whole program devirtualization", false, false)
673 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
674 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
675 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
676 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
677 "Whole program devirtualization", false, false)
678 char WholeProgramDevirt::ID = 0;
679
680 ModulePass *
createWholeProgramDevirtPass(ModuleSummaryIndex * ExportSummary,const ModuleSummaryIndex * ImportSummary)681 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
682 const ModuleSummaryIndex *ImportSummary) {
683 return new WholeProgramDevirt(ExportSummary, ImportSummary);
684 }
685
run(Module & M,ModuleAnalysisManager & AM)686 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
687 ModuleAnalysisManager &AM) {
688 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
689 auto AARGetter = [&](Function &F) -> AAResults & {
690 return FAM.getResult<AAManager>(F);
691 };
692 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
693 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
694 };
695 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
696 return FAM.getResult<DominatorTreeAnalysis>(F);
697 };
698 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
699 ImportSummary)
700 .run())
701 return PreservedAnalyses::all();
702 return PreservedAnalyses::none();
703 }
704
705 namespace llvm {
runWholeProgramDevirtOnIndex(ModuleSummaryIndex & Summary,std::set<GlobalValue::GUID> & ExportedGUIDs,std::map<ValueInfo,std::vector<VTableSlotSummary>> & LocalWPDTargetsMap)706 void runWholeProgramDevirtOnIndex(
707 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
708 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
709 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
710 }
711
updateIndexWPDForExports(ModuleSummaryIndex & Summary,function_ref<bool (StringRef,ValueInfo)> isExported,std::map<ValueInfo,std::vector<VTableSlotSummary>> & LocalWPDTargetsMap)712 void updateIndexWPDForExports(
713 ModuleSummaryIndex &Summary,
714 function_ref<bool(StringRef, ValueInfo)> isExported,
715 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
716 for (auto &T : LocalWPDTargetsMap) {
717 auto &VI = T.first;
718 // This was enforced earlier during trySingleImplDevirt.
719 assert(VI.getSummaryList().size() == 1 &&
720 "Devirt of local target has more than one copy");
721 auto &S = VI.getSummaryList()[0];
722 if (!isExported(S->modulePath(), VI))
723 continue;
724
725 // It's been exported by a cross module import.
726 for (auto &SlotSummary : T.second) {
727 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
728 assert(TIdSum);
729 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
730 assert(WPDRes != TIdSum->WPDRes.end());
731 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
732 WPDRes->second.SingleImplName,
733 Summary.getModuleHash(S->modulePath()));
734 }
735 }
736 }
737
738 } // end namespace llvm
739
runForTesting(Module & M,function_ref<AAResults & (Function &)> AARGetter,function_ref<OptimizationRemarkEmitter & (Function *)> OREGetter,function_ref<DominatorTree & (Function &)> LookupDomTree)740 bool DevirtModule::runForTesting(
741 Module &M, function_ref<AAResults &(Function &)> AARGetter,
742 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
743 function_ref<DominatorTree &(Function &)> LookupDomTree) {
744 ModuleSummaryIndex Summary(/*HaveGVs=*/false);
745
746 // Handle the command-line summary arguments. This code is for testing
747 // purposes only, so we handle errors directly.
748 if (!ClReadSummary.empty()) {
749 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
750 ": ");
751 auto ReadSummaryFile =
752 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
753
754 yaml::Input In(ReadSummaryFile->getBuffer());
755 In >> Summary;
756 ExitOnErr(errorCodeToError(In.error()));
757 }
758
759 bool Changed =
760 DevirtModule(
761 M, AARGetter, OREGetter, LookupDomTree,
762 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
763 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
764 .run();
765
766 if (!ClWriteSummary.empty()) {
767 ExitOnError ExitOnErr(
768 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
769 std::error_code EC;
770 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
771 ExitOnErr(errorCodeToError(EC));
772
773 yaml::Output Out(OS);
774 Out << Summary;
775 }
776
777 return Changed;
778 }
779
buildTypeIdentifierMap(std::vector<VTableBits> & Bits,DenseMap<Metadata *,std::set<TypeMemberInfo>> & TypeIdMap)780 void DevirtModule::buildTypeIdentifierMap(
781 std::vector<VTableBits> &Bits,
782 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
783 DenseMap<GlobalVariable *, VTableBits *> GVToBits;
784 Bits.reserve(M.getGlobalList().size());
785 SmallVector<MDNode *, 2> Types;
786 for (GlobalVariable &GV : M.globals()) {
787 Types.clear();
788 GV.getMetadata(LLVMContext::MD_type, Types);
789 if (GV.isDeclaration() || Types.empty())
790 continue;
791
792 VTableBits *&BitsPtr = GVToBits[&GV];
793 if (!BitsPtr) {
794 Bits.emplace_back();
795 Bits.back().GV = &GV;
796 Bits.back().ObjectSize =
797 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
798 BitsPtr = &Bits.back();
799 }
800
801 for (MDNode *Type : Types) {
802 auto TypeID = Type->getOperand(1).get();
803
804 uint64_t Offset =
805 cast<ConstantInt>(
806 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
807 ->getZExtValue();
808
809 TypeIdMap[TypeID].insert({BitsPtr, Offset});
810 }
811 }
812 }
813
tryFindVirtualCallTargets(std::vector<VirtualCallTarget> & TargetsForSlot,const std::set<TypeMemberInfo> & TypeMemberInfos,uint64_t ByteOffset)814 bool DevirtModule::tryFindVirtualCallTargets(
815 std::vector<VirtualCallTarget> &TargetsForSlot,
816 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
817 for (const TypeMemberInfo &TM : TypeMemberInfos) {
818 if (!TM.Bits->GV->isConstant())
819 return false;
820
821 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
822 TM.Offset + ByteOffset, M);
823 if (!Ptr)
824 return false;
825
826 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
827 if (!Fn)
828 return false;
829
830 // We can disregard __cxa_pure_virtual as a possible call target, as
831 // calls to pure virtuals are UB.
832 if (Fn->getName() == "__cxa_pure_virtual")
833 continue;
834
835 TargetsForSlot.push_back({Fn, &TM});
836 }
837
838 // Give up if we couldn't find any targets.
839 return !TargetsForSlot.empty();
840 }
841
tryFindVirtualCallTargets(std::vector<ValueInfo> & TargetsForSlot,const TypeIdCompatibleVtableInfo TIdInfo,uint64_t ByteOffset)842 bool DevirtIndex::tryFindVirtualCallTargets(
843 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
844 uint64_t ByteOffset) {
845 for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
846 // Find the first non-available_externally linkage vtable initializer.
847 // We can have multiple available_externally, linkonce_odr and weak_odr
848 // vtable initializers, however we want to skip available_externally as they
849 // do not have type metadata attached, and therefore the summary will not
850 // contain any vtable functions. We can also have multiple external
851 // vtable initializers in the case of comdats, which we cannot check here.
852 // The linker should give an error in this case.
853 //
854 // Also, handle the case of same-named local Vtables with the same path
855 // and therefore the same GUID. This can happen if there isn't enough
856 // distinguishing path when compiling the source file. In that case we
857 // conservatively return false early.
858 const GlobalVarSummary *VS = nullptr;
859 bool LocalFound = false;
860 for (auto &S : P.VTableVI.getSummaryList()) {
861 if (GlobalValue::isLocalLinkage(S->linkage())) {
862 if (LocalFound)
863 return false;
864 LocalFound = true;
865 }
866 if (!GlobalValue::isAvailableExternallyLinkage(S->linkage()))
867 VS = cast<GlobalVarSummary>(S->getBaseObject());
868 }
869 if (!VS->isLive())
870 continue;
871 for (auto VTP : VS->vTableFuncs()) {
872 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
873 continue;
874
875 TargetsForSlot.push_back(VTP.FuncVI);
876 }
877 }
878
879 // Give up if we couldn't find any targets.
880 return !TargetsForSlot.empty();
881 }
882
applySingleImplDevirt(VTableSlotInfo & SlotInfo,Constant * TheFn,bool & IsExported)883 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
884 Constant *TheFn, bool &IsExported) {
885 auto Apply = [&](CallSiteInfo &CSInfo) {
886 for (auto &&VCallSite : CSInfo.CallSites) {
887 if (RemarksEnabled)
888 VCallSite.emitRemark("single-impl",
889 TheFn->stripPointerCasts()->getName(), OREGetter);
890 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
891 TheFn, VCallSite.CS.getCalledValue()->getType()));
892 // This use is no longer unsafe.
893 if (VCallSite.NumUnsafeUses)
894 --*VCallSite.NumUnsafeUses;
895 }
896 if (CSInfo.isExported())
897 IsExported = true;
898 CSInfo.markDevirt();
899 };
900 Apply(SlotInfo.CSInfo);
901 for (auto &P : SlotInfo.ConstCSInfo)
902 Apply(P.second);
903 }
904
AddCalls(VTableSlotInfo & SlotInfo,const ValueInfo & Callee)905 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
906 // We can't add calls if we haven't seen a definition
907 if (Callee.getSummaryList().empty())
908 return false;
909
910 // Insert calls into the summary index so that the devirtualized targets
911 // are eligible for import.
912 // FIXME: Annotate type tests with hotness. For now, mark these as hot
913 // to better ensure we have the opportunity to inline them.
914 bool IsExported = false;
915 auto &S = Callee.getSummaryList()[0];
916 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
917 auto AddCalls = [&](CallSiteInfo &CSInfo) {
918 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
919 FS->addCall({Callee, CI});
920 IsExported |= S->modulePath() != FS->modulePath();
921 }
922 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
923 FS->addCall({Callee, CI});
924 IsExported |= S->modulePath() != FS->modulePath();
925 }
926 };
927 AddCalls(SlotInfo.CSInfo);
928 for (auto &P : SlotInfo.ConstCSInfo)
929 AddCalls(P.second);
930 return IsExported;
931 }
932
trySingleImplDevirt(ModuleSummaryIndex * ExportSummary,MutableArrayRef<VirtualCallTarget> TargetsForSlot,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res)933 bool DevirtModule::trySingleImplDevirt(
934 ModuleSummaryIndex *ExportSummary,
935 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
936 WholeProgramDevirtResolution *Res) {
937 // See if the program contains a single implementation of this virtual
938 // function.
939 Function *TheFn = TargetsForSlot[0].Fn;
940 for (auto &&Target : TargetsForSlot)
941 if (TheFn != Target.Fn)
942 return false;
943
944 // If so, update each call site to call that implementation directly.
945 if (RemarksEnabled)
946 TargetsForSlot[0].WasDevirt = true;
947
948 bool IsExported = false;
949 applySingleImplDevirt(SlotInfo, TheFn, IsExported);
950 if (!IsExported)
951 return false;
952
953 // If the only implementation has local linkage, we must promote to external
954 // to make it visible to thin LTO objects. We can only get here during the
955 // ThinLTO export phase.
956 if (TheFn->hasLocalLinkage()) {
957 std::string NewName = (TheFn->getName() + "$merged").str();
958
959 // Since we are renaming the function, any comdats with the same name must
960 // also be renamed. This is required when targeting COFF, as the comdat name
961 // must match one of the names of the symbols in the comdat.
962 if (Comdat *C = TheFn->getComdat()) {
963 if (C->getName() == TheFn->getName()) {
964 Comdat *NewC = M.getOrInsertComdat(NewName);
965 NewC->setSelectionKind(C->getSelectionKind());
966 for (GlobalObject &GO : M.global_objects())
967 if (GO.getComdat() == C)
968 GO.setComdat(NewC);
969 }
970 }
971
972 TheFn->setLinkage(GlobalValue::ExternalLinkage);
973 TheFn->setVisibility(GlobalValue::HiddenVisibility);
974 TheFn->setName(NewName);
975 }
976 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
977 // Any needed promotion of 'TheFn' has already been done during
978 // LTO unit split, so we can ignore return value of AddCalls.
979 AddCalls(SlotInfo, TheFnVI);
980
981 Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
982 Res->SingleImplName = TheFn->getName();
983
984 return true;
985 }
986
trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,VTableSlotSummary & SlotSummary,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res,std::set<ValueInfo> & DevirtTargets)987 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
988 VTableSlotSummary &SlotSummary,
989 VTableSlotInfo &SlotInfo,
990 WholeProgramDevirtResolution *Res,
991 std::set<ValueInfo> &DevirtTargets) {
992 // See if the program contains a single implementation of this virtual
993 // function.
994 auto TheFn = TargetsForSlot[0];
995 for (auto &&Target : TargetsForSlot)
996 if (TheFn != Target)
997 return false;
998
999 // Don't devirtualize if we don't have target definition.
1000 auto Size = TheFn.getSummaryList().size();
1001 if (!Size)
1002 return false;
1003
1004 // If the summary list contains multiple summaries where at least one is
1005 // a local, give up, as we won't know which (possibly promoted) name to use.
1006 for (auto &S : TheFn.getSummaryList())
1007 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1008 return false;
1009
1010 // Collect functions devirtualized at least for one call site for stats.
1011 if (PrintSummaryDevirt)
1012 DevirtTargets.insert(TheFn);
1013
1014 auto &S = TheFn.getSummaryList()[0];
1015 bool IsExported = AddCalls(SlotInfo, TheFn);
1016 if (IsExported)
1017 ExportedGUIDs.insert(TheFn.getGUID());
1018
1019 // Record in summary for use in devirtualization during the ThinLTO import
1020 // step.
1021 Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1022 if (GlobalValue::isLocalLinkage(S->linkage())) {
1023 if (IsExported)
1024 // If target is a local function and we are exporting it by
1025 // devirtualizing a call in another module, we need to record the
1026 // promoted name.
1027 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1028 TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1029 else {
1030 LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1031 Res->SingleImplName = TheFn.name();
1032 }
1033 } else
1034 Res->SingleImplName = TheFn.name();
1035
1036 // Name will be empty if this thin link driven off of serialized combined
1037 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1038 // legacy LTO API anyway.
1039 assert(!Res->SingleImplName.empty());
1040
1041 return true;
1042 }
1043
tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res,VTableSlot Slot)1044 void DevirtModule::tryICallBranchFunnel(
1045 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1046 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1047 Triple T(M.getTargetTriple());
1048 if (T.getArch() != Triple::x86_64)
1049 return;
1050
1051 if (TargetsForSlot.size() > ClThreshold)
1052 return;
1053
1054 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1055 if (!HasNonDevirt)
1056 for (auto &P : SlotInfo.ConstCSInfo)
1057 if (!P.second.AllCallSitesDevirted) {
1058 HasNonDevirt = true;
1059 break;
1060 }
1061
1062 if (!HasNonDevirt)
1063 return;
1064
1065 FunctionType *FT =
1066 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1067 Function *JT;
1068 if (isa<MDString>(Slot.TypeID)) {
1069 JT = Function::Create(FT, Function::ExternalLinkage,
1070 M.getDataLayout().getProgramAddressSpace(),
1071 getGlobalName(Slot, {}, "branch_funnel"), &M);
1072 JT->setVisibility(GlobalValue::HiddenVisibility);
1073 } else {
1074 JT = Function::Create(FT, Function::InternalLinkage,
1075 M.getDataLayout().getProgramAddressSpace(),
1076 "branch_funnel", &M);
1077 }
1078 JT->addAttribute(1, Attribute::Nest);
1079
1080 std::vector<Value *> JTArgs;
1081 JTArgs.push_back(JT->arg_begin());
1082 for (auto &T : TargetsForSlot) {
1083 JTArgs.push_back(getMemberAddr(T.TM));
1084 JTArgs.push_back(T.Fn);
1085 }
1086
1087 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1088 Function *Intr =
1089 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1090
1091 auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1092 CI->setTailCallKind(CallInst::TCK_MustTail);
1093 ReturnInst::Create(M.getContext(), nullptr, BB);
1094
1095 bool IsExported = false;
1096 applyICallBranchFunnel(SlotInfo, JT, IsExported);
1097 if (IsExported)
1098 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1099 }
1100
applyICallBranchFunnel(VTableSlotInfo & SlotInfo,Constant * JT,bool & IsExported)1101 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1102 Constant *JT, bool &IsExported) {
1103 auto Apply = [&](CallSiteInfo &CSInfo) {
1104 if (CSInfo.isExported())
1105 IsExported = true;
1106 if (CSInfo.AllCallSitesDevirted)
1107 return;
1108 for (auto &&VCallSite : CSInfo.CallSites) {
1109 CallSite CS = VCallSite.CS;
1110
1111 // Jump tables are only profitable if the retpoline mitigation is enabled.
1112 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
1113 if (FSAttr.hasAttribute(Attribute::None) ||
1114 !FSAttr.getValueAsString().contains("+retpoline"))
1115 continue;
1116
1117 if (RemarksEnabled)
1118 VCallSite.emitRemark("branch-funnel",
1119 JT->stripPointerCasts()->getName(), OREGetter);
1120
1121 // Pass the address of the vtable in the nest register, which is r10 on
1122 // x86_64.
1123 std::vector<Type *> NewArgs;
1124 NewArgs.push_back(Int8PtrTy);
1125 for (Type *T : CS.getFunctionType()->params())
1126 NewArgs.push_back(T);
1127 FunctionType *NewFT =
1128 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
1129 CS.getFunctionType()->isVarArg());
1130 PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1131
1132 IRBuilder<> IRB(CS.getInstruction());
1133 std::vector<Value *> Args;
1134 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1135 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
1136 Args.push_back(CS.getArgOperand(I));
1137
1138 CallSite NewCS;
1139 if (CS.isCall())
1140 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1141 else
1142 NewCS = IRB.CreateInvoke(
1143 NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1144 cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
1145 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
1146 NewCS.setCallingConv(CS.getCallingConv());
1147
1148 AttributeList Attrs = CS.getAttributes();
1149 std::vector<AttributeSet> NewArgAttrs;
1150 NewArgAttrs.push_back(AttributeSet::get(
1151 M.getContext(), ArrayRef<Attribute>{Attribute::get(
1152 M.getContext(), Attribute::Nest)}));
1153 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I)
1154 NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1155 NewCS.setAttributes(
1156 AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1157 Attrs.getRetAttributes(), NewArgAttrs));
1158
1159 CS->replaceAllUsesWith(NewCS.getInstruction());
1160 CS->eraseFromParent();
1161
1162 // This use is no longer unsafe.
1163 if (VCallSite.NumUnsafeUses)
1164 --*VCallSite.NumUnsafeUses;
1165 }
1166 // Don't mark as devirtualized because there may be callers compiled without
1167 // retpoline mitigation, which would mean that they are lowered to
1168 // llvm.type.test and therefore require an llvm.type.test resolution for the
1169 // type identifier.
1170 };
1171 Apply(SlotInfo.CSInfo);
1172 for (auto &P : SlotInfo.ConstCSInfo)
1173 Apply(P.second);
1174 }
1175
tryEvaluateFunctionsWithArgs(MutableArrayRef<VirtualCallTarget> TargetsForSlot,ArrayRef<uint64_t> Args)1176 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1177 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1178 ArrayRef<uint64_t> Args) {
1179 // Evaluate each function and store the result in each target's RetVal
1180 // field.
1181 for (VirtualCallTarget &Target : TargetsForSlot) {
1182 if (Target.Fn->arg_size() != Args.size() + 1)
1183 return false;
1184
1185 Evaluator Eval(M.getDataLayout(), nullptr);
1186 SmallVector<Constant *, 2> EvalArgs;
1187 EvalArgs.push_back(
1188 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1189 for (unsigned I = 0; I != Args.size(); ++I) {
1190 auto *ArgTy = dyn_cast<IntegerType>(
1191 Target.Fn->getFunctionType()->getParamType(I + 1));
1192 if (!ArgTy)
1193 return false;
1194 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1195 }
1196
1197 Constant *RetVal;
1198 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1199 !isa<ConstantInt>(RetVal))
1200 return false;
1201 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1202 }
1203 return true;
1204 }
1205
applyUniformRetValOpt(CallSiteInfo & CSInfo,StringRef FnName,uint64_t TheRetVal)1206 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1207 uint64_t TheRetVal) {
1208 for (auto Call : CSInfo.CallSites)
1209 Call.replaceAndErase(
1210 "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1211 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1212 CSInfo.markDevirt();
1213 }
1214
tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,CallSiteInfo & CSInfo,WholeProgramDevirtResolution::ByArg * Res)1215 bool DevirtModule::tryUniformRetValOpt(
1216 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1217 WholeProgramDevirtResolution::ByArg *Res) {
1218 // Uniform return value optimization. If all functions return the same
1219 // constant, replace all calls with that constant.
1220 uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1221 for (const VirtualCallTarget &Target : TargetsForSlot)
1222 if (Target.RetVal != TheRetVal)
1223 return false;
1224
1225 if (CSInfo.isExported()) {
1226 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1227 Res->Info = TheRetVal;
1228 }
1229
1230 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1231 if (RemarksEnabled)
1232 for (auto &&Target : TargetsForSlot)
1233 Target.WasDevirt = true;
1234 return true;
1235 }
1236
getGlobalName(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name)1237 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1238 ArrayRef<uint64_t> Args,
1239 StringRef Name) {
1240 std::string FullName = "__typeid_";
1241 raw_string_ostream OS(FullName);
1242 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1243 for (uint64_t Arg : Args)
1244 OS << '_' << Arg;
1245 OS << '_' << Name;
1246 return OS.str();
1247 }
1248
shouldExportConstantsAsAbsoluteSymbols()1249 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1250 Triple T(M.getTargetTriple());
1251 return T.isX86() && T.getObjectFormat() == Triple::ELF;
1252 }
1253
exportGlobal(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name,Constant * C)1254 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1255 StringRef Name, Constant *C) {
1256 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1257 getGlobalName(Slot, Args, Name), C, &M);
1258 GA->setVisibility(GlobalValue::HiddenVisibility);
1259 }
1260
exportConstant(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name,uint32_t Const,uint32_t & Storage)1261 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1262 StringRef Name, uint32_t Const,
1263 uint32_t &Storage) {
1264 if (shouldExportConstantsAsAbsoluteSymbols()) {
1265 exportGlobal(
1266 Slot, Args, Name,
1267 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1268 return;
1269 }
1270
1271 Storage = Const;
1272 }
1273
importGlobal(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name)1274 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1275 StringRef Name) {
1276 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1277 auto *GV = dyn_cast<GlobalVariable>(C);
1278 if (GV)
1279 GV->setVisibility(GlobalValue::HiddenVisibility);
1280 return C;
1281 }
1282
importConstant(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name,IntegerType * IntTy,uint32_t Storage)1283 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1284 StringRef Name, IntegerType *IntTy,
1285 uint32_t Storage) {
1286 if (!shouldExportConstantsAsAbsoluteSymbols())
1287 return ConstantInt::get(IntTy, Storage);
1288
1289 Constant *C = importGlobal(Slot, Args, Name);
1290 auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1291 C = ConstantExpr::getPtrToInt(C, IntTy);
1292
1293 // We only need to set metadata if the global is newly created, in which
1294 // case it would not have hidden visibility.
1295 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1296 return C;
1297
1298 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1299 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1300 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1301 GV->setMetadata(LLVMContext::MD_absolute_symbol,
1302 MDNode::get(M.getContext(), {MinC, MaxC}));
1303 };
1304 unsigned AbsWidth = IntTy->getBitWidth();
1305 if (AbsWidth == IntPtrTy->getBitWidth())
1306 SetAbsRange(~0ull, ~0ull); // Full set.
1307 else
1308 SetAbsRange(0, 1ull << AbsWidth);
1309 return C;
1310 }
1311
applyUniqueRetValOpt(CallSiteInfo & CSInfo,StringRef FnName,bool IsOne,Constant * UniqueMemberAddr)1312 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1313 bool IsOne,
1314 Constant *UniqueMemberAddr) {
1315 for (auto &&Call : CSInfo.CallSites) {
1316 IRBuilder<> B(Call.CS.getInstruction());
1317 Value *Cmp =
1318 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1319 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1320 Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1321 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1322 Cmp);
1323 }
1324 CSInfo.markDevirt();
1325 }
1326
getMemberAddr(const TypeMemberInfo * M)1327 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1328 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1329 return ConstantExpr::getGetElementPtr(Int8Ty, C,
1330 ConstantInt::get(Int64Ty, M->Offset));
1331 }
1332
tryUniqueRetValOpt(unsigned BitWidth,MutableArrayRef<VirtualCallTarget> TargetsForSlot,CallSiteInfo & CSInfo,WholeProgramDevirtResolution::ByArg * Res,VTableSlot Slot,ArrayRef<uint64_t> Args)1333 bool DevirtModule::tryUniqueRetValOpt(
1334 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1335 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1336 VTableSlot Slot, ArrayRef<uint64_t> Args) {
1337 // IsOne controls whether we look for a 0 or a 1.
1338 auto tryUniqueRetValOptFor = [&](bool IsOne) {
1339 const TypeMemberInfo *UniqueMember = nullptr;
1340 for (const VirtualCallTarget &Target : TargetsForSlot) {
1341 if (Target.RetVal == (IsOne ? 1 : 0)) {
1342 if (UniqueMember)
1343 return false;
1344 UniqueMember = Target.TM;
1345 }
1346 }
1347
1348 // We should have found a unique member or bailed out by now. We already
1349 // checked for a uniform return value in tryUniformRetValOpt.
1350 assert(UniqueMember);
1351
1352 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1353 if (CSInfo.isExported()) {
1354 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1355 Res->Info = IsOne;
1356
1357 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1358 }
1359
1360 // Replace each call with the comparison.
1361 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1362 UniqueMemberAddr);
1363
1364 // Update devirtualization statistics for targets.
1365 if (RemarksEnabled)
1366 for (auto &&Target : TargetsForSlot)
1367 Target.WasDevirt = true;
1368
1369 return true;
1370 };
1371
1372 if (BitWidth == 1) {
1373 if (tryUniqueRetValOptFor(true))
1374 return true;
1375 if (tryUniqueRetValOptFor(false))
1376 return true;
1377 }
1378 return false;
1379 }
1380
applyVirtualConstProp(CallSiteInfo & CSInfo,StringRef FnName,Constant * Byte,Constant * Bit)1381 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1382 Constant *Byte, Constant *Bit) {
1383 for (auto Call : CSInfo.CallSites) {
1384 auto *RetType = cast<IntegerType>(Call.CS.getType());
1385 IRBuilder<> B(Call.CS.getInstruction());
1386 Value *Addr =
1387 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1388 if (RetType->getBitWidth() == 1) {
1389 Value *Bits = B.CreateLoad(Int8Ty, Addr);
1390 Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1391 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1392 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1393 OREGetter, IsBitSet);
1394 } else {
1395 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1396 Value *Val = B.CreateLoad(RetType, ValAddr);
1397 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1398 OREGetter, Val);
1399 }
1400 }
1401 CSInfo.markDevirt();
1402 }
1403
tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res,VTableSlot Slot)1404 bool DevirtModule::tryVirtualConstProp(
1405 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1406 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1407 // This only works if the function returns an integer.
1408 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1409 if (!RetType)
1410 return false;
1411 unsigned BitWidth = RetType->getBitWidth();
1412 if (BitWidth > 64)
1413 return false;
1414
1415 // Make sure that each function is defined, does not access memory, takes at
1416 // least one argument, does not use its first argument (which we assume is
1417 // 'this'), and has the same return type.
1418 //
1419 // Note that we test whether this copy of the function is readnone, rather
1420 // than testing function attributes, which must hold for any copy of the
1421 // function, even a less optimized version substituted at link time. This is
1422 // sound because the virtual constant propagation optimizations effectively
1423 // inline all implementations of the virtual function into each call site,
1424 // rather than using function attributes to perform local optimization.
1425 for (VirtualCallTarget &Target : TargetsForSlot) {
1426 if (Target.Fn->isDeclaration() ||
1427 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1428 MAK_ReadNone ||
1429 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1430 Target.Fn->getReturnType() != RetType)
1431 return false;
1432 }
1433
1434 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1435 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1436 continue;
1437
1438 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1439 if (Res)
1440 ResByArg = &Res->ResByArg[CSByConstantArg.first];
1441
1442 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1443 continue;
1444
1445 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1446 ResByArg, Slot, CSByConstantArg.first))
1447 continue;
1448
1449 // Find an allocation offset in bits in all vtables associated with the
1450 // type.
1451 uint64_t AllocBefore =
1452 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1453 uint64_t AllocAfter =
1454 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1455
1456 // Calculate the total amount of padding needed to store a value at both
1457 // ends of the object.
1458 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1459 for (auto &&Target : TargetsForSlot) {
1460 TotalPaddingBefore += std::max<int64_t>(
1461 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1462 TotalPaddingAfter += std::max<int64_t>(
1463 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1464 }
1465
1466 // If the amount of padding is too large, give up.
1467 // FIXME: do something smarter here.
1468 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1469 continue;
1470
1471 // Calculate the offset to the value as a (possibly negative) byte offset
1472 // and (if applicable) a bit offset, and store the values in the targets.
1473 int64_t OffsetByte;
1474 uint64_t OffsetBit;
1475 if (TotalPaddingBefore <= TotalPaddingAfter)
1476 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1477 OffsetBit);
1478 else
1479 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1480 OffsetBit);
1481
1482 if (RemarksEnabled)
1483 for (auto &&Target : TargetsForSlot)
1484 Target.WasDevirt = true;
1485
1486
1487 if (CSByConstantArg.second.isExported()) {
1488 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1489 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1490 ResByArg->Byte);
1491 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1492 ResByArg->Bit);
1493 }
1494
1495 // Rewrite each call to a load from OffsetByte/OffsetBit.
1496 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1497 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1498 applyVirtualConstProp(CSByConstantArg.second,
1499 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1500 }
1501 return true;
1502 }
1503
rebuildGlobal(VTableBits & B)1504 void DevirtModule::rebuildGlobal(VTableBits &B) {
1505 if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1506 return;
1507
1508 // Align the before byte array to the global's minimum alignment so that we
1509 // don't break any alignment requirements on the global.
1510 MaybeAlign Alignment(B.GV->getAlignment());
1511 if (!Alignment)
1512 Alignment =
1513 Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType()));
1514 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1515
1516 // Before was stored in reverse order; flip it now.
1517 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1518 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1519
1520 // Build an anonymous global containing the before bytes, followed by the
1521 // original initializer, followed by the after bytes.
1522 auto NewInit = ConstantStruct::getAnon(
1523 {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1524 B.GV->getInitializer(),
1525 ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1526 auto NewGV =
1527 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1528 GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1529 NewGV->setSection(B.GV->getSection());
1530 NewGV->setComdat(B.GV->getComdat());
1531 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1532
1533 // Copy the original vtable's metadata to the anonymous global, adjusting
1534 // offsets as required.
1535 NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1536
1537 // Build an alias named after the original global, pointing at the second
1538 // element (the original initializer).
1539 auto Alias = GlobalAlias::create(
1540 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1541 ConstantExpr::getGetElementPtr(
1542 NewInit->getType(), NewGV,
1543 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1544 ConstantInt::get(Int32Ty, 1)}),
1545 &M);
1546 Alias->setVisibility(B.GV->getVisibility());
1547 Alias->takeName(B.GV);
1548
1549 B.GV->replaceAllUsesWith(Alias);
1550 B.GV->eraseFromParent();
1551 }
1552
areRemarksEnabled()1553 bool DevirtModule::areRemarksEnabled() {
1554 const auto &FL = M.getFunctionList();
1555 for (const Function &Fn : FL) {
1556 const auto &BBL = Fn.getBasicBlockList();
1557 if (BBL.empty())
1558 continue;
1559 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1560 return DI.isEnabled();
1561 }
1562 return false;
1563 }
1564
scanTypeTestUsers(Function * TypeTestFunc)1565 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc) {
1566 // Find all virtual calls via a virtual table pointer %p under an assumption
1567 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1568 // points to a member of the type identifier %md. Group calls by (type ID,
1569 // offset) pair (effectively the identity of the virtual function) and store
1570 // to CallSlots.
1571 DenseSet<CallSite> SeenCallSites;
1572 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1573 I != E;) {
1574 auto CI = dyn_cast<CallInst>(I->getUser());
1575 ++I;
1576 if (!CI)
1577 continue;
1578
1579 // Search for virtual calls based on %p and add them to DevirtCalls.
1580 SmallVector<DevirtCallSite, 1> DevirtCalls;
1581 SmallVector<CallInst *, 1> Assumes;
1582 auto &DT = LookupDomTree(*CI->getFunction());
1583 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1584
1585 // If we found any, add them to CallSlots.
1586 if (!Assumes.empty()) {
1587 Metadata *TypeId =
1588 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1589 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1590 for (DevirtCallSite Call : DevirtCalls) {
1591 // Only add this CallSite if we haven't seen it before. The vtable
1592 // pointer may have been CSE'd with pointers from other call sites,
1593 // and we don't want to process call sites multiple times. We can't
1594 // just skip the vtable Ptr if it has been seen before, however, since
1595 // it may be shared by type tests that dominate different calls.
1596 if (SeenCallSites.insert(Call.CS).second)
1597 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1598 }
1599 }
1600
1601 // We no longer need the assumes or the type test.
1602 for (auto Assume : Assumes)
1603 Assume->eraseFromParent();
1604 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1605 // may use the vtable argument later.
1606 if (CI->use_empty())
1607 CI->eraseFromParent();
1608 }
1609 }
1610
scanTypeCheckedLoadUsers(Function * TypeCheckedLoadFunc)1611 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1612 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1613
1614 for (auto I = TypeCheckedLoadFunc->use_begin(),
1615 E = TypeCheckedLoadFunc->use_end();
1616 I != E;) {
1617 auto CI = dyn_cast<CallInst>(I->getUser());
1618 ++I;
1619 if (!CI)
1620 continue;
1621
1622 Value *Ptr = CI->getArgOperand(0);
1623 Value *Offset = CI->getArgOperand(1);
1624 Value *TypeIdValue = CI->getArgOperand(2);
1625 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1626
1627 SmallVector<DevirtCallSite, 1> DevirtCalls;
1628 SmallVector<Instruction *, 1> LoadedPtrs;
1629 SmallVector<Instruction *, 1> Preds;
1630 bool HasNonCallUses = false;
1631 auto &DT = LookupDomTree(*CI->getFunction());
1632 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1633 HasNonCallUses, CI, DT);
1634
1635 // Start by generating "pessimistic" code that explicitly loads the function
1636 // pointer from the vtable and performs the type check. If possible, we will
1637 // eliminate the load and the type check later.
1638
1639 // If possible, only generate the load at the point where it is used.
1640 // This helps avoid unnecessary spills.
1641 IRBuilder<> LoadB(
1642 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1643 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1644 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1645 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1646
1647 for (Instruction *LoadedPtr : LoadedPtrs) {
1648 LoadedPtr->replaceAllUsesWith(LoadedValue);
1649 LoadedPtr->eraseFromParent();
1650 }
1651
1652 // Likewise for the type test.
1653 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1654 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1655
1656 for (Instruction *Pred : Preds) {
1657 Pred->replaceAllUsesWith(TypeTestCall);
1658 Pred->eraseFromParent();
1659 }
1660
1661 // We have already erased any extractvalue instructions that refer to the
1662 // intrinsic call, but the intrinsic may have other non-extractvalue uses
1663 // (although this is unlikely). In that case, explicitly build a pair and
1664 // RAUW it.
1665 if (!CI->use_empty()) {
1666 Value *Pair = UndefValue::get(CI->getType());
1667 IRBuilder<> B(CI);
1668 Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1669 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1670 CI->replaceAllUsesWith(Pair);
1671 }
1672
1673 // The number of unsafe uses is initially the number of uses.
1674 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1675 NumUnsafeUses = DevirtCalls.size();
1676
1677 // If the function pointer has a non-call user, we cannot eliminate the type
1678 // check, as one of those users may eventually call the pointer. Increment
1679 // the unsafe use count to make sure it cannot reach zero.
1680 if (HasNonCallUses)
1681 ++NumUnsafeUses;
1682 for (DevirtCallSite Call : DevirtCalls) {
1683 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1684 &NumUnsafeUses);
1685 }
1686
1687 CI->eraseFromParent();
1688 }
1689 }
1690
importResolution(VTableSlot Slot,VTableSlotInfo & SlotInfo)1691 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1692 auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1693 if (!TypeId)
1694 return;
1695 const TypeIdSummary *TidSummary =
1696 ImportSummary->getTypeIdSummary(TypeId->getString());
1697 if (!TidSummary)
1698 return;
1699 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1700 if (ResI == TidSummary->WPDRes.end())
1701 return;
1702 const WholeProgramDevirtResolution &Res = ResI->second;
1703
1704 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1705 assert(!Res.SingleImplName.empty());
1706 // The type of the function in the declaration is irrelevant because every
1707 // call site will cast it to the correct type.
1708 Constant *SingleImpl =
1709 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1710 Type::getVoidTy(M.getContext()))
1711 .getCallee());
1712
1713 // This is the import phase so we should not be exporting anything.
1714 bool IsExported = false;
1715 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1716 assert(!IsExported);
1717 }
1718
1719 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1720 auto I = Res.ResByArg.find(CSByConstantArg.first);
1721 if (I == Res.ResByArg.end())
1722 continue;
1723 auto &ResByArg = I->second;
1724 // FIXME: We should figure out what to do about the "function name" argument
1725 // to the apply* functions, as the function names are unavailable during the
1726 // importing phase. For now we just pass the empty string. This does not
1727 // impact correctness because the function names are just used for remarks.
1728 switch (ResByArg.TheKind) {
1729 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1730 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1731 break;
1732 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1733 Constant *UniqueMemberAddr =
1734 importGlobal(Slot, CSByConstantArg.first, "unique_member");
1735 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1736 UniqueMemberAddr);
1737 break;
1738 }
1739 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1740 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1741 Int32Ty, ResByArg.Byte);
1742 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1743 ResByArg.Bit);
1744 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1745 break;
1746 }
1747 default:
1748 break;
1749 }
1750 }
1751
1752 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1753 // The type of the function is irrelevant, because it's bitcast at calls
1754 // anyhow.
1755 Constant *JT = cast<Constant>(
1756 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1757 Type::getVoidTy(M.getContext()))
1758 .getCallee());
1759 bool IsExported = false;
1760 applyICallBranchFunnel(SlotInfo, JT, IsExported);
1761 assert(!IsExported);
1762 }
1763 }
1764
removeRedundantTypeTests()1765 void DevirtModule::removeRedundantTypeTests() {
1766 auto True = ConstantInt::getTrue(M.getContext());
1767 for (auto &&U : NumUnsafeUsesForTypeTest) {
1768 if (U.second == 0) {
1769 U.first->replaceAllUsesWith(True);
1770 U.first->eraseFromParent();
1771 }
1772 }
1773 }
1774
run()1775 bool DevirtModule::run() {
1776 // If only some of the modules were split, we cannot correctly perform
1777 // this transformation. We already checked for the presense of type tests
1778 // with partially split modules during the thin link, and would have emitted
1779 // an error if any were found, so here we can simply return.
1780 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1781 (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1782 return false;
1783
1784 Function *TypeTestFunc =
1785 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1786 Function *TypeCheckedLoadFunc =
1787 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1788 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1789
1790 // Normally if there are no users of the devirtualization intrinsics in the
1791 // module, this pass has nothing to do. But if we are exporting, we also need
1792 // to handle any users that appear only in the function summaries.
1793 if (!ExportSummary &&
1794 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1795 AssumeFunc->use_empty()) &&
1796 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1797 return false;
1798
1799 if (TypeTestFunc && AssumeFunc)
1800 scanTypeTestUsers(TypeTestFunc);
1801
1802 if (TypeCheckedLoadFunc)
1803 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1804
1805 if (ImportSummary) {
1806 for (auto &S : CallSlots)
1807 importResolution(S.first, S.second);
1808
1809 removeRedundantTypeTests();
1810
1811 // The rest of the code is only necessary when exporting or during regular
1812 // LTO, so we are done.
1813 return true;
1814 }
1815
1816 // Rebuild type metadata into a map for easy lookup.
1817 std::vector<VTableBits> Bits;
1818 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1819 buildTypeIdentifierMap(Bits, TypeIdMap);
1820 if (TypeIdMap.empty())
1821 return true;
1822
1823 // Collect information from summary about which calls to try to devirtualize.
1824 if (ExportSummary) {
1825 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1826 for (auto &P : TypeIdMap) {
1827 if (auto *TypeId = dyn_cast<MDString>(P.first))
1828 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1829 TypeId);
1830 }
1831
1832 for (auto &P : *ExportSummary) {
1833 for (auto &S : P.second.SummaryList) {
1834 auto *FS = dyn_cast<FunctionSummary>(S.get());
1835 if (!FS)
1836 continue;
1837 // FIXME: Only add live functions.
1838 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1839 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1840 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1841 }
1842 }
1843 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1844 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1845 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1846 }
1847 }
1848 for (const FunctionSummary::ConstVCall &VC :
1849 FS->type_test_assume_const_vcalls()) {
1850 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1851 CallSlots[{MD, VC.VFunc.Offset}]
1852 .ConstCSInfo[VC.Args]
1853 .addSummaryTypeTestAssumeUser(FS);
1854 }
1855 }
1856 for (const FunctionSummary::ConstVCall &VC :
1857 FS->type_checked_load_const_vcalls()) {
1858 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1859 CallSlots[{MD, VC.VFunc.Offset}]
1860 .ConstCSInfo[VC.Args]
1861 .addSummaryTypeCheckedLoadUser(FS);
1862 }
1863 }
1864 }
1865 }
1866 }
1867
1868 // For each (type, offset) pair:
1869 bool DidVirtualConstProp = false;
1870 std::map<std::string, Function*> DevirtTargets;
1871 for (auto &S : CallSlots) {
1872 // Search each of the members of the type identifier for the virtual
1873 // function implementation at offset S.first.ByteOffset, and add to
1874 // TargetsForSlot.
1875 std::vector<VirtualCallTarget> TargetsForSlot;
1876 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1877 S.first.ByteOffset)) {
1878 WholeProgramDevirtResolution *Res = nullptr;
1879 if (ExportSummary && isa<MDString>(S.first.TypeID))
1880 Res = &ExportSummary
1881 ->getOrInsertTypeIdSummary(
1882 cast<MDString>(S.first.TypeID)->getString())
1883 .WPDRes[S.first.ByteOffset];
1884
1885 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
1886 DidVirtualConstProp |=
1887 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
1888
1889 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
1890 }
1891
1892 // Collect functions devirtualized at least for one call site for stats.
1893 if (RemarksEnabled)
1894 for (const auto &T : TargetsForSlot)
1895 if (T.WasDevirt)
1896 DevirtTargets[T.Fn->getName()] = T.Fn;
1897 }
1898
1899 // CFI-specific: if we are exporting and any llvm.type.checked.load
1900 // intrinsics were *not* devirtualized, we need to add the resulting
1901 // llvm.type.test intrinsics to the function summaries so that the
1902 // LowerTypeTests pass will export them.
1903 if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1904 auto GUID =
1905 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1906 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1907 FS->addTypeTest(GUID);
1908 for (auto &CCS : S.second.ConstCSInfo)
1909 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1910 FS->addTypeTest(GUID);
1911 }
1912 }
1913
1914 if (RemarksEnabled) {
1915 // Generate remarks for each devirtualized function.
1916 for (const auto &DT : DevirtTargets) {
1917 Function *F = DT.second;
1918
1919 using namespace ore;
1920 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1921 << "devirtualized "
1922 << NV("FunctionName", DT.first));
1923 }
1924 }
1925
1926 removeRedundantTypeTests();
1927
1928 // Rebuild each global we touched as part of virtual constant propagation to
1929 // include the before and after bytes.
1930 if (DidVirtualConstProp)
1931 for (VTableBits &B : Bits)
1932 rebuildGlobal(B);
1933
1934 // We have lowered or deleted the type checked load intrinsics, so we no
1935 // longer have enough information to reason about the liveness of virtual
1936 // function pointers in GlobalDCE.
1937 for (GlobalVariable &GV : M.globals())
1938 GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
1939
1940 return true;
1941 }
1942
run()1943 void DevirtIndex::run() {
1944 if (ExportSummary.typeIdCompatibleVtableMap().empty())
1945 return;
1946
1947 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
1948 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
1949 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
1950 }
1951
1952 // Collect information from summary about which calls to try to devirtualize.
1953 for (auto &P : ExportSummary) {
1954 for (auto &S : P.second.SummaryList) {
1955 auto *FS = dyn_cast<FunctionSummary>(S.get());
1956 if (!FS)
1957 continue;
1958 // FIXME: Only add live functions.
1959 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1960 for (StringRef Name : NameByGUID[VF.GUID]) {
1961 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1962 }
1963 }
1964 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1965 for (StringRef Name : NameByGUID[VF.GUID]) {
1966 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1967 }
1968 }
1969 for (const FunctionSummary::ConstVCall &VC :
1970 FS->type_test_assume_const_vcalls()) {
1971 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1972 CallSlots[{Name, VC.VFunc.Offset}]
1973 .ConstCSInfo[VC.Args]
1974 .addSummaryTypeTestAssumeUser(FS);
1975 }
1976 }
1977 for (const FunctionSummary::ConstVCall &VC :
1978 FS->type_checked_load_const_vcalls()) {
1979 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1980 CallSlots[{Name, VC.VFunc.Offset}]
1981 .ConstCSInfo[VC.Args]
1982 .addSummaryTypeCheckedLoadUser(FS);
1983 }
1984 }
1985 }
1986 }
1987
1988 std::set<ValueInfo> DevirtTargets;
1989 // For each (type, offset) pair:
1990 for (auto &S : CallSlots) {
1991 // Search each of the members of the type identifier for the virtual
1992 // function implementation at offset S.first.ByteOffset, and add to
1993 // TargetsForSlot.
1994 std::vector<ValueInfo> TargetsForSlot;
1995 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
1996 assert(TidSummary);
1997 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
1998 S.first.ByteOffset)) {
1999 WholeProgramDevirtResolution *Res =
2000 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2001 .WPDRes[S.first.ByteOffset];
2002
2003 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2004 DevirtTargets))
2005 continue;
2006 }
2007 }
2008
2009 // Optionally have the thin link print message for each devirtualized
2010 // function.
2011 if (PrintSummaryDevirt)
2012 for (const auto &DT : DevirtTargets)
2013 errs() << "Devirtualized call to " << DT << "\n";
2014
2015 return;
2016 }
2017