• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/AliasAnalysis.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/IR/CallSite.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/ModuleSummaryIndexYAML.h"
83 #include "llvm/InitializePasses.h"
84 #include "llvm/Pass.h"
85 #include "llvm/PassRegistry.h"
86 #include "llvm/PassSupport.h"
87 #include "llvm/Support/Casting.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/Error.h"
90 #include "llvm/Support/FileSystem.h"
91 #include "llvm/Support/MathExtras.h"
92 #include "llvm/Transforms/IPO.h"
93 #include "llvm/Transforms/IPO/FunctionAttrs.h"
94 #include "llvm/Transforms/Utils/Evaluator.h"
95 #include <algorithm>
96 #include <cstddef>
97 #include <map>
98 #include <set>
99 #include <string>
100 
101 using namespace llvm;
102 using namespace wholeprogramdevirt;
103 
104 #define DEBUG_TYPE "wholeprogramdevirt"
105 
106 static cl::opt<PassSummaryAction> ClSummaryAction(
107     "wholeprogramdevirt-summary-action",
108     cl::desc("What to do with the summary when running this pass"),
109     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
110                clEnumValN(PassSummaryAction::Import, "import",
111                           "Import typeid resolutions from summary and globals"),
112                clEnumValN(PassSummaryAction::Export, "export",
113                           "Export typeid resolutions to summary and globals")),
114     cl::Hidden);
115 
116 static cl::opt<std::string> ClReadSummary(
117     "wholeprogramdevirt-read-summary",
118     cl::desc("Read summary from given YAML file before running pass"),
119     cl::Hidden);
120 
121 static cl::opt<std::string> ClWriteSummary(
122     "wholeprogramdevirt-write-summary",
123     cl::desc("Write summary to given YAML file after running pass"),
124     cl::Hidden);
125 
126 static cl::opt<unsigned>
127     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
128                 cl::init(10), cl::ZeroOrMore,
129                 cl::desc("Maximum number of call targets per "
130                          "call site to enable branch funnels"));
131 
132 static cl::opt<bool>
133     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
134                        cl::init(false), cl::ZeroOrMore,
135                        cl::desc("Print index-based devirtualization messages"));
136 
137 // Find the minimum offset that we may store a value of size Size bits at. If
138 // IsAfter is set, look for an offset before the object, otherwise look for an
139 // offset after the object.
140 uint64_t
findLowestOffset(ArrayRef<VirtualCallTarget> Targets,bool IsAfter,uint64_t Size)141 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
142                                      bool IsAfter, uint64_t Size) {
143   // Find a minimum offset taking into account only vtable sizes.
144   uint64_t MinByte = 0;
145   for (const VirtualCallTarget &Target : Targets) {
146     if (IsAfter)
147       MinByte = std::max(MinByte, Target.minAfterBytes());
148     else
149       MinByte = std::max(MinByte, Target.minBeforeBytes());
150   }
151 
152   // Build a vector of arrays of bytes covering, for each target, a slice of the
153   // used region (see AccumBitVector::BytesUsed in
154   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
155   // this aligns the used regions to start at MinByte.
156   //
157   // In this example, A, B and C are vtables, # is a byte already allocated for
158   // a virtual function pointer, AAAA... (etc.) are the used regions for the
159   // vtables and Offset(X) is the value computed for the Offset variable below
160   // for X.
161   //
162   //                    Offset(A)
163   //                    |       |
164   //                            |MinByte
165   // A: ################AAAAAAAA|AAAAAAAA
166   // B: ########BBBBBBBBBBBBBBBB|BBBB
167   // C: ########################|CCCCCCCCCCCCCCCC
168   //            |   Offset(B)   |
169   //
170   // This code produces the slices of A, B and C that appear after the divider
171   // at MinByte.
172   std::vector<ArrayRef<uint8_t>> Used;
173   for (const VirtualCallTarget &Target : Targets) {
174     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
175                                        : Target.TM->Bits->Before.BytesUsed;
176     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
177                               : MinByte - Target.minBeforeBytes();
178 
179     // Disregard used regions that are smaller than Offset. These are
180     // effectively all-free regions that do not need to be checked.
181     if (VTUsed.size() > Offset)
182       Used.push_back(VTUsed.slice(Offset));
183   }
184 
185   if (Size == 1) {
186     // Find a free bit in each member of Used.
187     for (unsigned I = 0;; ++I) {
188       uint8_t BitsUsed = 0;
189       for (auto &&B : Used)
190         if (I < B.size())
191           BitsUsed |= B[I];
192       if (BitsUsed != 0xff)
193         return (MinByte + I) * 8 +
194                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
195     }
196   } else {
197     // Find a free (Size/8) byte region in each member of Used.
198     // FIXME: see if alignment helps.
199     for (unsigned I = 0;; ++I) {
200       for (auto &&B : Used) {
201         unsigned Byte = 0;
202         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
203           if (B[I + Byte])
204             goto NextI;
205           ++Byte;
206         }
207       }
208       return (MinByte + I) * 8;
209     NextI:;
210     }
211   }
212 }
213 
setBeforeReturnValues(MutableArrayRef<VirtualCallTarget> Targets,uint64_t AllocBefore,unsigned BitWidth,int64_t & OffsetByte,uint64_t & OffsetBit)214 void wholeprogramdevirt::setBeforeReturnValues(
215     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
216     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
217   if (BitWidth == 1)
218     OffsetByte = -(AllocBefore / 8 + 1);
219   else
220     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
221   OffsetBit = AllocBefore % 8;
222 
223   for (VirtualCallTarget &Target : Targets) {
224     if (BitWidth == 1)
225       Target.setBeforeBit(AllocBefore);
226     else
227       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
228   }
229 }
230 
setAfterReturnValues(MutableArrayRef<VirtualCallTarget> Targets,uint64_t AllocAfter,unsigned BitWidth,int64_t & OffsetByte,uint64_t & OffsetBit)231 void wholeprogramdevirt::setAfterReturnValues(
232     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
233     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
234   if (BitWidth == 1)
235     OffsetByte = AllocAfter / 8;
236   else
237     OffsetByte = (AllocAfter + 7) / 8;
238   OffsetBit = AllocAfter % 8;
239 
240   for (VirtualCallTarget &Target : Targets) {
241     if (BitWidth == 1)
242       Target.setAfterBit(AllocAfter);
243     else
244       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
245   }
246 }
247 
VirtualCallTarget(Function * Fn,const TypeMemberInfo * TM)248 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
249     : Fn(Fn), TM(TM),
250       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
251 
252 namespace {
253 
254 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
255 // tables, and the ByteOffset is the offset in bytes from the address point to
256 // the virtual function pointer.
257 struct VTableSlot {
258   Metadata *TypeID;
259   uint64_t ByteOffset;
260 };
261 
262 } // end anonymous namespace
263 
264 namespace llvm {
265 
266 template <> struct DenseMapInfo<VTableSlot> {
getEmptyKeyllvm::DenseMapInfo267   static VTableSlot getEmptyKey() {
268     return {DenseMapInfo<Metadata *>::getEmptyKey(),
269             DenseMapInfo<uint64_t>::getEmptyKey()};
270   }
getTombstoneKeyllvm::DenseMapInfo271   static VTableSlot getTombstoneKey() {
272     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
273             DenseMapInfo<uint64_t>::getTombstoneKey()};
274   }
getHashValuellvm::DenseMapInfo275   static unsigned getHashValue(const VTableSlot &I) {
276     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
277            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
278   }
isEqualllvm::DenseMapInfo279   static bool isEqual(const VTableSlot &LHS,
280                       const VTableSlot &RHS) {
281     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
282   }
283 };
284 
285 template <> struct DenseMapInfo<VTableSlotSummary> {
getEmptyKeyllvm::DenseMapInfo286   static VTableSlotSummary getEmptyKey() {
287     return {DenseMapInfo<StringRef>::getEmptyKey(),
288             DenseMapInfo<uint64_t>::getEmptyKey()};
289   }
getTombstoneKeyllvm::DenseMapInfo290   static VTableSlotSummary getTombstoneKey() {
291     return {DenseMapInfo<StringRef>::getTombstoneKey(),
292             DenseMapInfo<uint64_t>::getTombstoneKey()};
293   }
getHashValuellvm::DenseMapInfo294   static unsigned getHashValue(const VTableSlotSummary &I) {
295     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
296            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
297   }
isEqualllvm::DenseMapInfo298   static bool isEqual(const VTableSlotSummary &LHS,
299                       const VTableSlotSummary &RHS) {
300     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
301   }
302 };
303 
304 } // end namespace llvm
305 
306 namespace {
307 
308 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
309 // the indirect virtual call.
310 struct VirtualCallSite {
311   Value *VTable;
312   CallSite CS;
313 
314   // If non-null, this field points to the associated unsafe use count stored in
315   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
316   // of that field for details.
317   unsigned *NumUnsafeUses;
318 
319   void
emitRemark__anon96dadd540211::VirtualCallSite320   emitRemark(const StringRef OptName, const StringRef TargetName,
321              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
322     Function *F = CS.getCaller();
323     DebugLoc DLoc = CS->getDebugLoc();
324     BasicBlock *Block = CS.getParent();
325 
326     using namespace ore;
327     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
328                       << NV("Optimization", OptName)
329                       << ": devirtualized a call to "
330                       << NV("FunctionName", TargetName));
331   }
332 
replaceAndErase__anon96dadd540211::VirtualCallSite333   void replaceAndErase(
334       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
335       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
336       Value *New) {
337     if (RemarksEnabled)
338       emitRemark(OptName, TargetName, OREGetter);
339     CS->replaceAllUsesWith(New);
340     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
341       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
342       II->getUnwindDest()->removePredecessor(II->getParent());
343     }
344     CS->eraseFromParent();
345     // This use is no longer unsafe.
346     if (NumUnsafeUses)
347       --*NumUnsafeUses;
348   }
349 };
350 
351 // Call site information collected for a specific VTableSlot and possibly a list
352 // of constant integer arguments. The grouping by arguments is handled by the
353 // VTableSlotInfo class.
354 struct CallSiteInfo {
355   /// The set of call sites for this slot. Used during regular LTO and the
356   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
357   /// call sites that appear in the merged module itself); in each of these
358   /// cases we are directly operating on the call sites at the IR level.
359   std::vector<VirtualCallSite> CallSites;
360 
361   /// Whether all call sites represented by this CallSiteInfo, including those
362   /// in summaries, have been devirtualized. This starts off as true because a
363   /// default constructed CallSiteInfo represents no call sites.
364   bool AllCallSitesDevirted = true;
365 
366   // These fields are used during the export phase of ThinLTO and reflect
367   // information collected from function summaries.
368 
369   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
370   /// this slot.
371   bool SummaryHasTypeTestAssumeUsers = false;
372 
373   /// CFI-specific: a vector containing the list of function summaries that use
374   /// the llvm.type.checked.load intrinsic and therefore will require
375   /// resolutions for llvm.type.test in order to implement CFI checks if
376   /// devirtualization was unsuccessful. If devirtualization was successful, the
377   /// pass will clear this vector by calling markDevirt(). If at the end of the
378   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
379   /// to each of the function summaries in the vector.
380   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
381   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
382 
isExported__anon96dadd540211::CallSiteInfo383   bool isExported() const {
384     return SummaryHasTypeTestAssumeUsers ||
385            !SummaryTypeCheckedLoadUsers.empty();
386   }
387 
addSummaryTypeCheckedLoadUser__anon96dadd540211::CallSiteInfo388   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
389     SummaryTypeCheckedLoadUsers.push_back(FS);
390     AllCallSitesDevirted = false;
391   }
392 
addSummaryTypeTestAssumeUser__anon96dadd540211::CallSiteInfo393   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
394     SummaryTypeTestAssumeUsers.push_back(FS);
395     SummaryHasTypeTestAssumeUsers = true;
396     AllCallSitesDevirted = false;
397   }
398 
markDevirt__anon96dadd540211::CallSiteInfo399   void markDevirt() {
400     AllCallSitesDevirted = true;
401 
402     // As explained in the comment for SummaryTypeCheckedLoadUsers.
403     SummaryTypeCheckedLoadUsers.clear();
404   }
405 };
406 
407 // Call site information collected for a specific VTableSlot.
408 struct VTableSlotInfo {
409   // The set of call sites which do not have all constant integer arguments
410   // (excluding "this").
411   CallSiteInfo CSInfo;
412 
413   // The set of call sites with all constant integer arguments (excluding
414   // "this"), grouped by argument list.
415   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
416 
417   void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
418 
419 private:
420   CallSiteInfo &findCallSiteInfo(CallSite CS);
421 };
422 
findCallSiteInfo(CallSite CS)423 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
424   std::vector<uint64_t> Args;
425   auto *CI = dyn_cast<IntegerType>(CS.getType());
426   if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
427     return CSInfo;
428   for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
429     auto *CI = dyn_cast<ConstantInt>(Arg);
430     if (!CI || CI->getBitWidth() > 64)
431       return CSInfo;
432     Args.push_back(CI->getZExtValue());
433   }
434   return ConstCSInfo[Args];
435 }
436 
addCallSite(Value * VTable,CallSite CS,unsigned * NumUnsafeUses)437 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
438                                  unsigned *NumUnsafeUses) {
439   auto &CSI = findCallSiteInfo(CS);
440   CSI.AllCallSitesDevirted = false;
441   CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
442 }
443 
444 struct DevirtModule {
445   Module &M;
446   function_ref<AAResults &(Function &)> AARGetter;
447   function_ref<DominatorTree &(Function &)> LookupDomTree;
448 
449   ModuleSummaryIndex *ExportSummary;
450   const ModuleSummaryIndex *ImportSummary;
451 
452   IntegerType *Int8Ty;
453   PointerType *Int8PtrTy;
454   IntegerType *Int32Ty;
455   IntegerType *Int64Ty;
456   IntegerType *IntPtrTy;
457 
458   bool RemarksEnabled;
459   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
460 
461   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
462 
463   // This map keeps track of the number of "unsafe" uses of a loaded function
464   // pointer. The key is the associated llvm.type.test intrinsic call generated
465   // by this pass. An unsafe use is one that calls the loaded function pointer
466   // directly. Every time we eliminate an unsafe use (for example, by
467   // devirtualizing it or by applying virtual constant propagation), we
468   // decrement the value stored in this map. If a value reaches zero, we can
469   // eliminate the type check by RAUWing the associated llvm.type.test call with
470   // true.
471   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
472 
DevirtModule__anon96dadd540211::DevirtModule473   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
474                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
475                function_ref<DominatorTree &(Function &)> LookupDomTree,
476                ModuleSummaryIndex *ExportSummary,
477                const ModuleSummaryIndex *ImportSummary)
478       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
479         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
480         Int8Ty(Type::getInt8Ty(M.getContext())),
481         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
482         Int32Ty(Type::getInt32Ty(M.getContext())),
483         Int64Ty(Type::getInt64Ty(M.getContext())),
484         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
485         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
486     assert(!(ExportSummary && ImportSummary));
487   }
488 
489   bool areRemarksEnabled();
490 
491   void scanTypeTestUsers(Function *TypeTestFunc);
492   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
493 
494   void buildTypeIdentifierMap(
495       std::vector<VTableBits> &Bits,
496       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
497   bool
498   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
499                             const std::set<TypeMemberInfo> &TypeMemberInfos,
500                             uint64_t ByteOffset);
501 
502   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
503                              bool &IsExported);
504   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
505                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
506                            VTableSlotInfo &SlotInfo,
507                            WholeProgramDevirtResolution *Res);
508 
509   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
510                               bool &IsExported);
511   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
512                             VTableSlotInfo &SlotInfo,
513                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
514 
515   bool tryEvaluateFunctionsWithArgs(
516       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
517       ArrayRef<uint64_t> Args);
518 
519   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
520                              uint64_t TheRetVal);
521   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
522                            CallSiteInfo &CSInfo,
523                            WholeProgramDevirtResolution::ByArg *Res);
524 
525   // Returns the global symbol name that is used to export information about the
526   // given vtable slot and list of arguments.
527   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
528                             StringRef Name);
529 
530   bool shouldExportConstantsAsAbsoluteSymbols();
531 
532   // This function is called during the export phase to create a symbol
533   // definition containing information about the given vtable slot and list of
534   // arguments.
535   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
536                     Constant *C);
537   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
538                       uint32_t Const, uint32_t &Storage);
539 
540   // This function is called during the import phase to create a reference to
541   // the symbol definition created during the export phase.
542   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
543                          StringRef Name);
544   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
545                            StringRef Name, IntegerType *IntTy,
546                            uint32_t Storage);
547 
548   Constant *getMemberAddr(const TypeMemberInfo *M);
549 
550   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
551                             Constant *UniqueMemberAddr);
552   bool tryUniqueRetValOpt(unsigned BitWidth,
553                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
554                           CallSiteInfo &CSInfo,
555                           WholeProgramDevirtResolution::ByArg *Res,
556                           VTableSlot Slot, ArrayRef<uint64_t> Args);
557 
558   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
559                              Constant *Byte, Constant *Bit);
560   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
561                            VTableSlotInfo &SlotInfo,
562                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
563 
564   void rebuildGlobal(VTableBits &B);
565 
566   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
567   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
568 
569   // If we were able to eliminate all unsafe uses for a type checked load,
570   // eliminate the associated type tests by replacing them with true.
571   void removeRedundantTypeTests();
572 
573   bool run();
574 
575   // Lower the module using the action and summary passed as command line
576   // arguments. For testing purposes only.
577   static bool
578   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
579                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
580                 function_ref<DominatorTree &(Function &)> LookupDomTree);
581 };
582 
583 struct DevirtIndex {
584   ModuleSummaryIndex &ExportSummary;
585   // The set in which to record GUIDs exported from their module by
586   // devirtualization, used by client to ensure they are not internalized.
587   std::set<GlobalValue::GUID> &ExportedGUIDs;
588   // A map in which to record the information necessary to locate the WPD
589   // resolution for local targets in case they are exported by cross module
590   // importing.
591   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
592 
593   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
594 
DevirtIndex__anon96dadd540211::DevirtIndex595   DevirtIndex(
596       ModuleSummaryIndex &ExportSummary,
597       std::set<GlobalValue::GUID> &ExportedGUIDs,
598       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
599       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
600         LocalWPDTargetsMap(LocalWPDTargetsMap) {}
601 
602   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
603                                  const TypeIdCompatibleVtableInfo TIdInfo,
604                                  uint64_t ByteOffset);
605 
606   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
607                            VTableSlotSummary &SlotSummary,
608                            VTableSlotInfo &SlotInfo,
609                            WholeProgramDevirtResolution *Res,
610                            std::set<ValueInfo> &DevirtTargets);
611 
612   void run();
613 };
614 
615 struct WholeProgramDevirt : public ModulePass {
616   static char ID;
617 
618   bool UseCommandLine = false;
619 
620   ModuleSummaryIndex *ExportSummary = nullptr;
621   const ModuleSummaryIndex *ImportSummary = nullptr;
622 
WholeProgramDevirt__anon96dadd540211::WholeProgramDevirt623   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
624     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
625   }
626 
WholeProgramDevirt__anon96dadd540211::WholeProgramDevirt627   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
628                      const ModuleSummaryIndex *ImportSummary)
629       : ModulePass(ID), ExportSummary(ExportSummary),
630         ImportSummary(ImportSummary) {
631     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
632   }
633 
runOnModule__anon96dadd540211::WholeProgramDevirt634   bool runOnModule(Module &M) override {
635     if (skipModule(M))
636       return false;
637 
638     // In the new pass manager, we can request the optimization
639     // remark emitter pass on a per-function-basis, which the
640     // OREGetter will do for us.
641     // In the old pass manager, this is harder, so we just build
642     // an optimization remark emitter on the fly, when we need it.
643     std::unique_ptr<OptimizationRemarkEmitter> ORE;
644     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
645       ORE = std::make_unique<OptimizationRemarkEmitter>(F);
646       return *ORE;
647     };
648 
649     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
650       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
651     };
652 
653     if (UseCommandLine)
654       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
655                                          LookupDomTree);
656 
657     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
658                         ExportSummary, ImportSummary)
659         .run();
660   }
661 
getAnalysisUsage__anon96dadd540211::WholeProgramDevirt662   void getAnalysisUsage(AnalysisUsage &AU) const override {
663     AU.addRequired<AssumptionCacheTracker>();
664     AU.addRequired<TargetLibraryInfoWrapperPass>();
665     AU.addRequired<DominatorTreeWrapperPass>();
666   }
667 };
668 
669 } // end anonymous namespace
670 
671 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
672                       "Whole program devirtualization", false, false)
673 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
674 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
675 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
676 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
677                     "Whole program devirtualization", false, false)
678 char WholeProgramDevirt::ID = 0;
679 
680 ModulePass *
createWholeProgramDevirtPass(ModuleSummaryIndex * ExportSummary,const ModuleSummaryIndex * ImportSummary)681 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
682                                    const ModuleSummaryIndex *ImportSummary) {
683   return new WholeProgramDevirt(ExportSummary, ImportSummary);
684 }
685 
run(Module & M,ModuleAnalysisManager & AM)686 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
687                                               ModuleAnalysisManager &AM) {
688   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
689   auto AARGetter = [&](Function &F) -> AAResults & {
690     return FAM.getResult<AAManager>(F);
691   };
692   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
693     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
694   };
695   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
696     return FAM.getResult<DominatorTreeAnalysis>(F);
697   };
698   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
699                     ImportSummary)
700            .run())
701     return PreservedAnalyses::all();
702   return PreservedAnalyses::none();
703 }
704 
705 namespace llvm {
runWholeProgramDevirtOnIndex(ModuleSummaryIndex & Summary,std::set<GlobalValue::GUID> & ExportedGUIDs,std::map<ValueInfo,std::vector<VTableSlotSummary>> & LocalWPDTargetsMap)706 void runWholeProgramDevirtOnIndex(
707     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
708     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
709   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
710 }
711 
updateIndexWPDForExports(ModuleSummaryIndex & Summary,function_ref<bool (StringRef,ValueInfo)> isExported,std::map<ValueInfo,std::vector<VTableSlotSummary>> & LocalWPDTargetsMap)712 void updateIndexWPDForExports(
713     ModuleSummaryIndex &Summary,
714     function_ref<bool(StringRef, ValueInfo)> isExported,
715     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
716   for (auto &T : LocalWPDTargetsMap) {
717     auto &VI = T.first;
718     // This was enforced earlier during trySingleImplDevirt.
719     assert(VI.getSummaryList().size() == 1 &&
720            "Devirt of local target has more than one copy");
721     auto &S = VI.getSummaryList()[0];
722     if (!isExported(S->modulePath(), VI))
723       continue;
724 
725     // It's been exported by a cross module import.
726     for (auto &SlotSummary : T.second) {
727       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
728       assert(TIdSum);
729       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
730       assert(WPDRes != TIdSum->WPDRes.end());
731       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
732           WPDRes->second.SingleImplName,
733           Summary.getModuleHash(S->modulePath()));
734     }
735   }
736 }
737 
738 } // end namespace llvm
739 
runForTesting(Module & M,function_ref<AAResults & (Function &)> AARGetter,function_ref<OptimizationRemarkEmitter & (Function *)> OREGetter,function_ref<DominatorTree & (Function &)> LookupDomTree)740 bool DevirtModule::runForTesting(
741     Module &M, function_ref<AAResults &(Function &)> AARGetter,
742     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
743     function_ref<DominatorTree &(Function &)> LookupDomTree) {
744   ModuleSummaryIndex Summary(/*HaveGVs=*/false);
745 
746   // Handle the command-line summary arguments. This code is for testing
747   // purposes only, so we handle errors directly.
748   if (!ClReadSummary.empty()) {
749     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
750                           ": ");
751     auto ReadSummaryFile =
752         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
753 
754     yaml::Input In(ReadSummaryFile->getBuffer());
755     In >> Summary;
756     ExitOnErr(errorCodeToError(In.error()));
757   }
758 
759   bool Changed =
760       DevirtModule(
761           M, AARGetter, OREGetter, LookupDomTree,
762           ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
763           ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
764           .run();
765 
766   if (!ClWriteSummary.empty()) {
767     ExitOnError ExitOnErr(
768         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
769     std::error_code EC;
770     raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
771     ExitOnErr(errorCodeToError(EC));
772 
773     yaml::Output Out(OS);
774     Out << Summary;
775   }
776 
777   return Changed;
778 }
779 
buildTypeIdentifierMap(std::vector<VTableBits> & Bits,DenseMap<Metadata *,std::set<TypeMemberInfo>> & TypeIdMap)780 void DevirtModule::buildTypeIdentifierMap(
781     std::vector<VTableBits> &Bits,
782     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
783   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
784   Bits.reserve(M.getGlobalList().size());
785   SmallVector<MDNode *, 2> Types;
786   for (GlobalVariable &GV : M.globals()) {
787     Types.clear();
788     GV.getMetadata(LLVMContext::MD_type, Types);
789     if (GV.isDeclaration() || Types.empty())
790       continue;
791 
792     VTableBits *&BitsPtr = GVToBits[&GV];
793     if (!BitsPtr) {
794       Bits.emplace_back();
795       Bits.back().GV = &GV;
796       Bits.back().ObjectSize =
797           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
798       BitsPtr = &Bits.back();
799     }
800 
801     for (MDNode *Type : Types) {
802       auto TypeID = Type->getOperand(1).get();
803 
804       uint64_t Offset =
805           cast<ConstantInt>(
806               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
807               ->getZExtValue();
808 
809       TypeIdMap[TypeID].insert({BitsPtr, Offset});
810     }
811   }
812 }
813 
tryFindVirtualCallTargets(std::vector<VirtualCallTarget> & TargetsForSlot,const std::set<TypeMemberInfo> & TypeMemberInfos,uint64_t ByteOffset)814 bool DevirtModule::tryFindVirtualCallTargets(
815     std::vector<VirtualCallTarget> &TargetsForSlot,
816     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
817   for (const TypeMemberInfo &TM : TypeMemberInfos) {
818     if (!TM.Bits->GV->isConstant())
819       return false;
820 
821     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
822                                        TM.Offset + ByteOffset, M);
823     if (!Ptr)
824       return false;
825 
826     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
827     if (!Fn)
828       return false;
829 
830     // We can disregard __cxa_pure_virtual as a possible call target, as
831     // calls to pure virtuals are UB.
832     if (Fn->getName() == "__cxa_pure_virtual")
833       continue;
834 
835     TargetsForSlot.push_back({Fn, &TM});
836   }
837 
838   // Give up if we couldn't find any targets.
839   return !TargetsForSlot.empty();
840 }
841 
tryFindVirtualCallTargets(std::vector<ValueInfo> & TargetsForSlot,const TypeIdCompatibleVtableInfo TIdInfo,uint64_t ByteOffset)842 bool DevirtIndex::tryFindVirtualCallTargets(
843     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
844     uint64_t ByteOffset) {
845   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
846     // Find the first non-available_externally linkage vtable initializer.
847     // We can have multiple available_externally, linkonce_odr and weak_odr
848     // vtable initializers, however we want to skip available_externally as they
849     // do not have type metadata attached, and therefore the summary will not
850     // contain any vtable functions. We can also have multiple external
851     // vtable initializers in the case of comdats, which we cannot check here.
852     // The linker should give an error in this case.
853     //
854     // Also, handle the case of same-named local Vtables with the same path
855     // and therefore the same GUID. This can happen if there isn't enough
856     // distinguishing path when compiling the source file. In that case we
857     // conservatively return false early.
858     const GlobalVarSummary *VS = nullptr;
859     bool LocalFound = false;
860     for (auto &S : P.VTableVI.getSummaryList()) {
861       if (GlobalValue::isLocalLinkage(S->linkage())) {
862         if (LocalFound)
863           return false;
864         LocalFound = true;
865       }
866       if (!GlobalValue::isAvailableExternallyLinkage(S->linkage()))
867         VS = cast<GlobalVarSummary>(S->getBaseObject());
868     }
869     if (!VS->isLive())
870       continue;
871     for (auto VTP : VS->vTableFuncs()) {
872       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
873         continue;
874 
875       TargetsForSlot.push_back(VTP.FuncVI);
876     }
877   }
878 
879   // Give up if we couldn't find any targets.
880   return !TargetsForSlot.empty();
881 }
882 
applySingleImplDevirt(VTableSlotInfo & SlotInfo,Constant * TheFn,bool & IsExported)883 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
884                                          Constant *TheFn, bool &IsExported) {
885   auto Apply = [&](CallSiteInfo &CSInfo) {
886     for (auto &&VCallSite : CSInfo.CallSites) {
887       if (RemarksEnabled)
888         VCallSite.emitRemark("single-impl",
889                              TheFn->stripPointerCasts()->getName(), OREGetter);
890       VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
891           TheFn, VCallSite.CS.getCalledValue()->getType()));
892       // This use is no longer unsafe.
893       if (VCallSite.NumUnsafeUses)
894         --*VCallSite.NumUnsafeUses;
895     }
896     if (CSInfo.isExported())
897       IsExported = true;
898     CSInfo.markDevirt();
899   };
900   Apply(SlotInfo.CSInfo);
901   for (auto &P : SlotInfo.ConstCSInfo)
902     Apply(P.second);
903 }
904 
AddCalls(VTableSlotInfo & SlotInfo,const ValueInfo & Callee)905 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
906   // We can't add calls if we haven't seen a definition
907   if (Callee.getSummaryList().empty())
908     return false;
909 
910   // Insert calls into the summary index so that the devirtualized targets
911   // are eligible for import.
912   // FIXME: Annotate type tests with hotness. For now, mark these as hot
913   // to better ensure we have the opportunity to inline them.
914   bool IsExported = false;
915   auto &S = Callee.getSummaryList()[0];
916   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
917   auto AddCalls = [&](CallSiteInfo &CSInfo) {
918     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
919       FS->addCall({Callee, CI});
920       IsExported |= S->modulePath() != FS->modulePath();
921     }
922     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
923       FS->addCall({Callee, CI});
924       IsExported |= S->modulePath() != FS->modulePath();
925     }
926   };
927   AddCalls(SlotInfo.CSInfo);
928   for (auto &P : SlotInfo.ConstCSInfo)
929     AddCalls(P.second);
930   return IsExported;
931 }
932 
trySingleImplDevirt(ModuleSummaryIndex * ExportSummary,MutableArrayRef<VirtualCallTarget> TargetsForSlot,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res)933 bool DevirtModule::trySingleImplDevirt(
934     ModuleSummaryIndex *ExportSummary,
935     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
936     WholeProgramDevirtResolution *Res) {
937   // See if the program contains a single implementation of this virtual
938   // function.
939   Function *TheFn = TargetsForSlot[0].Fn;
940   for (auto &&Target : TargetsForSlot)
941     if (TheFn != Target.Fn)
942       return false;
943 
944   // If so, update each call site to call that implementation directly.
945   if (RemarksEnabled)
946     TargetsForSlot[0].WasDevirt = true;
947 
948   bool IsExported = false;
949   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
950   if (!IsExported)
951     return false;
952 
953   // If the only implementation has local linkage, we must promote to external
954   // to make it visible to thin LTO objects. We can only get here during the
955   // ThinLTO export phase.
956   if (TheFn->hasLocalLinkage()) {
957     std::string NewName = (TheFn->getName() + "$merged").str();
958 
959     // Since we are renaming the function, any comdats with the same name must
960     // also be renamed. This is required when targeting COFF, as the comdat name
961     // must match one of the names of the symbols in the comdat.
962     if (Comdat *C = TheFn->getComdat()) {
963       if (C->getName() == TheFn->getName()) {
964         Comdat *NewC = M.getOrInsertComdat(NewName);
965         NewC->setSelectionKind(C->getSelectionKind());
966         for (GlobalObject &GO : M.global_objects())
967           if (GO.getComdat() == C)
968             GO.setComdat(NewC);
969       }
970     }
971 
972     TheFn->setLinkage(GlobalValue::ExternalLinkage);
973     TheFn->setVisibility(GlobalValue::HiddenVisibility);
974     TheFn->setName(NewName);
975   }
976   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
977     // Any needed promotion of 'TheFn' has already been done during
978     // LTO unit split, so we can ignore return value of AddCalls.
979     AddCalls(SlotInfo, TheFnVI);
980 
981   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
982   Res->SingleImplName = TheFn->getName();
983 
984   return true;
985 }
986 
trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,VTableSlotSummary & SlotSummary,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res,std::set<ValueInfo> & DevirtTargets)987 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
988                                       VTableSlotSummary &SlotSummary,
989                                       VTableSlotInfo &SlotInfo,
990                                       WholeProgramDevirtResolution *Res,
991                                       std::set<ValueInfo> &DevirtTargets) {
992   // See if the program contains a single implementation of this virtual
993   // function.
994   auto TheFn = TargetsForSlot[0];
995   for (auto &&Target : TargetsForSlot)
996     if (TheFn != Target)
997       return false;
998 
999   // Don't devirtualize if we don't have target definition.
1000   auto Size = TheFn.getSummaryList().size();
1001   if (!Size)
1002     return false;
1003 
1004   // If the summary list contains multiple summaries where at least one is
1005   // a local, give up, as we won't know which (possibly promoted) name to use.
1006   for (auto &S : TheFn.getSummaryList())
1007     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1008       return false;
1009 
1010   // Collect functions devirtualized at least for one call site for stats.
1011   if (PrintSummaryDevirt)
1012     DevirtTargets.insert(TheFn);
1013 
1014   auto &S = TheFn.getSummaryList()[0];
1015   bool IsExported = AddCalls(SlotInfo, TheFn);
1016   if (IsExported)
1017     ExportedGUIDs.insert(TheFn.getGUID());
1018 
1019   // Record in summary for use in devirtualization during the ThinLTO import
1020   // step.
1021   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1022   if (GlobalValue::isLocalLinkage(S->linkage())) {
1023     if (IsExported)
1024       // If target is a local function and we are exporting it by
1025       // devirtualizing a call in another module, we need to record the
1026       // promoted name.
1027       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1028           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1029     else {
1030       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1031       Res->SingleImplName = TheFn.name();
1032     }
1033   } else
1034     Res->SingleImplName = TheFn.name();
1035 
1036   // Name will be empty if this thin link driven off of serialized combined
1037   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1038   // legacy LTO API anyway.
1039   assert(!Res->SingleImplName.empty());
1040 
1041   return true;
1042 }
1043 
tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res,VTableSlot Slot)1044 void DevirtModule::tryICallBranchFunnel(
1045     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1046     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1047   Triple T(M.getTargetTriple());
1048   if (T.getArch() != Triple::x86_64)
1049     return;
1050 
1051   if (TargetsForSlot.size() > ClThreshold)
1052     return;
1053 
1054   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1055   if (!HasNonDevirt)
1056     for (auto &P : SlotInfo.ConstCSInfo)
1057       if (!P.second.AllCallSitesDevirted) {
1058         HasNonDevirt = true;
1059         break;
1060       }
1061 
1062   if (!HasNonDevirt)
1063     return;
1064 
1065   FunctionType *FT =
1066       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1067   Function *JT;
1068   if (isa<MDString>(Slot.TypeID)) {
1069     JT = Function::Create(FT, Function::ExternalLinkage,
1070                           M.getDataLayout().getProgramAddressSpace(),
1071                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1072     JT->setVisibility(GlobalValue::HiddenVisibility);
1073   } else {
1074     JT = Function::Create(FT, Function::InternalLinkage,
1075                           M.getDataLayout().getProgramAddressSpace(),
1076                           "branch_funnel", &M);
1077   }
1078   JT->addAttribute(1, Attribute::Nest);
1079 
1080   std::vector<Value *> JTArgs;
1081   JTArgs.push_back(JT->arg_begin());
1082   for (auto &T : TargetsForSlot) {
1083     JTArgs.push_back(getMemberAddr(T.TM));
1084     JTArgs.push_back(T.Fn);
1085   }
1086 
1087   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1088   Function *Intr =
1089       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1090 
1091   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1092   CI->setTailCallKind(CallInst::TCK_MustTail);
1093   ReturnInst::Create(M.getContext(), nullptr, BB);
1094 
1095   bool IsExported = false;
1096   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1097   if (IsExported)
1098     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1099 }
1100 
applyICallBranchFunnel(VTableSlotInfo & SlotInfo,Constant * JT,bool & IsExported)1101 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1102                                           Constant *JT, bool &IsExported) {
1103   auto Apply = [&](CallSiteInfo &CSInfo) {
1104     if (CSInfo.isExported())
1105       IsExported = true;
1106     if (CSInfo.AllCallSitesDevirted)
1107       return;
1108     for (auto &&VCallSite : CSInfo.CallSites) {
1109       CallSite CS = VCallSite.CS;
1110 
1111       // Jump tables are only profitable if the retpoline mitigation is enabled.
1112       Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
1113       if (FSAttr.hasAttribute(Attribute::None) ||
1114           !FSAttr.getValueAsString().contains("+retpoline"))
1115         continue;
1116 
1117       if (RemarksEnabled)
1118         VCallSite.emitRemark("branch-funnel",
1119                              JT->stripPointerCasts()->getName(), OREGetter);
1120 
1121       // Pass the address of the vtable in the nest register, which is r10 on
1122       // x86_64.
1123       std::vector<Type *> NewArgs;
1124       NewArgs.push_back(Int8PtrTy);
1125       for (Type *T : CS.getFunctionType()->params())
1126         NewArgs.push_back(T);
1127       FunctionType *NewFT =
1128           FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
1129                             CS.getFunctionType()->isVarArg());
1130       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1131 
1132       IRBuilder<> IRB(CS.getInstruction());
1133       std::vector<Value *> Args;
1134       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1135       for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
1136         Args.push_back(CS.getArgOperand(I));
1137 
1138       CallSite NewCS;
1139       if (CS.isCall())
1140         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1141       else
1142         NewCS = IRB.CreateInvoke(
1143             NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1144             cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
1145             cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
1146       NewCS.setCallingConv(CS.getCallingConv());
1147 
1148       AttributeList Attrs = CS.getAttributes();
1149       std::vector<AttributeSet> NewArgAttrs;
1150       NewArgAttrs.push_back(AttributeSet::get(
1151           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1152                               M.getContext(), Attribute::Nest)}));
1153       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1154         NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1155       NewCS.setAttributes(
1156           AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1157                              Attrs.getRetAttributes(), NewArgAttrs));
1158 
1159       CS->replaceAllUsesWith(NewCS.getInstruction());
1160       CS->eraseFromParent();
1161 
1162       // This use is no longer unsafe.
1163       if (VCallSite.NumUnsafeUses)
1164         --*VCallSite.NumUnsafeUses;
1165     }
1166     // Don't mark as devirtualized because there may be callers compiled without
1167     // retpoline mitigation, which would mean that they are lowered to
1168     // llvm.type.test and therefore require an llvm.type.test resolution for the
1169     // type identifier.
1170   };
1171   Apply(SlotInfo.CSInfo);
1172   for (auto &P : SlotInfo.ConstCSInfo)
1173     Apply(P.second);
1174 }
1175 
tryEvaluateFunctionsWithArgs(MutableArrayRef<VirtualCallTarget> TargetsForSlot,ArrayRef<uint64_t> Args)1176 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1177     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1178     ArrayRef<uint64_t> Args) {
1179   // Evaluate each function and store the result in each target's RetVal
1180   // field.
1181   for (VirtualCallTarget &Target : TargetsForSlot) {
1182     if (Target.Fn->arg_size() != Args.size() + 1)
1183       return false;
1184 
1185     Evaluator Eval(M.getDataLayout(), nullptr);
1186     SmallVector<Constant *, 2> EvalArgs;
1187     EvalArgs.push_back(
1188         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1189     for (unsigned I = 0; I != Args.size(); ++I) {
1190       auto *ArgTy = dyn_cast<IntegerType>(
1191           Target.Fn->getFunctionType()->getParamType(I + 1));
1192       if (!ArgTy)
1193         return false;
1194       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1195     }
1196 
1197     Constant *RetVal;
1198     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1199         !isa<ConstantInt>(RetVal))
1200       return false;
1201     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1202   }
1203   return true;
1204 }
1205 
applyUniformRetValOpt(CallSiteInfo & CSInfo,StringRef FnName,uint64_t TheRetVal)1206 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1207                                          uint64_t TheRetVal) {
1208   for (auto Call : CSInfo.CallSites)
1209     Call.replaceAndErase(
1210         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1211         ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1212   CSInfo.markDevirt();
1213 }
1214 
tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,CallSiteInfo & CSInfo,WholeProgramDevirtResolution::ByArg * Res)1215 bool DevirtModule::tryUniformRetValOpt(
1216     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1217     WholeProgramDevirtResolution::ByArg *Res) {
1218   // Uniform return value optimization. If all functions return the same
1219   // constant, replace all calls with that constant.
1220   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1221   for (const VirtualCallTarget &Target : TargetsForSlot)
1222     if (Target.RetVal != TheRetVal)
1223       return false;
1224 
1225   if (CSInfo.isExported()) {
1226     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1227     Res->Info = TheRetVal;
1228   }
1229 
1230   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1231   if (RemarksEnabled)
1232     for (auto &&Target : TargetsForSlot)
1233       Target.WasDevirt = true;
1234   return true;
1235 }
1236 
getGlobalName(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name)1237 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1238                                         ArrayRef<uint64_t> Args,
1239                                         StringRef Name) {
1240   std::string FullName = "__typeid_";
1241   raw_string_ostream OS(FullName);
1242   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1243   for (uint64_t Arg : Args)
1244     OS << '_' << Arg;
1245   OS << '_' << Name;
1246   return OS.str();
1247 }
1248 
shouldExportConstantsAsAbsoluteSymbols()1249 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1250   Triple T(M.getTargetTriple());
1251   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1252 }
1253 
exportGlobal(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name,Constant * C)1254 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1255                                 StringRef Name, Constant *C) {
1256   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1257                                         getGlobalName(Slot, Args, Name), C, &M);
1258   GA->setVisibility(GlobalValue::HiddenVisibility);
1259 }
1260 
exportConstant(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name,uint32_t Const,uint32_t & Storage)1261 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1262                                   StringRef Name, uint32_t Const,
1263                                   uint32_t &Storage) {
1264   if (shouldExportConstantsAsAbsoluteSymbols()) {
1265     exportGlobal(
1266         Slot, Args, Name,
1267         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1268     return;
1269   }
1270 
1271   Storage = Const;
1272 }
1273 
importGlobal(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name)1274 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1275                                      StringRef Name) {
1276   Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1277   auto *GV = dyn_cast<GlobalVariable>(C);
1278   if (GV)
1279     GV->setVisibility(GlobalValue::HiddenVisibility);
1280   return C;
1281 }
1282 
importConstant(VTableSlot Slot,ArrayRef<uint64_t> Args,StringRef Name,IntegerType * IntTy,uint32_t Storage)1283 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1284                                        StringRef Name, IntegerType *IntTy,
1285                                        uint32_t Storage) {
1286   if (!shouldExportConstantsAsAbsoluteSymbols())
1287     return ConstantInt::get(IntTy, Storage);
1288 
1289   Constant *C = importGlobal(Slot, Args, Name);
1290   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1291   C = ConstantExpr::getPtrToInt(C, IntTy);
1292 
1293   // We only need to set metadata if the global is newly created, in which
1294   // case it would not have hidden visibility.
1295   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1296     return C;
1297 
1298   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1299     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1300     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1301     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1302                     MDNode::get(M.getContext(), {MinC, MaxC}));
1303   };
1304   unsigned AbsWidth = IntTy->getBitWidth();
1305   if (AbsWidth == IntPtrTy->getBitWidth())
1306     SetAbsRange(~0ull, ~0ull); // Full set.
1307   else
1308     SetAbsRange(0, 1ull << AbsWidth);
1309   return C;
1310 }
1311 
applyUniqueRetValOpt(CallSiteInfo & CSInfo,StringRef FnName,bool IsOne,Constant * UniqueMemberAddr)1312 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1313                                         bool IsOne,
1314                                         Constant *UniqueMemberAddr) {
1315   for (auto &&Call : CSInfo.CallSites) {
1316     IRBuilder<> B(Call.CS.getInstruction());
1317     Value *Cmp =
1318         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1319                      B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1320     Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1321     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1322                          Cmp);
1323   }
1324   CSInfo.markDevirt();
1325 }
1326 
getMemberAddr(const TypeMemberInfo * M)1327 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1328   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1329   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1330                                         ConstantInt::get(Int64Ty, M->Offset));
1331 }
1332 
tryUniqueRetValOpt(unsigned BitWidth,MutableArrayRef<VirtualCallTarget> TargetsForSlot,CallSiteInfo & CSInfo,WholeProgramDevirtResolution::ByArg * Res,VTableSlot Slot,ArrayRef<uint64_t> Args)1333 bool DevirtModule::tryUniqueRetValOpt(
1334     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1335     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1336     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1337   // IsOne controls whether we look for a 0 or a 1.
1338   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1339     const TypeMemberInfo *UniqueMember = nullptr;
1340     for (const VirtualCallTarget &Target : TargetsForSlot) {
1341       if (Target.RetVal == (IsOne ? 1 : 0)) {
1342         if (UniqueMember)
1343           return false;
1344         UniqueMember = Target.TM;
1345       }
1346     }
1347 
1348     // We should have found a unique member or bailed out by now. We already
1349     // checked for a uniform return value in tryUniformRetValOpt.
1350     assert(UniqueMember);
1351 
1352     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1353     if (CSInfo.isExported()) {
1354       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1355       Res->Info = IsOne;
1356 
1357       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1358     }
1359 
1360     // Replace each call with the comparison.
1361     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1362                          UniqueMemberAddr);
1363 
1364     // Update devirtualization statistics for targets.
1365     if (RemarksEnabled)
1366       for (auto &&Target : TargetsForSlot)
1367         Target.WasDevirt = true;
1368 
1369     return true;
1370   };
1371 
1372   if (BitWidth == 1) {
1373     if (tryUniqueRetValOptFor(true))
1374       return true;
1375     if (tryUniqueRetValOptFor(false))
1376       return true;
1377   }
1378   return false;
1379 }
1380 
applyVirtualConstProp(CallSiteInfo & CSInfo,StringRef FnName,Constant * Byte,Constant * Bit)1381 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1382                                          Constant *Byte, Constant *Bit) {
1383   for (auto Call : CSInfo.CallSites) {
1384     auto *RetType = cast<IntegerType>(Call.CS.getType());
1385     IRBuilder<> B(Call.CS.getInstruction());
1386     Value *Addr =
1387         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1388     if (RetType->getBitWidth() == 1) {
1389       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1390       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1391       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1392       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1393                            OREGetter, IsBitSet);
1394     } else {
1395       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1396       Value *Val = B.CreateLoad(RetType, ValAddr);
1397       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1398                            OREGetter, Val);
1399     }
1400   }
1401   CSInfo.markDevirt();
1402 }
1403 
tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,VTableSlotInfo & SlotInfo,WholeProgramDevirtResolution * Res,VTableSlot Slot)1404 bool DevirtModule::tryVirtualConstProp(
1405     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1406     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1407   // This only works if the function returns an integer.
1408   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1409   if (!RetType)
1410     return false;
1411   unsigned BitWidth = RetType->getBitWidth();
1412   if (BitWidth > 64)
1413     return false;
1414 
1415   // Make sure that each function is defined, does not access memory, takes at
1416   // least one argument, does not use its first argument (which we assume is
1417   // 'this'), and has the same return type.
1418   //
1419   // Note that we test whether this copy of the function is readnone, rather
1420   // than testing function attributes, which must hold for any copy of the
1421   // function, even a less optimized version substituted at link time. This is
1422   // sound because the virtual constant propagation optimizations effectively
1423   // inline all implementations of the virtual function into each call site,
1424   // rather than using function attributes to perform local optimization.
1425   for (VirtualCallTarget &Target : TargetsForSlot) {
1426     if (Target.Fn->isDeclaration() ||
1427         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1428             MAK_ReadNone ||
1429         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1430         Target.Fn->getReturnType() != RetType)
1431       return false;
1432   }
1433 
1434   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1435     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1436       continue;
1437 
1438     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1439     if (Res)
1440       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1441 
1442     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1443       continue;
1444 
1445     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1446                            ResByArg, Slot, CSByConstantArg.first))
1447       continue;
1448 
1449     // Find an allocation offset in bits in all vtables associated with the
1450     // type.
1451     uint64_t AllocBefore =
1452         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1453     uint64_t AllocAfter =
1454         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1455 
1456     // Calculate the total amount of padding needed to store a value at both
1457     // ends of the object.
1458     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1459     for (auto &&Target : TargetsForSlot) {
1460       TotalPaddingBefore += std::max<int64_t>(
1461           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1462       TotalPaddingAfter += std::max<int64_t>(
1463           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1464     }
1465 
1466     // If the amount of padding is too large, give up.
1467     // FIXME: do something smarter here.
1468     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1469       continue;
1470 
1471     // Calculate the offset to the value as a (possibly negative) byte offset
1472     // and (if applicable) a bit offset, and store the values in the targets.
1473     int64_t OffsetByte;
1474     uint64_t OffsetBit;
1475     if (TotalPaddingBefore <= TotalPaddingAfter)
1476       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1477                             OffsetBit);
1478     else
1479       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1480                            OffsetBit);
1481 
1482     if (RemarksEnabled)
1483       for (auto &&Target : TargetsForSlot)
1484         Target.WasDevirt = true;
1485 
1486 
1487     if (CSByConstantArg.second.isExported()) {
1488       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1489       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1490                      ResByArg->Byte);
1491       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1492                      ResByArg->Bit);
1493     }
1494 
1495     // Rewrite each call to a load from OffsetByte/OffsetBit.
1496     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1497     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1498     applyVirtualConstProp(CSByConstantArg.second,
1499                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1500   }
1501   return true;
1502 }
1503 
rebuildGlobal(VTableBits & B)1504 void DevirtModule::rebuildGlobal(VTableBits &B) {
1505   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1506     return;
1507 
1508   // Align the before byte array to the global's minimum alignment so that we
1509   // don't break any alignment requirements on the global.
1510   MaybeAlign Alignment(B.GV->getAlignment());
1511   if (!Alignment)
1512     Alignment =
1513         Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType()));
1514   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1515 
1516   // Before was stored in reverse order; flip it now.
1517   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1518     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1519 
1520   // Build an anonymous global containing the before bytes, followed by the
1521   // original initializer, followed by the after bytes.
1522   auto NewInit = ConstantStruct::getAnon(
1523       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1524        B.GV->getInitializer(),
1525        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1526   auto NewGV =
1527       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1528                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1529   NewGV->setSection(B.GV->getSection());
1530   NewGV->setComdat(B.GV->getComdat());
1531   NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1532 
1533   // Copy the original vtable's metadata to the anonymous global, adjusting
1534   // offsets as required.
1535   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1536 
1537   // Build an alias named after the original global, pointing at the second
1538   // element (the original initializer).
1539   auto Alias = GlobalAlias::create(
1540       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1541       ConstantExpr::getGetElementPtr(
1542           NewInit->getType(), NewGV,
1543           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1544                                ConstantInt::get(Int32Ty, 1)}),
1545       &M);
1546   Alias->setVisibility(B.GV->getVisibility());
1547   Alias->takeName(B.GV);
1548 
1549   B.GV->replaceAllUsesWith(Alias);
1550   B.GV->eraseFromParent();
1551 }
1552 
areRemarksEnabled()1553 bool DevirtModule::areRemarksEnabled() {
1554   const auto &FL = M.getFunctionList();
1555   for (const Function &Fn : FL) {
1556     const auto &BBL = Fn.getBasicBlockList();
1557     if (BBL.empty())
1558       continue;
1559     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1560     return DI.isEnabled();
1561   }
1562   return false;
1563 }
1564 
scanTypeTestUsers(Function * TypeTestFunc)1565 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc) {
1566   // Find all virtual calls via a virtual table pointer %p under an assumption
1567   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1568   // points to a member of the type identifier %md. Group calls by (type ID,
1569   // offset) pair (effectively the identity of the virtual function) and store
1570   // to CallSlots.
1571   DenseSet<CallSite> SeenCallSites;
1572   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1573        I != E;) {
1574     auto CI = dyn_cast<CallInst>(I->getUser());
1575     ++I;
1576     if (!CI)
1577       continue;
1578 
1579     // Search for virtual calls based on %p and add them to DevirtCalls.
1580     SmallVector<DevirtCallSite, 1> DevirtCalls;
1581     SmallVector<CallInst *, 1> Assumes;
1582     auto &DT = LookupDomTree(*CI->getFunction());
1583     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1584 
1585     // If we found any, add them to CallSlots.
1586     if (!Assumes.empty()) {
1587       Metadata *TypeId =
1588           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1589       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1590       for (DevirtCallSite Call : DevirtCalls) {
1591         // Only add this CallSite if we haven't seen it before. The vtable
1592         // pointer may have been CSE'd with pointers from other call sites,
1593         // and we don't want to process call sites multiple times. We can't
1594         // just skip the vtable Ptr if it has been seen before, however, since
1595         // it may be shared by type tests that dominate different calls.
1596         if (SeenCallSites.insert(Call.CS).second)
1597           CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1598       }
1599     }
1600 
1601     // We no longer need the assumes or the type test.
1602     for (auto Assume : Assumes)
1603       Assume->eraseFromParent();
1604     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1605     // may use the vtable argument later.
1606     if (CI->use_empty())
1607       CI->eraseFromParent();
1608   }
1609 }
1610 
scanTypeCheckedLoadUsers(Function * TypeCheckedLoadFunc)1611 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1612   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1613 
1614   for (auto I = TypeCheckedLoadFunc->use_begin(),
1615             E = TypeCheckedLoadFunc->use_end();
1616        I != E;) {
1617     auto CI = dyn_cast<CallInst>(I->getUser());
1618     ++I;
1619     if (!CI)
1620       continue;
1621 
1622     Value *Ptr = CI->getArgOperand(0);
1623     Value *Offset = CI->getArgOperand(1);
1624     Value *TypeIdValue = CI->getArgOperand(2);
1625     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1626 
1627     SmallVector<DevirtCallSite, 1> DevirtCalls;
1628     SmallVector<Instruction *, 1> LoadedPtrs;
1629     SmallVector<Instruction *, 1> Preds;
1630     bool HasNonCallUses = false;
1631     auto &DT = LookupDomTree(*CI->getFunction());
1632     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1633                                                HasNonCallUses, CI, DT);
1634 
1635     // Start by generating "pessimistic" code that explicitly loads the function
1636     // pointer from the vtable and performs the type check. If possible, we will
1637     // eliminate the load and the type check later.
1638 
1639     // If possible, only generate the load at the point where it is used.
1640     // This helps avoid unnecessary spills.
1641     IRBuilder<> LoadB(
1642         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1643     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1644     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1645     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1646 
1647     for (Instruction *LoadedPtr : LoadedPtrs) {
1648       LoadedPtr->replaceAllUsesWith(LoadedValue);
1649       LoadedPtr->eraseFromParent();
1650     }
1651 
1652     // Likewise for the type test.
1653     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1654     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1655 
1656     for (Instruction *Pred : Preds) {
1657       Pred->replaceAllUsesWith(TypeTestCall);
1658       Pred->eraseFromParent();
1659     }
1660 
1661     // We have already erased any extractvalue instructions that refer to the
1662     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1663     // (although this is unlikely). In that case, explicitly build a pair and
1664     // RAUW it.
1665     if (!CI->use_empty()) {
1666       Value *Pair = UndefValue::get(CI->getType());
1667       IRBuilder<> B(CI);
1668       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1669       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1670       CI->replaceAllUsesWith(Pair);
1671     }
1672 
1673     // The number of unsafe uses is initially the number of uses.
1674     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1675     NumUnsafeUses = DevirtCalls.size();
1676 
1677     // If the function pointer has a non-call user, we cannot eliminate the type
1678     // check, as one of those users may eventually call the pointer. Increment
1679     // the unsafe use count to make sure it cannot reach zero.
1680     if (HasNonCallUses)
1681       ++NumUnsafeUses;
1682     for (DevirtCallSite Call : DevirtCalls) {
1683       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1684                                                    &NumUnsafeUses);
1685     }
1686 
1687     CI->eraseFromParent();
1688   }
1689 }
1690 
importResolution(VTableSlot Slot,VTableSlotInfo & SlotInfo)1691 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1692   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1693   if (!TypeId)
1694     return;
1695   const TypeIdSummary *TidSummary =
1696       ImportSummary->getTypeIdSummary(TypeId->getString());
1697   if (!TidSummary)
1698     return;
1699   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1700   if (ResI == TidSummary->WPDRes.end())
1701     return;
1702   const WholeProgramDevirtResolution &Res = ResI->second;
1703 
1704   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1705     assert(!Res.SingleImplName.empty());
1706     // The type of the function in the declaration is irrelevant because every
1707     // call site will cast it to the correct type.
1708     Constant *SingleImpl =
1709         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1710                                              Type::getVoidTy(M.getContext()))
1711                            .getCallee());
1712 
1713     // This is the import phase so we should not be exporting anything.
1714     bool IsExported = false;
1715     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1716     assert(!IsExported);
1717   }
1718 
1719   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1720     auto I = Res.ResByArg.find(CSByConstantArg.first);
1721     if (I == Res.ResByArg.end())
1722       continue;
1723     auto &ResByArg = I->second;
1724     // FIXME: We should figure out what to do about the "function name" argument
1725     // to the apply* functions, as the function names are unavailable during the
1726     // importing phase. For now we just pass the empty string. This does not
1727     // impact correctness because the function names are just used for remarks.
1728     switch (ResByArg.TheKind) {
1729     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1730       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1731       break;
1732     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1733       Constant *UniqueMemberAddr =
1734           importGlobal(Slot, CSByConstantArg.first, "unique_member");
1735       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1736                            UniqueMemberAddr);
1737       break;
1738     }
1739     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1740       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1741                                       Int32Ty, ResByArg.Byte);
1742       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1743                                      ResByArg.Bit);
1744       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1745       break;
1746     }
1747     default:
1748       break;
1749     }
1750   }
1751 
1752   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1753     // The type of the function is irrelevant, because it's bitcast at calls
1754     // anyhow.
1755     Constant *JT = cast<Constant>(
1756         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1757                               Type::getVoidTy(M.getContext()))
1758             .getCallee());
1759     bool IsExported = false;
1760     applyICallBranchFunnel(SlotInfo, JT, IsExported);
1761     assert(!IsExported);
1762   }
1763 }
1764 
removeRedundantTypeTests()1765 void DevirtModule::removeRedundantTypeTests() {
1766   auto True = ConstantInt::getTrue(M.getContext());
1767   for (auto &&U : NumUnsafeUsesForTypeTest) {
1768     if (U.second == 0) {
1769       U.first->replaceAllUsesWith(True);
1770       U.first->eraseFromParent();
1771     }
1772   }
1773 }
1774 
run()1775 bool DevirtModule::run() {
1776   // If only some of the modules were split, we cannot correctly perform
1777   // this transformation. We already checked for the presense of type tests
1778   // with partially split modules during the thin link, and would have emitted
1779   // an error if any were found, so here we can simply return.
1780   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1781       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1782     return false;
1783 
1784   Function *TypeTestFunc =
1785       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1786   Function *TypeCheckedLoadFunc =
1787       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1788   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1789 
1790   // Normally if there are no users of the devirtualization intrinsics in the
1791   // module, this pass has nothing to do. But if we are exporting, we also need
1792   // to handle any users that appear only in the function summaries.
1793   if (!ExportSummary &&
1794       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1795        AssumeFunc->use_empty()) &&
1796       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1797     return false;
1798 
1799   if (TypeTestFunc && AssumeFunc)
1800     scanTypeTestUsers(TypeTestFunc);
1801 
1802   if (TypeCheckedLoadFunc)
1803     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1804 
1805   if (ImportSummary) {
1806     for (auto &S : CallSlots)
1807       importResolution(S.first, S.second);
1808 
1809     removeRedundantTypeTests();
1810 
1811     // The rest of the code is only necessary when exporting or during regular
1812     // LTO, so we are done.
1813     return true;
1814   }
1815 
1816   // Rebuild type metadata into a map for easy lookup.
1817   std::vector<VTableBits> Bits;
1818   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1819   buildTypeIdentifierMap(Bits, TypeIdMap);
1820   if (TypeIdMap.empty())
1821     return true;
1822 
1823   // Collect information from summary about which calls to try to devirtualize.
1824   if (ExportSummary) {
1825     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1826     for (auto &P : TypeIdMap) {
1827       if (auto *TypeId = dyn_cast<MDString>(P.first))
1828         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1829             TypeId);
1830     }
1831 
1832     for (auto &P : *ExportSummary) {
1833       for (auto &S : P.second.SummaryList) {
1834         auto *FS = dyn_cast<FunctionSummary>(S.get());
1835         if (!FS)
1836           continue;
1837         // FIXME: Only add live functions.
1838         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1839           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1840             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1841           }
1842         }
1843         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1844           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1845             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1846           }
1847         }
1848         for (const FunctionSummary::ConstVCall &VC :
1849              FS->type_test_assume_const_vcalls()) {
1850           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1851             CallSlots[{MD, VC.VFunc.Offset}]
1852                 .ConstCSInfo[VC.Args]
1853                 .addSummaryTypeTestAssumeUser(FS);
1854           }
1855         }
1856         for (const FunctionSummary::ConstVCall &VC :
1857              FS->type_checked_load_const_vcalls()) {
1858           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1859             CallSlots[{MD, VC.VFunc.Offset}]
1860                 .ConstCSInfo[VC.Args]
1861                 .addSummaryTypeCheckedLoadUser(FS);
1862           }
1863         }
1864       }
1865     }
1866   }
1867 
1868   // For each (type, offset) pair:
1869   bool DidVirtualConstProp = false;
1870   std::map<std::string, Function*> DevirtTargets;
1871   for (auto &S : CallSlots) {
1872     // Search each of the members of the type identifier for the virtual
1873     // function implementation at offset S.first.ByteOffset, and add to
1874     // TargetsForSlot.
1875     std::vector<VirtualCallTarget> TargetsForSlot;
1876     if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1877                                   S.first.ByteOffset)) {
1878       WholeProgramDevirtResolution *Res = nullptr;
1879       if (ExportSummary && isa<MDString>(S.first.TypeID))
1880         Res = &ExportSummary
1881                    ->getOrInsertTypeIdSummary(
1882                        cast<MDString>(S.first.TypeID)->getString())
1883                    .WPDRes[S.first.ByteOffset];
1884 
1885       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
1886         DidVirtualConstProp |=
1887             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
1888 
1889         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
1890       }
1891 
1892       // Collect functions devirtualized at least for one call site for stats.
1893       if (RemarksEnabled)
1894         for (const auto &T : TargetsForSlot)
1895           if (T.WasDevirt)
1896             DevirtTargets[T.Fn->getName()] = T.Fn;
1897     }
1898 
1899     // CFI-specific: if we are exporting and any llvm.type.checked.load
1900     // intrinsics were *not* devirtualized, we need to add the resulting
1901     // llvm.type.test intrinsics to the function summaries so that the
1902     // LowerTypeTests pass will export them.
1903     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1904       auto GUID =
1905           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1906       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1907         FS->addTypeTest(GUID);
1908       for (auto &CCS : S.second.ConstCSInfo)
1909         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1910           FS->addTypeTest(GUID);
1911     }
1912   }
1913 
1914   if (RemarksEnabled) {
1915     // Generate remarks for each devirtualized function.
1916     for (const auto &DT : DevirtTargets) {
1917       Function *F = DT.second;
1918 
1919       using namespace ore;
1920       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1921                         << "devirtualized "
1922                         << NV("FunctionName", DT.first));
1923     }
1924   }
1925 
1926   removeRedundantTypeTests();
1927 
1928   // Rebuild each global we touched as part of virtual constant propagation to
1929   // include the before and after bytes.
1930   if (DidVirtualConstProp)
1931     for (VTableBits &B : Bits)
1932       rebuildGlobal(B);
1933 
1934   // We have lowered or deleted the type checked load intrinsics, so we no
1935   // longer have enough information to reason about the liveness of virtual
1936   // function pointers in GlobalDCE.
1937   for (GlobalVariable &GV : M.globals())
1938     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
1939 
1940   return true;
1941 }
1942 
run()1943 void DevirtIndex::run() {
1944   if (ExportSummary.typeIdCompatibleVtableMap().empty())
1945     return;
1946 
1947   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
1948   for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
1949     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
1950   }
1951 
1952   // Collect information from summary about which calls to try to devirtualize.
1953   for (auto &P : ExportSummary) {
1954     for (auto &S : P.second.SummaryList) {
1955       auto *FS = dyn_cast<FunctionSummary>(S.get());
1956       if (!FS)
1957         continue;
1958       // FIXME: Only add live functions.
1959       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1960         for (StringRef Name : NameByGUID[VF.GUID]) {
1961           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1962         }
1963       }
1964       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1965         for (StringRef Name : NameByGUID[VF.GUID]) {
1966           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1967         }
1968       }
1969       for (const FunctionSummary::ConstVCall &VC :
1970            FS->type_test_assume_const_vcalls()) {
1971         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1972           CallSlots[{Name, VC.VFunc.Offset}]
1973               .ConstCSInfo[VC.Args]
1974               .addSummaryTypeTestAssumeUser(FS);
1975         }
1976       }
1977       for (const FunctionSummary::ConstVCall &VC :
1978            FS->type_checked_load_const_vcalls()) {
1979         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1980           CallSlots[{Name, VC.VFunc.Offset}]
1981               .ConstCSInfo[VC.Args]
1982               .addSummaryTypeCheckedLoadUser(FS);
1983         }
1984       }
1985     }
1986   }
1987 
1988   std::set<ValueInfo> DevirtTargets;
1989   // For each (type, offset) pair:
1990   for (auto &S : CallSlots) {
1991     // Search each of the members of the type identifier for the virtual
1992     // function implementation at offset S.first.ByteOffset, and add to
1993     // TargetsForSlot.
1994     std::vector<ValueInfo> TargetsForSlot;
1995     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
1996     assert(TidSummary);
1997     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
1998                                   S.first.ByteOffset)) {
1999       WholeProgramDevirtResolution *Res =
2000           &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2001                .WPDRes[S.first.ByteOffset];
2002 
2003       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2004                                DevirtTargets))
2005         continue;
2006     }
2007   }
2008 
2009   // Optionally have the thin link print message for each devirtualized
2010   // function.
2011   if (PrintSummaryDevirt)
2012     for (const auto &DT : DevirtTargets)
2013       errs() << "Devirtualized call to " << DT << "\n";
2014 
2015   return;
2016 }
2017